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CALIBRO: an R Package for the

Automatic Calibration of Building Energy Simulation Models

Filippo Monari, Paul Strachan

University of Strathclyde, Glasgow, UK

Abstract

Bayesian probability theory offers a powerful frame-
work for the calibration of building energy models
(Bayesian calibration). The major issues impeding
its routine adoption are its steep learning curve, and
the complicated setting up of the required calcula-
tion. This paper introduces CALIBRO, an R package
which has the objective of facilitating the undertaking
of Bayesian calibration of building energy models. An
overview of the techniques and procedures involved in
CALIBRO is given, as well as demonstrations of its
capability and reliability through two examples.

Introduction

Previous research has highlighted a significant gap be-
tween building energy performance predicted in the
design stage and that achieved in the operational
stage. This issue may be addressed by ensuring that
building energy models are equally applicable to the
operation stage by reconciling their predictions with
field observations. Recently, significant research ef-
fort has been focused on the development of meth-
ods for tuning model parameters in order to im-
prove predictions, that is the calibration of Build-
ing Energy Simulation (BES) models against mea-
sured data. A novel approach is to employ probabilis-
tic emulators based on Gaussian Process Regression
(GPR) (Rasmussen and Williams (2006)) in a quasi-
Bayesian framework (Bayesian calibration). Such an
approach has several advantages with respect to pre-
viously employed methodologies like manual iterative
procedures and the employment of optimisation tech-
niques.
Manual iterative procedures have been largely applied
in the past (Clarke et al. (1993), Pedrini et al. (2002),
Yoon et al. (2003), Westphal and Lamberts (2005),
Raftery et al. (011a)) and Raftery et al. (011b). Their
high dependence on the skills and expertise of the
analyst makes them very heterogeneous. This factor
together with the absence of a strong mathematical
framework has led to criticisms about the consistency
of this approach. The main issue is the inadequate
consideration of modelling uncertainties.
In few recent studies (Reddy et al. (2007a), Reddy
et al. (2007b), Sun and Reddy (2006), Johnson and
Hu (2012) and Coakley et al. (2011) optimisation
techniques, especially Monte Carlo techniques, have
been used to aid the calibration of BES models. This
approach follows a more rigorous mathematical basis.

However the consideration of modelling uncertainties
is not satisfactory. Only a few solution vectors, not
sufficient to characterise the uncertainties related to
parameter estimates, are provided.

Bayesian calibration improves on the two approaches
mentioned, by offering the opportunity to treat the
calibration problem probabilistically (Kennedy and
O’Hagan (2001)). It allows for a comprehensive treat-
ment of the uncertainties (observation errors, pa-
rameter uncertainties and model deficiencies), which
are consistently considered throughout the calibra-
tion process. This influences the solution, which is
returned in the form of full posterior probability den-
sity distributions, reflecting the uncertainties about
parameter estimates. Furthermore, the Bayesian
paradigm allows the rigorous inclusion of modeller
knowledge in the calculations, through the model
structure and parameters’ prior probability density
distributions. For these reasons, Bayesian calibration
can be applied effectively for the calibration of BES
models under uncertainties as shown in Heo et al.
(2012), Heo et al. (2013), Kim et al. (2014) and Heo
et al. (2015).

The central problems impeding its widespread adop-
tion, are its steep learning curve and the absence of
means for its routine application. CALIBRO is an
R package which aims to overcome these problems
by facilitating the setting up and the undertaking of
the calculations underpinning the Bayesian analysis
of calibration problems, thus allowing the automatic
Bayesian calibration of BES models.

CALIBRO

As far as the authors are aware, CALIBRO is the first
software package dedicated to the Bayesian calibra-
tion of BES models. CALIBRO has been based upon
the mathematical framework established in Monari
(2016), which builds on the methods depicted in
Kennedy and O’Hagan (2001), Bayarri et al. (2005),
and especially Higdon et al. (2008). The main us-
age of CALIBRO is envisaged to be the correction
of models built at the design phase, by tuning their
parameters according to information gained through
operational monitoring.

CALIBRO uses a black-box approach and can cali-
brate any building energy model. The information it
requires is:

• measurements of the observed performance indi-
cators;



• measurements of the boundary conditions influ-
encing the observed performance indicators;

• a sample of model outputs, predicting the ob-
served performance indicator, and the corre-
sponding model inputs.

This set of information is called a calibration dataset.
Different calibration datasets can be used in the same
calibration thus considering different performance in-
dicators and boundary conditions simultaneously. It
is advised to carry out the model simulations accord-
ing to Latin Hyper Cube design of the model inputs.
The parameters boundaries should be established ac-
cording to a previous uncertainty analysis. A sample
size of about 10 times the number of model inputs is
suggested.

Figure 1 gives an overview of the steps and techniques
combined in CALIBRO.

At first, in order to simplify and speed up the calcula-
tions, the dimensionality of the calibration dataset is
reduced by applying Principal Component Analysis
(Jolliffe (2002)) as in Higdon et al. (2008). Struc-
tural identifiability is then solved by means of a vari-
ance based sensitivity analysis. The method in Ratto
and Pagano (2010) is applied as indicated in Lamboni
et al. (2011) to automatically select the most influen-
tial parameters (calibration parameters). This tech-
nique allows the calculation of the estimates of the
parameters’ Sobol’ first order indices (Si) and of the
relative standard errors (se). A parameter is deemed
to be influential if its Si is significantly higher than
0 (i.e. > 0 with 95% probability assuming Si nor-
mally distributed with mean the calculated estimate
and standard deviation the corresponding standard
error).

In the subsequent phase Gaussian Process Regres-
sion in a quasi-Bayesian framework is used to build
a black box emulator of the BES model, considering
only the calibration parameters. This emulator is op-
timised with the Nelder-Mead method (Nelder and
Mead (1965)). The training is considered successful
if a Determination Coefficient at least equal to the
sum of the calibration parameters’ Si is achieved.

Subsequently, the trained emulator is used to infer
the calibration parameters’ joint posterior probabil-
ity density distribution (Monari (2016)), which is in-
tegrated with the Adaptive Metropolis-within-Gibbs
algorithm (Rosenthal (2007)) to find the posterior
probability density distribution for each calibration
parameter. The convergence of the MCMC simula-
tions is monitored with the R package CODA (Plum-
mer et al. (2006)). When only one chain is simulated,
its convergence is assessed depending on the ratio
between the chain mean and the relative corrected
standard error being smaller than a given threshold.
When multiple chains are run in parallel, the Gelman
and Rubin’s convergence diagnostic (Gelman and Ru-
bin (1992)) is employed. Finally the calibration pa-
rameters’ estimates, consisting of the Maximum A

Posteriori (MAP) values and the relative confidence
intervals are returned.

Figure 1: steps and techniques involved in CALIBRO.

Experiments

In the following two examples of CALIBRO applica-
tions are described. Two very different models are
calibrated in order to demonstrate the flexibility of
the method implemented in the calibration software
package. The first model is of a single building com-
ponent, namely a multilayer wall. The second model
represents a small domestic building, and takes into
account complex phenomena like wind driven infil-
tration. For both of these case studies, two kinds of
experiments are described:

• virtual experiments: where the models are cali-
brated against synthetic observations for which
the true parameter values are known, in order to
test the correct implementation of the method;

• real experiments: where the model is calibrated
against the measured observations, in order to
test practical applications of CALIBRO.

The wall

The first is the calibration of a model aiming to re-
produce the measured heat flux through a multilayer
wall of a laboratory in an insulation factory in the
south of Sweden. The experiment was conducted
by the EC Joint Research Centre, Institute for En-
ergy and Transport in ISPRA, Italy, and consisted of
monitoring the heat flux through the wall, and the
temperatures at the internal and external surfaces,



for a period of one month. Data with a 30 minutes
time step were collected. The construction element
had three layers: a central core of gas concrete blocks
(GC) of thickness 150 mm and insulation glass fibre
boards (FB) of thickness 27 mm at both sides. At
the end of the experiment, samples were taken from
the test component in order to determine the proper-
ties of each material. For FB, values for density and
conductivity of 116.6 kg/m3 and 31.27 mW/(mK)
respectively were specified. For GC, only the density
(552 kg/m3) was provided.
The model to be calibrated consisted of two ther-
mal zones, one representing the inside of the labo-
ratory, and the other depicting the exterior environ-
ment, divided by the test wall. The boundary condi-
tions, namely the internal and external temperatures,
were imposed on the two faces of the test component
though suitable control laws. A three layer construc-
tion, reproducing the given specifications, was used
to represent the test wall layer structure. The un-
known model parameters consisted of gas concrete
block conductivity (GCk), gas concrete block specific
heat (GCc) and glass fibre board specific heat (FBc).
The initial values and prior probability density distri-
butions assumed for these parameters are indicated
in Table 1. A set of 30 model input-output pairs was
used as input for CALIBRO.

Table 1: The Wall: calibration parameters’ prior
probability density distributions and initial values.

PARA- INITIAL PRIOR

METER VALUES DIST

GCk ( W
mK

) 0.12 Uniform(0.05, 0.15)
GCc ( J

kgK
) 800.00 Uniform(600, 1000)

FBc ( J
kgK

) 800.00 Uniform(600, 1000)

In Table 2 are reported the results of the sensitivity
analysis phase under the form of estimated fractions
of model output variance attributable to each model
parameter by itself (Si). GCk clearly dominated the
model, GCc had only a marginal role, while FBc,
having a negligible effect, was deemed not identifiable
and it was not considered as a calibration parameter
by CALIBRO.

Table 2: The wall: parameters’ main effects (Si) and
relative standard errors (se).

PARAMETER Si se
GCk 0.954 0.007
GCc 0.043 0.070
FBc 0.002 0.018

Since this example required a relatively short com-
putational time, at first, a series of virtual tests was
undertaken to demonstrate the performance of CAL-
IBRO depending on different levels of noise in the
data. Synthetic target observations were generated

for the initial values in Table 1 and then Gaussian
white noise was added according to 34 increasing
noise to variance ratios (NVRs). Ten calibrations
were carried out, by simulating single Markov chains,
for each NVR for a total of 340. In order to perform
the analysis in a reasonable time a relatively high con-
vergence tolerance was used (0.002). Figures 2 and
3 summarise the results of this set of trials. Here
the blue box plots represent the samples of 0.025 and
0.975 quantiles calculated for each NVR. Similarly,
the black box plots indicate the distribution of cali-
bration parameter estimates. Blue and black dots are
the average values resulting from considering only two
significant figures.

Figure 2: The wall–virtual experiments: GCk calibra-
tion results for different NVRs. SF indicates Signifi-
cant Figures.

Figure 3: The wall–virtual experiments: GCc calibra-
tion results for different NVRs. SF indicates Signifi-
cant Figures.

Subsequently, the real observations were considered.
The calibration parameters were inferred by running
three different Markov chains in parallel. Figures 4
and 5 show the evolution of mean, 0.025 and 0.975
quantiles for such chains during the simulation, re-
spectively for GCk and GCc. The calibration results
are summarised in Table 3, and a comparison between



calibrated model prediction and observations is de-
picted in Figure 6.

Figure 4: The wall–real experiment: evolution of
three Markov chains for GCk: traces and summary
statistics.

Figure 5: The wall–real experiment: evolution of
three Markov chains for GCc: traces and summary
statistics.

Figure 6: The wall–real experiment: comparison be-
tween calibrated model predictions (black line) and ob-
servations (red line). The 95% confidence intervals
are indicated in grey.

Table 3: The Wall–real experiment: calibration pa-
rameters estimates and 95% confidence intervals.

PARA- MAP q0.025 q0.5 q0.975

METER

GCk ( W
mK

) 0.118 0.113 0.118 0.122
GCc ( J

kgK
) 993 890 971 995

The house

In the second example the object of the analysis was
to calibrate a model aiming to predict the ground and
upper floor average temperatures in a small domes-
tic building (Figure 7), which was used as test facil-
ity in developing model predictive control systems.
The building is located at the BRE Innovation Park
in Motherwell (Scotland), and it is a prototype for
a modular mass market low energy house design. Its
main heat source is 5 kW exhaust air heat pump feed-
ing underfloor heating. The unit also includes a small
hot water store. A 1 kW array of photovoltaic pan-
els is located on the roof. Being a test facility, the
house was unoccupied, and its properties were exten-
sively investigated through dedicated tests performed
by the research team. A blower door test was under-
taken to characterise air tightness, and its thermal
behaviour was observed subject to dedicated thermal
pulse testing, and to a normal heating regime. The
monitoring period lasted approximately one month,
collecting data with a 10 minute time step. The data
comprised external temperature, wind velocity, wind
direction, relative humidity, diffuse solar radiation,
direct solar radiation, heat injected in the ground
floor and heat injected in the first floor. This dataset
was used by the research team to manually calibrate
a BES model. The results that are presented in the
following have been achieved by applying CALIBRO
independently afterwards, with the purpose of evalu-
ating the eventual benefit of its employment in future
studies.

Figure 7: The house.

One virtual experiment and two real experiments



(real 1 and real 2) were undertaken. In the virtual and
real 1 experiments, 55 parameters were considered,
consisting of conductivities, densities, window ther-
mal resistances, crack lengths, and constant volume
flow rates. Construction properties (conductivities,
densities, window thermal resistances) were fairly well
known, while much more uncertain were deemed to
be the airflow network parameters (crack lengths, and
constant volume flow rates). Therefore the former
were varied within ±15% and the latter were changed
within ±80% of their design values according to uni-
form probability density distributions. Subsequently
(real 2 experiment), windows optical transmissions
were included in the calibration parameters, since cor-
relation was noticed between the solar radiation and
the residuals between model predictions and observa-
tions. These were varied within ±90% of their design
values. A sample of 550 model input-output pairs was
used as input for both the analyses.

Virtual and real 1 experiments

The outcomes from the sensitivity analysis showed
that the model was highly conditioned by the value
of the parameter HPext which represents the volume
flow rate of the heat pump exhaust air extraction.
However, by breaking down the sensitivity results ac-
cording to the principal components, CALIBRO iden-
tified other minor effects from some parameters rep-
resenting lengths of cracks around the frames of south
and west windows located at the ground floor of the
building (crck2l and crck3l). This group of model in-
puts was considered as calibration parameters. Their
sensitivity indexes are displayed in Table 4, and the
relative initial values and prior probability density
distributions are listed in Table 5.

Table 4: The house - virtual and real 1 experiments:
estimates of parameters’ main effects (Si) and rela-
tive standard errors (se).

PARAMETER Si se
HPext 0.965 0.001
crck2l 0.006 0.003
crck3l 0.006 0.005

Table 5: The house - virtual and real 1 experiments:
calibration parameters’ prior probability density dis-
tributions and initial values.

PARA- INITIAL PRIOR

METER VALUES DIST

HPext (
m3

103s
) 4.3 Uniform(0.86, 7.74)

crck2l (m) 4.6 Uniform(0.92, 8.28)
crck3l (m) 6.2 Uniform(1.24, 11.16)

Firstly the model was calibrated against synthetic ob-
servations, which were obtained by running the model
for the initial values in Table 5. In this case no
noise was added, in order to assess the capabilities

of the software of identifying very weak parameters
like crck2l and crck3l. The evolutions of the three
Markov chains used in this calibration are shown in
Figures 8, 9 and 10.

Figure 8: The house - virtual experiment: evolution
of three Markov chains for HPext: traces and sum-
mary statistics.

Figure 9: The house - virtual experiment: evolution
of three Markov chains for crck2l: traces ans sum-
mary statistics.

After having substituted the synthetic observations
with the measured ground floor (GF) and upper floor
(UF) temperatures, a new calibration was under-
taken. The results are summarised in Table 6 contain-
ing calibration parameters’ estimates and confidence
intervals.

Table 6: The house - real 1 experiment: calibration
parameters estimates and 95% C.I..

PARA- MAP q2.5 q50 q97.5

METER

HPext (
m3

103s
) 4.53 4.5 4.53 4.55

crck2l (m) 4.11 4.10 4.16 4.37
crck3l (m) 5.63 5.62 5.78 6.29



Figure 10: The house - virtual experiment: evolution
of three Markov chains for crck3l:traces and summary
statistics.

Real 2 experiment

In this experiment the the optical transmission of
the ground floor windows (TrGF ) and the optical
transmission of the upper floor windows (TrUF ) were
added to the free parameters of the model, after hav-
ing noticed correlation between the solar radiation
and the residuals between observed temperatures and
predictions of the model calibrated in the real 1 ex-
periment. The outcomes from the sensitivity analy-
sis step (Table 7) highlighted that TrGF and TrUF

had effects comparable to the main parameter’s one
(HPext).

Table 7: The house - real 2 experiment: estimates of
calibration parameters’ main effects (Si) and relative
standard errors (se).

PARAMETER Si se
TrGF 0.14 0.041
TrUF 0.39 0.045
HPext 0.57 0.037
crck2l 0.02 0.016
crck3l 0.005 0.009

Table 8: The house - real 2 experiment: optical trans-
mission parameters’ prior probability density distribu-
tions and initial values.

PARA- INITIAL PRIOR

METER VALUES DIST

TrGF (-) 0.346 Uniform(0.01, 0.66)
TrUF (-) 0.346 Uniform(0.01, 0.66)

The calibration was undertaken by running three
Markov chains in parallel. Their evolutions for the
three most significant calibration parameters (TrGF ,
TrUF and HPext) are summarised in Figures 11, 12
and 13. The inferred estimates and confidence inter-
vals are contained in Table 9. The model calibrated

in this test had the best predictive performances (Ta-
ble 10). The achieved matches between its predictions
and measured temperatures are graphically described
in Figure 14 and 15.

Figure 11: The house - real 2 experiment: evolution
of three Markov chains for TRGF : traces and sum-
mary statistics.

Figure 12: The house - real 2 experiment: evolution
of three Markov chains for TRUF : traces and sum-
mary statistics.

Table 9: The house - real 2 experiment: calibration
parameters estimates and 95% C.I..

PARA- MAP q2.5 q50 q97.5

METER

TrGF (-) 0.345 0.154 0.34 0.57
TrUF (-) 0.101 0.001 0.080 0.367

HPext (
10

3m3

s
) 3.10 2.17 2.92 5.52

crck2l (m) 4.43 1.22 4.29 8.08
crck3l (m) 3.02 1.32 2.66 6.83

Discussion and result analysis

The undertaken virtual experiments demonstrated
the capability of CALIBRO to identify effectively cali-
bration parameter values, even when significant levels
of noise contaminate the measurements.



Figure 13: The house - real 2 experiment: evolution
of three Markov chains for HPext: traces and sum-
mary statistics.

Figure 14: The house - real 2 experiment: compari-
son between ground floor temperature predictions and
observations.

Figure 15: The house - real 2 experiment: compari-
son between upper floor temperature predictions and
observations.

In the first series of virtual trials (Figures 2 and 3),
CALIBRO was always able to correctly estimate the
considered model inputs even for high noise to vari-

ance ratios. Indeed, despite little inaccuracy, that
may be due to the premature stop of the MCMC
simulations because of the high convergence thresh-
old adopted, the true parameters values are always
well centred within the calculated confidence inter-
vals and close to the inferred estimates. If the effects
of such small inaccuracies are diminished by rounding
the results to suitable precision, that is two significant
figures all the calibrated values are equal to the actual
parameter values.
Similar conclusions can be drawn from the outcomes
of the calibration against synthetic observations per-
formed on the house model. All the MCMC sim-
ulation converged to the same stationary distribu-
tion (Figures 8, 9 and 10) and all the calibration pa-
rameters were estimated correctly. HPext has been

negligibly overestimated (0.0044 ≈ 0.0043m3

s
) and

even crck2l and crck3l, although having almost in-
discernible effects, were well identified. In particu-
lar, their empirical probability density distributions,
despite having large variances, are clearly peaked
around the respective true values (Figures 16 and 17).
These last results are consistent with those depicted
in Figure 2 and 3. As indicated by the box plots,
the calculated values become increasingly uncertain
with the noise. Similarly the average confidence in-
tervals broaden as the NVR grows, especially for GCc

which is the weakest of the two calibration parame-
ters. Thus, measurement uncertainties are correctly
influencing the calculations, and the results correctly
follow the sensitivity of the model, returning higher
uncertainties for the less important parameters.

Figure 16: The house–virtual experiment :crck2l em-
pirical probability density distribution.

The performed real experiments proved the ability
of CALIBRO to tune a model’s inputs in order to
improve the efficacy of such a model in predicting ob-
served performance indicators. It is difficult to judge
the actual correspondence between the estimated pa-
rameters and the real properties of the wall that they
represent, since the specifications of the wall have not
been disclosed, while airflow network parameters, for
the house experiment, are naturally unknown due to



Figure 17: The house–virtual experiment: crck3l em-
pirical density distribution.

the difficulty of measuring them. However, confidence
in the goodness of the calibration results is given by
Figures 4, 5, 11, 12 and 13, which show that during
the calibrations of the model against real measure-
ments all the MCMC simulations converged to the
same probabilistic solutions. Especially the strongest
parameters (GCk, HPext, TRGF , and TRUF ) showed
reasonable estimates well centred in the respective
confidence intervals, and characterised by bell shaped
empirical probability density distributions, indicat-
ing that these variables were effectively estimated.
Conversely, the weakest parameters (GCc, crck2l and
crck3l) showed estimates close to their confidence
boundaries and large variances. Probably, their es-
timations were influenced by observation errors and
model deficiencies. In this case CALIBRO tends to
excessively modify the least important model param-
eters resulting in a little over-fit of the measurements,
as discussed more in detail in Monari (2016). Never-
theless, due to their minor effects, errors in the esti-
mates of these parameters do not affect sensibly the
model predictions.
As shown by the graphical comparison in Figure 6, it
was possible to achieve a very good match between
the heat flux through the wall predicted by the cali-
brated model and that measured. In particular, it is
not possible to notice any significant discrepancy be-
tween predictions and measurements, which are con-
sistently with the 95% confidence intervals. This is
further highlighted by the low Root Mean Square Er-
ror (RMSE), equal to 0.1 W/m2.
The final calibrated model for the house was able to fit
well the mean temperature of the ground floor (Figure
14), while it showed some inaccuracies in predicting
the average temperature of the upper floor (Figure
15). In particular the predicted upper floor temper-
ature seems too sensitive to heat gains from solar ra-
diation and thermal pulses. It is interesting to notice
the two different inferred values for the window opti-
cal transmission. TrUF had an MAP value less than
one third of TrGF . Different window specifications
for the two floors are deemed to be unlikely, and such

difference may be due to accumulated dirt or some
phenomena not recorded during the monitoring. A
more likely explanation might be a lack of thermal
mass in the upper floor. Material densities were not
highlighted by the sensitivity analyses performed as
significant parameters. The cause may be their in-
dividual consideration instead of taking into account
more global parameters governing the building ther-
mal capacity. This may suggest that the inclusion
of details in the model should be done gradually, de-
pending on the outcome of the calibration. In partic-
ular it is believed that, at first, it would be convenient
to consider few important macro-parameters acting
on different locations of the model, and then break
down such macro-parameters according on the results
of analysis. The correction of this model deficiency
requires more investigation which will be object of
future studies. For the purpose of this research it is
more useful to compare the manual iterative calibra-
tion process and its outcomes with the application of
CALIBRO and its results.

The time spent to manually calibrate the model was
two days. The process involved the empirical identifi-
cation of the calibration parameters according to the
expertise and knowledge of the modeller, and their
iterative variation until a satisfying match with the
observed temperatures was achieved. In the same
amount of time it was possible to apply CALIBRO
twice. The most time consuming phases were gener-
ating the required samples of simulations, that were
carried out overnight. The actual calibrations re-
quired a few hours, during which the identification
of calibration parameters was performed automat-
ically through a detailed variance based sensitivity
analysis, and the identification of a solution was per-
formed according to robust probabilistic techniques
allowing the assessment of the reliability of the in-
ferred model parameter estimates. It should also be
noted that a relatively short lasting manual calibra-
tion process, as in this case, is more an exception, due
to the large amount of information available, than a
rule. Furthermore, if the analyst was willing to per-
form the selection of the calibration parameters based
upon sensitivity analysis, the required time would
have increased greatly. Finally, both the models cali-
brated with CALIBRO achieved better matches with
the measurements (Table 10), having overall 34% and
55% lower RMSEs.

Table 10: The house–real experiment: RMSE.

CALIBRATION GF UF GLOBAL

TYPE

manual iterative 0.69 1.72 1.31
CALIBRO - real 1 0.60 1.07 0.86
CALIBRO - real 2 0.62 0.81 0.72



Conclusions

This paper has introduced CALIBRO, an R pack-
age for the Bayesian calibration of building energy
models. Such a software package allows the easy un-
dertaking of the calibration of BES models according
to a Bayesian framework, providing the analysts with
the possibility of rigorously introducing their knowl-
edge in the calculations, and to prove or disprove their
hypothesis against the information provided by field
observations. The main features of CALIBRO are the
following.

• Model independence: adopting a black-box ap-
proach, the calibration process can be applied
to any building energy model, requiring only the
information defined in the calibration dataset as
inputs.

• Multi-objective calibration: multiple perfor-
mance indicators can be contained in one cali-
bration dataset, and in turn multiple calibration
datasets can be considered simultaneously dur-
ing the calibration.

• Sensitivity analysis: the selection of the calibra-
tion parameters is performed automatically ac-
cording to a detailed variance based sensitivity
analysis.

• Robust probabilistic and statistical techniques:
the inference of the calibration parameter val-
ues most likely to reduce the gap between model
predictions and field measurements is under-
taken though optimisation and MCMC algo-
rithms, which provide assessment of the reliabil-
ity of the calculated estimates.

The capabilities of CALIBRO have been demon-
strated in the described virtual and real experiments.
The results relative to the former class of tests,
showed good performance in estimating calibration
parameters even if the effects of such parameters on
the model output are small, and also when signifi-
cant noise contaminates the measurements. The in-
ferred calibration parameter estimates were reliable,
reflecting in their uncertainties the magnitude of the
observation errors and the sensitivity of the model.
The outcomes from the real examples, demonstrated
that CALIBRO is effective at improving the predic-
tive capabilities of BES models. With respect to the
house example, the model calibrated with CALIBRO
produced better fits of the measured internal tem-
peratures than that manually calibrated. However,
this does not mean that the application of the soft-
ware package will yield systematically a better fit
with respect to other approaches. The assessment
of its performance in comparison to other kinds of
calibration procedure would require a statistical in-
vestigation which could be object of future research.
Nevertheless, the calibration of the house model with
CALIBRO required less time than the manual cali-
bration of the same model. Furthermore, the outputs

from CALIBRO could be used to asses the reliability
of calculated calibration parameter values, building
up confidence in the analyst that a good solution was
found. The information returned by CALIBRO is
also effective in spotting model deficiencies and conse-
quent model improvements, thus making the software
package a useful tool for the analysis and diagnosis of
BES models against monitored data. Therefore the
authors are confident in saying that, compared to the
usual practice of manually calibrating building en-
ergy models, the employment of CALIBRO offers a
theoretical edge, achieving more reliable results in a
shorter period of time.
However, the software has limitations that require
improvements. Calibration parameters are identified
only according to the structural identifiability, while
it would be important to take into account the ex-
perimental identifiability as well. It is currently im-
possible to consider vectorial model parameters, such
as pressure coefficients, time varying convection coef-
ficients, unknown heat gains or occupancy schedules,
which are an important class of inputs for BES mod-
els. Also a development priority is to provide a means
to compare different calibrated models through reli-
able model selection criteria.
CALIBRO has completed a first development phase,
and it is now undergoing a testing stage in the context
of Hit2Gap European project (Costola et al. (2017)).
The authors are confident that its robustness and re-
liability will be further strengthened by this testing
process. A first version of the software can be found
at http://www.esru.strath.ac.uk/software.htm.
The final purpose is to provide, with CALIBRO, a so-
phisticated tool supporting the development of novel
practices and systems, advancing Building Energy
Simulation and allowing its routine application dur-
ing the operational phase of a building life cycle.
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