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Abstract: 

   Gravitational search algorithm (GSA), a recent meta-heuristic algorithm inspired by Newton’s law of gravity 

and mass interactions, shows good performance in various optimization problems. In GSA, the gravitational 

constant attenuation factor alpha ( Į ) plays a vital role in convergence and the balance between exploration and 

exploitation. However, in GSA and most of its variants, all agents share the same Į  value without considering 

their evolutionary states, which has inevitably caused the premature convergence and imbalance of exploration and 

exploitation. In order to alleviate these drawbacks, in this paper, we propose a new variant of GSA, namely stability 

constrained adaptive alpha for GSA (SCAA). In SCAA, each agent’s evolutionary state is estimated, which is then 

combined with the variation of the agent’s position and fitness feedback to adaptively adjust the value of Į  . 

Moreover, to preserve agents’ stable trajectories and improve convergence precision, a boundary constraint is 

derived from the stability conditions of GSA to restrict the value of Į  in each iteration. The performance of 

SCAA has been evaluated by comparing with the original GSA and four alpha adjusting algorithms on 13 






conventional functions and 15 complex CEC2015 functions. The experimental results have demonstrated that 

SCAA has significantly better searching performance than its peers do. 

Keywords: Meta-heuristic algorithm, Gravitational Search Algorithm, Adaptive parameter, Stability Conditions, 

Exploration and exploitation 

 

1. Introduction  

 

With the growing complexity in many real-word optimization problems, adaptable and flexible meta-heuristic 

algorithms are of increasing popularity due to their efficient performances [5,34]. In recent years, a variety of 

meta-heuristic algorithms have been proposed, including Genetic Algorithm (GA) [3], Particle Swarm Optimization 

(PSO) [34], Differential Evolution (DE) [45], Artificial Bee Colony (ABC) [19] and Gravitational search algorithm 

(GSA) [35], etc. Among these algorithms, GSA is one of the latest population-based stochastic algorithm that 

originates from the Newton’s law of gravity and motion [35]. GSA considers every agent as a celestial body 

attracting each other with a gravitational force that is directly proportional to the product of their masses and 

inversely proportional to the squared distance between them. Agents search for the optimum by their interactive 

movements. Since it was developed, GSA has gained popularity due to its several attractive features, such as simple 

structure, easy implementation and well understanding [9,18]. However, there are still some drawbacks in GSA, 

especially the premature convergence and imbalance of exploration and exploitation [9,22,55,56]. 

 

Recently, numerous improvements have been proposed to overcome these drawbacks. One active research trend 

is to hybridize GSA with other meta-heuristics algorithms, such as DE [25], PSO [4,17,31,32], GA [39,47], ABC 

[12] and Simulated Annealing (SA) [24]. For example, Li et al. [25] incorporated both the concepts of DE and GSA 






and proposed a hybrid DE-GSA approach, in which agents were updated not only by DE operators but also by GSA 

mechanisms. Mirjalili et al. introduced the social thinking of PSO into GSA to accelerate convergence in the last 

iterations and improve the search ability [4,17,32]. In [39,47], GSA was hybridized with GA to escape from local 

optima when applied to cope with multi-level image thresholding and neural network training issues, respectively.  

 

Another research trend is to introduce new learning strategies into GSA. To tackle the prematurity problem of 

GSA, Sun et al. [48] presented a locally information topology by taking individual heterogeneity into account and 

Doraghinejad et al. [7] embedded the Black Hole theory into the original GSA. Sarafrazi et al. [37] defined a new 

operator named as “disruption” to increase the exploration and exploitation ability of GSA. For overcoming the 

limitation of lack of historical memory in GSA, the information of agents’ best solution obtained so far was 

introduced in [18]. Xiao et al. [53] modified GSA by introducing the chaotic local search operator to avoid the local 

optima trapping problem. Besides, Soleimanpour-moghadam et al. [42] proposed a Quantum based GSA for 

increasing the population diversity. For striking a good balance between exploration and exploitation, Khajezadeh 

et al [20] developed a modified GSA (IGSA) by introducing a controlled trajectory for velocity update that limited 

the velocity within a certain interval value. 

 

In addition, there is another strong research trend towards designing new parameter adjusting strategies of GSA 

to improve its performance. In GSA, the gravitational constant tG  determines the convergence speed and the 

balance of exploration and exploitation. In order to improve the search ability of GSA, several linearly decreasing 

functions of tG  were used in [13,14] to extend the solution search space. Li et al. [23] proposed a piecewise 

function based GSA (PFGSA) for providing more rational gravitational constant to control the convergence. Vijaya 

Kumar et al. [52] developed a fuzzy adaptive GSA (FAGSA), where fuzzy rules were used to determine the optimal 






selection of gravitational constant. More specially, by adjusting the attenuation factor alpha ( Į ), tG  is 

correspondingly changed and leads to the alteration of agents’ movement directions and steps [2,36]. Thus, the 

parameter Į  plays an important role in the searching ability of GSA. However, a constant parameter Į  was used 

in the original GSA in the whole evolutionary process, which may severely affect the optimization performance. To 

address this limitation, a number of alpha adjusting strategies have been proposed. In [43] and [11], a fuzzy strategy 

was used to adjust the Į  value on the basis of the iteration number for the sake of promoting the balance of 

exploration and exploitation and discouraging the premature convergence. In [23] and [56], a hyperbolic function 

was introduced to replace the fixed value of Į , which requested Į  to be changed with iteration to tackle the 

premature problem. Besides, Saeidi-Khabisi et al. [36] proposed an adaptive alpha determination strategy by using 

a fuzzy logic controller. In this method, some feedback information including the current iteration value, population 

diversity, population progress and the Į  value in the previous iteration were utilized to adjust Į  dynamically, 

which aimed at accelerating the convergence rate and preventing prematurity. More comprehensive and detailed 

overview of the GSA variants can be found in [33,40].  

 

Nevertheless, the aforementioned alpha adjusting methods have mitigated but not solved the premature 

convergence. One key issue is that most of them adopt the same Į  value for all agents in each iteration without 

considering their evolutionary states. Moreover, very limited focus has been put on the stability of GSA, though it 

actually promotes the convergence speed and precision. After having elaborated investigation of the parameter Į  

and the stability conditions, a new adaptive alpha adjusting strategy, stability constrained adaptive alpha for GSA 

(SCAA), is introduced in this paper to enhance the performance of GSA. The novel contributions of the proposed 

SCAA are highlighted in two aspects as follows: 

 






(1) An adaptive alpha adjusting strategy: In SCAA, the evolutionary state of each agent is first estimated. 

According to the estimated state, the variation of the agent’s position and fitness are used as feedback to adaptively 

adjust its Į  value. Consequently, the novel alpha adjusting method can accelerate the convergence speed and 

alleviate the premature problem. 

 

(2) Stability-based boundary constraint for parameter Į : For further improving the convergence speed and 

precision, a boundary constraint on the basis of stability conditions is presented to restrict the Į  value in each 

iteration. Experimental results show that this Į  boundary constraint ensures the stable convergence. 

 

   The remainder of this paper is organized as follows. Section 2 provides some preliminaries of GSA. The detail 

of the proposed method is discussed in Section 3. In Section 4, experimental results and stability analysis are given 

to evaluate the proposed algorithm. Finally, some concluding remarks are drawn in Section 5. 

 

2. Gravitational search algorithm 

 

GSA is a population-based meta-heuristic algorithm motivated by the laws of gravity and mass interactions [35]. 

In GSA, every agent  1[ ,...., , ..., ] 1, 2,...,i i id iDx x x i NP X  attracts each other by a medium called gravitational 

force in a D-dimensional search space. The gravitational force is directly proportional to their masses and inversely 

proportional to their squared distance [35,36,43]. Accordingly, agents tend to move towards other agents with 

heavier masses, which are corresponding to good solutions in the search space [31,32]. The mass of the i-th agent in 

the iteration t, t

iM , is calculated as follows: 
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where t

ifit  is the fitness value of the i-th agent in the iteration t. For the minimum problem, 
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    During all epochs, the gravitational force exerted on the i-th agent from the j-th agent at a specific time t is 

defined by Eq. (3). 
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                             (3) 

where t

jM  and t

iM  are the gravitational mass related to the i-th agent and j-th agent, respectively. tG  is the 

gravitational constant in the iteration t, 
2

,t t

i jX X  is the Euclidian distance between the i-th agent and j-th agent,  

İ  is a small positive constant. 

 

   In the d-th dimension of the problem space, the total force that acts on the agent i is calculated by: 
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                                  (4) 

where 
jrand  is a random number between the interval [0,1], which is used to provide the random movement step 

for agents to empower their diverse behaviors. Kbest is an archive to store K superior agents (with bigger masses and 

better fitness values) after fitness sorting in each iteration, whose size is initialized as NP and linearly decreased 

with time down to one. Thus, by the law of motion, the acceleration of the agent i in the d-th dimension in the 

iteration t, t

ida , is calculated by Eq. (5). 

 /t t t
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   The gravitational constant tG  is defined as follows: 

max

-

0

tĮ
ttG G e

 
  
                                      (6) 

where Į  is the gravitational constant attenuation factor and maxt  is the maximum number of iterations. In the 

original GSA, 0G  is set to 100 and Į  is set to 20. In this way, the gravitational constant tG  is initialized to 0G  

at the beginning and decreases exponentially into zero with lapse of time.  

 

   The velocity and position of the agent i are updated by 

1t t t

id i id idv rand v a                                       (7) 

1 1t t t

id id idx x v                                         (8) 

where irand  is a uniform random variable in the interval [0, 1] and it can give a randomized characteristic to the 

search. In this paper, for clearly describing and calculating the stability conditions in Section 3.2, a user-specified 

inertia weight w is introduced to determine how easily the previous velocity can be changed. Thus, Eq. (7) is 

rewritten as follows: 

1t t t

id id idv w v a                                        (9) 

 

3. The proposed SCAA algorithm  

 

3.1. Adaptive alpha adjusting strategy 

 

In the original GSA, each agent moves toward the center composed by those elite agents stored in Kbest [32]. If 

the center locates at a promising region, the agent’s fitness value becomes increasingly better. As shown in Fig. 1 






(a), the center 
1

tc  is close to the global optimum and the agent 
1

tM  has been self-improved in several sequential 

steps in the current iteration t. In this case, the impact of elite masses should be enhanced to strength the movement 

tendency of 
1

tM  towards the center 
1

tc  for accelerating convergence. On the contrary, if the elite masses are 

trapped into local optima, especially in the latter stage when the size of Kbest is decreased to a smaller value, their 

center is more likely far away from the global optimum. As a result, the agent may experience false convergence 

and its fitness can be worse and worse [32,48] as shown in Fig. 1 (b). In this regard, the impact of elite masses 

should be weakened to reduce the movement tendency of 
1

tM  towards the center 
1

tc  for avoiding prematurity. 

 

1

tc
1

tF

1

tM

     

1

tc

1

tF

1

tM

 

 (a) Elite agents’ center is close to the global optimum.        (b) Elite agents’ center is far away from the global optimum. 

Fig. 1. Schematic diagram of the agent’s movement. 

 

As analyzed above, agents may experience different evolutionary states during a course of simulation, which 

can be defined in two cases: (1) the agent has improved self-solution in several sequential steps and (2) the agent 

has failed to improve self-solution for several sequential steps. The tendency of an agent moving towards elite 

masses is supposed to be dynamically changed corresponding to its states for a better convergence. According to Eq. 

(6), the gravitational constant tG  is the modulus of force that controls the impact of elite masses. Moreover, by 






adjusting the attenuation factor alpha ( Į ), tG  is also changed accordingly. Specifically, a smaller Į  value results 

in a greater tG  that promotes the agent to move faster toward the center of Kbest, while a larger Į  value leads to a 

lower tG  that prevents the agent from reaching the center [9,32]. Therefore, in this paper, the parameter Į  is 

adaptively adjusted according to the agent’s current state. 

 

In order to estimate agents’ evolutionary states, two counters, ns  and nf , are used as the indicators. For a 

given agent i, the t

ins  and t

inf  are both set to zero initially. Then, as described in Eqs. (10) and (11), if t

iX  can 

improve self-solution in the new iteration, t

ins  is incremented by 1 and t

inf  is set to 0. Otherwise, the counter 

t

inf  is incremented by 1 whilst t

ins  is set to 0. Obviously, the values of t

ins  and t

inf  indicate the different 

evolutionary states of the agent i.  
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ns if fit fit
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1 11,

0,

t t t

t i i i
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nf if fit fit
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otherwise

    


                           (11) 

 

We set a limit value lp to judge whether or not to conduct the adjustment of Į . For the i-th agent in the 

iteration t, if t

ins  exceeds lp, t

iX  is recognized as in the first case [1,49] and its Į  value should be decreased to 

enhance the convergence to elite masses. More specifically, a less variation in fitness or position of agent t

iX  

denotes its slow movement. Thus, its Į  value should be decreased greatly to reach a higher convergence speed. 

When the position or fitness of agent t

iX  change greatly, it means the agent moves faster or locates a more 

promising region, thus the Į  value needs be slightly decreased to relatively refine its neighboring areas. On the 

other hand, if t

inf  exceeds lp, t

iX  is regarded as in the second case [1,49]. The parameter Į  is supposed to be 

increased to reduce the attraction of elite masses, i.e. its Į  value changes just in the opposite way as the first case 






does. Based on the discussions above, in this paper, the variation of fitness and position of an agent are employed as 

feedback to adaptively adjust the parameter Į  according to the evolutionary state, which is described in Eq. (12). 

   
 

 

1 1

1 2

1 1

21,..., 1,...,

1

1 2

1

21,...,

,
exp exp ,

max , max

,
1 exp 1

max ,

t t t t
i it ti i

i it t t t

j j j j
j N j N

t tt
i iti

i t t

j j
j N

fit fit
Į rand if ns lp

İ fit fit İ

Į Į + rand
İ

 


 

 








  
             

   
  

            

X X

X X

X X

X X
 

 
1

1

1,...,

1

exp ,
max

,

t t

ti i

it t

j j
j N

t

i

fit fit
if nf lp

fit fit İ

Į otherwise















                





  (12) 

where t

iĮ  is the alpha value of the i-th agent in the t-th iteration, rand is a random value in [0,1] that can enhance 

the diversity of t

iĮ  [21]. From Eq. (12), it is obvious that t

iĮ  can be dynamically changed in coincidence with its 

evolutionary state.  

 

3.2. Stability-based boundary constraint  

 

In GSA, the stability conditions play an important role in promoting the convergence speed and precision. In 

this section, after having elaborated investigation of the stability conditions, we present a boundary constraint for 

parameter Į  to enhance the stable convergence of GSA.  

 

As proven in [18], for the i-th agent in the t-th iteration, gravitational constant tG  has to satisfy Eq. (13) to 

ensure the stability of its movement trajectory.  
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where w satisfies the stability condition: 0 1w  , iB  is a set of agents which own better fitness than the agent i, 

iW  is a set of agents whose fitness values are no better than the agent i. 
j

t

pM  is the personal best fitness history 

found so far by the agent j, which is calculated as follows: 
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According to the analysis in [2], parameter Į  has a drastic influence on tG . Therefore, on the basis of the 

gravitational constant equation in Eq. (6), we can rewrite Eq. (13) as follows: 
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where w is set to a certain value in the range  0,1 . For simplicity, we define 

min

tĮ =  max

0 ,ln 4(1 )
j j

i i

t t

p p i j

j B j W

t
G M M w R İ

t  

  
          
  . Eq. (17) offers the lower boundary that Į  should be 

satisfied. Thus, for the agent i in current iteration t, if its alpha value is lower than 
min

tĮ , t

iĮ  will be restricted to its 

boundary: 

  
min min

,t t t t

i iĮ Į if Į Į                                   (18) 






 

Eq. (18) formulates the lower boundary constraint for parameter Į . However, there is lack of an upper 

boundary constraint for Į . In practice, too large value of Į  can cause the search to the stagnation and impair the 

exploration capability. Therefore, it is unreasonable to set the upper boundary value to the infinite great as shown in 

Eq. (17). To resolve this problem, we set a parameter maxĮ  to control the upper boundary of Į . Note maxĮ  is 

fixed to a certain value. In such a way, the boundary constraint equation of Į , Eq. (17), can now be rewritten as: 

   min max

t t

iĮ Į Į                                       (19) 

 

If t

iĮ  is larger than maxĮ , it will be conditioned to its upper boundary as follows: 

  max max,t t

i iĮ Į if Į Į                                  (20) 

 

The sensibility tests on maxĮ  in Section 4.4 verify its effectiveness on the performance of GSA. In a word, 

the parameter t

iĮ  should satisfy the boundary conditions as show in Eq. (19). If the t

iĮ  value exceeds its 

boundary, t

iĮ  will be forced to gather on its corresponding boundary as described in Eqs. (18) and (20). Thus, 

the stability-based boundary constraint can ensure the stable convergence of the swarm.  

 

Based on the above introduction of the SCAA algorithm, its complete pseudo-code is summarized in 

Algorithm 1 as follows. 

 

Algorithm 1  Pseudo-code of SCAA 

1  Generate uniformly distributed population randomly and initialize the velocity associated with each agent; 

2  Calculate the fitness value of each agent and generate the Kbest agents of the population; 

3  Set FEs NP , t=1, = 0ns , = 0nf ; 






4  While  maxFEs FEs  do 

5  /*Adaptive alpha adjusting strategy*/ 

6    For 1 toi NP  do 

7       If  1t t

i ifit fit   then 

8           Set 1 1t t

i ins ns   , 0t

inf  ; 

9               If t

ins lp  then 

10                  Set 0t

ins  , decrease t

iĮ  according to Eq. (12); 

11              Else 

12                 1t t

i iĮ Į  ; 

13              End If 

14      Else 

15         Set 1 1t t

i inf nf   , 0t

ins  ; 

16            If t

inf lp  then 

17                Set 0t

inf  , increase t

iĮ  according to Eq. (12); 

18            Else 

19                1t t

i iĮ Į  ; 

20            End If 

21       End If 

22  /*Stability-based boundary constraint*/ 

23       Calculate the lower boundary of alpha min

tĮ  using Eq. (17); 

24       Restrict t

iĮ  to its boundary according to Eqs. (18) and (20); 

25       Calculate the acceleration t

iĮ  by Eqs. (6), (3), (4) and (5); 

26       Update the position t

iX  according to Eqs. (7) and (8); 

27       Calculate the fitness values t

ifit ;  

28       FEs   ; 

29   End For 

30  t   ; 

31 End While 

32 Output the best solution achieved so far. 






 

3.3. Search behaviors of SCAA 

 

   In this section, the search behaviors of SCAA are investigated so as to validate the effectiveness of the proposed 

alpha adjusting strategy. We herein take a time-varying 30-D Sphere function as an example. 

      
2

1

, 100,100
D

j j

j

f x r x r x


                              (21) 

where r is initialized to -10 and shifted to 10 in the 200
th

 iteration with the total number of iterations set as 2000. 

That is, the theoretical minimum of f shifts from (-10)
D
 to (10)

D
 during the evolutionary process. SCAA and GSA 

are employed with the same initialized population, which include 50 agents to solve this minimization problem. For 

a better observation, only the first agent’s alpha value 1Į  and its first dimension trajectory 11x  are recorded in Fig. 

2 (a) and Fig. 2 (b), respectively. The convergence curve of SCAA and GSA are depicted in Fig. 2 (c). 

 

(a) The curve of 1Į  values.         (b) The trajectory curve of agent 11x .         (c) The convergence curve. 

Fig. 2. Search behaviors of SCAA on 30-D Sphere function. 

   

During the evolutionary process, the center of elite masses is dynamically changed with agents’ movements. In 

the early iterations, the elite agents may experience poor areas, hence the center is more likely located at the local 






optima. In this case, as shown in Fig. 2 (a), the parameter 1Į  is continuously increased to a higher value before the 

200
th

 iteration to weaken the impact of elite masses. This adjustment prevents the agent from being trapped into 

local optima as revealed in Fig. 2 (b). The 11x  gradually reaches the global minimum (-10). Thereafter, in the 200
th

 

iteration, the value of r is shifted to 10. At this moment, those agents that are closer to the new global minimum 

would be the elite masses in Kbest . To this end, the impact of elite masses should be enhanced to accelerate the 

convergence. From the Fig. 2 (b) and Fig. 2 (c), it can be seen that parameter 1Į  is rapidly decreased into a smaller 

value whilst the trajectory of 11x  deviates from -10 and fast reaches the new global optimum. In the latter 

iterations, when agents cluster together and converge to the globally optimal area, less improvement of agents’ 

fitness are obtained. Therefore, parameter 1Į  is rapidly increased under the stability-based boundary constraint to 

improve the convergence precision. As depicted in Fig. 2 (c), SCAA finally achieves the globally optimal results. 

With regard to the original GSA, even though the swarm can converge to the global optimum in the early iterations, 

the agents are trapped into local optima after the global minimum is changed. This behavior may mainly result from 

the usage of a constant Į , which lacks the dynamic momentum in coincidence with the changed search 

environment. Conversely, in SCAA, the Į  value of each agent is adaptively adjusted according to its evolutionary 

state, which motivates the agent to detect the promising direction and avoid the premature convergence.  

 

4. Experimental verification and comparison  

 

4.1. Experimental setup 

 






   To fully evaluate the performance of SCAA, a thorough comparison with the original GSA [35] and four recent 

GSA variants with well-established alpha adjusting strategies, including MGSA- Į  [23], FS Į (Increase) [43], 

FS Į (Decrement) [43] and FuzzyGSA [36], is tested in this study. Note that two alpha adjusting methods in [43], 

FS Į (Increase) and FS Į (Decrement), are both introduced for investigating the effect of different alpha change trends 

on the searching performance and the stability of GSA. The tested functions include 28 scalable benchmark functions, 

where F1-F13 are conventional problems in [54] and F14-F28 are derived from the CEC2015 functions [26]. Detailed 

description of these benchmark functions can be found in [26,54]. In this paper, the evaluations are performed under 

30 dimensions (30-D) and the accuracy level į  is set to 0.001 for all benchmark functions. 

 

During the experiments, the parameter configurations of all involved algorithms are set according to their 

recommended settings [48]. Note that for the fair comparison, MGSA- Į  only uses the Į  adjusting strategy and 

abandons the mutation operator in MGSA. As for SCAA, the initial value of parameter alpha 0Į  is set to 20 for all 

agents on the basis of the recommendations in [35]. The inertia weight is set to max1 1w t   according to the range 

in stability conditions as suggested in [18]. The limit value lp and maxĮ  are respectively set to 2 and 70 according to 

the sensitive analysis conducted in Section 4.5. The detailed parameter settings of all involved algorithms are 

summarized in Table 1. 

 

In the experiments, common parameters are the total number of trials, maximum number of function evaluations 

( maxFEs ) and the population size (NP). All algorithms were independently run 51 times to reduce random discrepancy 

[26]. The maxFEs  for terminating the algorithms is specified as 10000 D  for each function as suggested in [26]. 

The population size NP for solving the 30-D problems is set to 50 based on the recommendation in [35,36,43]. 

Moreover, since all involved algorithms have the same fitness evaluations FEs NP in each iteration, the maximum 






number of iterations maxt  is set to max maxt FEs NP  in this paper. All the algorithms are implemented using Matlab 

2012b and executed on a computer with Intel Pentium 4 CPU (2.40 GHz) and 4 GB of memory.  

 

Table 1 

Parameter settings of the involved GSA variants. 

Algorithms Year Parameter settings 

GSA [35] 

FuzzyGSA [36] 

FS Į (Increase) [43] 

FS Į (Decrement) [43] 

MGSA- Į [22] 

SCAA 

2009 

2012 

2013 

2013 

2016 

_ 

0 100G  , 20Į    

 0,1ED ,  0,1CM  ,  max0,t t ,  29,31Į  

  max0,100%t t  ,  0,150Į  

  max0,100%t t  ,  0,150Į  

0 100G  , 0.2Ȗ  , 10Ș  , 25Ȝ   

0 100G  , 0 20Į  , max1 1w t  , 2lp  , max 70Į   

 

4.2. Performance metrics 

 

In this study, the searching accuracy, searching reliability and searching efficiency of different algorithms are 

evaluated in terms of the mean error (Mean), success rate (SR), success performance (SP) and execution time 

(runtime in seconds), respectively [46]. Mean is the average error between the best output results and the global 

optimum of the optimization problem [46]. SR represents the percentage of successful runs where the algorithm 

achieves good solutions under the predefined accuracy level į  [46]. SP denotes the number of FEs required by an 

algorithm to achieve the acceptable solutions under į  [46]. The performance metric runtime is the execution time of 

an algorithm to obtain the acceptable solutions [27]. Meanwhile, we record the standard deviation (SD) of the 

optimization error and rank the algorithms from the smallest Mean to the highest. The average ranks and the overall 

ranks obtained by algorithms are also recorded.  






 

For the rigorous comparison between SCAA and its competitors, a non-parametric statistical test is used in this 

study. Unlike parametric tests, non-parametric tests are employed to analyze the performance of stochastic algorithms 

based on computational intelligence despite the assumptions of data types used are violated [10]. Specifically, the 

Wilcoxon signed ranks test [6] with a confidence level of 5% is utilized to perform pairwise comparison between 

SCAA and its peers in this paper.  

 

4.3. Comparison with other alpha adjusting GSA variants 

 

   Following the experimental setup and parameter settings in Section 4.1, comprehensive experiments are employed 

to evaluate the overall searching behaviors of GSA, MGSA- Į , FuzzyGSA, FS Į (Increase), FS Į (Decrement) and 

SCAA. For performance assessment, six metrics are used which include the Mean, SD and Wilcoxon signed ranks 

test (p-value, h-value, z-value and signedrank), as summarized in Table 2 and Table 3, along with SR, SP and runtime 

as reported in Table 4. Besides, we rank the six competing algorithms according to their Mean values. In Table 2 and 

Table 3, the symbol ‘h’ describes the non-parameter test results, where ‘+’ means SCAA is significantly better than 

the compared algorithms, ‘-’ indicates it significantly performs worse and ‘=’ stands for comparable performance 

between the algorithms. Moreover, we summarize the results of Wilcoxon test results at the bottom of Table 2 and 

Table 3, respectively. The best result in each row is highlighted in bold in the Tables 2-4. Note that Fig. 3 depicts some 

convergence curves of the competing algorithms. 

  

Table 2 

Optimization errors among six algorithms on 13 conventional problems at 30-D. 






 metrics GSA MGSA- Į  FuzzyGSA FS Į (Increase) FS Į (Decrement) SCAA 

F1 

Mean (Mean_rank)  1.188E-17(6) 4.481E-34(3) 7.291E-27(5) 1.322E-38(2) 6.514E-27(4) 9.162E-58(1)

SD  3.398E-18 7.093E-34 2.081E-27 4.230E-38 7.117E-28 2.283E-57 

p-value (h-value) 5.145E-10 (+) 5.145E-10 (+) 5.145E-10 (+) 5.145E-10 (+) 5.145E-10 (+)  

z-value (signedrank) -6.2146 (0) -6.2146 (0) -6.2146 (0) -6.2146 (0) -6.2146 (0)  

F2 

Mean (Mean_rank)  1.727E-08(6) 3.038E-16(3) 4.257E-13(5) 1.247E-18(2) 3.855E-13(4) 4.558E-20(1)

SD  2.829E-09 2.295E-16 5.629E-14 1.094E-18 1.52E-15 9.218E-20 

p-value (h-value) 5.145E-10 (+) 5.145E-10 (+) 5.145E-10 (+) 9.662E-09 (+) 5.145E-10 (+)  

z-value (signedrank) -6.2146 (0) -6.2146 (0) -6.2146 (0) -5.7366 (51) -6.2146 (0)  

F3 

Mean (Mean_rank)  1.500E-02(2) 2.264E+00(3) 1.272E+01(4) 5.556E+01(5) 1.749E+02(6) 7.700E-03(1)

SD  3.010E-02 2.207E+00 7.251E+00 2.557E+01 6.488E+01 5.600E-03 

p-value (h-value) 1.197E-01 (=) 5.145E-10 (+) 5.145E-10 (+) 5.145E-10 (+) 5.145E-10 (+)  

z-value (signedrank) -1.5560 (497) -6.2146 (0) -6.2146 (0) -6.2146 (0) -6.2146 (0)  

F4 

Mean (Mean_rank)  1.823E-09(6) 5.247E-16(2) 5.486E-14(5) 1.329E-18(1) 3.385E-14(3) 5.041E-14(4)

SD  2.171E-10 2.276E-16 9.236E-15 6.262E-19 2.305E-15 2.008E-13 

p-value (h-value) 5.145E-10 (+) 9.104E-01 (=) 1.309E-05 (+) 1.768E-09 (-) 1.309E-05 (-)  

z-value (signedrank) -6.2146 (0) 0.1125 (675) -4.3587 (198) 6.0178 (1305) -4.3587 (198)  

F5 

Mean (Mean_rank)  1.918E+01(2) 2.214E+01(3) 2.387E+01(4) 2.901E+01(5) 3.223E+01(6) 1.321E+01(1)

SD  2.264E-01 1.769E-01 1.743E-01 2.290E+01 3.235E+01 4.512E-01 

p-value (h-value) 5.145E-10 (+) 5.145E-10 (+) 5.145E-10 (+) 5.145E-10 (+) 5.145E-10 (+)  

z-value (signedrank) -6.2146 (0) -6.2146 (0) -6.2146 (0) -6.2146 (0) -6.2146 (0)  

F6 

Mean (Mean_rank)  0.00E+00(1) 0.00E+00(1) 0.00E+00(1) 0.00E+00(1) 0.00E+00(1) 0.00E+00(1)

SD  0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00  

p-value (h-value) 1.000E+00(=) 1.000E+00(=) 1.000E+00(=) 1.000E+00(=) 1.000E+00(=)  

z-value (signedrank) — (0) — (0) — (0) — (0) — (0)  

F7 

Mean (Mean_rank)  9.24E-02(6) 8.18E-02(5) 1.070E-02(2) 1.240E-02(3) 1.460E-02(4) 1.050E-02(1)

SD  3.560E-02 2.890E-02 3.200E-03 5.000E-03 5.200E-03 6.200E-03 

p-value (h-value) 5.145E-10 (+) 5.145E-10 (+) 8.293E-01 (=) 1.153E-01 (=) 2.759E-04 (+)  

z-value (signedrank) -6.2146 (0) -6.2146 (0) -0.2156 (640) -1.5747 (495) -3.6369 (275)  






F8 

Mean (Mean_rank)  1.149E+04(5) 1.149E+04(5) 9.729E+03(2) 9.953E+03(4) 9.926E+03(3) 8.811E+03(1)

SD  1.643E+02 1.674E+02 4.365E+02 4.408E+02 2.908E+02 6.786E+02 

p-value (h-value) 5.145E-10 (+) 5.145E-10 (+) 2.939E-07 (+) 1.124E-07 (+) 2.872E-08 (+)  

z-value (signedrank) -6.2146 (0) -6.2146 (0) -5.1273 (116) -5.3054 (97) -5.5491 (71)  

F9 

Mean (Mean_rank)  1.252E+01(1) 1.270E+01(2) 1.319E+01(4) 1.309E+01(3) 1.461E+01(6) 1.447E+01(5)

SD  2.822E+00 3.125E+00 3.939E+00 2.879E+00 4.293E+00 3.096E+00 

p-value (h-value) 3.583E-01 (=) 3.390E-01 (=) 8.586E-01 (=) 5.611E-01 (=) 7.490E-02 (=)  

z-value (signedrank) 0.9186 (761) 0.9561 (765) -0.1781 (644) 0.5812 (725) -1.7810 (473)  

F10 

Mean (Mean_rank)  2.653E-09(6) 1.837E-14(3) 1.833E-13(5) 4.998E-15(2) 6.303E-14(4) 4.441E-15(1)

SD  3.382E-10 7.548E-15 3.428E-13 1.305E-15 4.679E-15 6.486E-16 

p-value (h-value) 5.145E-10 (+) 6.769E-11 (+) 5.079E-10 (+) 4.700E-03 (+) 3.697E-10 (+)  

z-value (signedrank) -6.2146 (0) -6.5257 (0) -6.1266 (0) -2.8284 (0) -6.2663 (0)  

F11 

Mean (Mean_rank)  1.500E-03(4) 7.236E-04(3) 6.500E-03(5) 5.309E-04(2) 3.218E-01(6) 4.931E-04(1)

SD  4.600E-03 3.600E-03 1.490E-02 2.900E-03 4.722E-01 1.900E-03 

p-value (h-value) 1.212E-01 (=) 4.652E-01 (=) 9.333E-04 (+) 1.000E+00(=) 7.614E-09 (+)  

z-value (signedrank) -1.5498 (7) -0.7303 (3) -3.3099 (4) 0 (3) -5.7768 (0)  

F12 

Mean (Mean_rank)  2.000E-03(3) 1.636E-32(2) 5.400E-03(5) 3.200E-03(4) 1.020E-02(6) 1.573E-32(1)

SD  1.450E-02 4.366E-34 2.200E-02 1.620E-02 3.740E-02 2.900E-35 

p-value (h-value) 5.145E-10 (+) 1.896E-09 (+) 5.145E-10 (+) 6.195E-01 (=) 5.141E-10 (+)  

z-value (signedrank) -6.2146 (0) -6.0064 (3) -6.2146 (0) 0.4966 (77) -6.2147 (0)  

F13 

Mean (Mean_rank)  1.249E-18(5) 2.121E-32(3) 8.077E-28(4) 1.359E-32(2) 2.154E-04(6) 1.346E-32(1)

SD  3.394E-19 7.685E-33 2.653E-28 9.347E-34 1.500E-03 2.808E-48 

p-value (h-value) 5.145E-10 (+) 2.301E-08 (+) 5.145E-10 (+) 1.902E-01 (=) 5.145E-10 (+)  

z-value (signedrank) -6.2146 (0) -5.5877 (17) -6.2146 (0) 1.3099 (33) -6.2146 (0)  

Average Mean_rank 4.0769 2.9231 3.9231 2.7692 4.5385 1.5325 

+/ =/ - 9/ 4/ 0 9/ 4/ 0 10/ 4/ 0 6/ 6/ 1 10/ 2/ 1  

 

Table 3 

Optimization errors among six algorithms on 15 CEC2015 functions at 30-D. 






 metrics GSA MGSA- Į  FuzzyGSA FS Į (Increase) FS Į (Decrement) SCAA 

F14 

Mean (Mean_rank)  8.737E+05(2) 1.012E+06(3) 2.707E+06(5) 2.046E+06(4) 1.428E+07(6) 4.093E+05(1)

SD  4.497E+05 3.907E+05 5.063E+06 1.297E+06 8.813E+06 2.405E+05 

p-value (h-value) 1.273E-08 (+) 9.141E-09 (+) 4.673E-09 (+) 5.145E-10 (+) 5.145E-10 (+)  

z-value (signedrank) -5.6897 (56) -5.7459 (50) -5.5884 (38) -6.2146 (0) -6.2146 (0)  

F15 

Mean (Mean_rank)  4.729E+02(2) 7.445E+02(5) 7.169E+02(4) 7.634E+02(6) 4.701E+02(1) 5.328E+02(3)

SD  4.771E+02 9.367E+02 9.480E+02 1.117E+03 6.262E+02 8.585E+02 

p-value (h-value) 5.486E-01 (=) 3.250E-01 (=) 2.489E-01 (=) 2.528E-01 (=) 7.858E-01 (=)  

z-value (signedrank) -0.5999 (599) -0.9842 (558) -1.1529 (540) -1.1436 (541) -0.2718 (634)  

F16 

Mean (Mean_rank)  2.00E+01(1) 2.00E+01(1) 2.00E+01(1) 2.00E+01(1) 2.00E+01(1) 2.094E+01(2)

SD  9.746E-05 6.594E-05 8.113E-05 1.109E-04 6.150E-05 5.840E-02 

p-value (h-value) 5.145E-10 (-) 5.145E-10 (-) 5.145E-10 (-) 5.145E-10 (-) 5.145E-10 (-)  

z-value (signedrank) 6.2146 (1326) 6.2146 (1326) 6.2146 (1326) 6.2146 (1326) 6.2146 (1326)  

F17 

Mean (Mean_rank)  2.073E+02(2) 1.963E+02(1) 2.194E+02(5) 2.084E+02(3) 2.363E+02(6) 2.173E+02(4)

SD  2.201E+01 2.811E+01 1.924E+01 2.023E+01 2.261E+01 2.223E+01 

p-value (h-value) 2.830E-02 (+) 5.617E-04 (-) 4.148E-01 (=) 4.900E-03 (+) 1.215E-04 (+)  

z-value (signedrank) -2.1934 (429) -3.4494 (295) -0.8155 (576) -2.8120 (363) -3.8431 (253)  

F18 

Mean (Mean_rank)  3.818E+03(4) 3.625E+03(1) 3.981E+03(5) 3.773E+03(2) 4.156E+03(6) 3.810E+03(3)

SD  4.518E+02 4.456E+02 4.533E+02 5.325E+02 4.548E+02 4.548E+02 

p-value (h-value) 7.930E-01 (=) 2.010E-02 (-) 7.190E-02 (=) 9.030E-01 (=) 7.916E-04 (+)  

z-value (signedrank) -0.2625 (635) -2.3246 (415) -1.7997 (471) -0.1219 (650) -3.3557 (305)  

F19 

Mean (Mean_rank)  1.302E+05(2) 3.553E+05(3) 6.856E+05(4) 9.472E+05(5) 1.704E+06(6) 5.587E+04(1)

SD  6.396E+04 1.725E+05 2.962E+05 3.593E+05 6.204E+05 2.566E+04 

p-value (h-value) 1.420E-08 (+) 5.145E-10 (+) 5.145E-10 (+) 5.145E-10 (+) 5.145E-10 (+)  

z-value (signedrank) -5.6709 (58) -6.2146 (0) -6.2146 (0) -6.2146 (0) -6.2146 (0)  

F20 

Mean (Mean_rank)  1.324E+01(2) 1.524E+01(3) 2.236E+01(4) 2.441E+01(5) 6.397E+01(6) 9.779E+00(1)

SD  4.061E+00 9.643E+00 1.949E+01 2.058E+01 2.388E+01 3.133E+00 

p-value (h-value) 6.522E-05 (+) 1.669E-06 (+) 6.142E-07 (+) 3.371E-08 (+) 5.145E-10 (+)  

z-value (signedrank) -3.9931 (237) -4.7898 (152) -4.9867 (131) -5.5210 (74) -6.2146 (0)  






F21 

Mean (Mean_rank)  2.356E+04(2) 2.388E+04(3) 3.050E+04(4) 5.557E+04(5) 1.007E+05(6) 2.154E+04(1)

SD  1.079E+04 7.509E+03 1.152E+04 3.344E+04 1.141E+05 8.329E+03 

p-value (h-value) 2.728E-01 (=) 6.760E-02 (=) 1.201E-06 (+) 5.797E-10 (+) 5.145E-10 (+)  

z-value (signedrank) -1.0967 (546) -1.8278 (468) -4.8555 (145) -6.1959 (2) -6.2146 (0)  

F22 

Mean (Mean_rank)  1.511E+02(4) 1.265E+02(2) 1.513E+02(5) 1.262E+02(1) 2.025E+02(6) 1.358E+02(3)

SD  1.218E+02 8.221E+01 1.218E+02 7.943E+01 1.627E+02 1.016E+02 

p-value (h-value) 1.700E-03 (+) 6.080E-02 (=) 7.446E-06 (+) 1.469E-04 (-) 1.425E-05 (+)  

z-value (signedrank) -3.1307 (329) -1.8747 (463) -4.4805 (185) -3.7963 (258) -4.3399 (200)  

F23 

Mean (Mean_rank)  4.299E+05(2) 6.936E+05(3) 9.961E+0545) 1.280E+06(5) 2.485E+06(6) 1.921E+05(1)

SD  1.961E+05 2.310E+05 3.994E+05 6.108E+05 1.004E+06 5.998E+04 

p-value (h-value) 9.869E-10 (+) 5.145E-10 (+) 5.145E-10 (+) 5.462E-10 (-) 5.145E-10 (+)  

z-value (signedrank) -6.115 (11) -6.2146 (0) -6.2146 (0) -6.2052 (1) -6.2146 (0)  

F24 

Mean (Mean_rank)  3.244E+02(2) 3.343E+02(3) 3.480E+02(5) 3.473E+02(4) 3.849E+02(6) 3.226E+02(1)

SD  9.771E+01 1.121E+02 1.557E+02 1.422E+02 2.021E+02 9.132E+01 

p-value (h-value) 6.080E-02 (=) 6.675E-04 (+) 1.272E-08 (+) 8.648E-09 (+) 8.648E-09 (+)  

z-value (signedrank) -1.8747 (463) -3.4026 (300) -5.6897 (56) -5.7553 (49) -5.7553 (49)  

F25 

Mean (Mean_rank)  1.040E+02(3) 1.036E+02(2) 1.053E+02(5) 1.047E+02(4) 1.491E+02(6) 1.034E+02(1)

SD  8.472E-01 8.215E-01 1.104E+00 9.304E-01 2.771E+01 7.031E-01 

p-value (h-value) 2.473E-04 (+) 2.302E-01 (=) 1.873E-09 (+) 2.070E-07 (+) 5.145E-10 (+)  

z-value (signedrank) -3.6650 (272) -1.1998 (535) -6.0084 (22) -5.1929 (109) -6.2146 (0)  

F26 

Mean (Mean_rank)  5.527E+03(6) 4.759E+03(5) 1.673E+03(3) 1.602E+03(2) 2.100E+03(4) 1.550E+03(1)

SD  3.988E+03 3.987E+03 1.083E+03 1.571E+03 1.121E+03 1.296E+03 

p-value (h-value) 2.905E-06 (+) 1.425E-05 (+) 6.528E-01 (=) 6.528E-01 (=) 2.220E-02 (+)  

z-value (signedrank) -4.6774 (164) -4.3399 (200) -0.4499 (615) 0.4499 (711) -2.2871 (419)  

F27 

Mean (Mean_rank)  1.00E+02(1) 1.00E+02(1) 1.00E+02(1) 1.00E+02(1) 2.821E+04(2) 1.00E+02(1)

SD  1.385E-07 8.716E-13 6.668E-10 0.00E+00 7.551E+03 3.565E-13 

p-value (h-value) 5.145E-10 (+) 6.380E-02 (=) 5.145E-10 (+) 1.573E-01 (=) 5.145E-10 (+)  

z-value (signedrank) -6.2146 (0) -1.8537 (10) -6.2146 (0) -1.4142 (0) -6.2146 (0)  

F28 Mean (Mean_rank)  1.00E+02(1) 1.00E+02(1) 1.00E+02(1) 1.00E+02(1) 1.282E+02(2) 1.00E+02(1)






SD  1.712E-10 4.295E-13 2.422E-10 1.435E-13 7.414E+00 1.435E-13 

p-value (h-value) 5.139E-10 (+) 2.034E-07 (+) 5.127E-10 (+) 1.000E+00 (=) 5.145E-10 (+)  

z-value (signedrank) -6.2148 (0) -5.1962 (0) -6.2152 (0) — (0) -6.2146 (0)  

Average Mean_rank 2.4667 2.5333 3.8000 3.0000 4.6667 1.7333 

+/ =/ - 10/ 4/ 0 7/ 5/ 3 10/ 4/ 2 7/ 5/ 3 13/ 1/ 1  

 

Searching accuracy:  

 

From Table 2 and Table 3, we can conclude that SCAA performs the best searching accuracy as it 

outperforms its peers with a large margin in most of the problems. SCAA exhibits 11 best Mean values out of 

13 for conventional problems (Table 2) and obtains 10 best Mean values out of 15 for CEC2015 functions 

(Table 3). Specifically, for the conventional problems, SCAA ranks the first on 5 multimodal problems (F8, 

F10-F13). These functions have multiple local optima around the global optimum, which can mislead the 

swarm into the non-optimal basin. While in SCAA, thanks to the proposed dynamic Į  adjustment strategy, it 

has successfully enabled the population to track more promising regions and realize the balance between 

exploration and exploitation on multimodal functions.  

 

As for the CEC2015 functions, it is noticeable that all involved algorithms suffer from performance 

degradation and none of them can find the acceptable solutions. Even so, SCAA achieves most number of best 

Mean values compared with other algorithms. To be specific, the performance of SCAA is superior on the 

unimodal functions (F14 and F15), hybrid functions (F19-F21) and composition functions (F22-F28). However, 

SCAA performs mediocrely on the multimodal functions (F16-F18) in which SCAA ranks 2
th

, 4
th

 and 3
th

 out of 

6 algorithms on F16, F17 and F18, respectively. These functions possess a huge number of local optima [26] 






that are more complex than the conventional multimodal functions. The mediocre performance of SCAA may come 

from its Į  boundary constraint, which may block agents’ jumping-out momentum to explore the whole search 

space. Therefore, this limitation can be further explored in the future work.  

 

According to the statistic results in the last row of Table 2 and Table 3, the involved algorithms obtain different 

rank values on conventional problems and CEC2015 functions, which validate their distinguishing search 

performance. Nevertheless, SCAA has the minimum value in Average rank and obtains the first place of results in 

both tables, which confirm the superior searching accuracy of SCAA. In addition, SCAA performs relatively robust 

towards the 28 benchmark functions as evidenced by its smallest SD values. 

 

Wilcoxon signed ranks test:  

 

From Tables 2 and 3, it is apparent that SCAA has significant better performance compared to its peers in most 

cases. For the conventional problems, SCAA are significantly better than GSA, MGSA- Į , FuzzyGSA, 

FS Į (Increase) and FS Į (Decrement) on 9, 9, 10, 6 and 10 functions, respectively. FS Į (Increase) and 

FS Į (Decrement) are statistically better than SCAA only on one function (F4), while GSA, MGSA- Į  and 

FuzzyGSA cannot statistically outperform SCAA on any conventional functions. As for the CEC2015 functions, 

when compared with GSA, MGSA- Į , FuzzyGSA, FS Į (Increase) and FS Į (Decrement), SCAA shows 

significantly better performance on 10, 7, 10, 7 and 13 functions and exhibits statistically worse performance just 

on 1, 3, 2, 3 and 1 functions, respectively. These statistic results have validated the competitive advantages of the 

proposed SCAA approach.  

 






Table 4 

Convergence speed and reliability comparison among six algorithms on conventional functions at 30-D. 

 metrics GSA MGSA- Į  FuzzyGSA FS Į (Increase) FS Į (Decrement) SCAA 

F1 

SP (SR%) 8.03E+04 (100) 6.93E+04 (100) 5.64E+04 (100) 4.43E+04 (100) 2.47E+04 (100) 2.41E+04 (100)

runtime 14.8011 12.7453 17.4103 10.8446 7.1359 6.6472 

F2 

SP (SR%) 1.52E+05 (100) 1.24E+05 (100) 1.03E+05 (100) 7.16E+04 (100) 5.14E+04 (100) 3.90E+04 (100)

runtime 30.5721 24.3482 34.4027 18.1258 13.3601 12.3655 

F3 

SP (SR%) 8.65E+04 (33.3) Inf (0) Inf (0) Inf (0) Inf (0) Inf (0) 

runtime 38.1149 Inf Inf Inf Inf Inf 

F4 

SP (SR%) 1.18E+05 (100) 9.79E+04 (100) 8.17E+04 (100) 5.88E+04 (100) 3.80E+04 (100) 7.96E+04 (100)

runtime 23.2371 18.2716 25.4612 14.6428 9.6580 20.3386 

F5 

SP (SR%) Inf (0) Inf (0) Inf (0) Inf (0) Inf (0) Inf (0) 

runtime Inf Inf Inf Inf Inf Inf 

F6 

SP (SR%) 2.65E+04 (100) 2.88E+04 (100) 1.79E+04 (100) 1.94E+04 (100) 1.56E+04 (100) 1.09E+04 (100)

runtime 4.9064 5.0853 26.0255 4.7630 1.7719 3.0915 

F7 

SP (SR%) Inf (0) Inf (0) Inf (0) Inf (0) Inf (0) Inf (0) 

runtime Inf Inf Inf Inf Inf Inf 

F8 

SP (SR%) Inf (0) Inf (0) Inf (0) Inf (0) Inf (0) Inf (0) 

runtime Inf Inf Inf Inf Inf Inf 

F9 

SP (SR%) Inf (0) Inf (0) Inf (0) Inf (0) Inf (0) Inf (0) 

runtime Inf Inf Inf Inf Inf Inf 

F10 

SP (SR%) 1.28E+05 (100) 1.04E+05 (100) 8.65E+04 (100) 6.12E+04 (100) 4.11E+04 (100) 3.84E+04 (100)

runtime 25.5664 20.7946 28.3058 15.4832 10.9001 9.8405 

F11 

SP (SR%) 5.77E+04 (100) 5.24E+04 (100) 4.04E+04 (100) 3.49E+04 (100) Inf (0) 3.51E+04 (100)

runtime 11.4403 10.2226 22.7925 9.0093 Inf 13.2134 

F12 

SP (SR%) 4.51E+04 (100) 4.19E+04 (100) 3.12E+04 (100) 2.89E+04 (100) 1.07E+04 (100) 2.94E+04 (100)

runtime 13.2818 11.9072 16.0448 10.7113 3.8040 7.4324 

F13 

SP (SR%) 6.62E+04 (100) 5.65E+04 (100) 4.32E+04 (100) 3.83E+04 (100) 2.01E+04 (100) 1.38E+04 (100)

runtime 14.8885 12.6030 15.3931 10.9785 5.8154 9.8506 

Number of smallest SP 1 0 0 1 2 5 






Average runtime 19.6454 14.4905 23.2295 11.8198 7.4923 10.3474 

 

Convergence comparison:  

 

The speed in obtaining an acceptable solution is also a salient yardstick for measuring the performance of an 

algorithm. For testing the searching efficiency of SCAA, the metric SP, runtime and convergence curves are also 

reported for comparison. It is worth mentioning that if one algorithm cannot solve the problem (SR=0%), the SP 

value is defined as infinity (Inf). Because of the strict threshold settings, none of the involved algorithms can 

achieve the available SP values on all CEC2015 functions. Thus, only the results on 13 conventional functions are 

recorded. As shown in Table 4, SCAA achieves the smallest SP values on 5 conventional problems (F1, F2, F6, F10 

and F13), which is obviously better than that of its 5 peers. The fast convergence characteristic of SCAA mainly 

results from its adaptive adjustment of the parameter alpha. 

 

As for the runtime results, SCAA has a tendency to spend slightly more computational time due to its repeating 

calculation of the ratio of mass and distance between any two agents in the stability conditions in each iteration. 

Nevertheless, from Table 4 we can conclude that SCAA spends the least computational time on unimodal functions 

F1 and F2. These results may benefit from the superior SP results of SCAA, which can decrease its runtime values 

to some extent. For more complicated functions, superiority on efficiency of SCAA is not as obvious as that on F1 

and F2. This is mainly because that the global optimum in these functions can be very far away from the local 

optima or can be surrounded by a considerable amount of local optima [4]. In this situation, for avoiding trapping 

into the local optima, the parameter alpha in SCAA is adjusted to decrease the convergence tendency of agents to 

the elite masses, which causes the increase of execution time. Even so, the average runtime of SCAA ranks the 






second among the competing algorithms as listed at the bottom of Table 4. In this experiment, FS Į (Decrement) 

ranks the first according to its average runtime. This is primarily because the decreasing trend of Į  from an initial 

value 150 enables FSĮ (Decrement) to have a much larger Į  value during the whole iteration, which can improve 

the convergence speed. However, the larger alpha value can lead to the smaller search steps of agents and easily 

cause the premature convergence. This is observed by the poor searching performance of FS Į (Decrement) as 

shown in Table 2 of the manuscript. 

 

A closer look at the convergence curves of different algorithms in Fig. 3 provides more insight into their 

searching behavior. The figure includes the representative conventional problems (F1, F2, F3, F5, F10 and F13) and 

CEC2015 functions (F14, F19, F20, F21, F23 and F24). Based on the graphical results in Fig. 3, the outstanding 

convergence characteristics of SCAA on different test functions are explained. Specifically, for the conventional 

problems, the convergence curves of SCAA sharply drop at one point on functions F1, F2, F3, F5, F10 and F13 in 

the early iterations and then reach better results in the latter iterations. These observations prove the capability of 

SCAA to facilitate the balance between exploration and exploitation. With regard to the CEC2015 functions, 

because of their complex characteristics, the convergence speeds of all involved algorithms are slightly inferior to 

that in conventional problems. Nevertheless, the convergence curves of SCAA rapidly drop at one point on 

functions F14, F19, F23 and F24 in the early iterations. On functions F20 and F21, the convergence speed of SCAA 

is more slowly than its peers at the early stage, while its speed increases in the middle stage of optimization. 

Moreover, SCAA achieves superior convergence accuracy among all algorithms, which may result from the ability 

of Į  boundary constraint to improve convergence precision in the latter iterations. In general, SCAA has produced 

improved searching efficiency compared with other algorithms. 

 






 

 

 

 






Fig. 3. Convergence curves of different alpha adjusting GSA variants. 

 

4.4. Stability analysis of SCAA 

 

   In order to validate the stability of SCAA, the trajectories of agents are analyzed. Experiments are conducted on 

three conventional functions F2, F7 and F9, respectively. For a better observation, the number of iterations is set to 

100 and the trajectory of the first dimension for the first agent, denoted as 
11x  in each algorithm, is recorded. 

Experiments are carried out with 51 independent runs and the average trajectory curves are listed in Fig. 4. Note 

that the stability stage occurs when there is little variation in an agent’s position between iterations [8,18]. 

 

First, in order to analyze the effect of stability boundary constraint, we compare the performance of SCAA in 

two cases: SCAA with stability constraints and SCAA without stability constraints (denoted as SCAA-Ns). From 

the trajectory curves in Fig. 4 (a)-(c), it is clear that the agent’s trajectory in red line (SCAA) are more stable than 

that in blue line (SCAA-Ns), which validates that the stability constraints play an important role in guaranteeing the 

stable convergence.  

 

Second, we make the stability comparison between SCAA and other involved algorithms. The results are 

plotted in Fig. 4 (d)-(f). It can be observed that SCAA performs more stable when compared with other algorithms. 

To be specific, the agent trajectories of GSA, FS Į (Increase) and MGSA- Į  are rather unstable, whereas SCAA 

and FS Į (Decrement) are more stable. Particularly, the agent trajectories of FS Į (Decrement) is more stable than 

that in SCAA. This may because that the decreasing trend of Į  from an initial value 150 in FS Į (Decrement) 






makes it have a much larger Į  value than its peers in most evolutionary steps. However, this method seems to 

possess a bad searching performance in Section 4.3 as it fails to maintain the population diversity. 

 

 

(a) F2                               (b) F7                               (c) F9 

 

(d) F2                               (e) F7                               (f) F9 

Fig. 4. Agent trajectories of different algorithms. 

 

4.5. Sensitivity analysis of key parameters 

 

   The lp and 
m axĮ  are two key parameters that affect the searching performance of SCAA. To evaluate the 

impact of lp and 
m axĮ  on different kinds of functions, we conduct parameter sensitivity analysis on 30 

dimensional versions of the 14 representative functions including 4 unimodal conventional functions (F1, F2, F3, 






F5), 4 multimodal conventional functions (F9, F10, F12, F13) and 6 rotated and shifted functions (F14, F19, F20, 

F23-F25) in this study.  

 

We first carried out experiments with lp= [1, 2, 3, 4, 5, 6, 7, 8, 9, 10] with all other parameters set as discussed 

in Section 4.1. Then we perform sensitivity analysis experiment of parameter maxĮ with maxĮ = [40, 50, 60, 70, 80, 

90, 100, 110, 120, 130], where the settings of other parameters are also kept the same as suggested in Section 4.1. 

For both of the two experiments, the average optimization error (Mean) and the average runtime of 51 independent 

runs obtained from each value of lp and maxĮ  are shown in Fig. 5 and Fig. 6, respectively. Note that due to the 

rigorous threshold setting of CEC2015 functions, only the runtime value of SCAA on conventional functions are 

reported. 

 

(1) Sensitivity analysis of the parameter lp 

 

 

     (a) The Mean values of SCAA with different lp             (b) The runtime values of SCAA with different lp 






Fig. 5. Effects of lp on the performance of SCAA on conventional functions at 30-D. (The vertical axis of (a) is not to scale for easy 

presentation of the data). 

 

In SCAA, the parameter lp determines the frequency of alpha changing. A suitable lp can activate the alpha 

changing of stagnated agents without wasting too much computational cost. A too small lp value may cause agent’s 

oscillation and disturb the swarm convergence, while a too large value for lp will result in the waste of computation 

on the local optima and lead to a premature convergence. 

 

From Fig. 5, it is apparent that the search accuracy (Mean) and efficiency (runtime) of SCAA are affected by 

the parameter lp. As shown in Fig. 5 (a), SCAA achieves the best Mean results when lp=2 on unimodal 

conventional functions. This is mainly owing to the fact that these functions have only one minimum in the search 

space. Thus, a small lp can make agents quickly adjust the search direction to detect the promising regions and then 

rapidly enlarge the alpha value to emphasize exploitation around good solutions. With respect to the multimodal 

conventional functions, the setting lp =3 is most suitable for SCAA as shown in Fig. 5 (a). This is probably because 

that a small lp may lead to the oscillation of agents in local optima and limit the probabilities to find other 

promising areas. Thus, on the multimodal functions, a relatively larger setting lp=3 is recommended in this paper. 

For the rotated and shifted functions, SCAA performs the best searching accuracy when lp=2. These functions are 

more complex than the conventional functions, where most of them are asymmetrical and have different properties 

around different local optima [26]. In this situation, a small lp can sufficiently monitor the problem environment 

and quickly change the search behavior of agents. 

 






In terms of the runtime as shown in Fig. 5 (b), it is obvious that the execution time of SCAA is significantly 

reduced when lp is increased from 1 to 2 for most testing functions. When the lp increases from 2 to 10, the 

differences of runtime on each function is minor. Considering that the search accuracy of SCAA becomes worse 

when 6lp   as shown in Fig. 5 (a), we recommend lp=2, 3 and 2 for the unimodal conventional functions, 

multimodal conventional functions, rotated and shifted functions respectively in this paper. 

 

(2) Sensitivity analysis of the parameter maxĮ  

 

 

        (a) The Mean values of SCAA with different 
maxĮ             (b) The runtime values of SCAA with different 

maxĮ  

Fig. 6. Effects of 
maxĮ  on the performance of SCAA on conventional functions at 30-D. (The vertical axis of (a) is not to scale for 

easy presentation of the data). 

 

From Fig. 6, it can be seen that the performance of SCAA is also affected by the parameter maxĮ . A smaller 

maxĮ  may slow down the convergence of SCAA while a larger one may lead to the searching stagnation and 

prematurity problem. As plotted in Fig. 6 (a), the searching accuracy of SCAA is the best when maxĮ =80 on 

unimodal conventional functions. This is mainly due to that a larger maxĮ  can enhance the hill-climbing 






performance on functions with only one minimum. When SCAA is applied to solve the multimodal functions and 

the rotated and shifted functions, the setting maxĮ =70 becomes the best choice. These functions have lots of 

minimum and are more complex than the unimodal functions. Thereby a smaller values of maxĮ  may ensure the 

global search abilities of agents and enables them to escape from the local optima. 

 

As for the runtime results, it is apparent that the execution time of SCAA is dramatically reduced in most cases 


when max
Į  is increased from 40 to 50. When max

50Į  , the differences of runtime on each function is minor. 


These runtime distribution results support the analysis that a larger max
Į  is beneficial for the convergence speed. 

However, if the value of max
Į  becomes too large, it will lead to high Mean errors as reported in Fig. 6 (a). 

Considering both the search accuracy and efficiency of SCAA, we set max
Į  to 80, 70 and 70 for unimodal 

conventional functions, multimodal conventional functions, rotated and shifted functions, respectively in this 

paper. 

 

5. Conclusion and further study 

 

   In this paper, we proposed a stability constrained adaptive alpha for GSA (SCAA) to enhance the search 

performance of the original GSA. In SCAA, the evolutionary state of each agent was first estimated. Then, the 

variation of an agent’s position and fitness is employed as feedback to guide the adjustment of Į  according to its 

current state. This adaptive alpha adjusting strategy can enhance the convergence when an agent finds a promising 

direction and relieves the premature problem when an agent moves to a local optimum. In addition, a boundary 






constraint derived from the stability conditions was put forward to restrict agents’ Į  values in each iteration, 

which has guaranteed agents’ stable trajectories and improved the precision of convergence.  

 

To verify the performance of SCAA, 28 benchmark functions including conventional problems and CEC2015 

functions were tested in this paper. Simulation results and comparisons have clearly showed the superiority of the 

proposed SCAA over the original GSA and other alpha adjusting algorithms in terms of the searching accuracy, 

searching reliability and searching efficiency. Besides, the stability analysis has demonstrated the effect of Į  

boundary constraint and validated the stability of SCAA.  

 

One area in which SCAA falls short is the constant setting of the alpha upper boundary 
m axĮ , which lacks the 

time-varying characteristics as the lower boundary does. This reveals an area where SCAA could be further 

improved in the future work. Another potential direction for improvement is to consider the adaptive information 

systems, which have received increasing attention and are widely used for different applications, such as customer 

churn prediction [29], cloud computing [16], case-based reasoning [30] and clustering of uncertain data [28]. A 

number of adaptive metaheuristics techniques have been applied to control key parameters for improving the 

optimization performance. For example, in [38,51], an improved version of the teaching-learning-based 

optimization (TLBO) algorithm was proposed, in which an adaptive teaching factor was considered. Similarly, in 

[41], a new variant of TLBO was presented by integrating a self-adaptive strategy for population sizing. Besides, 

Tejani et al. [50] introduced adaptive benefit factors into the symbiotic organisms search (SOS) to enhance its 

searching efficiency. Jia et al. [15] put forward an improved cuckoo search (ICS) algorithm by employing adaptive 

technique in the step length of levy flight and discovering probability. R Sridhar proposed an adaptive genetic 

algorithm to optimize the bin packing problem [44]. How to combine GSA with adaptive systems may have great 






potential to further improve the optimization performance, where SCAA can also be applied to more real-world 

optimization problems. 
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