
Coutts, Fraser K. and Corr, Jamie and Thompson, Keith and Proudler,

Ian K. and Weiss, Stephan (2017) Divide-and-conquer sequential matrix

diagonalisation for parahermitian matrices. In: IEEE Sensor Signal

Processing in Defence Conference, 2017-12-06 - 2017-12-07, London. (In

Press) ,

This version is available at https://strathprints.strath.ac.uk/61841/

Strathprints is designed to allow users to access the research output of the University of

Strathclyde. Unless otherwise explicitly stated on the manuscript, Copyright © and Moral Rights

for the papers on this site are retained by the individual authors and/or other copyright owners.

Please check the manuscript for details of any other licences that may have been applied. You

may not engage in further distribution of the material for any profitmaking activities or any

commercial gain. You may freely distribute both the url (https://strathprints.strath.ac.uk/) and the

content of this paper for research or private study, educational, or not-for-profit purposes without

prior permission or charge.

Any correspondence concerning this service should be sent to the Strathprints administrator:

strathprints@strath.ac.uk

The Strathprints institutional repository (https://strathprints.strath.ac.uk) is a digital archive of University of Strathclyde research

outputs. It has been developed to disseminate open access research outputs, expose data about those outputs, and enable the

management and persistent access to Strathclyde's intellectual output.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Strathclyde Institutional Repository

https://core.ac.uk/display/110689608?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://strathprints.strath.ac.uk/
mailto:strathprints@strath.ac.uk
http://strathprints.strath.ac.uk/

Divide-and-Conquer Sequential Matrix

Diagonalisation for Parahermitian Matrices

Fraser K. Coutts∗, Jamie Corr∗, Keith Thompson∗, Ian K. Proudler∗,†, Stephan Weiss∗

∗ Department of Electronic & Electrical Engineering, University of Strathclyde, Glasgow, Scotland
† School of Electrical, Electronics & Systems Engineering, Loughborough Univ., Loughborough, UK

{fraser.coutts,jamie.corr,keith.thompson,ian.proudler,stephan.weiss}@strath.ac.uk

Abstract—A number of algorithms capable of iteratively cal-

culating a polynomial matrix eigenvalue decomposition (PEVD)

have been introduced. The PEVD is a generalisation of the

ordinary EVD and will diagonalise a parahermitian matrix

via paraunitary operations. Inspired by the existence of low

complexity divide-and-conquer solutions to eigenproblems, this

paper addresses a divide-and-conquer approach to the PEVD

utilising the sequential matrix diagonalisation (SMD) algorithm.

We demonstrate that with the proposed techniques, encapsu-

lated in a novel algorithm titled divide-and-conquer sequential

matrix diagonalisation (DC-SMD), algorithm complexity can

be significantly reduced. This reduction impacts on a number

of broadband multichannel problems, including those involving

large arrays.

I. INTRODUCTION

Polynomial matrix formulations can be used to express

broadband multichannel problems. Examples include broad-

band MIMO precoding and equalisation [1], polyphase anal-

ysis and synthesis matrices for filter banks [2], and broad-

band beamforming [3], [4]. Typically, these problems involve

parahermitian polynomial matrices, which are identical to their

parahermitian conjugate, i.e., R(z) = R̃(z) = R
H(1/z∗) [2].

Matrix R(z) can arise as the z-transform of a space-time

covariance matrix R[τ].
A polynomial matrix eigenvalue decomposition (PEVD)

has been defined as an extension of the eigenvalue decom-

position (EVD) to parahermitian polynomial matrices in [5],

[6]. The PEVD uses finite impulse response (FIR) parauni-

tary matrices [7] to approximately diagonalise and spectrally

majorise [8] a space-time covariance matrix.

Existing PEVD algorithms include the second-order se-

quential best rotation (SBR2) algorithm [6], sequential matrix

diagonalisation (SMD) [9], and various evolutions of the algo-

rithm families [10]–[12]. Each of these algorithms use an it-

erative approach to approximately diagonalise a parahermitian

matrix. For matrices of high dimensionality, these algorithms

can be computationally costly to implement; therefore, any

cost savings will be advantageous for applications.

Efforts to reduce the cost of PEVD algorithms include

techniques for the trimming of polynomial matrices to curb

growth in order [6], [13]–[15], which translates directly into

a growth of computational complexity and memory storage

requirements. Recently, techniques in [16], [17] have success-

fully reduced the complexity of existing PEVD algorithms

through the removal of algorithmic redundancy.

Research in [18]–[20] has demonstrated that complexity

reduction can be obtained by using a divide-and-conquer

approach to eigenproblems. Inspired by this work, here we

describe a divide-and-conquer approach for the PEVD, which

can be utilised to reduce algorithm complexity with minimal

loss in accuracy. The framework of the developed algorithm

— titled divide-and-conquer sequential matrix diagonalisation

(DC-SMD) — is based on the SMD algorithm.

Below, Sec. II will provide a brief overview over the

SMD algorithm. The proposed divide-and-conquer approach

is outlined in Sec. III. Simulation results demonstrating the

savings are presented in Sec. IV with conclusions drawn in

Sec. V.

II. SEQUENTIAL MATRIX DIAGONALISATION

This section reviews aspects of the SMD algorithm [9] in

Sec. II-A, with an assessment of the main algorithmic cost and

memory requirements in Sec. II-B.

A. Algorithm Overview

The SMD algorithm approximates the PEVD using a series

of elementary paraunitary operations to iteratively diagonalise

a parahermitian matrix R(z) ∈ CM×M and its associated

coefficient matrix, R[τ].
Upon initialisation, the algorithm diagonalises the lag-zero

coefficient matrix R[0] by means of its modal matrix Q(0);

i.e., S(0)(z) = Q(0)R(z)Q(0)H. The unitary Q(0) — obtained

from the EVD of the lag-zero slice R[0] — is applied to all

coefficient matrices R[τ] ∀ τ , and initialises H
(0)(z) = Q(0).

In the ith step, i = 1, 2, . . . I , the SMD algorithm computes

S
(i)(z) = U

(i)(z)S(i−1)(z)Ũ
(i)
(z)

H
(i)(z) = U

(i)(z)H(i−1)(z) , (1)

in which
U

(i)(z) = Q(i)Λ(i)(z) . (2)

The product in (2) consists of a paraunitary delay matrix

Λ(i)(z) = diag{1 . . . 1
︸ ︷︷ ︸

k(i)−1

z−τ (i)

1 . . . 1
︸ ︷︷ ︸

M−k(i)

} , (3)

and a unitary matrix Q(i), with the result that U (i)(z) in (2)

is paraunitary. For subsequent discussion, it is convenient to

define intermediate variables S
(i)′(z) and H

(i)′(z) where

S
(i)′(z) = Λ(i)(z)S(i−1)(z)Λ̃

(i)
(z)

H
(i)′(z) = Λ(i)(z)H(i−1)(z) , (4)

and

S
(i)(z) = Q(i)

S
(i)′(z)Q(i)H

H
(i)(z) = Q(i)

H
(i)′(z) . (5)

Matrices Λ(i)(z) and Q(i) are selected based on

the position of the dominant off-diagonal column in

S
(i−1)(z) •—◦ S(i−1)[τ], as identified by the parameter set

{k(i), τ (i)} = argmax
k,τ

‖ŝ
(i−1)
k [τ]‖2 , (6)

where

‖ŝ
(i−1)
k [τ]‖2 =

√
∑M

m=1,m 6=k|s
(i−1)
m,k [τ]|2 (7)

and s
(i−1)
m,k [τ] represents the element in the mth row and kth

column of the coefficient matrix at lag τ , S(i−1)[τ].
The shifting process in (4) moves the dominant off-

diagonal row and column into the zero lag coefficient matrix

S(i)′[0]. The off-diagonal energy in the shifted row and column

is then transferred onto the diagonal by the unitary matrix Q(i)

in (5), which diagonalises S(i)′[0] by means of an ordered

EVD.

Iterations continue for I steps until S(I)(z) is sufficiently

diagonalised with dominant off-diagonal column norm

max
k,τ

‖ŝ
(I)
k [τ]‖2 ≤ ǫ , (8)

where the value of ǫ is chosen to be arbitrarily small. On

completion, SMD generates an approximate PEVD given by

D(z) = S
(I)(z) = F (z)R(z)F̃ (z) , (9)

where F (z) is a concatenation of the paraunitary matrices:

F (z) = H
(I)(z) = U

(I)(z) · · ·U (0)(z) =

I∏

i=0

U
(I−i)(z) .

(10)

Truncation of outer coefficients of H
(i)(z) with small

Frobenius norm ‖·‖F is used to limit growth in order, whereby

the maximum and minimum lags of H(i)(z) at iteration i are

reduced from τ1 and τ2 to τ̃1 and τ̃2, respectively, such that
∑τ1

τ=τ̃1+1 ‖H
(i)[τ]‖2F <

µ
∑

τ
‖H(i)[τ]‖2

F

2 >
∑τ̃2−1

τ=τ2
‖H(i)[τ]‖2F .

(11)

Truncation of S(i)(z) is similar, with its maximum and mini-

mum lags reduced from τ3 and −τ3 to τ̃3 and −τ̃3, such that
∑τ3

τ=τ̃3+1 ‖S
(i)[τ]‖2F <

µ
∑

τ
‖S(i)[τ]‖2

F

2 . (12)

B. Algorithm Complexity

At the ith iteration, the length of S
(i)′(z) is equal to

L{S(i)′}, where L{·} computes the length of a polynomial ma-

trix. For (5), every matrix-valued coefficient in S
(i)′(z) must

be left- and right-multiplied with a unitary matrix. Accounting

for a multiplication of 2 M × M matrices by M3 MACs,

a total of 2L{S(i)′}M3 MACs arise to generate S
(i)(z).

Every matrix-valued coefficient in H
(i)′(z) must also be left-

multiplied with a unitary matrix; thus, a total of L{H(i)′}M3

MACs arise to generate H
(i)(z). The cumulative complexity

of the SMD algorithm over I iterations can therefore be

approximated as M3
∑I

i=0(2L{S
(i)′}+ L{H(i)′}).

III. DIVIDE-AND-CONQUER APPROACH

Inspired by the development of divide-and-conquer solu-

tions to eigenproblems in [18]–[20], this section outlines the

components of a novel divide-and-conquer sequential matrix

diagonalisation PEVD algorithm — which is summarised in

Sec. III-A. Sec. III-B and Sec. III-C explain the key stages

�a) �c)

0

�NR

NR

0

�NR0

NR0

0

�N�

N�

�b)

Fig. 1. (a) Original matrix R[τ] ∈ C20×20 , (b) segmented result R′[τ], and

(c) diagonalised output D[τ]. NR, NR′ , and ND are the maximum lags for

matrices R[τ], R′[τ], and D[τ], respectively.

of this algorithm by detailing the divide and conquer steps,

respectively. The complexity requirements of this algorithm

are derived in Sec. III-D.

A. Divide-and-Conquer Sequential Matrix Diagonalisation

The DC-SMD algorithm diagonalises a parahermitian ma-

trix R(z) ∈ CM×M via a number of paraunitary operations.

An output diagonal matrix D(z) contains the eigenvalues, and

F (z) contains the corresponding eigenvectors.

While the SMD algorithm attempts to diagonalise an

entire M × M parahermitian matrix at once, the DC-SMD

algorithm first divides the matrix into a number of smaller,

independent parahermitian matrices, before diagonalising —

or conquering — each matrix separately. For example, a matrix

R(z) ∈ C20×20 might be divided into four 5×5 parahermitian

matrices, each of which can be diagonalised independently.

Fig. 1 shows the state of the parahermitian matrix at each

stage of the process for this example.

If matrix R(z) is of large spatial dimension, an algo-

rithm named sequential matrix segmentation (SMS) is used

to recursively divide the matrix into multiple independent

parahermitian matrices. Each of these is stored on the diagonal

of matrix R
′(z); thus, R′(z) is block diagonal by construction.

The matrices T (z) — which SMS generates to divide each

R̂(z) — are concatenated to form an overall dividing matrix

G(z). It is therefore possible to approximately reconstruct

R(z) from the product G̃(z)R′(z)G(z).
Each block on the diagonal of matrix R

′(z) is then diago-

nalised in sequence through the use of the SMD algorithm. The

diagonalised outputs, D̂(z), are placed on the diagonal of ma-

trix D(z), and the corresponding paraunitary matrices, Ĥ(z),
are stored on the diagonal of matrix H(z). Matrix R

′(z) can

be approximately reconstructed from H̃(z)D(z)H(z); by ex-

tension, it is possible to approximately reconstruct R(z) from

the product G̃(z)H̃(z)D(z)H(z)G(z) = F̃ (z)D(z)F (z).
Algorithm 1 summarises the above steps of DC-SMD

in more detail. Of the parameters input to DC-SMD, µ is

a truncation parameter, and ǫ is the previously mentioned

stopping threshold for SMD. Matrices of spatial dimension

greater than M̂ × M̂ will be subject to DC-SMD. Parameters

P , δ, ID , and IC will be discussed in subsequent sections.

Matrices IM×M and 0M×M are identity and zero matrices of

spatial dimensions M ×M , respectively.

B. Recursive Polynomial Matrix Segmentation

When R(z) is measured to have spatial dimension M >
M̂ , the divide stage of DC-SMD comes into effect. This stage

Input: R(z), P , δ, M̂ , µ, ǫ, ID, IC
Output: D(z), F (z)
Determine if input matrix is large:

if M > M̂ then

Large matrix — divide and conquer:

M ′ = M , R̂(z) = R(z), G(z) = IM×M ,

R
′(z),H(z),D(z) = 0M×M , α = 0

Divide matrix:

while M ′ > M̂ do

α = α+ 1

[R̂11(z),R̂22(z),T (z)] = SMS(R̂(z),ID ,P ,µ,δ)

(M −M ′) ones appended to lag-zero diagonal

of T (z) to form T̂ (z)

Store R̂22(z) on diagonal of R′(z) in αth

P × P
block from bottom-right

G(z) = T̂ (z)G(z), R̂(z) = R̂11(z),
M ′ = M ′ − P

end

Store R̂(z) on diagonal of R′(z) in top-left

M ′ ×M ′ block

Conquer independent matrices:

for γ = 1 to (α+ 1) do

A(z) is γth block of R′(z) from bottom-right

[Ĥ(z),D̂(z)] = SMD(A(z),IC ,ǫ,µ)

Store (D̂(z), Ĥ(z)) in γth block of

(D(z),H(z)) from bottom-right

end

F (z) = H(z)G(z)
else

Small matrix — perform SMD only:

[F (z),D(z)] = SMD(R(z),ID,ǫ,µ)

end
Algorithm 1: DC-SMD Algorithm

recursively applies sequential matrix segmentation (SMS) to

divide R(z) into multiple independent parahermitian matrices.

SMS is a novel variant of SMD designed to segment a matrix

R̂(z) ∈ C
M ′×M ′

into two independent parahermitian matrices

R̂11(z) ∈ C
(M ′−P)×(M ′−P) and R̂22(z) ∈ C

P×P , and two

matrices R̂12(z) ∈ C
(M ′−P)×P and R̂21(z) ∈ C

P×(M ′−P),

where R̂12(z) =
˜̂
R21(z) are approximately zero. The dimen-

sions of the smaller matrix produced during division, P , is

forced to satisfy P ≤ M̂ .

The SMS algorithm is initialised and operates in a similar

manner to the SMD algorithm in Sec. II-A, but with a few key

differences. Instead of iteratively shifting single row-column

pairs in an effort to diagonalise a parahermitian matrix S
(i)(z),

SMS iteratively minimises the energy in select regions of

S
(i)(z) in an attempt to segment the matrix. Fig. 2 illustrates

the segmentation process for M ′ = 5 and P = 2.

To achieve this segmentation, the delay matrix (3) from

SMD is replaced with paraunitary delay matrix

Λ(i)(z) = diag{1 . . . 1
︸ ︷︷ ︸

M ′−P

z−τ (i)

. . . z−τ (i)

︸ ︷︷ ︸

P

} (13)

�b)�a)

0

�c)

�̂����]

�̂22��]�̂2���]

�̂�2��]

�� �R0

� �R0

0

�� �R

� �R

0

�� �R

� �R

Fig. 2. (a) Original matrix R̂[τ] ∈ C5×5, (b) regions (red) to be iteratively

driven to zero in SMS for P = 2, and (c) segmented result. N
R̂

and N
R̂′

are the maximum lags for the original and segmented matrices, respectively.

Input: R̂(z), ID , P , µ, δ
Output: R̂11(z), R̂22(z), T (z)
Find eigenvectors Q(0) that diagonalise R̂[0] ∈ CM ′×M ′

S
(0)(z) = Q(0)R̂(z)Q(0)H, H(0)(z) = Q(0), i = 0,

stop = 0

do

i = i+ 1

Find τ (i) from (14); generate Λ(i)(z) from (13)

S
(i)′(z) = Λ(i)(z)S(i−1)(z)Λ̃

(i)
(z)

Find eigenvectors Q(i) that diagonalise S(i)′[0]

S
(i)(z) = Q(i)S

(i)′(z)Q(i)H

H
(i)(z) = Q(i)H

(i)′(z) = Q(i)Λ(i)(z)H(i−1)(z)

Truncate H
(i)(z) according to (11)

Truncate S
(i)(z) according to (12)

if i > ID or (16) satisfied then
stop = 1;

end

while stop = 0

T (z) = H
(i)(z)

R̂11(z) is top-left (M ′ − P)× (M ′ − P) block of S(i)(z)

R̂22(z) is bottom-right P × P block of S(i)(z)

Algorithm 2: SMS algorithm

at the ith iteration of SMS, where

τ (i) = argmax
τ

‖S
(i−1)
21 [τ]‖F (14)

and

‖S
(i−1)
21 [τ]‖F =

√
∑M ′

m=M ′−P+1

∑M ′−P

k=1 |S
(i−1)
m,k [τ]|2 . (15)

Where S
(i−1)
m,k [τ] represents the element in the mth row and

kth column of the coefficient matrix S(i−1)[τ] at lag τ .

Equations (4) and (5) are similarly implemented in SMS,

where unitary matrix Q(i) again diagonalises S(i)′[0].

After ID iterations, or when matrix S
(I)
21 (z) contains energy

below δ
∑

τ ‖S
(I)[τ]‖2F at some iteration I; i.e.,

∑

τ ‖S
(I)
21 [τ]‖F < δ

∑

τ ‖S
(I)[τ]‖2F , (16)

the SMS algorithm returns matrices R̂11(z), R̂22(z), and

T (z). The latter is constructed from the concatenation of the

elementary paraunitary matrices as in (10). A parameter µ is

used to truncate the paraunitary and parahermitian matrices at

each iteration as described in (11), (12).

The above steps of SMS are summarised in Algorithm 2.

C. Independent Conquering of Divided Polynomial Matrices

At this stage of DC-SMD, R(z) ∈ CM×M has been

segmented into multiple independent parahermitian matrices,

which are stored as blocks on the diagonal of R
′(z). Each

matrix can now be diagonalised individually through the use

of a PEVD algorithm; here, the SMD algorithm is chosen. Each

instance of SMD is provided with a parameter IC — which

defines the maximum possible number of algorithm iterations

— a stopping threshold ǫ, and a truncation parameter µ.

Upon completion, the SMD algorithm returns matrices Ĥ(z)
and D̂(z), which contain the polynomial eigenvectors and

eigenvalues for input matrix A(z), respectively. At iteration

γ of this stage, A(z) contains the γth block of R
′(z) from

the bottom-right.

D. Algorithm Complexity

The instantaneous complexity of DC-SMD varies as the

algorithm progresses, due to the changing spatial dimensions

of the matrices being processed. The main cost of the SMS

and SMD algorithms internal to DC-SMD is a matrix mul-

tiplication step; therefore, the calculation of the cumulative

complexities of DC-SMD is similar to Sec. II-B.

In DC-SMD, one instance of the SMS algo-

rithm has a maximum cumulative complexity of

M3
α

∑ID
i=0(2L{S

(i)′}+ L{H(i)′}), and SMD has a similar

maximum of M3
γ

∑IC
i=0(2L{S

(i)′}+ L{H(i)′}), where Mα

and Mγ are the dimensions of the matrices input to each

algorithm, respectively. Function L{·} computes the length of

the parahermitian and paraunitary matrix in each algorithm at

iteration i. The total cumulative complexity of DC-SMD can

be approximated by summing the cumulative complexities of

each instance of the SMS and SMD algorithms.

From the description of DC-SMD in Algorithm 1, it can

be seen that an M × M matrix is only ever processed in

the first recursion of the division step; at all other points

in the algorithm, the processed matrices are of lower spatial

dimension. Given that the complexity is proportional to the

cube of the spatial dimension, significantly lower complexity

will be observed beyond the first recursion of DC-SMD.

IV. RESULTS

To benchmark the proposed approach, this section first

defines the performance metrics for evaluating the SMD and

DC-SMD algorithms before setting out a simulation scenario,

over which an ensemble of simulations will be performed.

A. Performance Metrics

Since SMD and DC-SMD iteratively minimise off-diagonal

energy, a suitable metric E
(i)
norm, defined in [9], is used; this

metric divides the off-diagonal energy in the parahermitian

matrix at the ith iteration by the total energy. Computation

of E
(i)
norm generates squared covariance terms; therefore a

logarithmic notation of 5 log10 E
(i)
norm is employed.

When truncation is employed, the eigenvectors and eigen-

values output from SMD are only able to approximately

reconstruct the input matrix. DC-SMD experiences similar

error from truncation, and also introduces further error in its

divide step, due to imperfect segmentation in SMS. A metric

capable of measuring the difference between the original and

reconstructed matrices is the mean squared error:

MSE = 1
M2L{ER}

∑

τ ‖ER[τ]‖
2
F , (17)

where ER[τ] = R̄[τ] − R[τ] ∀ τ , R̄(z) = F̃ (z)D(z)F (z),
and F (z) and D(z) are obtained from SMD or DC-SMD.

The contents of Sec. II-B and Sec. III-D allow approximate

measurements of cumulative complexity to be made at each

iteration of both algorithms.

The output paraunitary matrix F (z) can be used in sig-

nal processing applications. A useful metric for gauging the

implementation cost of this matrix is its length.

B. Simulation Scenario

The simulations below have been performed over an en-

semble of 103 instantiations of R(z) ∈ CM×M , M ∈
{20; 40}, based on the randomised source model in [9]. This

source model generates R(z) = Ũ(z)W (z)U(z), whereby

the diagonal W (z) ∈ CM×M contains the power spectral

densities (PSDs) of 10 independent sources. These sources are

spectrally shaped by innovation filters such that W (z) has an

order of 120, and limits the dynamic range of the PSDs to

about 30dB. Random paraunitary matrices U(z) ∈ CM×M of

order 60 perform a convolutive mixing of these sources, such

that R(z) has an order of 240.

During iterations, a truncation parameter of µ = 10−6 and

stopping thresholds of ǫ = 10−6 and δ = 10−3 were used. The

standard SMD implementation was run over I = 800 iterations

for M = 20, and I = 400 iterations for M = 40. DC-SMD

was executed with input parameters ID = 100, IC = 200,

P = 8, and M̂ = 8. At every iteration step of both algorithms,

the diagonalisation and cumulative complexity metrics defined

in Sec. IV-A were recorded together with the elapsed execution

time. The MSE metric defined in (17) and the length of F (z)
were recorded upon each algorithm’s completion.

C. Diagonalisation

The ensemble-averaged diagonalisation was calculated for

both the standard and proposed implementations. The diago-

nalisation performance versus time and cumulative complexity

for both methods are shown in Figs. 3 and 4, respectively.

The curves of Fig. 3 demonstrate that for M ∈ {20; 40},

the proposed implementation operates with a lower cumulative

complexity than the standard SMD realisation, and is able to

achieve a similar degree of diagonalisation. In addition, Fig. 4

shows that the lower complexity associated with DC-SMD

translates to a faster diagonalisation than observed for SMD.

Using a matrix with a larger spatial dimension of M = 40
demonstrates a larger increase in diagonalisation performance

with respect to execution time. In both plots, E{·} is the

expectation operator.

The ’stepped’ characteristics of the curves for DC-SMD are

a result of the algorithm’s recursive two-stage implementation.

The divide step of the algorithm exhibits low diagonalisation

for a large increase in cumulative complexity and execution

time. In the conquer step, high diagonalisation is seen for a

small increase in cumulative complexity and execution time.

D. Reconstruction Error

The ensemble-averaged mean squared reconstruction error

was calculated for both algorithms, according to (17). Tab. I

shows the results for M ∈ {20; 40}; from this, it is clear

10
7

10
8

10
9

10
10

−15

−10

−5

0

Cumulative Complexity

5l
og

1
0
E
{E

(i
)

n
o
rm
}
/
[d
B
]

standard, M = 20

proposed, M = 20

standard, M = 40

proposed, M = 40

Fig. 3. Diagonalisation metric vs. cumulative algorithm complexity for the

proposed and standard implementations for M ∈ {20; 40}.

0 1 2 3 4 5 6

−15

−10

−5

0

Time / s

5l
og

1
0
E
{E

(i
)

n
o
rm
}
/
[d
B
]

standard, M = 20

proposed, M = 20

standard, M = 40

proposed, M = 40

Fig. 4. Diagonalisation metric vs. algorithm execution time for the proposed

and standard implementations for M ∈ {20; 40}.

TABLE I. AVERAGE MSE AND PU FILTER LENGTH COMPARISON.

Method MSE PU Filter Length

M = 20 M = 40 M = 20 M = 40

standard 1.991× 10−6 5.643 × 10−7 116.8 79.13

proposed 7.991× 10−6 3.477 × 10−6 154.3 121.8

that the increased diagonalisation speed and lower cumula-

tive complexity of DC-SMD comes with the cost of higher

reconstruction error. To reduce this error, parameter δ can be

decreased; however, this will reduce the speed and increase the

complexity of the algorithm, as more effort will be contributed

to the divide step. Note that the relative difference in average

MSE is larger for the case where M = 40, which suggests that

the algorithm’s much improved diagonalisation performance

for M = 40 is not without cost.

E. Paraunitary Filter Length

The ensemble-averaged paraunitary (PU) filter lengths were

calculated for both algorithms. Tab. I shows the results for

M ∈ {20; 40}. It can be seen from this table that the average

paraunitary filter length is larger for DC-SMD than SMD;

this is disadvantageous for application purposes. The relative

difference in average paraunitary filter length is larger for the

case where M = 40, which validates the previous observation

that the algorithm’s increased diagonalisation performance for

M = 40 brings more substantial disadvantages.

V. CONCLUSION

We have proposed an alternative technique to compute the

polynomial EVD of a parahermitian matrix; this algorithm

— named DC-SMD — makes use of a divide-and-conquer

approach to the PEVD, and has been shown to operate with

lower computational complexity than the traditional SMD

algorithm. Simulation results have demonstrated that this com-

plexity reduction, and the associated execution time decrease,

come with the disadvantage of increasing the mean squared

reconstruction error and the paraunitary filter order.

When designing PEVD implementations for real applica-

tions, the potential for the proposed techniques to increase

diagonalisation performance while reducing complexity re-

quirements offers benefits. A further advantage of the DC-

SMD algorithm is its ability to produce multiple independent

parahermitian matrices, which may be processed in parallel.

Simulation results demonstrate that DC-SMD outperforms

SMD more significantly for larger values of M ; therefore, DC-

SMD is suitable for broadband multichannel applications with

a large number of sensors.

ACKNOWLEDGEMENT

Fraser Coutts is the recipient of a Caledonian Scholarship;

we would like to thank the Carnegie Trust for their support.

This work was supported in parts by the Engineering and

Physical Sciences Research Council (EPSRC) Grant number

EP/K014307/1 and the MOD University Defence Research

Collaboration in Signal Processing.

REFERENCES

[1] C. H. Ta and S. Weiss. A design of precoding and equalisation for

broadband MIMO systems. In Asilomar SSC, pp. 1616–1620, Pacific

Grove, CA, USA, Nov. 2007.

[2] P. P. Vaidyanathan. Multirate Systems and Filter Banks. Prentice Hall,

Englewood Cliffs, 1993.

[3] A. Alzin, F. Coutts, J. Corr, S. Weiss, I. K. Proudler, and J. A. Chambers.

Adaptive broadband beamforming with arbitrary array geometry. In

IET/EURASIP ISP, London, UK, Dec. 2015.

[4] S. Weiss, S. Bendoukha, A. Alzin, F. Coutts, I. Proudler, and J. Cham-

bers. MVDR broadband beamforming using polynomial matrix tech-

niques. In EUSIPCO, pp. 839–843, Nice, France, Sep. 2015.

[5] I. Gohberg, P. Lancaster, and L. Rodman. Matrix Polynomials. Aca-

demic Press, New York, 1982.

[6] J. G. McWhirter, P. D. Baxter, T. Cooper, S. Redif, and J. Foster. An

EVD Algorithm for Para-Hermitian Polynomial Matrices. IEEE TSP,

55(5):2158–2169, May 2007.

[7] S. Icart, P. Comon. Some properties of Laurent polynomial matrices.

In IMA Int. Conf. Math. Signal Proc., Birmingham, UK, Dec. 2012.

[8] P. Vaidyanathan. Theory of optimal orthonormal subband coders. IEEE

TSP, 46(6):1528–1543, June 1998.

[9] S. Redif, S. Weiss, and J. McWhirter. Sequential matrix diagonalization

algorithms for polynomial EVD of parahermitian matrices. IEEE TSP,

63(1):81–89, Jan. 2015.

[10] J. Corr, K. Thompson, S. Weiss, J. McWhirter, S. Redif, and I. Proudler.

Multiple shift maximum element sequential matrix diagonalisation

for parahermitian matrices. In IEEE Workshop on Statistical Signal

Processing, pp. 312–315, Gold Coast, Australia, June 2014.

[11] Z. Wang, J. G. McWhirter, J. Corr, and S. Weiss. Multiple shift second

order sequential best rotation algorithm for polynomial matrix EVD. In

EUSIPCO, pp. 844–848, Nice, France, Sep. 2015.

[12] J. Corr, K. Thompson, S. Weiss, J. G. McWhirter, and I. K. Proudler.

Causality-Constrained multiple shift sequential matrix diagonalisation

for parahermitian matrices. In EUSIPCO, pp. 1277–1281, Lisbon,

Portugal, Sep. 2014.

[13] J. Corr, K. Thompson, S. Weiss, I. Proudler, and J. McWhirter. Row-

shift corrected truncation of paraunitary matrices for PEVD algorithms.

In EUSIPCO, pp. 849–853, Nice, France, Sep. 2015.

[14] J. Foster, J. G. McWhirter, and J. Chambers. Limiting the or-

der of polynomial matrices within the SBR2 algorithm. In IMA

Int. Conf. Math. Signal Proc., Cirencester, UK, Dec. 2006.

[15] C. H. Ta and S. Weiss. Shortening the order of paraunitary matrices in

SBR2 algorithm. In ICICSP, pp. 1–5, Singapore, Dec. 2007.

[16] F. Coutts, J. Corr, J. Thompson, S. Weiss, J. Proudler, and J. McWhirter.

Memory and Complexity Reduction in Parahermitian Matrix Manipu-

lations of PEVD Algorithms. In EUSIPCO, pp. 1633-1637, Budapest,

Hungary, August 2016.

[17] F. Coutts, J. Corr, J. Thompson, S. Weiss, I. Proudler, and J. McWhirter.

Complexity and Search Space Reduction in Cyclic-by-Row PEVD

Algorithms. In Asilomar SSC, Pacific Grove, CA, Nov. 2016.

[18] J. J. M. Cuppen. A divide and conquer method for the symmetric

tridiagonal eigenproblem. Num. Mathematik, 36(2):177–195, June 1980.

[19] J. J. Dongarra and D. C. Sorensen. A fully parallel algorithm for the

symmetric eigenvalue problem. SIAM JSSC, 8(2):139–154, March 1987.

[20] D. Gill and E. Tadmor. An O(N2) method for computing the

eigensystem of N × N symmetric tridiagonal matrices by the divide

and conquer approach. SIAM JSSC, 11(1):161–173, Jan. 1990.

