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1. Introduction 

Building simulation software is an important tool in assisting building designers to reduce the energy consumption 

in buildings and their environmental systems. However, the effectiveness of building simulation relies on good models 

and plausible data inputs. While during the design process occupant loads are often represented in building simulation 
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Abstract 

The transient nature of the occupant heat load is not fully addressed and implemented in a building simulation tool. In this paper, 

the effect of using dynamic occupant heat loads in building simulation on energy building performance and occupant thermal 

comfort has been studied. A two-node thermoregulatory model was integrated into ESP-r. The predictions of the integrated two-

node model were compared to two commonly used approaches in building simulation: gains modelled as a basic fixed profile and 

gains modelled using a polynomial function of temperature and relative humidity. The variation in occupant thermal load 

demonstrated appreciable differences on both cooling and dehumidification loads. 
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as a fixed schedule e.g. [1]. Whereas, the prediction of comfort using simulation tools becomes difficult in low-energy, 

well-insulated building designs, which are often lightweight and so temperature is sensitive to excitations such as 

occupant heat gains. To improve the prediction of thermal behaviour in building such as these, gains from occupants 

should be represented dynamically, recognising that human thermoregulatory physiology changes considerably as the 

surrounding environment thermal condition changes. 

This paper presents a series of increasingly more complex human thermal models, integrated within the ESP-r 

building simulation tool and contrasts performance predictions with those emerging from simulations using less 

rigorous representations of occupant gains. 

Nomenclature 

Tcr, Tsk                        Skin and core temperature. 

Ccr , Csk                       Skin and core thermal capacitance of body. 

Mcr and Msk                Basal core and skin metabolic rate. 

MShiver                          Thermoregulatory shivering metabolic rate. 

W                                Mechanical work done by the body. 

Qres                              Heat dissipated through respiration. 

Qcr-sk                            Heat exchange between the core and skin through contact resistance. mሶ ୠ୪ǡୱ୩                          Skin blood flow 

Cbl                               Specific heat constant of blood. 

hc                                External convection heat transfer coefficient between the skin and the surroundings 

hr                                Radiation transfer coefficient 

he                                Evaporation coefficient deduced from hc by Lewis formula Tୟ୫ୠ                            Surrounding air temperature, Tሜୟ୫ୠ̴୫୰୲                      Mean radiant temperature, 

Pamb                             Ambient vapour pressure 

Psk                               Skin vapour pressure 

sweatm                           Sweating rate 

Tsweat                           Sweating threshold temperature 

1.1. Occupant Modelling 

Human thermal models have been developed, improved and investigated for many years, with the first work 

emerging from in aerospace and military research [2]. Models can encompass interactions between the occupant and 

their thermal environment, perceptions of comfort and the interaction between the occupants and their physical 

environment [3]. Focusing on comfort, Fanger�s PMV (1972) model was based on experiments done in uniform and 

steady-state thermal environments and is more suited to traditional commercial, air conditioned buildings. Humphreys 

and Nicol [4] concluded that the PMV method is only valid for prediction of thermal comfort under tightly controlled 

conditions. Many types of research showed the limitation of the PMV/PPD, especially when used in non-uniform and 

transient thermal environmental conditions [5] and other argued that PMV cannot take into consideration the 

differences between ages and genders [5,6]. More recently, de Dear et al. [7] Introduced the adaptive model where he 

argued that the person should not be studied as a passive recipient in a given thermal environment; instead, the 

individual should be simulated as an active agent interacting with their environment via multiple feedback loops. They 

also showed the difference in thermal comfort responses of a person in an air-conditioned environment vs. naturally 

ventilated building. The adaptive thermal is based on three different processes the behavioural adjustment, 

physiological acclimatisation and psychological habituation [7]. Research into the modelling of human 

thermoregulation and the interaction with thermal environments has a similarly long history. The thermoregulatory 

system defined as the physiological system responsible for maintaining the core temperature at a reasonable level by 

gaining or losing heat [8]. 
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The majority of human thermal models are based on the work of Stolwijk [9] where the thermoregulatory system 

divided into two systems passive and active. The passive system is the heat exchange from the human body through 

its surrounding, it occurred by the different way of heat transfer, convection, evaporation and by conduction. There 

are three types of thermoregulatory responses which increase or decrease heat production and regulate heat loss from 

a person. The vasomotor, sudomotor and metabolic those called the active system [8,10]. 

Gagge�s two-node model is broadly used to study the human body thermal response and to predict thermal sensation 

under transient environmental conditions. Gagge represents the human body as two concentric cylinders the first 

composed of skin and tissues layer and the second one of the skeleton, muscles and internal organs. His model based 

on the energy balance equations for the two-node, skin and core [11]. Zolfaghari et al. [12] based on the Gagge�s 

model developed a simplified three nodal thermal sensation model. Where the human body was divided into three-

lumped compartment: core, bare skin and clothed skin. Other researchers developed more detailed models with a 

higher number of nodes by dividing the human body into segments where each one constituted of a number of layers 

[8,9,10,13,14]. 

These models have been limited to study the human thermal comfort for a specific transient room thermal condition 

[15]. For more realistic predictions of occupant sensible and latent heat load inside buildings, a human thermal model 

of two nodes has been developed for ESP-r. The model is based on the Gagge model with improvement in skin blood 

flow and including clothing resistant.  

2. Models and Implementation 

The aim of this paper is to integrate a thermoregulatory model within the ESP-r building simulation tool and to 

compare the performance of this more detailed model to alternative, less rigorous approaches. A phased 

implementation was adopted, where the two-node thermoregulatory model was integrated into ESP-r and its 

predictions were compared to two commonly used approaches in building simulation: gains modelled as a fixed profile 

and gains modelled using a polynomial function of temperature and relative humidity. 

2.1. Two-Node Model 

The thermoregulatory model comprises a core and skin volume. Each of which can be subjected to an energy and 

mass balance. The model accounts for the variation in the occupant surrounding environmental condition (zone 

temperature and relative humidity), occupant activity rate and clothing level. 

The energy balance equation used to calculate the body core temperature is as follows. 

 

                                                                                                                                                                                 (1) 

                                                                                                                                                                

The equation to calculate the skin temperature is: 
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Skin blood flow ሶ݉ ௕௟ǡ௦௞ is variable and it depends on the body thermal state. The relation below defines the blood 

vessel constriction term from the cold thermal signal of the skin 

 

                                                                                                                                                                                 (3) 

While the blood vessel dilation factor is calculated, using the equation below related to warm core thermal signal. 

                                                                                                                                                                                 (4) 

 

Skin blood is given by the relation addressed below taken from Foda et. al [16] 
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For the sweating rate, we adopted the correlation introduced by Smith [8] where sweating is sensitive to skin and core 

temperature. 

First, the sweating threshold temperature is calculated from the correlation below 

  

                                                                                                                                                                                 (6)                       

 

 

The sweat rate is given by a relationship of the difference between sweat threshold and core temperature. 

 

                                                                                                                                                                                 (7) 

 

The model has been integrated within the ESP-r. The user needs to specify the number of occupants (women, men 

and children) metabolic rate and clothing level; and after that, the model calculates the resulting heat and moisture 

gains. If a conventional ESP-r model is employed then these are injected to the air point of the zone where the occupant 

is situated.  

2.2. Comparison Case 

The predictions of the two-node model have been compared to two other approaches in order to gauge the impact 

of the more detailed modelling approach. The two approaches to modelling heat gains commonly used in building 

simulation are to represent heat and moisture loads as either 1) a time-varying profiles or 2) as a polynomial equation 

where the heat and moisture gains from an occupant are expressed as a function of the operative temperature and 

metabolic rate, as can be employed in tools such as EnergyPlus [17].  

To facilitate this comparison, a polynomial-type model has been integrated into ESP-r. The polynomial was based 

on regression published data of sensible and latent heat loads from steady state data of ASHRAE [18] for some activity 

level and different room temperature, in addition to the data presented by Clark H. et al. [19] a study of heat loads 

released from occupants. The resulting 2nd order regression equations are for both sensible and latent heat load from 

the occupant of a large range of metabolic rate and operative temperature. 
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All three approaches have been applied to a test office (Figure 1) building. This comprises four main zones: a 

reception of 71 m2 base area a general room of 77m2 a conference room of 62m2 and a manager�s office of 13.5m2. 

Figure 5 shows the model geometry. 

 

 

 

 

 

 

 

Figure 1 ESP-r Office Model 

The construction data are shown in Table 1 and the occupancy schedule is shown in Table 2 
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                      Table 1: Selected constructions used in the model 

Construction U-value (W/m2K) 

Ceiling 0.323 

Floor 1.32 

External wall 0.21 
Double glazed window 2.243 

 

For the occupant thermal model, clothing resistance is chosen to be 1 clo for all occupants. 

Table 2 occupancy loads schedule for zone �general� 

Time (hrs) No. of 

occupants 

Sensible/Latent gain (W) Metabolic 

rate (met) 

0000-0700 0 0/0 0 

0700-0800 1 100/60 1.54 

0800-0900 3 300/180 1.54 

0900-1200 5 500/300 1.54 

1200-1400 3.25 325/195 1.54 

1400-1700 5 500/300 1.54 

1700-0000 0 0/0 0 

 

The predictions of all three models were compared in a simulation of a typical summer week using climate data for 

London, UK. 

 

Figure 2 a,b, sensible and latent heat load from the different models c- Latent load � typical day (-ve implies dehumidification) d- Sensible 

cooling load � typical day. 
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Results in Figures 2 (a) and (b) show the input sensible and latent load from the occupants of the �General� room 

of the model as derived from the various modelling approaches. The figures show that there are substantial differences 

between the dynamic polynomial or two-node models and the commonly used fixed value approach, with the sensible 

load over-predicted using fixed values and latent load under predicted in this case. 

     Figures 6 (c) and (d) show the latent cooling load and the sensible cooling load, when the air temperature of the 

general space is cooled to 25oC and the RH restricted to 50%. Both show appreciable differences between the fixed 

and dynamic modelling approach, which could have an impact if the results were being used to select plant size. 

Conclusion 

The paper deals with the modelling of the thermal interactions between building occupants and their thermal 

environment. Different levels of modelling complexity are examined, looking at the different approaches to modelling 

occupants basic fixed profiles, functions of temperature and metabolic rate through to a dynamic multi-zone model. 

The two-node model has been integrated into the ESP-r building simulation tool. Subsequently, the impact of using 

fixed profiles contrasted against more dynamic models, demonstrating appreciable differences in a) the levels of 

internal sensible and latent gains and b) calculated cooling and dehumidification loads. However, further work will 

be conducted on developing and implementing a segmented detailed human thermal model within the CFD solver in 

ESP-r, to study local comfort.  
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