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ABSTRACT 

A combined theoretical and experimental study on the structure, infrared and UV-Vis data of 2-

{(E)-[(3-tert-butyl-1-phenyl-1H-pyrazol-5-yl)imino]methyl}phenol (3), is presented. Theoretical 

geometry optimization and its IR spectrum were carried out using the Density Functional 

Theory (DFT), while for the theoretical UV-Vis spectrum, the Time-Dependent DFT (TD-DFT) 

method was used. The supramolecular analysis of the compound evidenced the presence oĨ ʋ 

͘͘͘ ʋ ŝŶƚĞƌĂĐƚŝŽŶƐ ďĞƚǁĞĞŶ ƚŚĞ ƉŚĞŶŽů ĂŶĚ ƉǇƌĂǌŽůĞ ƌŝŶŐƐ ĂŶĚ ƚŚĞ ƉƌĞƐĞŶĐĞ ŽĨ C-H͘͘͘ʋ 

interactions between the methyl group and the phenyl rings which form chains of molecules 

parallel to the plane (100). 
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1. Introduction 
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Fused pyrazoles and their derivatives exhibit a wide range of interesting biological properties 

such as analgesics, anti-inflammatory, antitubercular, antipyretic, antibacterial and anticancer 

agents.1-5 Imines possess the general formula R1R2C=NR3, they also are named as Schiff bases 

because they were firstly synthesized by Hugo Schiff in 1864, via a condensation reaction 

method between primary amines and aldehydes or ketones.6,7 This family of compounds have 

widely been studied because of their interesting physicochemical properties related to their 

structures, this fact, have made them the object of many theoretical and experimental 

investigations.8-9 The most important features of the Schiff bases or their metal complexes it 

can be counted: their catalytic10-12 and biological activities,13-15 their application as metal ion 

sensors,16-18 molecular disruptor19-22 and also as anti-cancer agents,23-24 among others. 

 

On the other hand, structural X-ray diffraction analysis allows the observation of possible 

specific properties in different molecular systems, from molecular orderings in the solid state. 

Some crystal systems can define their packing without the presence of hydrogen bonds or other 

strong intermolecular interactions. A great number of researchers have done their best in the 

search of a face-to-ĨĂĐĞ ʋ͙ʋ ƐƚĂĐŬŝŶŐ ĂƌƌĂǇ ŝŶ ƚŚĞ ƐŽůŝĚ-state packing of organic semiconductors 

to improve the electrical characteristics of these compounds using excellent intermolecular 

ʋ͙ʋ  ŝŶƚĞƌĂĐƚŝŽŶƐ͘25-26 In this paper, the experimental and calculated spectroscopic properties 

of the title compound prepared by the reaction of 3-tert-butyl-1-phenyl-1H-pyrazol-5-amine 

with salicylaldehyde, are compared and ƚŚĞŝƌ ƉŽƐƐŝďůĞ ʋ͙ʋ ĂŶĚ C-H͘͘͘ ʋ ŝŶƚĞƌĂĐƚŝŽŶƐ ĂƌĞ ƐƚƵĚŝĞĚ͘ 
 

2. Experimental 

2.1 Materials and Methods 

General information 

Reaction was monitored by thin layer chromatography (TLC), using Silica gel aluminum plates 

(Merck 60 F254). Melting point was determined on a Büchi melting point B-450 apparatus. IR 

spectrum was recorded on a Perkin-Elmer FT spectrophotometer series 2000 using KBr disks. 

NMR spectra were recorded on a Bruker Avance 400 spectrometer operating at 400.13 MHz for 
1H and 100.61 MHz for 13C, using DMSO-d6 as solvent and tetramethylsilane as an internal 

standard. Chemical shifts () are in ppm, coupling constants (J) are in Hertz (Hz) and the 

classical abbreviations are used to describe the signal multiplicities. The mass spectrum was 

obtained on a SHIMADZU-GCMS 2010-DI-2010 spectrometer equipped with a direct inlet probe 

operating at 70 eV. High resolution mass spectrum (HRMS) was recorded on an Agilent 

Technologies Q-TOF 6520 spectrometer via an electrospray ionization (ESI). Microanalyses was 

performed on an Agilent elemental analyzer and the values are within 0.4% of the theoretical. 

The UVʹVis absorption spectrum of compound 3 was obtained in acetonitrile solution at room 

temperature in the range of 200ʹ600 nm using an UV-Vis 160A SHIMADZU Spectrophotometer. 

Chemicals and solvents were purchased from Sigma-Aldrich and Across, and were used without 

further purification. 



 

2.2 Synthesis 

 

A sample of the 3-tert-butyl-1-phenyl-1H-pyrazol-5-amine (1) was prepared as described in the 

literature.27 To a solution of concentrated hydrochloric acid (3.8 mL) in water (33 mL), 

phenylhydrazine (2.1220 g, 19.62 mmol) and 4,4-dimethyl-3-oxopentanenitrile (1.8502 g, 14.78 

mmol) were added. The mixture was heated at 70 °C for 1 h, then concentrated hydrochloric 

acid (3.8 mL) was added and the mixture was heated additionally for 1 h. After cooling, crushed 

ice was added and the mixture was neutralized with concentrated ammonium hydroxide. The 

resulting solid was filtered under reduced pressure, washed with cold water (3 x 5 mL) and 

dried at ambient temperature affording the compound 1 as a pale yellow solid. 

 

Synthesis of compound 3 (see Scheme 1). A mixture of 3-tert-butyl-1-phenyl-1H-pyrazol-5-

amine 1 (0.231 g, 1.075 mmol), salicylaldehyde 2 (0.134 g, 1.093 mmol) and acetic acid (5 

drops) was stirred for ten minutes. Until the reaction was complete (TLC control), the yellow 

solid formed was washed with water (5 x 20 mL) and dried under vacuum to afford compound 3 

(0.325 g, 95% yield). Single crystals suitable for X-ray diffraction were grown from CH2Cl2 by 

slow evaporation at room temperature. 

 

Insert Scheme 1 

 

 

Anal. Calc. for C20H21N3O: C% 75.21; H% 6.63; N% 13.16. Found: C% 75.31; H% 6.59; N% 13.12. 

M.p. 401.8 K. (MS, 70 eV) m/z (%) 319 (M+, 100), 302 (M+- 17, 14.58), 304 (M+ - 15, 77.76), 57 

(6.61). IR (KBr, cm-1)  Ph-H 3060.63, as –CH3 2958.41, s –CH3 2863.91, –C=N 1604.56. 1H 

NMR (400 MHz) (DMSO-d6,  in ppm): 1.33 (bs, 9H, H-[12, 13, 14]), 6.69 (bs, 1H, H-9), 6.93 (d, 

1H, 3J = 8.4 Hz, H-3); 6.99 (t, 1H, 3J = 7.4 Hz, H-18), 7.41 (m, 1H, 3J = 7.6 Hz, H-4); 7.42 (m, 1H, H-

5); 7.54 (t, 2H, 3J = 7.4 Hz, H-17, 19); 7.61 (d, 2H, 3J = 7.8 Hz, H-16, 20); 7.67 (d, 1H, 3J = 7.6 Hz, 

H-6); 9.12 (bs, 1H, H-7); 11.76 (s, 1H, OH); NMR 13C (400 MHz) (DMSO-d6,  in ppm): 30.7 (C-12), 

32.7 (C-11), 91.5 (C-9), 117.1 (C-3), 119.9 (C-18), 120.1 (C-1), 124.5 (C-20), 127.4 (C-4), 129.3 (C-

19), 132.4 (C-6), 134.3 (C-5), 139.3 (C-15), 148.7 (C-8), 160.11 (C-2), 162.0 (C-10), 163.1 (C-7), 

UV-Vis in MeCN, Ȝmáx nm, (log İ), Ȝ1 197 (5.36), Ȝ2 219 (4.79), Ȝ3 233 (4.79), Ȝ4  276 (4.42), Ȝ5 

308 (4.53), Ȝ6 324 (4.54), Ȝ7 357 (4.59), Ȝ8 381 (4.37). 

 



Note: The assignment of the signals in H1NMR and 13C NMR was performed in relation to figure 

1(a). 

3. Computational study for compound 3 

All the theoretical calculations were determined in gas phase and in the approximation of the 

isolated molecule, using GaussView05 program28 and Gaussian0929 program package. The 

molecular optimization, harmonic vibrational frequency, NMR and energy studies were 

calculated by ab initio computational methods Hartree-Fock (HF) and Density Functional Theory 

(DFT), using hybrid density functional B3LYP with the 6ʹ311++G (d,p) basis, without any 

obstacle for the geometry. Theoretical vibrational spectra of compound 3 were interpreted by 

means of potential energy distributions (PEDs) using VEDA 4 program.30 Vibrational frequencies 

and bond lengths found at the DFT methods, yield better results when compared the 

experimental values with those obtained by Hartree-Fock methods. 

 

4. Results and discussion 

4.1 Single crystal X-ray diffraction study 

 

4.1.1 Crystal Data: C12H21N3O (M = 319.40 g/mol): monoclinic, space group P 21/c (No. 14), a = 

11.4508(8) Å, b = 14.0285(8) Å, c = 11.7440(8) Å, ɲ = 90.0, ɴ = 115.667(8), ɶ = 90.0, V = 

1700.4(2) Å3 , Z = 4, T = 123(2) K, ʅ(MoKɲ) = 0.079 mm-1, Dcal= 1.248 Mg/m3, 8142 reflections 

measured (3.483o ч ಉ ч Ϯϲ͘ϵϵϵo), index range: -14 ч h ч 10, -15 ч k ч 17, -14 ч l ч 14, 3700 

unique (Rint = 0.0288, Rsigma= 0.0483) which were used in all calculations. Refinement method: 

Full-matrix least-squares on F2. The final R1 was 0.0474 (I > 2ʍ(I)) and wR2 was 0.1177 (all data). 

Largest diff. peak and hole 0.238 and -0.222 e.Å-3  

 

4.1.2 Data Collection and Refinement Details: Diffraction data were collected on an Oxford 

Diffraction Xcalibur E diffractometer using CrysAlis PRO,31 using graphite monochromated MoKɲ 

radiation (0.71073 Å). The corrected data were solved by direct methods with SHELXS-201432 

and refined by full-matrix methods on F2 with SHELXL-2014.33 All H-atoms, were positioned at 

geometrically idealized positions, CͶH= 0.9500 Å, CͶH= 0.9800 Å for methyl, and they were 

refined using a riding model approximation with Uiso(H) = 1.2 and 1.5 Ueq(parent atom). H1H 

atom was found from the Fourier maps and its coordinates were refined freely. Correctness of 

the model was confirmed by low residual peaks (0.238) and holes (-0.222 e.Å3) in the final 

difference map. 
 

4.2 Molecular Geometry 

The optimized structure parameters of compound 3 calculated by HF and DFT methods listed in 

Table 1 are in accordance with atom numbering given in Figure 1.  



The central segment, C1ʹC7ʹN1ʹC8 (r.m.s. deviation = 0.0159 Å), is rotated by 4.58 (15)o, 4.20 

(18)o and 53.76 (6)o to the phenol (A), pyrazole (B) and phenyl (C) rings, respectively. These 

values show an approximate planarity between phenolic (A) and pyrazole (B) rings respectively, 

thus obtaining a higher conjugation in that region of the molecule. The properties of planarity 

and conjugation are broken when trying to include the third ring of the molecule. 

 

Insert Table 1 

 

 

Insert Figure 1(a) Insert Figure 1(b) 

 

 

4.3 Supramolecular behavior 

At supramolecular level, classical hydrogen bond interactions and other common C-H͙X ;Xс O͕ 
N) hydrogen bond contacts are not detected in compound 3, whereas ʋ͙ ʋ and C-H͙ʋ 
interactions are observed. In the literature a similar compound, the 3-tButyl-5-((4-
methoxybenzylidene)amino)-1-phenylpyrazole (CSD refcode VAGYOS)34, with the presence of C-
H͙ʋ ŝŶƚĞƌĂĐƚŝŽŶ͕ is reported. The central segment C1-C7-N1-C8 in compound 3, presents 
approximate planarity with the phenol (A) and pyrazole (B) rings but does not observe planarity 
with the phenyl (A) ring. This planarity, possibly induces the phenol and pyrazole rings to orient 
themselves face to face in crystalline growth. This approach allows ʋ͙ʋ interactions to become 
more effective. Recent studies have considered ʋ͙ʋ non-binding interactions as responsible for 
crystal growth.35-36 Analysis of the crystalline growth of compound 3 shows that, effectively, it is 
developed into face tŽ ĨĂĐĞ ʋ͙ ʋ ĂŶĚ C-H͙ ʋ ƐƚĂĐŬŝŶŐ͘ 
  

 
 
 
 
 
 
 

The facing phenol (A) and pyrazole (B) rings observe a distance of 3.771 Å, between their 

centroid positions CŐϭ͙Cg2
i (i= 2-x,1-y,-z) and they are interwoven with other molecules by C-H͙ 

ʋ ŝŶƚĞƌĂĐƚŝŽŶƐ͘ The latter interaction is carried out between one of the carbons (C13) of the 

tert-butyl group and the phenol (A) ring of the neighboring molecule, showing a C-H... Cg3
ii (ii = 

x,1/2-y,1/2-z) with a distance of 3.535 Å. These interactions are shown running parallel to (100) 



(see Fig. 2). The overlapping of the rings is accentuated by the highly ʋ delocalized resonant 

contributor ͞ϯ͟ in which the phenolic moiety (A) acquires a partial positive charge while the 

pyrazole moiety (B) acquire the negative one, as shown in Scheme 2. 

 

 

 

Insert Figure 2 (a) Insert Figure 2 (b) 

 

 

 

 

Insert Scheme 2 

 

 

Both (A) and (B) moieties interacts favorably in a head (+)-to-tail (-) fashion in the 

supramolecular structure, acquiring a good tendency to form face-to-face ʋ͙ʋ interactions,37 

as shown in Fig. 2. These latter interactions were visualized using the Hirshfeld surface, Fig. 

3(a). On the surface can be observed red spots that show the regions of interaction with other 

molecules, specifically between the phenol (A) and pyrazole (B) rings. The absence of other 

stronger interactions, such as hydrogen bonds, can be seen in Fig. 3(b) where the interaction 

matrix does not show the characteristic claws or peaks for these kind of bonds. 

 
 

Insert Figure 3(a) Insert Figure 3(b) 

 

 

The most important contributions of intermolecular contacts to the Hirshfeld surfaces were, H...H 

;ϲϭ͘ϯйͿ͕ C͙H ;ϭϳ͘ϴйͿ͕ N͙H ;ϲ͘ϭйͿ͕ C͙C;ϲ͘ϯйͿ (Fig. 3(b)). 

 

4.4 Vibrational analysis 

 

The application of the Fourier transform in certain techniques of analysis, enabled the IR 

spectroscopy to emerge and be placed at the present time as one of the most used analysis 

tools for the characterization of materials. The FT-IR spectrum has been recorded and its 

vibrational assignment is presented for compound 3 for the first time. In this section we will 

discuss the IR characteristic bands and their assignments based on the comparison between the 

solid IR experimental state spectrum and the results obtained through the use of the 

DFT/B3LYP/6-311G++(d,p) model. The experimental and calculated spectra are shown in Fig. 4. 

The scale factor used with the theoretical values was 0.9619.38 For the assignment of the 



frequencies it was used VEDA 4,30 with its corresponding PED% value. According to VEDA 4, 

theoretical spectrum have good agreement with the experimental FT-IR  one. 

 

Insert Figure 4(a) 

 

 

 

Insert Figure 4(b) 

 

 

4.4.1 Hydroxyl group vibrations 
 

The hydroxyl O-H stretching (ʆOH), is generally a strong and broad band, that can be observed 
in a region around 3500 cm-1.39 Our experimental results show a ʆOH band at 3120 cm-1 and it is 
similar to values shown by other authors.40-41 Calculated value is obtained at 3195 cm-1. The 
difference between these values emerges as a result of which the calculations do not consider 
the interaction generated by the iminic nitrogen over the phenolic hydrogen generating a 
relative strong intramolecular hydrogen bond. The frequency due to O-H in-plane bending 
vibration, in general, is located in the region 1150ʹ1250 cm-1. The experimental spectrum 
shows a medium-strong FT-IR band at 1121 cm-1 and the calculated value is 1128 cm-1. The 
frequency due to O-H out of-plane bending vibration is located in general in the region 650-770 
cm-1. Our results show a band at 775 cm-1 and its calculated value at 781 cm-1. 
 
4.4.2 C-H vibrations 

 

The aromatic C-H stretching vibrations are in general observed in the region 3000ʹ3100 cm-1. In 
compound 3, a C-H stretching vibration of the rings (A, B and C) is observed at 3059 cm-1. This is 
in agreement with experimental assignment 3040ʹ3089 cm-1.42 Three calculated frequencies 
for C-H symmetric mode, C-H asymmetric mode in phenol (A) ring and C-H asymmetric mode in 
phenyl (C) ring at 3071 cm-1, 3065 cm-1 and 3064 cm-1 respectively, were assigned. The 2958 cm-

1 band is assigned to CH3 asymmetric mode, while the weak band at 2862 cm-1 correspond to 
the CH3 symmetric mode. Calculated stretching bands at 2968 and 2907 cm-1 were assigned for 
these vibrations, respectively. These values are in a good agreement with other reported 
studies.43 
 
4.4.3 C=N vibrations 

 
The stretching vibration band C=N is observed in the region 1500-1620 cm-1.44-45 A strong band 
observed at 1570 cm-1 in the FTIR spectrum is assigned to C=N stretching vibration mode. 
Calculated stretching band at 1582 cm-1, is assigned to this vibration. 
 
4.4.4 C-O vibrations 

 



The stretching vibration band C-O is observed in the region 970-1250 cm-1.46 A strong band 
observed at 1281 cm-1 in the FTIR spectrum was assigned to C-O stretching vibration mode. 
Calculated stretching band at 1262 cm-1, was assigned to this vibration. See Fig. 5(a) and 5(b). 
 
 
 
Insert Figure 5(a) Insert Figure 5(b) 
 
 
 

4.5 UV-Vis 

The most important orbitals in a molecule are its frontier molecular orbitals that determine 

how the molecule interacts with other species. A molecule with a small HOMO-LUMO energy 

gap is more polarizable and is generally related to a high chemical reactivity or a low kinetic 

stability.47 HOMO is the orbital that acts as an electron donor and LUMO is the orbital that acts 

as an electron acceptor. The electronic transition energies were calculated using the Time 

Dependent Density Function Theory (TD-DFT),48-50 with the 6-311++G(d,p) basis set optimized 

structure in acetonitrile solvent. 

TŚĞ ŵĞĂƐƵƌĞĚ ǀĂůƵĞƐ ŽĨ ĂďƐŽƌƉƚŝŽŶ ǁĂǀĞůĞŶŐƚŚƐ ʄmax in compound 3, are at 235 and 363 nm, 

ĂŶĚ ƚŚĞǇ ĐĂŶ ďĞ ĂƐƐŝŐŶĞĚ ƚŽ ʋїʋΎ ƚƌĂŶƐŝƚŝŽŶ.51 UV-Vis spectrum, and are in good agreement 

with the experimental data. The calculated UV-Vis absorption bands were obtained at 236.88 

nm, 238.97 nm and 365.04 nm. From Fig. 6 (a) and 6 (b) it can be seen that the HOMO is 

uniformly distributed in the central segment and over the phenol (A) and pyrazole (B) rings. 

From Figure 6a and 6b, it can be seen that HOMO is uniformly distributed on the central 

segment and on the phenol (A) and pyrazole  (B) rings and that this distribution is partial on the 

phenyl (C) ring and on the tert-butyl group, whereas LUMO (Fig. 6a) is distributed similarly to 

HOMO except for its presence on the tert-butyl group and partially showing its distribution on 

the pyrazole (B) ring. The LUMO+3 is distributed over the phenol (A) and phenyl (C) rings and 

partially over the central segment (Fig.6 b). In the HOMO-1 a uniform distribution is observed 

on the pyrazole (B) and phenyl (C) rings. This orbital also shows a partial distribution on the 

phenol (A) ring and a null distribution on the central segment. LUMO+1 shows a partial 

distribution over the central segment Fig. 6 c and a substantial increase over the phenyl (C) ring 

as shown in 6(c). 

 

 

Insert Figure 6 

 

 

 

 



 
 

5. Conclusions 

Single crystal X-ray crystallography clearly showed the structural conformation of compound 3. 

The planar behavior of the phenol (A) and pyrazole (B) aromatic rings with the central segment 

C1-C7-N1-C8 became evident. The supramolecular analysis evidenced ƚŚĞ ƉƌĞƐĞŶĐĞ ŽĨ ʋ ͘͘͘ ʋ 

interactions between the phenol (A) and pyrazole (B) rings, which in turn are related by 

inversion centers. Additionally, the presence of C-H͘͘͘ʋ ŝŶƚĞƌĂĐƚŝŽŶƐ ďĞƚǁĞĞŶ ƚŚĞ ŵĞƚŚǇů ŐƌŽƵƉ 

and the phenyl (C) ring, which acts as junction to form chains of molecules parallel to the plane 

(100). These interactions were evidenced using Hirshfeld's surface theory, clearly showing the 

interactions between the phenol (A) and pyrazole (B) rings. The absence of other interactions, 

different from those analyzed, was evidenced in the fingerprint. The values obtained in the 

HOMO-LUMO gaps of the present study show a good stability of the molecule as well as 

relative chemical reactivity. Other spectroscopic techniques (1H and 13C NMR) were used to 

confirm the results of the present study. Calculations performed by DFT using hybrid methods, 

type B3LYP, have shown their goodness in establishing excellent approximations with the 

experimental parameters. The above was demonstrated by the calculations performed on 

within this work in relation to IR or-and UV-Vis spectroscopy. 
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                                                                                                  (a) 



 

                      (b) 

Figure 1. (a) Molecular structure of compound 3 obtained by X-ray diffraction, with thermal 

ellipsoids shown at the 50% probability level. (b) Calculated geometric parameters for 

compound 3 by using the DFT/B3LYP, 6ʹ311++G (d,p) basis set. 
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                                                                         (b) 

 

Figure 2. (a) Packing diagram of the title molecule parallel to (100). Dotted lines represent ʋ͙ʋ 
and C-H͙ʋ interactions. (b) Interactions between Cg1͙Cg2 and C-H͙͘ Cg3. 
 

 

                                                                    (a) 

 



 

                          (b) 

Figure 3. (a) dnorm mapped on Hirshfeld surface for visualizing the intercontacts. (b) FŝŶŐĞƌƉƌŝŶƚ H͙H͘ di  

is the closest internal distance from a given point on the Hirshfeld surface and de is the closest external 

contacts. 

 

 

 

 

 



 

(a) 

 

                                                                            (b) 

Figure 4. (a) Experimental FT-IR spectrum of compound 3. (b) Theoretical IR spectrum of 

compound 3. 
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                                                                             (b) 

Figure 5. (a) Experimental (CH3CN solvent) and (b) calculated UV-Vis spectra of compound 3. 

 

 

 



 

Figure 6. The HOMOs and LUMOs surfaces and energy values for compound 3. 

 

 

 

 


