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This paper is concerned with the almost sure exponential stability of the 
n-dimensional nonlinear hybrid stochastic functional differential equation (SFDE) 
dx(t) = f(ψ1(xt, t), r(t), t)dt + g(ψ2(xt, t), r(t), t)dB(t), where xt = {x(t + u) :
−τ ≤ u ≤ 0} is a C([−τ, 0]; Rn)-valued process, B(t) is an m-dimensional Brownian 
motion while r(t) is a Markov chain. We show that if the corresponding hybrid 
stochastic differential equation (SDE) dy(t) = f(y(t), r(t), t)dt +g(y(t), r(t), t)dB(t)
is almost surely exponentially stable, then there exists a positive number τ∗ such 
that the SFDE is also almost surely exponentially stable as long as τ < τ∗. We also 
describe a method to determine τ∗ which can be computed numerically in practice.

© 2017 The Authors. Published by Elsevier Inc. This is an open access article 
under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

This paper is concerned with the almost sure exponential stability of the n-dimensional nonlinear hybrid 

stochastic functional differential equation (SFDE) of the form

dx(t) = f(ψ1(xt, t), r(t), t)dt + g(ψ2(xt, t), r(t), t)dB(t). (1.1)

Here B(t) is an m-dimensional Brownian motion, r(t) is a Markov chain on the finite state space S =

{1, 2, · · · , N}, xt = {x(t + s) : −τ ≤ s ≤ 0}, τ is a positive number, ψ1, ψ2 : C([−τ, 0]; Rn) × R+ → R
n, 

f : Rn × S × R+ → R
n and g : Rn × S × R+ → R

n×m. The notation used will be explained in Section 2

while we refer the reader to, for example, [9–12,19,20] for the general theory on SFDEs.

To see the difficulty of this problem, let us recall some history in the area of almost sure stability of 

SFDEs. In 1997, Mohammed and Scheutzow [21] were first to study the almost sure exponential stability 

of the linear scalar stochastic differential delay equation (SDDE, a special class of SFDEs)
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dx(t) = σx(t − τ)dB(t), (1.2)

where B(t) is a scalar Brownian motion and σ is positive number. They showed that the SDDE (1.2) is 

almost surely exponentially stable provided the time delay τ is sufficiently small. Their proof for this was 

nontrivial. In 2005, Scheutzow [23] considered a more general scalar SFDE

dx(t) = σψ(xt)dB(t), (1.3)

where σ is positive number and ψ is a Lipschitz continuous functional from C([−τ, 0]; R) to R such that

inf
−τ≤s≤0

|ϕ(s)| ≤ |ψ(ϕ)| ≤ sup
−τ≤s≤0

|ϕ(s)|, ∀ϕ ∈ C([−τ, 0];R).

He also showed that equation (1.3) is almost surely exponentially stable provided τ is sufficiently small. In 

2016, Guo et al. [7] considered the more general n-dimensional nonlinear SDDE with variable delays of the 

form

dx(t) = f(x(t − δ1(t)), t)dt + g(x(t − δ2(t)), t)dB(t), (1.4)

where B(t) is an m-dimensional Brownian motion, δ1, δ2 : R+ → [0, τ ] stand for variable delays, while 

f : Rn × R+ → R
n and g : Rn × R+ → R

n×m are globally Lipschitz continuous. They showed that if the 

corresponding (non-delay) SDE

dx(t) = f(x(t), t)dt + g(x(t), t)dB(t) (1.5)

is almost surely exponentially stable, so is the SDDE (1.4) provided the time delays are sufficiently small. The 

reason why it has taken almost 20 years to make these progresses in this area is because SFDEs (including 

SDDEs) are infinite-dimensional systems which are significantly different from SDEs. For example, it is 

straightforward to show that the linear scalar SDE dx(t) = σx(t)dB(t) is almost surely exponentially 

stable by applying the Itô formula to log(x(t)) (see, e.g. [2,6]). However, it is nontrivial for Mohammed and 

Scheutzow [21] to show the almost sure exponential stability of the corresponding SDDE (1.2) for sufficiently 

small τ and they used a different approach (as one cannot apply the Itô formula to log(x(t)) in this delay 

case).

The underlying SFDE (1.1) in this paper is more general than any of equations (1.2), (1.3) or (1.4). This 

is not only because of the hybrid factor modelled by the Markov chain r(t) but also more general without 

the Markov chain. In fact, ignoring r(t) and setting ψ1(xt, t) = x(t − δ1(t)) and ψ1(xt, t) = x(t − δ2(t)), we 

see that the SFDE (1.1) becomes equation (1.4); while if we set f = 0, g(x, i, t) = σx and ψ2(xt, t) = ψ(xt), 

then the SFDE (1.1) becomes equation (1.3).

All of the above show the difficulty and generality of our proposed problem. Let us begin to develop our 

new theory.

2. Preliminaries

Throughout this paper, unless otherwise specified, we will use the following notation. Let |x| denote 

the Euclidean norm of vector x ∈ R
n. For a matrix A, let |A| =

√

trace(AT A) be its trace norm and 

‖A‖ = max{|Ax| : |x| = 1} be the operator norm. For a vector or matrix A, its transpose is denoted 

by AT . If A is a symmetric real matrix (A = AT ), denote by λmin(A) and λmax(A) its smallest and largest 

eigenvalue, respectively.

Let (Ω, F , {Ft}t≥0, P) be a complete probability space with a filtration {Ft}t≥0 satisfying the usual 

conditions. Let B(t) = (B1(t), · · · , Bm(t))T be an m-dimensional Brownian motion with respect to the 
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filtration. Let r(t), t ≥ 0, be a right-continuous Markov chain with respect to the filtration taking values in 

a finite state space S = {1, 2, · · · , N} with generator Γ = (γij)N×N given by

P{r(t + Δ) = j|r(t) = i} =

{

γijΔ + o(Δ) if i �= j,

1 + γiiΔ + o(Δ) if i = j,

where Δ > 0. Here γij ≥ 0 is the transition rate from i to j if i �= j while γii = − 
∑

j �=i γij . Throughout 

the paper, we assume that B(t) and r(t) are independent, and they are Ft adapted. It is well known that 

almost every sample path of r(t) is a right-continuous step function with a finite number of jumps in any 

finite subinterval of R+ := [0, ∞). As a standing hypothesis we assume in this paper that the Markov 

chain is irreducible. This is equivalent to the condition that for any i, j ∈ S, one can find finite numbers 

i1, i2, · · · , ik ∈ S such that γi,i1
γi1,i2

· · · γik,j > 0. Note that Γ always has an eigenvalue 0. The algebraic 

interpretation of irreducibility is rank(Γ) = N − 1. Under this condition, the Markov chain has a unique 

stationary (probability) distribution π = (π1, π2, · · · , πN ) ∈ R
1×N which can be determined by solving the 

following linear equation πΓ = 0 subject to 
∑N

j=1 πj = 1 and πj > 0 for all j ∈ S.

Let τ be a nonnegative parameter taking values in [0, ∞). Denote by C([−τ, 0]; Rn) the family of contin-

uous functions ϕ : [−τ, 0] → R
n with the norm ‖ϕ‖ = sup−τ≤u≤0 |ϕ(u)|. For ϕ ∈ C([−τ, 0]; Rn), define

D(ϕ) = sup
−τ≤u≤0

|ϕ(u) − ϕ(0)|.

For t ≥ 0, denote by L2
Ft

(Ω; C) the family of Ft-measurable C([−τ, 0]; Rn)-valued random variables ξ

such that E‖ξ‖2 < ∞, and by L2
Ft

(Ω; Rn) the family of Ft-measurable Rn-valued random variables η

such that E|η|2 < ∞. Denote by MFt
(Ω; S) the family of Ft-measurable S-valued random variables. For a 

continuous stochastic process x(t) on [−τ, ∞), define xt = {x(t + s) : −τ ≤ s ≤ 0} for t ≥ 0 so xt is a 

C([−τ, 0]; Rn)-valued stochastic process on R+.

Consider the SFDE

dx(t) = f(ψ1(xt, t), r(t), t)dt + g(ψ2(xt, t), r(t), t)dB(t) (2.1)

on t ≥ t0(≥ 0) with the initial data

xt0
= ξ ∈ L2

Ft0

(Ω; C) and r(t0) = ζ ∈ MFt0
(Ω; S), (2.2)

where f : Rn ×S ×R+ → R
n, g : Rn ×S ×R+ → R

n×m and ψ1, ψ2 : C([−τ, 0]; Rn) ×R+ → R
n are all Borel 

measurable mappings. Please also note that ψ1 and ψ2 depend on the additional parameter τ . We impose 

some standing hypotheses on these mappings.

Assumption 2.1. Assume that there exist two nonnegative constants K1 and K2 such that

|f(x, i, t) − f(y, i, t)| ≤ K1|x − y| and |g(x, i, t) − g(y, i, t)| ≤ K2|x − y| (2.3)

for all x, y ∈ R
n, i ∈ S and t ≥ 0. Assume also that f(0, i, t) = 0 and g(0, i, t) = 0 for all i ∈ S and t ≥ 0.

Assumption 2.2. Assume that

|ψj(ϕ, t) − ψj(φ, t)| ≤ ‖ϕ − φ‖ and |ψj(ϕ, t) − ϕ(0)| ≤ D(ϕ) (2.4)

for j = 1, 2, ϕ, φ ∈ C([−τ, 0]; Rn), t ≥ 0 and τ ≥ 0.
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We observe that the second inequality in (2.4) forces ψ1(0, t) = ψ2(0, t) = 0 for all t ≥ 0. We also observe 

that these assumptions imply that

|f(ψ1(ϕ, t), i, t) − f(ψ1(φ, t), i, t)| ≤ K1‖ϕ − φ‖, (2.5)

|g(ψ2(ϕ, t), i, t) − g(ψ2(φ, t), i, t)| ≤ K2‖ϕ − φ‖, (2.6)

and

|f(ψ1(ϕ, t), i, t)| ≤ K1‖ϕ‖ and |g(ψ2(ϕ, t), i, t)| ≤ K2‖ϕ‖ (2.7)

for all ϕ, φ ∈ C([−τ, 0]; Rn), i ∈ S and t ≥ 0. It is therefore known (see, e.g., [19, Theorem 8.3 on page 303]) 

that under these assumptions, the hybrid SFDE (2.1) with the initial data (2.2) has a unique solution on 

t ≥ t0 − τ and the solution has the property that

E

(

sup
t0−τ≤t≤T

|x(t)|2
)

< ∞, ∀T > t0. (2.8)

We will denote the solution by x(t; t0, ξ, ζ) in order to emphasize the initial data at time t0, though we 

will often write it as x(t). We also see from (2.8) that xt ∈ L2
Ft

(Ω; C) for any t ≥ t0. Furthermore, for any 

t0 ≤ s ≤ t < ∞, we can regard x(t) as the solution of the SFDE (2.1) on t ≥ s with the initial data xs and 

r(s) at time s. In other words, we have

x(t) = x(t; s, xs, r(s)), t0 ≤ s ≤ t < ∞. (2.9)

This shows clearly that given xs and r(s) at time s, we can determine x(t) for all t ≥ s by solving the SFDE 

(2.1) but the information on how the solution reaches xs from ξ is of no further use.

The purpose of this paper is to find sufficient conditions on the coefficients f and g as well as to obtain 

a positive bound τ∗ such that the SFDE (2.1) is almost surely exponentially stable as long as τ ≤ τ∗. By 

the almost sure exponential stability, we mean that

lim sup
1

t
log(|x(t; t0, ξ, ζ)|) < 0 a.s.

for any initial data (2.2) (see, e.g., [8,11,12,15]). Let us consider a special case when τ = 0. In this case, 

C([−τ, 0]; Rn) becomes Rn and ψ1, ψ2 : Rn × R+ → R
n. Note from condition (2.4) that ψ1(y, t) = y and 

ψ2(y, t) = y for (y, t) ∈ R
n × R+. Hence the SFDE (2.1) becomes the corresponding hybrid SDE

dy(t) = f(y(t), r(t), t)dt + g(y(t), r(t), t)dB(t) (2.10)

on t ≥ t0 with the initial data (y(t0), r(t0)) = (ξ(0), ζ). It is useful to note that ξ(0) ∈ L2
Ft0

(Ω; Rn). Under 

Assumption 2.1, equation (2.10) has a unique solution (see, e.g., [14,24]) and the solution has the property 

that E(supt0≤t≤T |y(t)|2) < ∞ for all T ≥ t0. Denote the unique solution by y(t; t0, ξ(0), ζ) on t ≥ t0. Let 

us highlight an important property provided in Mao [14, Lemma 2.1], which reads

P{y(t; t0, ξ(0), ζ) �= 0 on t ≥ t0 | ξ(0) �= 0} = 1. (2.11)

That is, almost all the sample paths of any solution of equation (2.10) starting from a nonzero state will 

never reach the origin. Because of this property, we can choose Lyapunov functions in variety of ways. 

Requirements such as smoothness etc. for functions under consideration need not be imposed globally but 

only in a deleted neighbourhood of the origin.
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3. Main results

We see clearly from the discussion in the previous section that the conditions we need to impose should 

at least guarantee the almost sure exponential stability of the corresponding hybrid SDE (2.10). Although 

there are many useful criteria on the almost sure exponential stability, we will use one established by [14]. 

Accordingly, we impose the following assumption.

Assumption 3.1. For each i ∈ S, there are constant triples αi, ρi and σi such that

xT f(x, i, t) ≤ αi|x|2,

|g(x, i, t)| ≤ ρi|x|, (3.1)

|xT g(x, i, t)| ≥ σi|x|2

for all x ∈ R
n and t ≥ 0. Moreover,

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

−(α1 + 0.5ρ2
1 − σ2

1) −γ12 · · · −γ1N

−(α2 + 0.5ρ2
2 − σ2

2) −γ22 · · · −γ2N

...
... · · ·

...

−(αN + 0.5ρ2
N − σ2

N ) −γN2 · · · −γNN

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

> 0. (3.2)

It was shown in [14] that the hybrid SDE (2.10) is almost surely exponentially stable under condition 

(2.3) and Assumption 3.1 along with the additional condition that

for some u ∈ S, γiu > 0 for all i �= u. (3.3)

It was also showed in [18] that under this additional condition, (3.2) is equivalent to the following simpler 

condition

N∑

i=1

πi(αi + 0.5ρ2
i − σ2

i ) < 0. (3.4)

The reason why we do not use this simpler condition in this paper is because that we will replace condition 

(3.3) by a slightly weaker one which we state as another assumption.

Assumption 3.2. There is a state u ∈ S such that

γiu ∨ (σ2
i − 0.5ρ2

i − αi) > 0 for all i �= u. (3.5)

We do not know if (3.2) is equivalent to (3.4) under this assumption yet. In this paper, we will show 

that condition (2.3) and Assumptions 3.1 and 3.2 are sufficient to guarantee the almost sure exponential 

stability of the hybrid SDE (2.10), which is a slightly better result than that in [14]. Of course, our key aim 

is to show that under Assumptions 2.1, 2.2, 3.1 and 3.2 there is a positive bound τ∗ such that the SFDE 

(2.1) is almost surely exponentially stable as long as τ ≤ τ∗. We need to present several lemmas in order to 

show this main result.

Lemma 3.3. Under Assumptions 3.1 and 3.2, for any sufficiently small p ∈ (0, 1), the N × N matrix

A(p) := diag(θ1(p), · · · , θN (p)) − Γ (3.6)
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is a nonsingular M-matrix, where

θi(p) :=
p(2 − p)σ2

i

2
− pρ2

i

2
− pαi. (3.7)

We defer the proof of this lemma to the Appendix. The following lemma shows that the corresponding 

hybrid SDE (2.10) is exponentially stable in pth moment for sufficiently small p ∈ (0, 1) and hence, by [19, 

Theorem 5.9 on page 167], the SDE is also almost surely exponentially stable.

Lemma 3.4. Let Assumptions 2.1, 3.1 and 3.2 hold. Choose a (sufficiently small) number p ∈ (0, 1) for 

matrix A(p) defined by (3.6) to be a nonsingular M-matrix. Define

(c1, · · · , cN )T = A−1(p)(1, · · · , 1)T (3.8)

(so all ci’s are positive by the theory of M-matrices [4,19] or see Lemma A.1 in the Appendix) and let cmin =

min1≤i≤N ci and cmax = max1≤i≤N ci. Then for any initial data ξ(0) ∈ L2
Ft0

(Ω; Rn) and ζ ∈ MFt0
(Ω; S), 

the solution y(t) = y(t; t0, ξ(0), ζ) of the hybrid SDE (2.10) satisfies

E|y(t)|p ≤ ME|ξ(0)|pe−γ(t−t0), ∀t ≥ t0 (3.9)

where γ = 1/cmax and M = cmax/cmin. Moreover, let τ1 > 0 be the unique root to the following equation 

(in τ)

Kp
1 τp + CpKp

2 τp/2 = 1, (3.10)

where Cp = (32/p)p/2. Then, whenever τ < τ1,

E‖yt+τ ‖p ≤ M

1 − (Kp
1 τp + CpKp

2 τp/2)
E|ξ(0)|pe−γ(t−t0), ∀t ≥ t0. (3.11)

Proof. We first assume that ξ(0) is deterministic (i.e., not a random variable). If ξ(0) = 0, then 

y(t; t0, 0, ζ) = 0 a.s. for all t ≥ 0 so the assertions hold. For ξ(0) �= 0, we write y(t; t0, ξ(0), ζ) = y(t). 

As pointed out in the previous section, y(t) �= 0 for all t ≥ 0 almost surely. Define the Lyapunov function

V (y, i, t) = ci|y|peγt for (y, i, t) ∈ (Rn − {0}) × S × R+.

We can therefore apply the generalised Itô formula (see, e.g., [19,24]) to obtain that

EV (y(t), r(t), t) = EV (ξ(0), ζ, t0) + E

t∫

t0

LV (y(s), r(s), s)ds (3.12)

for t ≥ t0, where LV : (Rn − {0}) × S × R+ → R is defined by

LV (y, i, t) = eγt
(

γci|y|p + pci|y|p−2yT f(y, i, t) +
pci

2
|y|p−2|g(y, i, t)|2

− p(2 − p)ci

2
|y|p−4|yT g(y, i, t)|2 +

N∑

j=1

γijcj |y|p
)

.

By Assumption 3.1 and then using definition (3.7) of θi(p), we have

LV (y, i, t) ≤ eγt|y|p
(

1 − ciθi(p) +

N∑

j=1

γijcj

)

.
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But, by (3.8) and (3.6),

ciθi(p) −
N∑

j=1

γijcj = 1, ∀i ∈ S.

We hence have

LV (y, t, i) ≤ 0.

Substituting this into (3.12) yields

EV (y(t), r(t), t) ≤ EV (ξ(0), ζ, t0).

This implies

E|y(t)|p ≤ M |ξ(0)|pe−γ(t−t0).

That is, we have shown that assertion (3.9) holds when ξ(0) is deterministic. Now, for general ξ(0) ∈
L2

Ft0

(Ω; Rn), we have

E|y(t)|p = E

(

E
(
|y(t)|p

∣
∣Ft0

))

≤ E

(

M |ξ(0)|pe−γ(t−t0)
)

= ME|ξ(0)|pe−γ(t−t0)

which is the first assertion (3.9). To show the second assertion, we see from equation (2.10) that

E‖yt+τ ‖p ≤ E|y(t)|p + E( sup
0≤u≤τ

∣
∣
∣

t+u∫

t

f(y(s), r(s), s)ds
∣
∣
∣

p)

+ E( sup
0≤u≤τ

∣
∣
∣

t+u∫

t

g(y(s), r(s), s)dB(s)
∣
∣
∣

p)

,

using the elementary inequality (a +b)p ≤ ap +bp (for any a, b ≥ 0). By condition (2.3) and the Burkholder–

Davis–Gundy inequality (see, e.g., [19]), we can then easily show that

E‖yt+τ ‖p ≤ E|y(t)|p + (Kp
1 τp + CpKp

2 τp/2)E‖yt+τ ‖p.

This, together with (3.9), implies the other assertion (3.11). �

It is known that the solution of the SDDE (2.1) has property (2.8). However, we need a more precise 

bound, as described in the following lemma, for the use of this paper.

Lemma 3.5. Let Assumptions 2.1 and 2.2 hold. Let the initial data (2.2) be arbitrary and write x(t; t0, ξ, ζ) =

x(t). Then

E

(

sup
t0−τ≤t≤T

|x(t)|2
)

≤ 3e(4K1+38K2

2
)(T −t0)

E‖ξ‖2, ∀T ≥ t0 (3.13)

and

E|D(xT +τ )|2 ≤ 12τ(2τK2
1 + 5K2

2 )e(4K1+38K2

2
)(T +τ−t0)

E‖ξ‖2, ∀T ≥ t0. (3.14)
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Proof. By the Itô formula and (2.7), it is easy to show that

E

(

sup
t0≤t≤T

|x(t)|2
)

≤ E|x(t0)|2 + (2K1 + K2
2 )

T∫

t0

E‖xt‖2dt

+ E

(

sup
t0≤t≤T

∣
∣
∣

t∫

t0

2x(s)g(ψ2(xs, s), r(s), s)dB(s)
∣
∣
∣

)

. (3.15)

But, by the Burkholder–Davis–Gundy inequality (see, e.g., [5]),

E

(

sup
t0≤t≤T

∣
∣
∣

t∫

t0

2x(s)g(ψ2(xs, s), r(s), s)dB(s)
∣
∣
∣

)

≤ 3E
(

T∫

t0

4K2
2 |x(t)|2‖xt‖2dt

)1/2

≤ 6E
{(

sup
t0≤t≤T

|x(t)|
)(

T∫

t0

K2
2 ‖xt‖2dt

)1/2}

≤ 0.5E
(

sup
t0≤t≤T

|x(t)|2
)

+ 18K2
2

T∫

t0

E‖xt‖2dt.

Substituting this into (3.15) yields

E

(

sup
t0≤t≤T

|x(t)|2
)

≤ 2E|x(t0)|2 + (4K1 + 38K2
2 )

T∫

t0

E‖xt‖2dt.

Consequently

E

(

sup
t0−τ≤t≤T

|x(t)|2
)

≤ 3E‖ξ‖2 + (4K1 + 38K2
2 )

T∫

t0

E

(

sup
t0−τ≤s≤t

|x(s)|2
)

dt.

The Gronwall inequality gives the desired assertion (3.13). Now, by the Hölder inequality, the Doob mar-

tingale inequality as well as (3.13), we can easily show that

E

(

|x(T + τ) − x(T )|2
)

≤ 6τ(τK2
1 + K2

2 )e(4K1+38K2

2
)(T +τ−t0)

E‖ξ‖2

and

E

(

sup
0≤u≤τ

|x(T + u) − x(T )|2
)

≤ 6τ(τK2
1 + 4K2

2 )e(4K1+38K2

2
)(T +τ−t0)

E‖ξ‖2. (3.16)

But

|D(xT +τ )|2 = sup
0≤u≤τ

|x(T + u) − x(T + τ)|2

≤ 2|x(T + τ) − x(T )|2 + 2
(

sup
0≤u≤τ

|x(T + u) − x(T )|2
)

.

We hence have the other assertion (3.14). �



1398 M. Song, X. Mao / J. Math. Anal. Appl. 458 (2018) 1390–1408

Lemma 3.6. Let Assumptions 2.1 and 2.2 hold and p ∈ (0, 1). Let the initial data (2.2) be arbitrary and 

write x(t; t0, ξ, ζ) = x(t). Then

E|y(t) − x(t)|p ≤ (J(τ, t − t0))p/2
E‖ξ‖p, ∀t ≥ t0 + τ, (3.17)

where y(t) = y(t; t0 + τ, x(t0 + τ), r(t0 + τ)) and

J(τ, z) =
12τ(2τK2

1 + 5K2
2 )(K1 + 2K2

2 )

4K1 + 38K2
2

× e(3K1+2K2

2
)(z−τ)

[
e(4K1+38K2

2
)z − e(4K1+38K2

2
)τ

]
for z ≥ τ. (3.18)

Proof. We first show the lemma for the case when ξ ∈ C([−τ, 0]; Rn). By the Itô formula and Assumption 2.1, 

it is easy to show that for t ≥ t0 + τ ,

E|x(t) − y(t)|2 ≤ E

t∫

t0+τ

[

2K1|x(s) − y(s)||ψ1(xs, s) − y(s)| + K2
2 |ψ2(xs, s) − y(s)|2

]

ds.

But, by (2.4),

|ψ1(xs, s) − y(s)| ≤ |ψ1(xs, s) − x(s)| + |x(s) − y(s)| ≤ D(xs) + |x(s) − y(s)|.

Hence

E|x(t) − y(t)|2 ≤ (3K1 + 2K2
2 )

t∫

t0+τ

E|x(s) − y(s)|2ds

+ (K1 + 2K2
2 )

t∫

t0+τ

E|D(xs)|2ds.

The Gronwall inequality gives

E|y(t) − x(t)|2 ≤ (K1 + 2K2
2 )e(3K1+2K2

2
)(t−t0−τ)

t∫

t0+τ

E|D(xs)|2ds.

This, together with Lemma 3.5, yields

E|y(t) − x(t)|2 ≤ J(τ, t − t0)‖ξ‖2.

An application of the Hölder inequality implies

E|y(t) − x(t)|p ≤ (J(τ, t − t0))p/2‖ξ‖p.

Now, for general ξ ∈ L2
Ft0

(Ω; C), we have

E|y(t) − x(t)|p = E

(

E
(
|y(t) − x(t)|p

∣
∣Ft0

))

≤ E

(

(J(τ, t − t0))p/2‖ξ‖p
)

= (J(τ, t − t0))p/2
E‖ξ‖p (3.19)

as desired. �
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Theorem 3.7. Let Assumptions 2.1, 2.2, 3.1 and 3.2 hold. Then there exists a positive number τ∗ such that 

the hybrid SFDE (2.1) is almost surely exponentially stable provided τ < τ∗. In practice, we can choose 

p ∈ (0, 1) sufficiently small for matrix A(p) defined by (3.6) to be a nonsingular M-matrix and choose 

another free parameter ε ∈ (0, 1), and let τ∗ > 0 be the unique root to the equation (in τ)

εepτ(2K1+19K2

2
) + (J(τ, τ + h))p/2 +

[
12τ(2τK2

1 + 5K2
2 )

]p/2
ep(2K1+19K2

2
)(τ+h) = 1, (3.20)

where h = log(3p/2M/ε)/γ while γ, M and J(τ, z) have been defined in Lemmas 3.4 and 3.6, respectively.

Proof. We first observe that once p and ε are chosen, the sum of the left-hand-side terms in equation (3.20)

is a continuously increasing function of τ ≥ 0 and is equal to ε when τ = 0 but tends to infinity as τ → ∞, 

whence equation (3.20) must have a unique root τ∗ > 0. We also note from the definition of h that

3p/2Me−γh = ε. (3.21)

Fix τ ∈ (0, τ∗) and the initial data (2.2). Write x(t; t0, ξ, ζ) = x(t) for t ≥ t0 and y(t0 +τ +h; t0 +τ, x(t0 +

τ), r(t0 + τ)) = y(t0 + τ + h). By Lemma 3.4, we have

E|y(t0 + τ + h)|p ≤ ME|x(t0 + τ)|pe−γh.

But, by the technique of conditional expectation (as (3.19) was proved), we can show using Lemma 3.5 that

E|x(t0 + τ)|p ≤ 3p/2epτ(2K1+19K2

2
)
E‖ξ‖p.

Thus

E|y(t0 + τ + h)|p ≤ εepτ(2K1+19K2

2
)
E‖ξ‖p, (3.22)

where (3.21) has been used. By the elementary inequality (a + b)p ≤ ap + bp (for any a, b ≥ 0), we have

E|x(t0 + τ + h)|p ≤ E|y(t0 + τ + h)|p + E|x(t0 + τ + h) − y(t0 + τ + h)|p.

Using (3.22) as well as Lemma 3.6, we get

E|x(t0 + τ + h)|p ≤
(

εepτ(2K1+19K2

2
) + (J(τ, τ + h))p/2

)

E‖ξ‖p. (3.23)

On the other hand,

E‖xt0+τ+h‖p ≤ E|x(t0 + τ + h)|p + E|D(xt0+τ+h)|p. (3.24)

But, again by the technique of conditional expectation, we can show using Lemma 3.5 that

E|D(xt0+τ+h)|p ≤
[
12τ(2τK2

1 + 5K2
2 )

]p/2
ep(2K1+19K2

2
)(τ+h)

E‖ξ‖p. (3.25)

Substituting (3.23) and (3.25) into (3.24) gives

E‖xt0+τ+h‖p ≤ J̄(τ)E‖ξ‖p, (3.26)

where

J̄(τ) = εepτ(2K1+19K2

2
) + (J(τ, τ + h))p/2 +

[
12τ(2τK2

1 + 5K2
2 )

]p/2
ep(2K1+19K2

2
)(τ+h).
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But, as τ < τ∗, we see from (3.20) that J̄(τ) < 1. We may therefore write J̄(τ) = e−λ(τ+h) for some λ > 0. 

It then follows from (3.26) that

E‖xt0+τ+h‖p ≤ e−λ(τ+h)
E‖ξ‖p. (3.27)

Let us now consider the solution x(t) on t ≥ t0 + τ + h. By property (2.9), this can be regarded as the 

solution of the SFDE (2.1) with the initial data xt0+τ+h and r(t0 + τ + h) at time t0 + τ + h. In the same 

way as (3.27) was proved, we can show

E‖xt0+2(τ+h)‖p ≤ e−λ(τ+h)
E‖xt0+τ+h‖p.

This, together with (3.27), implies

E‖xt0+2(τ+h)‖p ≤ e−2λ(τ+h)
E‖ξ‖p.

Repeating this procedure, we have

E‖xt0+k(τ+h)‖p ≤ e−kλ(τ+h)
E‖ξ‖p (3.28)

for all k = 1, 2, · · · . But this holds for k = 0 obviously so (3.28) holds for all k = 0, 1, 2, · · · . On the other 

hand, by Lemma 3.5, we can show, in the same way as (3.19) was proved, that

E

(

sup
t0+k(τ+h)≤t≤t0+(k+1)(τ+h)

|x(t)|p
)

≤ KE‖xt0+k(τ+h)‖p (3.29)

for all k = 0, 1, 2, · · · , where K = 3p/2epk(τ+h)(2K1+19K2

2
). This, together with (3.28), implies

E

(

sup
t0+k(τ+h)≤t≤t0+(k+1)(τ+h)

|x(t)|p
)

≤ Ke−kλ(τ+h)
E‖ξ‖p.

Consequently, for any ε̄ ∈ (0, λ),

P

(

sup
t0+k(τ+h)≤t≤t0+(k+1)(τ+h)

|x(t)|p ≥ e−k(λ−ε̄)(τ+h)
)

≤ Ke−kε̄(τ+h)
E‖ξ‖p.

By the Borel–Cantelli lemma (see, e.g., [15, Lemma 2.4 on page 7]), we obtain that for almost all ω ∈ Ω, 

there is an integer k0 = k0(ω) such that

sup
t0+k(τ+h)≤t≤t0+(k+1)(τ+h)

|x(t)|p < e−k(λ−ε̄)(τ+h) ∀k ≥ k0(ω).

This implies easily that

lim sup
t→∞

1

t
log(|x(t)|) ≤ −λ − ε̄

p
a.s.

As ε̄ is arbitrary, we have

lim sup
t→∞

1

t
log(|x(t)|) ≤ −λ

p
a.s.

The proof is hence complete. �
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In the statement of Theorem 3.7, we describe a method to determine τ∗ by choosing two parameters p

and ε. Unfortunately, we do not know how to determine them in order to get the optimal τ∗ yet. Our bound 

on τ∗ is therefore conservative but it is a challenge to get the optimal bound. Let us make a useful remark 

to close this section.

Remark 3.8. We observe from the proof of Lemma 3.2 that conditions (3.2) and (3.5) are only used to 

guarantee that

there is a number p ∈ (0, 1) for matrix A(p) defined by (3.6) to be a nonsingular M-matrix. (3.30)

We therefore see that Theorem 3.7 still holds if the sentence “Let Assumptions 2.1, 2.2, 3.1 and 3.2 hold” 

there is replaced by “Let Assumptions 2.1 and 2.2 as well as conditions (3.1) and (3.30) hold”.

4. Special SFDEs

In this section we will discuss a number of special but important classes of hybrid SFDEs. We will show 

more clearly from these discussions that our new theory established in this paper is a generalisation of 

the earlier papers, e.g., [7,21,23] in this area. As before, B(t) is an m-dimensional Brownian motion unless 

otherwise specified. We will omit mentioning the initial data as they are obvious.

4.1. Scalar hybrid SFDEs

Let us first consider the scalar hybrid SFDE

dx(t) = br(t)ψ(xt)dB(t), (4.1)

where B(t) is a scalar Brownian motion, bi (i ∈ S) are all non-zero real numbers and ψ : C[−τ, 0]; R) → R

satisfying

|ψ(ϕ) − ψ(φ)| ≤ ‖ϕ − φ‖ and |ψ(ϕ) − ϕ(0)| ≤ D(ϕ)

for ϕ, φ ∈ C[−τ, 0]; R). This is a special case of the SFDE (2.1) with f(x, i, t) = 0, g(x, i, t) = σix, 

ψ1(ϕ, t) = 0 and ψ2(ϕ, t) = ψ(ϕ). It is easy to see that Assumptions 2.1 and 2.2 are satisfied with K1 = 0

and K2 = maxi∈S |bi|. It is also easy to see that condition (3.1) holds with αi = 0 and ρi = σi = |bi|. Hence, 

for p ∈ (0, 1), matrix A(p) defined by (3.6) becomes

A(p) = 0.5p(1 − p)diag(b2
1, · · · , b2

N ) − Γ.

By the property of Γ, we have Γ�1 = 0 and hence

A(p)�1 = 0.5p(1 − p)(b2
1, · · · , b2

N )T > 0,

where �1 = (1, · · · , 1)T ∈ R
N . It then follows from Lemma A.1 that A(p) is a nonsingular M-matrix for any 

p ∈ (0, 1). By Remark 3.8, we can then conclude that there exists a positive number τ∗ such that the hybrid 

SFDE (4.1) is almost surely exponentially stable provided τ < τ∗.

4.2. Hybrid SDDEs

Let δ1 and δ2 be two Borel measurable functions from R+ to [0, τ ]. Define ψ1, ψ2 : C([−τ, 0]; Rn) ×R+ →
R

n by ψ1(ϕ, t) = ϕ(−δ1(t)) and ψ2(ϕ, t) = ϕ(−δ2(t)). Then
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|ψ1(ϕ, t) − ψ1(φ, t)| = |ϕ(−δ1(t)) − φ(−δ1(t))| ≤ ‖ϕ − φ‖

and

|ψ1(ϕ, t) − ϕ(0)| = |ϕ(−δ1(t)) − ϕ(0)| ≤ D(ϕ)

for all ϕ, φ ∈ C([−τ, 0]; Rn) and t ≥ 0, and similarly for ψ2. That is, ψ1 and ψ2 satisfy Assumption 2.2. The 

SFDE (2.1) becomes the hybrid SDDE

dx(t) = f(x(t − δ1(t)), r(t), t)dt + g(x(t − δ2(t)), r(t), t)dB(t). (4.2)

By Theorem 3.7, we can then conclude that under Assumptions 2.1, 3.1 and 3.2, there exists a positive 

number τ∗ such that the hybrid SDDE (4.2) is almost surely exponentially stable provided τ < τ∗.

4.3. Hybrid SFDEs with distributed delays

Denote by P([0, τ ]) the family of non-decreasing and right-continuous functions μ from R to [0, 1] satis-

fying μ(u) = 1 for u ≥ τ and μ(u) = 0 for u < 0. It is easy to see that

τ∫

0

dμ(u) = 1, ∀μ ∈ P([0, τ ]).

In other words, P([0, τ ]) is in fact a space of probability measures on [0, τ ]. Let μ1, μ2 ∈ P([0, τ ]) and define 

ψ1, ψ2 : C([−τ, 0]; Rn) × R+ → R
n by

ψ1(ϕ, t) =

τ∫

0

ϕ(−u)dμ1(u) and ψ2(ϕ, t) =

τ∫

0

ϕ(−u)dμ2(u), (4.3)

where the integrals are of Stieltjes-type while

T1 =

τ∫

0

udμ1(u) and T2 =

τ∫

0

udμ2(u)

are known as the average time delays. When ψ1 and ψ2 are defined by (4.3), equation (2.1) is known 

as a hybrid SFDE with distributed delays. It includes hybrid SDDEs with several time delays where, for 

example,

ψ1(ϕ, t) =
κ∑

k=1

wkϕ(−τk)

in which 0 < τ1 < · · · < τκ ≤ τ and wk ∈ (0, 1) with w1 + · · · + wκ = 1. For ϕ, φ ∈ C([−τ, 0]; Rn), we have

|ψ1(ϕ, t) − ψ1(φ, t)| ≤
τ∫

0

|ϕ(−u) − φ(−u)|dμ1(u) ≤ ‖ϕ − φ‖

and
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|ψ1(ϕ, t) − ϕ(0)| =
∣
∣
∣

τ∫

0

(ϕ(−u) − ϕ(0))dμ1(u)
∣
∣
∣ ≤ D(ϕ),

and similarly for ψ2. That is, ψ1 and ψ2 satisfy Assumption 2.2. By Theorem 3.7, we can then conclude 

that under Assumptions 2.1, 3.1 and 3.2, there exists a positive number τ∗ such that the hybrid SFDE (2.1)

with (4.3) is almost surely exponentially stable provided τ < τ∗.

4.4. Stochastic stabilised systems

Suppose that we are given an unstable hybrid differential equation

dx(t)/dt = f(x(t), r(t), t) (4.4)

and we need to design a stochastic delay feedback control g(x(t − τ), r(t), t)dB(t) so that the controlled 

system

dx(t) = f(x(t), r(t), t)dt + g(x(t − τ), r(t), t)dB(t) (4.5)

becomes almost surely exponentially stable. The reader can find more information on the stochastic stabil-

isation from, for example, [1,3,13,16,17,22]. We assume that f and g satisfy Assumption 2.1 and condition 

(3.1). We also assume that one of the following items is satisfied:

• Conditions (3.2) and (3.5) hold.

• Conditions (3.3) and (3.4) hold.

• There is a number p ∈ (0, 1) such that matrix A(p) defined by (3.6) is a nonsingular M-matrix.

By Theorem 3.7 or Remark 3.8, we can then conclude that there exists a positive number τ∗ such that the 

controlled system (4.5) is almost surely exponentially stable provided τ < τ∗.

Example 4.1. Consider the unstable system (4.4) under the situation where the space S of the Markov chain 

is divided into two proper subspaces S1 and S2 (namely S = S1 ∪ S2 and S1 ∩ S2 = ∅) such that the state 

x(t) is not observable when the system is in any mode i ∈ S1 but is fully observable in any mode i ∈ S2. 

Let us now design our stochastic delay feedback control. To make it simple, we only use a scalar Brownian 

motion B(t) and design the linear delay feedback control

g(x(t − τ), r(t), t)dB(t) = Ar(t)x(t − τ)dB(t).

Namely, the stochastically controlled system has the form

dx(t) = f(x(t), r(t), t)dt + Ar(t)x(t − τ)dB(t). (4.6)

Given that the system is not controllable in any mode i ∈ S1, we must have Ai = 0 for all i ∈ S1 (so the 

parameters ρi = σi = 0 in (3.1)). Our aim here is to design Ai, i ∈ S2, for the controlled system (4.6) to be 

almost surely exponentially stable provided τ is sufficiently small. Let us discuss two cases.

Case 1. There is some u ∈ S such that γiu > 0 for all i �= u.

In other words, condition (3.3) holds. This means that the Markov chain can jump to state u directly 

from any other state in very short time with positive probability. On the other hand, as the Markov chain 

is irreducible, it can also jump to some other state directly from state u in very short time with positive 

probability. In other words, the system modes will switch among themselves sufficiently frequently so that 
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the corresponding delay feedback control based on the information observed in S2 modes could influence 

the system in S1 modes as well. As a result, the controlled system (4.6) could be stabilised. Let us now 

explain how to design Ai to achieve this goal. For each i ∈ S2, we choose matrix Ai ∈ R
n×n such that

λmin(Ai + AT
i ) >

√
2‖Ai‖. (4.7)

Noting that

|Aix| ≤ ‖Ai‖|x| and |xT Aix| = 0.5|xT (Ai + AT
i )x| ≥ 0.5λmin(Ai + AT

i )|x|2

for x ∈ R
n, we see the parameters in (3.1) are

ρi = ‖Ai‖ and σi = 0.5λmin(Ai + AT
i ), i ∈ S2.

Accordingly, condition (3.4) becomes

∑

i∈S

πiαi < 0.5
∑

i∈S2

πi

(

0.5
(
λmin(Ai + AT

i )
)2 − ‖Ai‖2

)

. (4.8)

There are lots of matrices Ai which satisfy conditions (4.7) and (4.8). For example, for each i, choose a 

matrix Āi ∈ R
n×n such that

‖Āi‖ = 1 and λmin(Āi + ĀT
i ) ≥

√
3. (4.9)

Let β > 0 and Ai =
√

β/πiĀi. Then (4.7) holds and (4.8) becomes

∑

i∈S

πiαi < 0.25βN2, (4.10)

where N2 is the number of the states in S2, and this holds provided β > (4/N2) 
∑

i∈S
πiαi. We can therefore 

conclude that if we let Ai = 0 for all i ∈ S1 and choose Ai for i ∈ S2 for (4.7) and (4.8) to hold, then 

there exists a positive number τ∗ such that the controlled system (4.6) is almost surely exponentially stable 

provided τ < τ∗.

Case 2. For each i ∈ S1, there is a ji ∈ S2 such that γi,ji
> 0.

In layman’s terms, this case means that the Markov chain can jump to a state ji ∈ S2 directly from 

(every) state i ∈ S1 in very short time with a positive probability. In other words, the system will return to 

(controllable) S2 modes frequently from (uncontrollable) S1 modes. To explain how to design matrices Ai

(i ∈ S2), let us assume, without loss of generality, that S1 = {1, · · · , N̄} and S2 = {N̄ + 1, · · · , N} for some 

1 ≤ N̄ < N . Note that

N∑

j=N1+1

γij ≥ γi,ji
> 0, ∀i ∈ S1.

We can first choose a pair of numbers p ∈ (0, 2/3) and β ∈ (0, 1) such that

(1 − β)

N∑

j=+̄1

γij > pαi, ∀i ∈ S1. (4.11)
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We then, for each i ∈ S2, find a nonnegative number δi such that

βpδ2
i (2 − 3p)

8
> (1 − β)

N1∑

j=1

γij + βpαi. (4.12)

Choose a matrix Āi satisfying condition (4.9) and let Ai = δiĀi. We therefore see that the second and third 

inequality in (3.1) hold with ρi = δi and σi =
√

3/4δi for i ∈ S2 while (recall Ai = 0 so) ρi = σi = 0 for 

i ∈ S1. Define

ξ = (

N̄ times
︷ ︸︸ ︷

1, · · · , 1,

N−N̄ times
︷ ︸︸ ︷

β, · · · , β )T ,

and set

(ζ1, · · · , ζN )T := A(p)ξ.

Then, for i ∈ S1,

ζi = −pαi −
N1∑

j=1

γij − β
N∑

j=N1+1

γij = −pαi + (1 − β)
N∑

j=N1+1

γij > 0

by (4.11), while for i ∈ S2,

ζi = βp
( (2 − 3p)δ2

i

8
− αi

)

−
N1∑

j=1

γij − β
N∑

j=N1+1

γij

= βp
( (2 − 3p)δ2

i

8
− αi

)

− (1 − β)

N1∑

j=1

γij

> 0

by (4.12). By Lemma A.1, A(p) is a nonsingular M-matrix. In other words, we have design Ai to meet 

Assumption 3.2 in this case. We can therefore conclude by Theorem 3.7 that if we design Ai as described 

above, then there exists a positive number τ∗ such that the stochastic controlled hybrid system (4.6) is 

almost surely exponentially stable provided τ ≤ τ∗.

5. Conclusion

In this paper we investigated the almost sure exponential stability of the n-dimensional nonlinear hybrid 

SFDE (2.1). Under the Lipschitz condition, we showed that if the corresponding hybrid SDE (2.10) is almost 

surely exponentially stable, then there exists a positive number τ∗ such that the SFDE (2.1) is also almost 

surely exponentially stable as long as τ < τ∗. We also provided the reader with a method to determine τ∗

which can be computed numerically in practice. Several special classes of hybrid SFDEs were discussed to 

demonstrate that our new theory established in this paper is a generalisation of the existing papers, e.g., 

[7,21,23], in this area.
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Appendix A

In this appendix, we will prove Lemma 3.3. For this purpose, we need the theory of M-matrices. For 

the convenience of the reader, let us cite some useful results on M-matrices. For more detailed information 

please see, e.g., [4,19]. If A is a vector or matrix, by A > 0 we mean all elements of A are positive. Moreover, 

a square matrix A = [aij ]N×N is called a Z-matrix if it has non-positive off-diagonal entries, namely

aij ≤ 0 for all i �= j.

Lemma A.1 (see, e.g., [4,19]). If A = [aij ]N×N is a Z-matrix, then the following statements are equivalent:

(1) A is a nonsingular M-matrix.

(2) A is semi-positive; that is, there exists x > 0 in RN such that Ax > 0.

(3) A−1 exists and its elements are all nonnegative.

(4) All the leading principal minors of A are positive; that is

∣
∣
∣
∣
∣
∣

a11 · · · a1k

...
...

ak1 · · · akk

∣
∣
∣
∣
∣
∣

> 0 for every k = 1, 2, · · · , N.

We also need another result.

Lemma A.2. If a Z-matrix A = [aij ]N×N has all of its row sums positive, that is

N∑

j=1

aij > 0, ∀i = 1, 2, · · · , N,

then det A > 0.

This lemma is an immediate consequence of Lemma A.1. In fact, it is easy to see that Ax > 0 for 

x = (1, 1, · · · , 1)T ∈ R
N . By statement (2) of Lemma A.1, A is a nonsingular M-matrix. Consequently, by 

statement (4) of Lemma A.1, det A > 0 as desired. We can now prove Lemma 3.3.

Proof of Lemma 3.3. Without loss of generality, we may assume that the state u = N in Assumption 3.2, 

namely

γiN ∨ (σ2
i − 0.5ρ2

i − αi) > 0 for all 1 ≤ i ≤ N − 1. (A.1)

If not, we can simply reorder the states of the Markov chain r(t) by switching state u with N , that is, rename 

state u as N while N as u. Consequently, the determinant in the left hand side of (3.2) will switch the uth row 

with the Nth row and then switch the uth column with the Nth column but these do not change the value 

of the determinant, namely the determinant remains positive. Moreover, given a nonsingular M-matrix, if 

we switch the uth row with the Nth row and then switch the uth column with the Nth column, the new 

matrix is still a nonsingular M-matrix.
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By [19, Lemma 5.2 on page 173], the derivative d(det A(0))/dp = the determinant in the left hand side 

of (3.2), whence d(det A(0))/dp > 0. It is also easy to see det A(0) = 0. Consequently, for all p ∈ (0, 1)

sufficiently small, we have

det A(p) > 0. (A.2)

On the other hand, for each i = 1, 2, · · · , N − 1, either γiN > 0 or γiN = 0. In the case when γiN > 0, we 

clearly have

θi(p) > −γiN for all sufficiently small p ∈ (0, 1);

while in the case when γiN = 0, condition (A.1) implies σ2
i − 0.5ρ2

i − αi > 0 whence

θi(p) > 0 = −γiN for all sufficiently small p ∈ (0, 1).

In other words, we always have

θi(p) > −γiN , i = 1, 2, · · · , N − 1 (A.3)

for all p ∈ (0, 1) sufficiently small. Fix any p ∈ (0, 1) sufficiently small for both (A.2) and (A.3) to hold. For 

each k = 1, 2, · · · , N − 1, consider the leading principal sub-matrix

Ak(p) =

⎡

⎢
⎢
⎢
⎢
⎣

θ1(p) − γ11 −γ12 · · · −γ1k

−γ21 θ2(p) − γ22 · · · −γ2k

...
... · · ·

...

−γk1 −γk2 · · · θk(p) − γkk

⎤

⎥
⎥
⎥
⎥
⎦

of A(p). Obviously, Ak(p) is a Z-matrix. Moreover, for every i = 1, 2, · · · , k, the ith row of this sub-matrix 

has its sum

θi(p) −
k∑

j=1

γij = θi(p) +
N∑

j=k+1

γij ≥ θi(p) + γiN > 0

by (A.3). By Lemma A.2, det Ak(p) > 0. In other words, we have shown that all the leading principal 

minors of A(p) are positive. By Lemma A.1, A(p) is a nonsingular M-matrix as desired. The proof is 

therefore complete.
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