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Abstract—Aperture and operating frequency of a beamformer
are generally proportional to its resolution, and inversely pro-
portional to its beamwidth. This paper addresses the design and
implementation of a beamformer with a frequency-dependent
limitation of its aperture such that the frequency-dependence
of its resolution is eliminated. Operating across a number of
octaves, firstly an octave-invariance design is achieved by means
of a nested array structure. Secondly, within each octave, a
frequency-dependent aperture control then removes the remain-
ing frequency-dependency. By exploiting Fourier properties and
correspondences between coefficient and beamspace, we show
that this design is exact, and can accommodate the inclusion of
arbitrary shading and different look directions.

I. INTRODUCTION

In broadband sensor applications, the spatial resolution of

a beamformer is typically proportional to both the array’s

aperture and its operating frequency. For a number of ap-

plications, such a microphone arrays, so-called frequency-

independent designs have been considered [1]–[21]. These

approaches generally create frequency-independence by im-

posing the array’s largest beamwidth — defined at the lowest

operating frequency — over the entire operating bandwidth by

artificially restricting the aperture at higher frequencies.

Most applications of frequency invariant beamforming are

in the area of sonar [1] or microphone arrays [2]–[6], where

signals extend over several octaves. Unless there are physical

restrictions to the array’s size or architecture, such as in the

case of hearing aids [4] or for circular arrays [5]–[7], often

the frequency-invariant approach has incorporated nested array

architectures as discussed in e.g. [1], [8]–[10], which in first

instance can be employed to implement an octave-invariant

design. Additional processing is then required in order to

render a beamformer’s behaviour frequency-invariant within

every octave.

The parameters of a frequency-invariant beamformer can be

designed via e.g. a direct least squares approach to optimise a

desired directivity pattern [4], [6], [7]. In some cases, least

squares designs contain additional constraints, such as the

minimisation of active sensors via e.g. an l1-norm criterion [5]

or multiple constraints [11]. Other approaches exploit the

Fourier correspondence between the coefficient domain and

beamspace. This generally involves a design in continuous

beamspace based generally on continuous distributed sensors

[5], [8], [13]–[17]; the resulting coefficients are then ap-

proximated by sampling these continuous functions. In some

cases, a two-dimensional array structure can be exploited to

extract temporal information about the signals [12], [18], but

in general a tap delay line structure is required to implement

such designs. Design methods based in the Fourier equivalence

for continuous functions been applied to 1-d [16], [17] and 3-

d frequency-independent arrays designs [8], [13], [14]. For

the latter, the design of an approximately rotation-invariant

prototype at the lowest frequency, and its translations if the

look direction is not towards broadside, forms a particular

challenge.

In this paper, we use the nested array approach of [1], [9],

[10] and further exploit the Fourier correspondence between

the sensor/coefficient domain and beamspace, but instead of

constructing an approximation of continuous functions in the

discrete domains akin to [8], [13], [14], [16], [17], we directly

based our arguments on the discrete Fourier series [22],

[23], and show how such a representation that is discrete in

beamspace and in the coefficient domain can be accurate. This

will enable a very straightforward design and implementation

of 1-d frequency-invariant designs.

To motivate this proposed design and implementation,

Sec. II reviews the correspondence between coefficient space

and beam space, and particularly focuses on the discrete

sensor case, and the effect caused by considering only finite

samples in beamspace. The octave-invariant approach and

general design of invariance within octaves is outlined in

Sec. III, followed by considerations regarding arbitrary win-

dows, such as Dirichlet kernels, Hamming or Taylor windows,

and arbitrary look directions in Secs. IV and V. Comment on

both the coefficient design and the overall implementation of

the beamformer using an overlap-add approach are detailed

in Sec. VI. Examples are provided throughout the paper, and

conclusions are drawn in Sec. VII.

II. BEAMSPACE TRANSFORM

For a set of beamformer coefficients w[m] applied to a

linear uniform array of M sensors, where m ∈ Z is the

discrete sensor index, the transformation to beamspace with

dependency on a continuous Ψ ∈ R is performed by a Fourier

transform,

W (ejΨ) =

∞∑
m=−∞

w[m]e−jΨm . (1)



Because w[m] is discrete, W (ejΨ) is periodic w.r.t. Ψ = 2πk,

k ∈ Z. The inverse transform

w[m] =
1

2π

π∫

−π

W (ejΨ)ejΨmdΨ . (2)

exploits the periodicity by evaluating only over the interval

Ψ ∈ (−π;π). A transform pair according to (1) and (2) will

be abbreviated by w[m] ◦—•W (ejΨ) in the following.

We now consider a finite aperture afforded by M sensors

such that w[m] 6= 0 ∀ |m| < M/2 with M odd. Discretising

the beamspace to M discrete equidistant values Ψk = 2πk/M ,

k ∈ Z, on the interval (−π;π) we have

W (ejΨk) =

∞∑
m=−∞

w[m]e−jΨkm ,

k = −
M − 1

2
. . .

M − 1

2
. (3)

The function corresponding to (3) in the coefficient domain,

w̃[m], is a periodised version of w[m] w.r.t. kM , k ∈ Z. If

however only a fundamental period of w̃[m] is retained, the

discretisation of Ψ is without consequences:

w[m] =
1

M

(M−1)/2∑
k=−(M−1)/2

W (ejΨk )ejΨkm ,

m = −
M − 1

2
. . .

M − 1

2
. (4)

Therefore for a discrete w[m] with finite aperture M , the

concatenation of the discretised versions (3) and (4) is an exact

alternative to calculating the continuous beamspace transforms

in (1) and (2).

III. FREQUENCY-INVARIANT BEAMFORMER DESIGN

This section explains the general approach by Van Trees and

Bell [9] to achieve constant resolution across all frequencies.

The analysis will form the basis of developments in the

subsequent sections.

Resolution is proportional to aperture and frequency.

Sec. III-A produces an octave-invariant resolution by means

of a nested array, where a wider aperture compensates the

frequency-related loss in resolution in lower bands. Sec. III-B

creates frequency-invariance within one octave by algorithmi-

cally reducing the aperture inversely proportional to frequency.

A. Octave-Invariant Approach Using Nested Arrays

To achieve an octave-invariant design, a nested array as

detailed in [1], [9], [10] is employed. At the highest octave,

the array is operated with a given aperture. For the next-lower

octave, this aperture is doubled; this scheme is continued over

the number of octaves of which the bandwidth comprises. As

the frequency band of each octave decreases, thus the aperture

is doubled in terms of distance so that it is equalised in terms

of wavelengths. Fig. 1 provides an example for three octaves,

whereby within each octave an array of M = 5 sensors is

utilised. The aperture is increased by scaling the array, e.g. by

a)

Ω

π
π

2
0 π

4

π

8

b)

m = 0

Fig. 1. (a) Nested sensor array (left) and the assignment of sensors to three
different linear uniform subarrays (right). The centre element in each subarray
is the reference sensor with index m = 0; (b) octaves in which the subarrays
are processed.

doubling the separation distance between sensors with every

lowering by a octave.

For a linear array, such a nested approach can be constructed

for an arbitrary number of sensors M . However, it is easy to

see that a particularly efficient re-use of sensor is possible if

each band comprises of M = 4k+1, k ∈ Z, array elements. In

this fashion, the elements at the end of the array for a particular

octave can always be acquire signals for the next-lower octave

as well.

B. Frequency-Invariance within one Octave

The idea to achieve frequency-invariance is to restrict the

aperture at every frequency such that it matches the lowest

resolution within the array. We first design coefficients for the

highest octave, covering the Ω ∈ (π2 , π). The lowest resolution

is at Ω = π
2 , where the coefficient set should satisfy a Dirichlet

kernel [22],

pM [m] ◦—•
sinM Ψ

2

sin Ψ
2

= PM (ejΨ) . (5)

At the upper end of the frequency range for Ω = π, the resolu-

tion should be reduced to an aperture of M/2. Directly scaling

pM [m] results in fractional values for M and implementation

challenges akin to those known for fractional delay filters [24].

Instead, scaling will be performed in beamspace, resulting in

a sinc-interpolated scaled coefficient domain quantity.

The Fourier transform’s scaling property

|a|x(at) ◦—• X(jΩ/a) only applies if x(t) depends on

a continuous variable t, but can be made to work with a trick.

First, we produce an aperiodic function containing a fraction

1/a of the original period in beamspace,

P̃M (jψ) = PM (ejψ) , |ψ| <
π

a
(6)

This coefficient-domain function equivalent to (6) is now

dependent on continuous space. Thus, it can be scaled, and

thereafter is periodised again, s.t.

P̄M (a, ejΨ) = P̃M (jaψ) , Ψ = aψ + 2πk, k ∈ Z . (7)

As a result of scaling and periodisation, P̄M (a, ejΨ) may

not be smooth with potential discontinuities of derivatives of
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Fig. 2. Coefficient space window p̄M,2Ω/π [m] over one octave, depending
on normalised angular frequency Ω and coefficient index m.

P̄M (a, ejΨ) at ±π; however, no other approximation errors

are incurred.

Because of the periodicity of P̄M (a, ejΨ), the coefficient

domain function p̄M,a[m] •—◦ P̄M (a, ejΨ) is still discrete. If

Ψ is discretised with Ψk = 2πk/M , k ∈ Z, then p̄M,a[m] is

periodised w.r.t. M . Therefore, analogous to the arguments in

Sec. II, we can employ the inverse discrete Fourier transform

from beamspace, and only retain the fundamental period of

p̄M,a[m], |m| ≤ (M − 1)/2 to obtain the desired coefficient

domain function.

A shortcut is to sample PM (ejψ) in (6) directly instead of

P̄M (a, ejΨ) in (7). Thus

p̄M,a[m] ◦—• PM (ejψk) (8)

for ψk = 2πk
aM with |k|, |m| ≤ (M − 1)/2.

Based on the above analysis, the coefficient domain win-

dow is adjusted in a frequency dependent fashion s.t. at a

frequency π
2 ≤ Ω < π we employ a window p̄M,a[m] with

a = 2Ω/π, or short p̄M,2Ω/π[m], which is obtained by an

inverse discrete Fourier transform according to (8). For an

example with M = 21, the resulting frequency-dependent

coefficient domain window p̄M,2Ω/π[m] is shown in Fig. 2,

with the narrowing of the window with frequency clearly

evident. The directivity pattern for this beamformer is depicted

in Fig. 3, demonstrating frequency invariance over one octave.

IV. ARBITRARY WINDOWING

The window design in Sec. III-B is restricted to the rect-

angular window of (5). This section explores the inclusion of

arbitrary window shapes into the frequency-invariant design.

To obtain an arbitrary window shape wM [m], where M is

the total array aperture and m the sensor index,

wM [m] = pM [m] · vM [m] (9)

multiplies the rectangular window pM [m] with a taper function

v[m], such as a von Hann, Hamming or Taylor window. In the

beamspace domain, the equivalent to (9) is a convolution of
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Fig. 3. Directivity pattern for the beamformer in Fig. 2.

the Fourier transforms of pM [m] and vM [m],

WM (ejΨ) =

π∫

−π

PM (ej(Ψ−Φ))VM (ejΦ)dΦ . (10)

Writing the window Vm(ejΨ) in its Fourier expansion,

VM (ejΨ) =

K∑
k=−K

vk
∑
l∈Z

δ(Ψ− 2πl −
2πk

M
) (11)

can be efficient, as the integral in (10) only extracts a single

term of the impulse train in (11), and since in general K is

small. For example, von Hann and Hamming windows are

exact with K = 1, and a Taylor window can be approximated

to already high accuracy with K = 2. This leads to simplifying

(10) to

WM (ejΨ) =
K∑

k=−K

vk PM (ej(Ψ−
2πk

M
)) (12)

Inserting WM (ejΨ) instead of PM (ejψ) into (6), a scaled

version of a tapered window can be constructed analogously

to the derivation in Sec. III-B.

More directly, a discretised scaled version

W̄M,a(e
jΨk) =

K∑
k=−K

vk PM (ej(Ψk/a−
2πk

M
)) (13)

can be calculated with Ψk = 2πk/M , Z ∋ |k| ≤ (M −
1)/2, such that a suitably scaled coefficient domain window

wM,a[m] is obtained by an inverse DFT of (13). Analogously

to considerations in Sec. III-B, the coefficient domain function

is exact despite the discretisation of (13) in beamspace.

An example for the earlier array with M = 21 but applying

a Taylor window is shown in Fig. 4 for the highest octave band.

The directivity pattern for this array is provided in Fig. 5.

V. ARBITRARY LOOK DIRECTION

Given that an array response in beamspace, W̄ (ejΨ) is of

the types constructed thus far in this paper; as evident from

Figs. 3 and 5, these arrays point towards broadside. With the

normalised beamspace variable Ψ = 2π sinϑ, where ϑ is the
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Fig. 4. Coefficient space window w̄M,2Ω/π[m] with a frequency-invariant
Taylor design over one octave, depending on normalised angular frequency
Ω and coefficient index m.
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Fig. 5. Directivity pattern for the beamformer in Fig. 4.

angle of arrival measured against broadside, it is possible to

alter an array to look towards an angle ϑ0, i.e. Ψ0 = 2π sinϑ0,

by altering the response to

Wϑ0
(ejΨ) = W̄ (ej(Ψ−Ψ0)) . (14)

To generalise the previous design to a different look direction,

(13) simply becomes

W̄M,a,ϑ0
(ejΨk) =

K∑
k=−K

vk PM (ej((Ψk−Ψ0)/a−
2πk

M
)) , (15)

from which the coefficients can be obtained by an inverse

discrete Fourier transform.

Extending the earlier example of a Taylor window design for

an array of M = 21 elements per octave to a look direction

ϑ0 = 30◦ yields coefficients with the same magnitude but

different phase to those shown in Fig. 4. This phase shifts leads

to the approximately frequency-invariant directivity pattern in

Fig. 6, which exhibits the desired look direction.

VI. IMPLEMENTATION

A. Independent Frequency Bin Processor

If the beamformer is to measure received power versus

angle of arrival and frequency, a simple independent frequency

bin (IFB) processor can be employed. The sensor signals are
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Fig. 6. Directivity pattern for a beamformer with look direction ϑ0 = 30◦ .
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design and look direction ϑ0 = 30◦.

decomposed by sufficient large DFT/FFT, and each frequency

bin is processed independently, thus neglecting coherence

across the spectrum. An IFB processor is straightforward

and consist of drawing specific frequency bins from specific

sensors according to the nested array structure outlined in

Fig. 1. The directivity pattern of such a beamformer is the

same as those shown in Figs. 3, 5 and 6, but extends over the

number of octaves included in the nested array structure as

shown in Fig. 7.

B. Overlap-Add Implementation

If the beamformer is to act as a spatio-temporal filter

with a time-domain signal as output, then the frequency-

dependent design of the beamforming coefficients in Secs. III

– V requires a frequency-domain implementation of the beam-

former, such as overlap-add/overlap-save techniques [25]. An

overlap-add approach is used here, which requires time domain

filters that are zero-padded. This can be achieved by oversam-

pling the frequency domain representation of the beamformer

weights by a factor of two, eliminating a periodic repetition

in the time domain, and transforming back to the frequency

domain again, thus interpolating the initially oversampled

representation.

Since the original frequency domain representation is a

rectangular window, the oversampled and interpolated version



will exhibit Gibbs phenomena [22] at the lower and upper

ends of the band of interest. The directivity pattern in Fig. 7

is measured from an overlap-add implementation that has

been excited by broadband steering vectors [26], [27] from

different angles of arrival, and shows such Gibbs phenomena

particularly at the lower end of the operating spectrum at

around Ω = π
8 , but without wider impact on the accuracy

and frequency invariance of the array’s response.

VII. CONCLUSION

This paper has presented a simple 1-d frequency-invariant

beamformer design that can accommodate bandwidths stretch-

ing across several octaves. This is accomplished by a combi-

nation of an nested array, which creates an octave-invariant

design, and a design approach that within every octave re-

strictes the aperture in a frequency-dependent fashion such that

the overall directivity patterns is constant across the desired

bandwidth. The latter part exploits exact properties of the

Fourier series, i.e. when applied to discrete sensors and to

discrete points in beamspace.

The design can accommodate arbitrary window functions

such as a Dirichlet kernel, von Hann, Hamming or Taylor

windows, or others. Also, the direction of the beamformer can

be selected off-broadside. The calculation of the beamformer

coefficients, the window implementation, off-broadside look

diections, as well as the overall beamformer implementation

using overlap-add techniques are sufficiently simple to be

applicable to arbitrarily large arrays. By examples, we have

demonstrated the various aspects, accuracy and simplicity of

the beamformer design.
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