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The delay datatype was introduced by Capretta (2005) as a means to deal with partial

functions (as in computability theory) in Martin-Löf type theory. The delay datatype is

a monad. It is often desirable to consider two delayed computations equal, if they

terminate with equal values, whenever one of them terminates. The equivalence relation

underlying this identification is called weak bisimilarity. In type theory, one commonly

replaces quotients with setoids. In this approach, the delay datatype quotiented by weak

bisimilarity is still a monad—a constructive alternative to the maybe monad. In this

paper, we consider the alternative approach of Hofmann (1997) of extending type theory

with inductive-like quotient types. In this setting, it is difficult to define the intended

monad multiplication for the quotiented datatype. We give a solution where we

postulate some principles, crucially proposition extensionality and the (semi-classical)

axiom of countable choice. With the aid of these principles, we also prove that the

quotiented delay datatype delivers free ω-complete pointed partial orders (ωcppos).

Altenkirch et al. (2017) demonstrated that, in homotopy type theory, a certain higher

inductive-inductive type is the free ωcppo on a type X essentially by definition; this

allowed them to obtain a monad of free ωcppos without recourse to a choice principle.

We notice that, by a similar construction, a simpler ordinary higher inductive type gives

the free countably-complete join semilattice on the unit type 1. This type suffices for

constructing a monad which is isomorphic to the one of Altenkirch et al. We have fully

formalized our results in the Agda dependently typed programming language.

1. Introduction

The delay datatype was introduced by Capretta (2005) as a means to deal with partial

functions (as in computability theory) in Martin-Löf type theory. It is used in this setting

to cope with possible non-termination of computations (as, e.g., in the unbounded search

of minimalization). Inhabitants of the delay datatype are delayed values, that we call

computations throughout this paper. Crucially computations can be non-terminating and

not return a value at all. The delay datatype constitutes a (strong) monad, which makes it
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possible to deal with possibly non-terminating computations just like any other flavor of

effectful computations following the general monad-based method of Moggi (1991). Often,

one is only interested in termination of computations and not the exact computation

time. Identifying computations that only differ by finite amounts of delay corresponds to

quotienting the delay datatype by weak bisimilarity. The quotient datatype is used as a

constructive alternative to the maybe datatype, see, e.g., Benton et al. (2009).

Martin-Löf type theory does not have built-in quotient types. The most common ap-

proach to compensate for this is to mimic them by working with setoids. But this ap-

proach has some troubling shortcomings as well. For example, the concept of a function

type is changed (every function has to come with a compatibility proof), the same ap-

plies to product types and every other type former. In general, working with setoids in

a formal development tends to lead to a lot of largely artificial bureaucracy (sometimes

referred to as the “setoid hell”). An alternative approach, which we pursue here, consists

in extending the theory by postulating the existence of inductive-like quotient types à la

Hofmann (1997). These quotient types are ordinary types rather than setoids.

In this paper, we ask the question: is the monad structure of the delay datatype pre-

served under quotienting by weak bisimilarity? Intuitively, this ought to be the case. In

the setoid approach, this works out unproblematically indeed. But with inductive-like

quotient types, one meets a difficulty when attempting to reproduce the monad struc-

ture on the quotiented datatype. Specifically, one cannot define the multiplication. The

difficulty has to do with the interplay of the coinductive nature of the delay datatype,

or more precisely the infinity involved, and quotient types. We discuss the general phe-

nomenon behind this issue and provide a solution where we postulate some principles,

the crucial ones being proposition extensionality (accepted in particular in homotopy

type theory) and the (semi-classical) axiom of countable choice. It is very important here

to be careful and not postulate too much: in the presence of proposition extensionality,

the full axiom of choice implies the law of excluded middle.

We also look at the (strong) arrow structure (in the sense of Hughes (2000)) on the

Kleisli homsets for the delay datatype and ask whether this survives quotienting by

pointwise weak bisimilarity. Curiously, here the answer is unconditionally positive also

for inductive-like quotient types.

Afterwards, to argue that the need for the axiom of countable choice to define the

multiplication of the quotiented delay monad is not incidental, but points to an intrinsic

issue, we show an additional construction related to the quotiented delay datatype that

also requires the same assumption. We show that the quotiented delay datatype applied

to a type X is the free ω-complete pointed partial order (ωcppo) over X, under the

assumption of countable choice. This construction relates our work to the new work

of Altenkirch et al. (2017) in the setting of homotopy type theory. They mimicked the

definition of Cauchy reals of the HoTT book (Univalent Foundations Program 2013,

Sec. 11.3) and defined the free ωcppo on X as a higher inductive-inductive type whose

constructors build an ωcppo on X and the elimination principle ensures freeness. They

also showed that this construction gives a monad (called the partiality monad by the

authors); countable choice was not needed to define the monad structure. Under the

assumption of countable choice, their monad is isomorphic to ours.
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Finally, we construct an alternative datatype for partiality in homotopy type theory.

We define it as a partial map classifier (Mulry 1994), classifying partial functions with a

semidecidable domain of definedness. Our construction utilizes ordinary higher inductive

types rather than higher inductive-inductive types. Specifically, we define the Sierpinski

set as a higher inductive type. The resulting monad is isomorphic to the one by Altenkirch

et al. and under the assumption of countable choice also to the quotiented delay datatype.

This paper is organized as follows. In Section 2, we give an overview of the type theory

we are working in. In Section 3, we introduce the delay datatype and weak bisimilarity. In

Section 4, we extend type theory with quotients à la Hofmann. In Section 5, we analyze

why a multiplication for the quotiented delay type is impossible to define. We notice

that the problem is of a more general nature, and a larger class of types, namely non-

wellfounded and non-finitely branching trees, suffers from it. In Section 6, we introduce

the axiom of countable choice and derive some important consequences from postulating

it. In Section 7, using the results of Section 6, we define multiplication for the delay

type quotiented by weak bisimilarity. (We omit the proof of the monad laws, which is

the easy part—essentially the proofs for the unquotiented delay datatype carry over.) In

Section 8, we quotient the arrow corresponding to the delay monad by pointwise weak

bisimilarity. In Section 9, we demonstrate that the quotiented delay datatype delivers free

ωcppos, assuming countable choice. In Section 10, we present a new monad for partiality

in homotopy type theory and show how it relates to Altenkirch et al.’s construction and

to the quotiented delay monad. Finally, in Section 11, we draw some conclusions and

discuss future work.

We have fully formalized the results of this paper in the dependently typed program-

ming language Agda (Norell 2009). The formalization is available at http://cs.ioc.

ee/~niccolo/delay/.

This article is an extended version of an ICTAC 2015 conference paper. Compared to

the conference paper, the material of Sections 9 and 10 is entirely new.

2. The Type Theory under Consideration

We consider Martin-Löf type theory with inductive and coinductive types and a cumula-

tive hierarchy of universes Uk. To define functions from inductive types or to coinductive

types, we use guarded (co)recursion. We define inductive types by rules with single rule

lines and coinductive types by rules with double rule lines. The first universe is simply

denoted U and when we write statements like “X is a type”, we mean X : U unless oth-

erwise specified. We allow dependent functions to have implicit arguments and indicate

implicit argument positions with curly brackets (as in Agda). We write ≡ for proposi-

tional equality (identity types) and = for judgmental (definitional) equality. Reflexivity,

transitivity and substitutivity of ≡ are named refl, trans and subst, respectively.

We assume the principle of function extensionality, expressing that pointwise equal

functions are equal, i.e., the inhabitedness of

FunExt =
∏

{X,Y :U}

∏

{f1,f2:X→Y }

(
∏

x:X

f1 x ≡ f2 x

)
→ f1 ≡ f2.
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Likewise, we will assume analogous extensionality principles stating that strongly bisim-

ilar coinductive data and proofs are equal for the relevant coinductive types and pred-

icates, namely, the delay datatype and weak bisimilarity (check DExt, ≈Ext below in

Sections 3 and 4).

We also assume uniqueness of identity proofs for all types, i.e., an inhabitant for

UIP =
∏

{X:U}

∏

{x1,x2:X}

∏

p1,p2:x1≡x2

p1 ≡ p2.

A type X is said to be a proposition, if it has at most one inhabitant, i.e., if the type

isPropX =
∏

x1,x2:X

x1 ≡ x2

is inhabited.

For propositions, we postulate a further and less standard principle of proposition

extensionality, stating that logically equivalent propositions are equal:

PropExt =
∏

{X,Y :U}

isPropX → isPropY → X ↔ Y → X ≡ Y.

Here X ↔ Y = (X → Y )× (Y → X).

Alternatively, we could set our development in homotopy type theory (Univalent Foun-

dations Program 2013), but restrict ourselves to work with 0-truncated types, i.e., sets.

In the latter framework, the principles FunExt and PropExt are consequences of the uni-

valence axiom, while the restriction to 0-truncated types implies UIP.

3. Delay Monad

For a given type X, each element of the delay type DX is a possibly infinite computation

that returns a value of X, if it terminates. We define DX as a coinductive type by the

rules

now x : DX

c : DX

later c : DX

Let R be an equivalence relation on a type X. The relation lifts to an equivalence relation

∼R on DX that we call strong R-bisimilarity. The relation is coinductively defined by

the rules
p : x1Rx2

now∼ p : now x1 ∼R now x2

p : c1 ∼R c2

later∼ p : later c1 ∼R later c2

We alternatively denote the relation ∼R with DR, since strong R-bisimilarity is the

functorial lifting of the relation R to DX. Strong ≡-bisimilarity is simply called strong

bisimilarity and denoted ∼. While it ought to be the case intuitively, one cannot prove

that strongly bisimilar computations are equal in Martin-Löf’s type theory. Therefore we

postulate an inhabitant for

DExt =
∏

{X:U}

∏

{c1,c2:DX}

c1 ∼ c2 → c1 ≡ c2.

We take into account another equivalence relation≈R on DX called weak R-bisimilarity,
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which is in turn defined in terms of convergence. The latter is a binary relation between

DX and X relating terminating computations to their values. It is inductively defined

by the rules

now↓ : now x ↓ x

p : c ↓ x

later↓ p : later c ↓ x

Two computations are considered weakly R-bisimilar, if they differ by a finite number

of applications of the constructor later (from where it follows classically that they either

converge to R-related values or diverge). Weak R-bisimilarity is defined coinductively by

the rules

p1 : c1 ↓ x1 p2 : x1Rx2 p3 : c2 ↓ x2

↓≈ p1 p2 p3 : c1 ≈R c2

p : c1 ≈R c2

later≈ p : later c1 ≈R later c2

Weak ≡-bisimilarity is called just weak bisimilarity and denoted ≈. In this case, we

modify the first constructor for simplicity:

p1 : c1 ↓ x p2 : c2 ↓ x

↓≈ p1 p2 : c1 ≈ c2

Remark 1. Notice that the type c1 ≈ c2 is not a proposition. But weak bisimilarity can

be defined alternatively as the following propositional relation:

now x ≈′ now x

c ↓ x

later c ≈′ now x

c ↓ x

now x ≈′ later c

c1 ≈′ c2

later c1 ≈′ later c2

We have c ≈′ c′ if and only if c ≈ c′. We prefer to work with ≈ instead of ≈′, since

proofs of ≈ are somewhat easier to construct, there is more freedom. In fact, there are

even more robust versions of weak bisimilarity with even more proofs.

The delay datatype D is a (strong) monad. The unit η is the constructor now while

the multiplication µ is “concatenation” of two layers of laters:

µ : D (DX) → DX

µ (now c) = c

µ (later c) = later (µ c).

In the quotients-as-setoids approach, it is trivial to define the corresponding (strong)

monad structure on the quotient of D by ≈. The role of the quotiented datatype is played

by the setoid functor D̂, defined by D̂ (X,R) = (DX,≈R). The unit η̂ and multiplication

µ̂ are just η and µ together with proofs of that the appropriate equivalences are preserved.

The unit η̂ is a setoid morphism from (X,R) to (DX,≈R), as x1Rx2 → now x1 ≈R now x2
by definition of ≈R. The multiplication µ̂ is a setoid morphism from (D (DX),≈≈R

) to

(DX,≈R), since c1 ≈≈R
c2 → µ c1 ≈R µ c2 for all c1, c2 : D (DX). The monad laws hold

up to ≈R, since they hold up to ∼R.

In this paper, our goal is to establish that the delay datatype quotiented by weak

bisimilarity is a monad also in the setting of Hofmann (1997), where the quotient type of

a given type has its propositional equality given by the equivalence relation. We discuss

such quotient types in the next section.
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4. Inductive-Like Quotients

In this section, we describe quotient types as the particular inductive-like types intro-

duced by M. Hofmann in his PhD thesis (1997). Let X be a type and R an equivalence

relation on X. For any type Y and function f : X → Y , we say that f is R-compatible

(or simply compatible, when the intended equivalence relation is clear from the context),

if the type

compat f =
∏

{x1,x2:X}

x1Rx2 → f x1 ≡ f x2

is inhabited. The quotient of X by the relation R is described by the following data:

(i) a carrier type X/R;

(ii) a constructor [ ] : X → X/R together with a proof sound : compat [ ];

(iii) a dependent eliminator: for every family of types Y : X/R → Uk and for every

function f :
∏
x:X Y [x] with p : dcompat f , there exists a function lift f p :

∏
q:X/R Y q

together with a computation rule

liftβ f p x : lift f p [x] ≡ f x

for all x : X.

The predicate dcompat is compatibility for dependent functions f :
∏
x:X Y [x]:

dcompat f =
∏

{x1,x2:X}

∏

r:x1Rx2

substY (sound r) (f x1) ≡ f x2.

We postulate the existence of data (i)–(iii) for all types X and equivalence relations R

on X. Notice that the predicate dcompat depends of the availability of sound. Also notice

that, in (iii), we allow elimination on every universe Uk. In our development, we actually

eliminate only on U and once on U1 (Proposition 2).

The propositional truncation (or squash) ‖X‖ of a type X is the quotient of X by

the total relation λx1 x2. 1. We write | | instead of [ ] for the constructor of ‖X‖. The

non-dependent version of the elimination principle of ‖X‖ is employed several times in

this paper, so we spell it out: in order to construct a function of type ‖X‖ → Y , one

has to construct a constant function of type X → Y . The type ‖X‖ can have at most

one inhabitant, informally, an “uninformative” proof of X. For example, an inhabitant of

‖
∑
x:X P x‖ can be thought of as a proof of there existing an element ofX that satisfies P

from which all information has been removed: both the witness element and the proof that

it is good. Propositional truncation and other notions of weak or anonymous existence

have been thoroughly studied in type theory (Kraus et al. 2013).

We call a function f : X → Y surjective, if the type
∏
y:Y ‖

∑
x:X f x ≡ y‖ is inhabited,

and a split epimorphism, if the type ‖
∑
g:Y→X

∏
y:Y f (g y) ≡ y‖ is inhabited. We say

that f is a retraction, if the type
∑
g:Y→X

∏
y:Y f (g y) ≡ y is inhabited. Every retraction

is a split epimorphism, and every split epimorphism is surjective.

Proposition 1. The constructor [ ] is surjective for all quotients.
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Proof. Given a type X and an equivalence relation R on X, we define:

[ ]surj :
∏

q:X/R

∥∥∥∥∥
∑

x:X

[x] ≡ q

∥∥∥∥∥

[ ]surj = lift (λx. |x, refl|) p.

The compatibility proof p is trivial, since |x1, refl| ≡ |x2, refl| for all x1, x2 : X.

A quotient X/R is said to be effective, if the type
∏
x1,x2:X

[x1] ≡ [x2] → x1 R x2 is

inhabited. In general, effectiveness does not hold for all quotients. But we can prove that

all quotients satisfy a weaker property. We say that a quotient X/R is weakly effective,

if the type
∏
x1,x2:X

[x1] ≡ [x2] → ‖x1 R x2‖ is inhabited.

Proposition 2. All quotients are weakly effective.

Proof. Let X be a type, R an equivalence relation on X and x : X. Consider the function

‖x R ‖ : X → U , ‖x R ‖ = λx′. ‖x R x′‖. We show that ‖x R ‖ is R-compatible. Let

x1, x2 : X with x1Rx2. We have xRx1 ↔ xRx2 and therefore ‖xRx1‖ ↔ ‖xRx2‖. Since

propositional truncations are propositions, using proposition extensionality, we conclude

‖xRx1‖ ≡ ‖xRx2‖. We have constructed a term px : compat ‖x R ‖, and therefore a

function lift ‖x R ‖ px : X/R → U (large elimination is fundamental in order to apply

lift, since ‖x R ‖ : X → U and U : U1). Moreover, lift ‖x R ‖ px [y] ≡ ‖x R y‖ by its

computation rule.

Let [x1] ≡ [x2] for some x1, x2 : X. We have:

‖x1 R x2‖ ≡ lift ‖x1R ‖ px1
[x2] ≡ lift ‖x1 R ‖ px1

[x1] ≡ ‖x1 R x1‖

and x1 R x1 holds, since R is reflexive.

Notice that the constructor [ ] is not a split epimorphism for all quotients. The existence

of a choice of representative for each equivalence class is a non-constructive principle,

since it implies the law of excluded middle, i.e., the inhabitedness of the following type:

LEM =
∏

{X:U}

isPropX → X + ¬X

where ¬X = X → 0.

Proposition 3. Suppose that [ ] is a split epimorphism for all quotients. Then LEM is

inhabited.

Proof. Let X be a type together with a proof of isPropX. We consider the equivalence

relation R on Bool, x1Rx2 = x1 ≡ x2 + X. By [ ] being a split epimorphism, we obtain

‖
∑

rep:Bool/R→Bool

∏
q:Bool/R [rep q] ≡ q‖. Using the elimination principle of propositional

truncation, it is sufficient to construct a constant function of type:

 ∑

rep:Bool/R→Bool

∏

q:Bool/R

[rep q] ≡ q


→ X + ¬X.

Let rep : Bool/R → Bool with [rep q] ≡ q for all q : Bool/R. We have [rep [x]] ≡ [x] for

all x : Bool, which by Proposition 2 implies ‖rep [x]R x‖.



J. Chapman, T. Uustalu and N. Veltri 8

Note now that the following implication (a particular instance of axiom of choice on

Bool) holds:

acBool :

(
∏

x:Bool

‖rep [x]R x‖

)
→

∥∥∥∥∥
∏

x:Bool

rep [x]R x

∥∥∥∥∥

acBool r = lift2 (λ r1 r2. |λx. if x then r1 else r2|) p (r true) (r false)

where if true then r1 else r2 = r1 and if false then r1 else r2 = r2, and lift2 is the two-

argument version of lift. The compatibility proof p is immediate, since the return type is

a proposition.

We now construct a function of type ‖
∏
x:Bool rep [x]R x‖ → X + ¬X. It is sufficient

to define a function (
∏
x:Bool rep [x]R x) → X + ¬X (it will be constant, since the type

X +¬X is a proposition, if X is a proposition), so we suppose rep [x]Rx for all x : Bool.

We analyze the (decidable) equality rep [true] ≡ rep [false] on Bool. If it holds, then we

have true R false and therefore an inhabitant of X. If it does not hold, we have an

inhabitant of ¬X: indeed, suppose x : X, then trueR false, so [true] ≡ [false] and therefore

rep [true] ≡ rep [false], which contradicts the hypothesis.

We already noted that not all quotients are effective. In fact, postulating effectiveness

for all quotients implies LEM (Maietti 1999). But the quotient we are considering in this

paper, namely DX/≈ for a type X, is indeed effective. Notice that, by Proposition 2, it

suffices to prove that ‖c1 ≈ c2‖ → c1 ≈ c2 for all c1, c2 : DX.

Lemma 1. For all types X and c1, c2 : DX, there exists a constant endofunction on

c1 ≈ c2. Therefore, the type ‖c1 ≈ c2‖ → c1 ≈ c2 is inhabited.

Proof. Let X be a type and c1, c2 : DX. We consider the following function.

canon≈ : c1 ≈ c2 → c1 ≈ c2

canon≈ (↓≈ (now↓ p1) p2) = ↓≈ (now↓ p1) p2

canon≈ (↓≈ (later↓ p1) (now↓ p2)) = ↓≈ (later↓ p1) (now↓p2)

canon≈ (↓≈ (later↓ p1) (later↓ p2)) = later≈ (canon≈ (↓≈ p1 p2))

canon≈ (later≈ p) = later≈ (canon≈ p).

The function canon≈ canonizes a given weak bisimilarity proof by maximizing the number

of applications of the constructor later≈. This function is indeed constant, i.e., one can

prove
∏
p1,p2:c1≈c2

p1 ≅ p2 for all c1, c2 : DX, where the relation ≅ is strong bisimilarity

on proofs of c1 ≈ c2, coinductively defined by the rules:

↓≈ p1 p2 ≅ ↓≈ p1 p2

p1 ≅ p2

later≈ p1 ≅ later≈ p2

Similarly to extensionality of delayed computations, we assume that strongly bisimilar

weak bisimilarity proofs are equal, i.e., that we have an inhabitant for

≈Ext =
∏

{X:U}

∏

{c1,c2:DX}

∏

p1,p2:c1≈c2

p1 ≅ p2 → p1 ≡ p2.
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For the quotient DX/≈′, no result similar to Lemma 1 is needed. In fact, since the

relation ≈′ is propositional, we immediately obtain that DX/≈′ is effective.

5. Multiplication: What Goes Wrong?

Consider now the type functor D, defined by DX = DX/≈. Let us try to equip it

with a monad structure. Let X be a type. As the unit η : X → DX/≈, we can take

[ ] ◦ now. But when we try to construct a multiplication µ : D (DX/≈)/≈ → DX/≈,

we get stuck immediately. Indeed, the multiplication µ must be of the form liftµ′ p for

some µ′ : D (DX/≈) → DX/≈ with p : compatµ′, but we cannot define such µ′ and

p. The problem lies in the coinductive nature of the delay datatype. A function of type

D (DX/≈) → DX/≈ should send a converging computation to its converging value and a

non-terminating one to the equivalence class of non-termination. This discontinuity makes

constructing such a function problematic. Moreover, one can show that a right inverse

of [ ] : DX → DX/≈, i.e., a canonical choice of representative for each equivalence class

in DX/≈, is not definable (Nuo 2015, Ch. 5.4.3). Therefore, we cannot even construct

µ′ as a composition [ ] ◦ µ′′ with µ′′ : D (DX/≈) → DX, since we do not know how to

define µ′′(now q) for q : DX/≈.

A function µ′ would be constructible, if the type D (DX/≈) were a quotient of D (DX)

by the equivalence relation D≈ (remember that D≈ is a synonym of ∼≈, the functorial

lifting of ≈ from DX to D (DX)). In fact, the function [ ] ◦ µ : D (DX) → DX/≈ is

D≈-compatible, since x1(D≈)x2 → µx1 ≈ µx2, and therefore the elimination principle

would do the job. But how “different” are D (DX/≈) and the quotient D (DX)/D≈?

More generally, how “different” are D (X/R) and the quotient DX/DR, for a given type

X and equivalence relation R on X?

5.1. A Limitation of Quotients

A function θD : DX/DR → D (X/R) always exists, θD = lift (D [ ]) p. The compatibility

proof p follows directly from c1(DR)c2 → D [ ] c1 ∼ D [ ] c2. But an inverse function

ψD : D (X/R) → DX/DR is not definable. This phenomenon can be spotted more

generally in non-wellfounded trees, i.e., the canonical function θT : T X/T R→ T (X/R)

does not have an inverse, if T X is coinductively defined, where T R is the functorial

lifting of R to T X. On the other hand, a large class of purely inductive types, namely,

the datatypes of wellfounded trees where branching is finite, is free of this problem. As

an example, for binary trees the inverse ψBTree : BTree (X/R) → BTreeX/BTreeR of

θBTree : BTreeX/BTreeR→ BTree (X/R) is defined as follows:

ψBTree : BTree (X/R) → BTreeX/BTreeR

ψBTree (leaf q) = lift (λx. [leaf x]) pleaf q

ψBTree (node t1 t2) = lift2 (λ s1 s2. [node s1 s2]) pnode (ψ
BTree t1) (ψ

BTree t2)

where lift2 is the two-argument version of lift. The simple compatibility proofs pleaf and

pnode are omitted. Wellfounded non-finitely branching trees are affected by the same

issues that non-wellfounded trees have. And in general, for a W-type (a general-form
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wellfounded tree type) T , the function θT : T X/T R → T (X/R) cannot be inverted,

since for function spaces the function θY→ : (Y → X)/(Y → R) → (Y → X/R) cannot

be inverted. Invertibility of the function θY→ : (Y → X)/(Y → R) → (Y → X/R),

for all types Y , X and equivalence relation R on X, has been analyzed in the Calculus

of Inductive Constructions (Chicli et al. 2003). It turns out that surjectivity of θY→ is

logically equivalent to the full axiom of choice (AC)†, i.e., the following type is inhabited:

AC =
∏

{X,Y :U}

∏

P :X→Y→U


∏

x:X

∥∥∥∥∥∥

∑

y:Y

P x y

∥∥∥∥∥∥


→

∥∥∥∥∥∥

∑

f :X→Y

∏

x:X

P x (f x)

∥∥∥∥∥∥
.

Together with weak effectiveness (Proposition 2), AC implies not only surjectivity of θY→,

but also the existence of an inverse ψY→ : (Y → X/R) → (Y → X)/(Y → R). We refrain

from proving these facts, but we prove Lemma 2 and Proposition 5, which are weaker

statements, but have analogous proofs.

5.2. A Costly Solution

The existence of an inverse ψY→ of θY→ would immediately allow us to define the bind

operation for D. Let us consider the case where X is DX and R is weak bisimilarity, so

ψY→ : (Y → DX/≈) → (Y → DX)/(Y → ≈). We define

bind : (Y → DX/≈) → DY/≈ → DX/≈

bind f q = lift2 (λ g c. [bind g c ]) p (ψ
Y→ f) q

where bind is the bind operation of the unquotiented delay monad. The compatibility

proof p is obtained from the fact that bind g1 c1 ≈ bind g2 c2 if c1 ≈ c2 and g1 y ≈ g2 y for

all y : Y .

AC is a controversial semi-classical axiom, generally not accepted in constructive sys-

tems (Martin-Löf 2006). We reject it too, since in our system the axiom of choice implies

the law of excluded middle.

Proposition 4. AC implies LEM.

Proof. Assume AC. With a proof analogous to that of Lemma 2, we can prove that the

function λ f. [ ] ◦ f : (X → Y ) → (X → Y/R) is surjective, for any types X, Y and

equivalence relation R on Y . In particular, given a type X and an equivalence relation R

on X, we have that the type
∏
g:X/R→X/R

∥∥∥
∑
f :X/R→X [ ] ◦ f ≡ g

∥∥∥ is inhabited. Instan-

tiating g with the identity function on X/R, we obtain
∥∥∥
∑
f :X/R→X

∏
q:X/R [f q] ≡ q

∥∥∥,
i.e., the constructor [ ] is a split epimorphism for all quotients X/R. By Proposition 3,

this implies LEM.

† Notice that AC is fundamentally different from the intuitionistic axiom of choice:

∏

{X,Y :U}

∏

P :X→Y →U





∏

x:X

∑

y:Y

P x y



 →

∑

f :X→Y

∏

x:X

P x (f x)

which is provable in type theory.
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In the following sections, we show that the weaker axiom of countable choice is already

enough for constructing a multiplication for D. Countable choice does not imply excluded

middle and constructive mathematicians like it more (Troelstra and Van Dalen 1988,

Ch. 4). On the other hand, there exist models of type theory in which countable choice

does not hold (Coquand et al. 2017).

6. Axiom of Countable Choice and Streams of Quotients

The axiom of countable choice (ACω) is a specific instance of AC where the binary

predicate P has its first argument in N:

ACω =
∏

{X:U}

∏

P :N→X→U

(
∏

n:N

∥∥∥∥∥
∑

x:X

P nx

∥∥∥∥∥

)
→

∥∥∥∥∥∥

∑

f :N→X

∏

n:N

P n (f n)

∥∥∥∥∥∥
.

We also introduce a logically equivalent formulation of ACω that will be used in Propo-

sition 5:

ACω2 =
∏

P :N→U

(
∏

n:N

‖P n‖

)
→

∥∥∥∥∥
∏

n:N

P n

∥∥∥∥∥ .

Let X be a type and R an equivalence relation on it. We show that ACω implies the

surjectivity of the function [ ]N : (N → X) → (N → X/R), [f ]N n = [f n]. This in turn

implies the definability of a function ψN : (N → X/R) → (N → X)/(N → R) inverting

the canonical function θN = lift [ ]N soundN where

soundN : compat [ ]N

soundN r = funext (λn. sound (r n))

using funext : FunExt.

Lemma 2. Assume acω : ACω. Then [ ]N is surjective.

Proof. Given any g : N → X/R, we construct a term eg :
∥∥∥
∑
f :N→X [f ]N ≡ g

∥∥∥. Since
we are assuming the principle of function extensionality, it is sufficient to find a term

e′g :
∥∥∥
∑
f :N→X

∏
n:N [f n] ≡ g n

∥∥∥. Define P : N → X → U by P nx = [x] ≡ g n. We take

e′g = acω P (λn. [ ]surj (g n)), with [ ]surj introduced in Proposition 1.

Proposition 5. Assume ACω. Then θN : (N → X)/(N → R) → (N → X/R) is invert-

ible.

Proof. We construct a term

r :
∑

ψN:(N→X/R)→(N→X)/(N→R)

∏

g:N→X/R

θN (ψN g) ≡ g.
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Given any g : N → X/R, we define:

h′g :


 ∑

f :N→X

[f ]N ≡ g


→

∑

q:(N→X)/(N→R)

θN q ≡ g

h′g (f, p) =
(
[f ], trans (liftβ [ ]

N soundN f) p
)
.

The function h′g is constant. Let f1, f2 : N → X with p1 : [f1]
N ≡ g and p2 : [f2]

N ≡ g.

By uniqueness of identity proofs, it is sufficient to show [f1] ≡ [f2]. By symmetry and

transitivity, we get [f1]
N ≡ [f2]

N. We construct the following series of implications:

[f1]
N ≡ [f2]

N →
∏

n:N

[f1 n] ≡ [f2 n]

→
∏

n:N

‖(f1 n)R (f2 n)‖ (by weak effectiveness)

→

∥∥∥∥∥
∏

n:N

(f1 n)R (f2 n)

∥∥∥∥∥ (by ACω and ACω → ACω2)

= ‖f1 (N → R) f2‖

→ [f1] ≡ [f2].

The last implication is given by the elimination principle of propositional truncation

applied to sound, which is a constant function by uniqueness of identity proofs. Therefore

h′g is constant and we obtain a function

hg :

∥∥∥∥∥∥

∑

f :N→X

[f ]N ≡ g

∥∥∥∥∥∥
→

∑

q:(N→X)/(N→R)

θN q ≡ g.

We get hg eg :
∑
q:(N→X)/(N→R) θ

N q ≡ g, with eg constructed in Lemma 2. We take

r = (λg. fst (hg eg), λg. snd (hg eg)) and ψ
N = fst r.

We now prove that ψN (θN q) ≡ q for all q : (N → X)/(N → R). It is sufficient to prove

this equality for q = [f ] with f : N → X. By the computation rule of quotients, we have

to show ψN [f ]N ≡ [f ]. This is true, since

ψN [f ]N = fst (h[f ]N e[f ]N) ≡ fst (h[f ]N |f, refl|) ≡ fst (h′[f ]N(f, refl)) = [f ].

Corollary 1. Assume ACω. The type N → X/R is the carrier of a quotient of N → X by

the equivalence relation N → R. The constructor is [ ]N. We have the following dependent

eliminator and computation rule: for every family of types Y : (N → X/R) → Uk and

for every function h :
∏
f :N→X Y [f ]N with proof p : dcompatN h, there exists a function

liftN h p :
∏
g:N→X/R Y g with the property that liftN h p [f ]N ≡ h f for all f : N → X,

where

dcompatN h =
∏

{f1,f2:N→X}

∏

r:f1 (N→R) f2

substY (soundN r) (h f1) ≡ h f2.
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7. Multiplication: A Solution Using ACω

We can now build the desired monad structure on D using the results proved in Section

6. In particular, we can define µ : D (DX/≈)/≈ → DX/≈. We rely on ACω.

7.1. Delayed Computations as Streams

In order to use the results of Section 6, we think of possibly non-terminating computations

as streams. More precisely, let X be a type and c : DX. Now c can be thought of as a

stream ε c : N → X + 1 with at most one value element in the left summand X.

ε : DX → N → X + 1

ε (now x) zero = inlx

ε (later c) zero = inr ⋆

ε (now x) (sucn) = inr ⋆

ε (later c) (sucn) = ε c n.

Conversely, from a stream f : N → X + 1, one can construct a computation π f : DX.

This computation corresponds to the “truncation” of the stream to its first value in X.

π : (N → X + 1) → DX

π f = case f zero of

inlx 7→ now x

inr ⋆ 7→ later (π (f ◦ suc)).

We see that DX corresponds to a subset of N → X +1 in the sense that, for all c : DX,

π (ε c) ∼ c, and therefore π(ε c) ≡ c by delayed computation extensionality.

Let R be an equivalence relation on X. It is the case that the canonical function

θ+1 : (X + 1)/(R + 1) → X/R + 1 has an inverse ψ+1 whose construction is similar to

the construction of ψBTree for binary trees in Section 5. Therefore, for all q : D (X/R), we

have that π (θ+1 ◦ (ψ+1 ◦ ε q)) ≡ q.

We define [ ]D : DX → D (X/R) by [ ]D = D [ ]. This function is compatible with the

relation DR, i.e., there exists a term soundD : compat [ ]D.

Proposition 6. The type D (X/R) is the carrier of a quotient of DX by the equivalence

relation DR. The constructor is [ ]D and we have the following dependent eliminator and

computation rule: for every family of types Y : D (X/R) → Uk and for every function

h :
∏
c:DX Y [c]D with p : dcompatD h, there exists a function liftD h p :

∏
q:D (X/R) Y q

such that liftD h p [c]D ≡ h c for all c : DX, where

dcompatD h =
∏

{c1,c2:DX}

∏

r:c1(DR) c2

substY (soundD r) (h c1) ≡ h c2.

Proof. We only define the dependent eliminator. Let h :
∏
x:DX Y [x]D with p : dcompatD h,

and q : D (X/R). Let g : N → (X + 1)/(R+ 1), g = ψ+1 ◦ ε q, so π (θ+1 ◦ g) ≡ q.

We will prove Y (π (θ+1 ◦ g)). By Corollary 1, it is sufficient to construct a function

h′ :
∏
f :N→X+1 Y (π (θ+1 ◦ [f ]N)) together with a proof r : dcompatN h′. One can easily
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construct a proof s : [π f ]D ≡ π (θ+1 ◦ [f ]N), so we take h′ f = substY s (h (π f)). A proof

r : dcompatN h′ can be constructed by observing that, for all f1, f2 : N → X+1 satisfying

f1 (N → R+ 1) f2, one can prove π f1 (DR) π f2.

7.2. Construction of µ

Using the elimination rule of the quotient D (X/R) defined in Proposition 6, we can

finally define the multiplication µ of D.

D (DX)
µ

//

[ ]D=D [ ]

��

[ ]

xx

DX

[ ]

��
D (DX)/D≈

θD

))
∼= D (DX/≈)

[ ]

��

ψD

ii

liftD ([ ]◦µ) p
// DX/≈

D (DX/≈)/≈

µ=lift (liftD ([ ] ◦µ) p) p′

77

To make sense of the above diagram we must construct construct two compatibility proofs

p : compatD ([ ]◦µ) and p′ : compat (liftD ([ ] ◦ µ) p), where compatD is the non-dependent

version of dcompatD.

The first proof is easy, since c1(D≈)c2 → µ c1 ≈ µ c2 for all c1, c2 : D (DX).

It is considerably more complicated to prove compatibility of the second function. Let

q1, q2 : D (DX/≈). We have to show q1 ≈ q2 → liftD ([ ] ◦ µ) p q1 ≡ liftD ([ ] ◦ µ) p q2.

By the elimination principle of the quotient D (DX/≈), described in Proposition 6, it is

sufficient to prove [x1]
D ≈ [x2]

D → liftD ([ ] ◦ µ) p [c1]
D ≡ liftD ([ ] ◦ µ) p [c2]

D for some

c1, c2 : D (DX). Applying the computation rule of the quotient D (DX/≈) and spelling

out the definition of the constructor [ ]D, it remains to show D [ ] c1 ≈ D [ ] c2 → [µ c1] ≡

[µ c2], which holds, if one can prove D [ ] c1 ≈ D [ ] c2 → µ c1 ≈ µ c2. This is provable

thanks to Lemma 1. It is easy to see why Lemma 1 is important for completing the

compatibility proof of liftD ([ ] ◦ µ) p. The difficult case in the proof of D [ ] c1 ≈ D [ ] c2 →

µ c1 ≈ µ c2 is the case where c1 = now y1 and c2 = now y2, so we are given an assumption

of type [y1] ≡ [y2]. From this, by Lemma 1, we obtain µ (now y1) = y1 ≈ y2 = µ (now y2).

Theorem 1. Assuming ACω, the type functor D, defined by DX = DX/≈, is a monad.

8. A Monad or An Arrow?

Hughes (2000) has proposed arrows as a generalization of monads. Jacobs et al. (2009)

have sorted out their mathematical theory.

We have seen that it takes a semi-classical principle to show that quotienting the func-

tor D by weak bisimilarity preserves its monad structure. In contrast, quotienting the
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corresponding profunctor KD, defined by KDX Y = X → DY , by pointwise weak bisim-

ilarity can easily be shown to preserve its (strong) arrow structure (whose Freyd category

is isomorphic to the Kleisli category of the monad) without invoking such principles.

Indeed, the arrow structure on KD is given by pure : (X → Y ) → KDX Y , pure f = η◦f

and ≪: KDY Z → KDX Y → KDX Z, ℓ≪ k = bind ℓ ◦ k.

Now, define the quotiented profunctor by KDX Y = (X → DY )/(X → ≈). We can

define pure : (X → Y ) → KDX Y straightforwardly by pure f = [puref ]. But we can also

construct ≪ : KDY Z → KDX Y → KDX Z as ℓ≪ k = lift2 (≪) p ℓ k, where p is an

easy proof of ℓ1 (Y → ≈) ℓ2 → k1 (X → ≈) k2 → (ℓ1 ≪ k1) (X → ≈) (ℓ2 ≪ k2).

This works entirely painlessly, as there is no need in this construction for a coercion

(X → Y/≈) → (X → Y )/(X → ≈) (cf. the discussion above in Section 5). From the

beginning, we quotient the relevant function types here rather than their codomains.

There are some further indications that quotienting the arrow may be a sensible alter-

native to quotienting the monad. In particular, the work by Cockett et al. (2012) suggests

that working with finer quotients of the arrow considered here may yield a setting for

dealing with computational complexity rather than computability constructively.

9. Quotiented Delay Delivers Free ωcppos

In this section, we show that the type DX/≈ is the free ω-complete pointed partial order

over X. First we review some definitions.

9.1. Preliminaries

A partially ordered set, or poset, is a type X with a binary relation ≤ : X → X → U

which is reflexive, transitive and antisymmetric. We also require the binary relation to

be propositional, i.e., we ask for the type isProp (x ≤ y) to be inhabited, for all x, y : X.

Notice that this requirement agrees with the categorical view of posets as categories with

at most one arrow between any two objects. A poset (X,≤) is pointed if it has a least

element, i.e., if there exists ⊥ : X with ⊥ ≤ x for all x : X.

A morphism between two posets (X,≤) and (Y,⊑) is an order-preserving function

f : X → Y , that is f x1 ⊑ f x2 if x1 ≤ x2. A morphism between two pointed posets

(X,≤,⊥X) and (Y,⊑,⊥Y ) is strict if it preserves the least element, i.e., f ⊥X ⊑ ⊥Y .

A ω-complete partial order is a poset (X,≤) in which every chain, i.e., an increasing

stream, has a supremum. This means that, given a stream s : N → X with s n ≤ s (sucn)

for all n : N, there exists an element ∪s : X which is an upper bound for s, i.e., s n ≤ ∪s

for all n : N, and ∪s ≤ x for all x : X that are upper bounds for s. We define isIncr s =∏
n:N s n ≤ s (sucn). A ω-complete pointed partial order is a partial order that is both

pointed and ω-complete. From now on we refer to a ω-complete pointed partial orders

simply as ωcppos.

A morphism between two ωcppos (X,≤,⊥X ,∪) and (Y,⊑,⊥Y ,⊔) is an order-preserving

and strict function f : X → Y that also preserves joins of chains, i.e., f (∪s) ⊑ ⊔(f ◦ s).

A ωcppo morphism is also called a continuous function.

The free ωcppo over a type X is a ωcppo (X̂,≤,⊥X̂ ,∪) such that there exists an



J. Chapman, T. Uustalu and N. Veltri 16

injection function i : X → X̂ and the following universal property holds. Given a ωcppo

(Y,⊑,⊥Y ,⊔) and a function f : X → Y , there exists a unique continuous function

f̂ : (X̂,≤,⊥X̂ ,∪) → (Y,⊑,⊥Y ,⊔) such that f̂ (i x) ≡ f x for all x : X.

Classically, the free ωcppo over X is the maybe datatype X + 1, which is typically

pictured as a flat domain as follows:

inlx0 inlx1 inlx2 . . .

inr ∗

≤ ≤ ≤ ≤

where x0, x1, . . . are the inhabitants ofX. Notice that constructivelyX+1 is not a ωcppo.

In fact, there is no way of constructing joins of general chains, since this is equivalent to

a variant of the limited principle of omniscience (LPO): given a chain s : N → X + 1,

either s n ≡ inr ∗ for all n : N, or there exists n : N and x : X such that s n ≡ inlx.

9.2. Free ωcppo Structure up to ≈

In this subsection, we show that the type DX is endowed with a ωcppo structure up to

≈. Moreover, it is the free ωcppo up to ≈ over X. The construction performed in this

subsection will be lifted to the quotient DX/≈ in Section 9.3. Following Capretta (2005),

we introduce an information order on DX:

c1 ↓ x c2 ↓ x

c1 ⊑ c2

c1 ⊑ c2

later c1 ⊑ later c2

c1 ⊑ c2

later c1 ⊑ c2

The type c1 ⊑ c2 is inhabited when c1 ≈ c2, but also when c1 has some (possibly

infinitely many) laters more than c2. The relation ⊑ is reflexive and transitive. Moreover,

it is antisymmetric up to ≈, i.e., c1 ⊑ c2 → c2 ⊑ c1 → c1 ≈ c2, for all c1, c2 : DX. Notice

also that the relation ⊑ is not propositional. The least element is the non-terminating

computation never, corecursively defined as never = later never.

We define a binary operation race on DX that returns the computation with the least

number of laters. If two computations c1 and c2 converge simultaneously, race c1 c2 returns

c1.

race : DX → DX → DX

race (now x) c = now x

race (later c) (now x) = now x

race (later c1) (later c2) = later (race c1 c2).

Notice that generally race c1 c2 is not an upper bound of c1 and c2, since the two com-

putations may converge to different values. The binary operation race can be extended

to an ω-operation ωrace. The latter constructs the first converging element of a stream

of computations. It is defined using the auxiliary operation ωrace′:

ωrace′ : (N → DX) → N → DX → DX

ωrace′ s n (now x) = now x

ωrace′ s n (later c) = later (ωrace′ s (sucn) (race c (s n))).
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The operation ωrace′, when applied to a stream s : N → DX, a number n : N and a com-

putation c : DX, constructs the first converging element of the stream

s′ : N → DX, with s′ zero = c and s′ (suc k) = s (n + k). The operation ωrace is con-

structed by instantiating ωrace′ with n = zero and c = never. In this way, we have that

the first converging element of s is the first converging element of s′, since never diverges.

ωrace : (N → DX) → DX

ωrace s = ωrace′ s zero never.

Generally ωrace s is not an upper bound of s. But if the stream s is increasing, then

ωrace s is the join of s, i.e., the following terms exist:

ωraceisUB :
∏

s:N→DX

∏

i:isIncr s

∏

n:N

s n ⊑ ωrace s

ωraceisSupremum :
∏

s:N→DX

∏

i:isIncr s

∏

c:DX

(
∏

n:N

s n ⊑ c

)
→ ωrace s ⊑ c.

So far we have showed that (DX,⊑, never, ωrace) is a ωcppo up to ≈. We prove that

it is the free one over X. Let (Y,≤,⊥,∪) be a ωcppo and f : X → Y a function. Every

computation in DX defines a stream in Y .

f : DX → N → Y

f(now x) n = f x

f(later c) zero = ⊥

f(later c) (sucn) = f c n.

Given a computation c = latern (now x) (if n = ω, then c = never), the chain f c looks as

follows:

⊥ ⊥ . . . ⊥︸ ︷︷ ︸
n

f x f x f x . . .

Since the latter is increasing wrt. ≤, it is possible to extend the function f to a function

f̂ : DX → Y , f̂ c = ∪(f c). We have that f̂ (now x) ≡ f x. Moreover f̂ is continuous, i.e.,

the following terms exist:

hatOrderpreserving :
∏

c1,c2:DX

c1 ⊑ c2 → f̂ c1 ≤ f̂ c2

hatStrict : f̂ never ≤ ⊥

hatContinuous :
∏

s:N→DX

∏

i:isIncr s

f̂ (ωrace s) ≤ ∪(f̂ ◦ s).

(1)

The last statement makes sense because, if s is increasing, then f̂ ◦ s is also increas-

ing, thanks to hatOrderpreserving. Moreover, f̂ is ≈-compatible and it is the unique ≈-

compatible map of the form g : DX → Y that satisfies the inequalities in (1) and such

that g (now x) ≡ f x.
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9.3. Lifting the Construction to DX/≈

The first step we need to perform in order to lift all the constructions of Section 9.2 to

DX/≈ is the lifting of the relation ⊑. Unfortunately, this cannot be done directly. In

fact, if we try to define a binary relation ⊑≈ on DX/≈ as follows:

⊑≈ : DX/≈ → DX/≈ → U

⊑≈ = lift2 ⊑ p

we realize that we need to construct a term p inhabiting the type∏
{c1,c2,d1,d2:DX} c1 ≈ d1 → c2 ≈ d2 → c1 ⊑ c2 ≡ d1 ⊑ d2, which is not a true statement.

In fact, let c1 = c2 = now x and d1 = d2 = later (now x), then the type c1 ⊑ c2 is a

proposition, while the type d1 ⊑ d2 is not.

In order to overcome this issue, we lift the propositional truncation of the relation ⊑

instead of the relation ⊑ directly, as follows:

⊑≈ : DX/≈ → DX/≈ → U

⊑≈ = lift2 (λ c1, c2. ‖c1 ⊑ c2‖) p

where p is a proof of
∏

{c1,c2,d1,d2:DX} c1 ≈ d1 → c2 ≈ d2 → ‖c1 ⊑ c2‖ ≡ ‖d1 ⊑ d2‖,

which can be proved with the help of proposition extensionality. The relation ⊑≈ is

propositional and the proofs of reflexivity, transitivity and antisymmetry up to ≈ of the

relation ⊑ lift straightforwardly to the relation ⊑≈.

Remark 2. There is an alternative way of lifting ⊑ to DX/≈. Following Benton et

al. (2009), we introduce a binary relation ⊑′ on DX:

c ↓ x

now x ⊑′ c

c1 ⊑′ c2

later c1 ⊑′ later c2

c ⊑′ now x

later c ⊑′ now x

Notice the similarity with the definition of ≈′ in Remark 1. The relation ⊑′ is equivalent

to ⊑, but it is propositional. This implies that ⊑′ is liftable to DX/≈:

⊑′
≈ : DX/≈ → DX/≈ → U

⊑′
≈ = lift2 ⊑

′ p

where p is a proof of
∏

{c1,c2,d1,d2:DX} c1 ≈ d1 → c2 ≈ d2 → c1 ⊑′ c2 ≡ d1 ⊑′ d2, which is

a true statement. We prefer to work with ⊑ instead of ⊑′ for the same reasons specified

in Remark 1 about ≈ and ≈′.

We now lift the operator ωrace to the quotient. We find ourselves in a situation similar

to the one described in Section 5, where we noticed that infinite datatypes (in this case

the type of streams) do not commute with quotienting. To deal with this issue we rely

on the axiom of countable choice, more precisely on the eliminator liftN described in

Corollary 1.

ωrace≈ :
∏

s:N→DX/≈

isIncr≈ s→ DX/≈

ωrace≈ = liftN (λs. λi. [ωrace s]) p

where p is a proof of compatibility of the function λs. λi. [ωrace s] with the relation
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N → ≈, which is indeed the case since the input stream is increasing wrt. the relation

⊑≈. The proofs attesting that (DX/≈,⊑≈, [never], ωrace≈) is the free ωcppo over X are

obtained by directly lifting the corresponding proofs described in Section 9.2 to DX/≈

with the help of the elimination principle constructed in Corollary 1. For the technical

details we refer to our full Agda formalization.

Theorem 2. Assuming ACω, the type DX/≈ is the free ωcppo on X.

10. Partiality in Homotopy Type Theory

The quotiented delay monad constitutes a possible way of representing partiality as

an effect in type theory. Recently, Altenkirch et al. (2017) have constructed another

datatype A for partiality in homotopy type theory. Their construction makes use of

higher inductive-inductive types and resembles the implementation of Cauchy reals in the

HoTT book (Univalent Foundations Program 2013, Ch. 11.3). The datatype A delivers

free ωcppos by construction and it carries a monad structure without recourse to choice

principles. Higher inductive-inductive types, rather than ordinary higher inductive types,

are needed because the join constructor ∪ takes as argument a proof that a given stream

is increasing. So the type AX has to be introduced mutually with the partial order ≤

on it. Altenkirch et al. proved that AX is isomorphic to DX/≈ under the assumption

of countable choice.

In this section, we present yet another datatype for partiality in homotopy type theory,

which does not make use of choice principles or higher inductive-inductive definitions.

It is constructed using ordinary higher inductive types (Univalent Foundations Program

2013, Ch. 6.13). As a consequence, our partiality datatype can be directly implemented

in proof assistants such as Coq, which currently lack support for inductive-inductive

types, and may be added to the HoTT library (Bauer et al. 2017). The datatype that

we present in this section is isomorphic to A and therefore, under the assumption of

countable choice, also isomorphic to the quotiented delay datatype.

Our construction is based on the implementation of free countably-complete join

semilattices as higher inductive types. A countably-complete join semilattice is a par-

tially ordered set (X,≤) with a bottom element ⊥ : X and a countable join operation∨
: (N → X) → X. Notice that the join operation

∨
is defined for all streams, not just

the increasing ones. A countably-complete join semilattice morphism between countably-

complete join semilattices X and Y is a monotone function between X and Y which

preserves bottom and joins.

Countably-complete join semilattices admit an equational presentation as an infinitary

algebraic theory. In homotopy type theory, it is possible to introduce the free object of

an algebraic theory as a higher inductive type. This procedure is exemplified in the con-

struction of the free group over a type (Univalent Foundations Program 2013, Ch. 6.11).

Let X be a type, the free countably-complete join semilattice on X is defined similarly

as the following higher inductive type:

x : X
η x : P∞X ⊥ : P∞X

s : N → P∞X∨
s : P∞X
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x ∨ y ≡ y ∨ x x ∨ (y ∨ z) ≡ (x ∨ y) ∨ z x ∨ x ≡ x x ∨ ⊥ ≡ x

∏
n:N s n ∨

∨
s ≡

∨
s

∨
s ∨ x ≡

∨
(λn. s n ∨ x) the 0-truncation constructor

where the binary join operation is derived as x ∨ y =
∨
(x, y, y, y, . . . ). We define

x ≤ y = x ∨ y ≡ y.

The type P∞X is the free countably-complete join semilattice on X by construction.

In the types of its constructors, it is possible to identify the algebraic theory of countably-

complete join semilattices. The 0-truncation constructor, stating that the type x ≡ y is

a proposition for all x, y : P∞X, forces P∞X to be a set, i.e., to satisfy the principle

of uniqueness of identity proofs UIP. The dependent eliminator of P∞X is an induction

principle from which freeness (the unique mapping property) can be derived.

It is a well-known fact that the free countably-complete join semilattice on a type X

is the countable powerset of X, i.e., the type whose elements are the subsets of X with

countable cardinality. The order ≤ is the inclusion order.

We define S = P∞1. This type has ⊤ = η ∗ as its top element, as we can prove by

induction that x ≤ ⊤ for all x : S. The type S is the countable powerset of 1. It is

important to realize that S is not isomorphic to Bool. ⊥ corresponds to the empty subset

and ⊤ corresponds to the full set. We can prove that x 6≡ ⊤ implies x ≡ ⊥ for all x : S.

But we cannot decide whether x ≡ ⊥ or x ≡ ⊤. For a general s : N → S, even if s n is

either ⊥ or ⊤ for all n : N, we cannot decide whether s n ≡ ⊤ for at least one n : N,

unless we assume LPO.

S happens to be also the initial σ-frame, i.e., a countably-complete join semilattice

with finite meets which distribute over joins. In fact, ⊤ is the top element and binary

meets can be defined by induction.

S has an interesting relation with the free ωcppo on 1. If the latter exists, then they

are isomorphic.

Proposition 7. The free ωcppo on 1 is also the free countably-complete join semilattice

on 1.

Proof. Let (X,≤,⊥,∪) be the free ωcppo on 1. We only need to construct a countable

join operation
∨
.

For any x : X, by the universal property of X, there exists a unique continuous map

fx : X →
∑
y:X x ≤ y, since the latter is a ωcppo over 1. We can define a binary join

operation as x ∨ y = fst (fx y). The countable join operation is defined as
∨
s = ∪s′,

where the stream s′ is the majorization of s defined inductively by s′ zero = s zero and

s′ (sucn) = s′ n∨s (sucn). The stream s′ is increasing and can be supplied as an argument

of the join operation ∪ of X.

It is not difficult to show that the type X, together with the data described above, is

a countably-complete join semilattice on 1.

Let Y be another countably-complete join semilattice on 1. Notice that Y is also

a ωcppo on 1. Therefore, by the universal property of X, there exists a unique ωcppo

morphism between X and Y . It is not difficult to prove that the latter is also a countably-

complete join semilattice morphism and, moreover, the only existing one.

Notice that the free ωcppo on a general X is not the free countably-complete join
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semilattice onX since it does not have binary joins. We noticed this already in Section 9.2

when we introduced the binary operation race on DX. As a consequence, the majorization

of a stream presented in the proof of Proposition 7 is not definable.

From Theorem 2 and Proposition 7, we have that S is isomorphic to D 1/≈, under the

assumption of countable choice. Moreover it is isomorphic to A 1.

We define PSX =
∑
x:S (x ≡ ⊤ → X). We show that PS carries a monad structure

without the requirement of choice principles.

Proposition 8. PS is a monad.

Proof. Notice that PS is a functor specified by a container (Abbott et al. 2005): the set

of shapes is S = S, while the set of positions is P x = x ≡ ⊤, for all x : S. Therefore, PS

carries a monad structure if and only if it comes with certain extra structure (Ahman et

al. 2014), namely

e : S

• :
∏

x:S

(x ≡ ⊤ → S) → S

q0 :
∏

x:S

∏

v:x≡⊤→S

x • v ≡ ⊤ → x ≡ ⊤

q1 :
∏

x:S

∏

v:x≡⊤→S

∏

p:x•v≡⊤

v (q0 x v p) ≡ ⊤

satisfying the equations

x • (λ . e) ≡ x e • (λ . x) ≡ x

(x • v) • (λp.w (q0 x v p) (q1 x v p)) ≡ x • (λp. v p • w p).

Notice that, in general, more equalities between positions are required to hold. In our

case, these equations are all trivial, since the type x ≡ ⊤ is a proposition, for all x : S.

We take e = ⊤, while the function • is defined by induction on its first argument:

⊤ • v = v refl

⊥ • v = ⊥
∨
s • v =

∨
(λn. s n • v′ n)

where, in the last row, v′ :
∏
n:N (s n ≡ ⊤ → S) is obtained from v :

∨
s ≡ ⊤ → S by

noticing that s n ≡ ⊤ implies
∨
s ≡ ⊤, for all n : N. It is not difficult to see that the

the function • “respects equality”, i.e., that terms made equal by the 1-constructors of

S have the same image under •.

The terms q0 and q1 are constructed by induction on their first argument x : S. The

equation e • (λ . x) ≡ x holds definitionally. The other two equations are proved by

induction on the argument x : S.

We can prove that, similarly to the quotiented delay monad, the monad PS delivers

free ωcppos. Instead of countable choice, we have to assume that S is the free ωcppo on
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1. We know that for this assumption to hold, it suffices that the free ωcppo on 1 exists,

by Proposition 7.

Proposition 9. If S is the free ωcppo on 1, then PSX is the free ωcppo on X.

Proof. We construct an ωcppo structure on the type PSX:

— A partial order relation on PSX is constructed as follows:

(x1, f1) ≤
′ (x2, f2) =

∑

p:x1≤x2

∏

q:x1≡⊤

f1 q ≡ f2 (le2equiveta p q)

where le2equiveta : x1 ≤ x2 → x1 ≡ ⊤ → x2 ≡ ⊤ is an easy consequence of ⊤ being

the maximal element of the relation ≤.

— The bottom element is (⊥, f), where f : ⊥ ≡ ⊤ → X is the empty function, since the

type ⊥ ≡ ⊤ is empty.

— Let t be a stream increasing wrt. ≤′. The function t is of the form 〈s, f〉, for some

stream s : N → S increasing wrt. ≤ and some function f :
∏
n:N s n ≡ ⊤ → X.

The least upper bound of t is computed as (
∨
s, f ′), where f ′ :

∨
s ≡ ⊤ → X

is constructed as follows. First one proves that from a proof of
∨
s ≡ ⊤ one gets

a proof of ‖
∑
n:N s n ≡ ⊤‖. A function from the latter type to X is given using the

elimination principle of propositional truncation applied to the term f . This operation

can be performed because the function f is constant, i.e., f n p ≡ f mq for n,m : N,

p : s n ≡ ⊤ and q : sm ≡ ⊤, and that is the case because the stream s is increasing.

Moreover, there exists a function h : X → PSX, given by hx = (⊤, λ . x). It is not

difficult to check that the type PSX, together with the previous data, is a ωcppo on X.

Next, we are given an arbitrary ωcppo on X, let us call it Y . We have to construct a

ωcppo morphism between PSX and Y . We give a sketch of this construction. The desired

map is defined in two steps. First, we give a proof p :
∏
x:S (x ≡ ⊤ → X) → Y . Remember

that, by hypothesis, the type S is the free ωcppo on 1 and therefore it has an associated

induction principle derivable from the freeness property. The term p is constructed using

this induction principle applied to x : S.‡ Second, we show that the uncurried version of

p is continuous. Moreover, it is the only such map between PSX and Y .

In the presence of higher inductive-inductive types, A 1 is the free ωcppo on 1. There-

fore, the type PSX is isomorphic to AX. As a consequence, assuming countable choice,

PSX is isomorphic to DX/≈. We do not show it here, but one can construct the iso-

morphism between PSX and DX/≈ also directly, without going through AX, but still

assuming countable choice.

By Proposition 8, we know that PS is a monad. One can prove a stronger result: PS is a

partial map classifier in the sense of Mulry (1994), classifying specifically partial functions

with a semidecidable domain of definedness. This means that maps in the Kleisli category

‡ Notice that, by definition, S has another induction principle given by its dependent eliminator. This
induction principle is not strong enough to construct the term p and we need to recourse to the
stronger induction principle of the free ωcppo on 1.
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of PS are in one-to-one correspondence with maps in a category of partial maps. In fact,

notice that there is the following isomorphism:

(X → PSY ) =

(
X →

∑

x:S

(x ≡ ⊤ → Y )

)
∼=

∑

f :X→S

((
∑

x:X

f x ≡ ⊤

)
→ Y

)
.

An inhabitant of the last type can be considered as a map between a subtype U of X

and Y . The subtype U is of the form
∑
x:X f x ≡ ⊤ for a certain function f : X → S.

The type S behaves like a type of truth values, where ⊤ corresponds to truth and ⊥ to

falsehood. The function f can then be seen as a predicate over X with values in S. In

this sense U corresponds to a subtype of X characterized by the predicate f .

The type S is typically called the Sierpinski set (Escardó 2004) or Rosolini’s dominance

(Rosolini 1986). It is a fundamental ingredient in the development of synthetic domain

theory (Hyland 1990) and synthetic topology (Bauer and Lesnik 2012).

11. Conclusions

In this paper, we studied the question of whether the delay datatype quotiented by weak

bisimilarity is still a monad. As we saw, different approaches to quotients in type theory

result in different answers. In the quotients-as-setoids approach, the answer is immedi-

ately positive. We focused on the more interesting and (as it turned out) more difficult

case of the quotient types à la Hofmann. The main issue in this case, as highlighted in Sec-

tion 5, is that quotienting interacts badly with infinite type formers, such as datatypes of

non-wellfounded or non-finitely branching trees; such type formers do not commute with

quotienting. For the delay datatype, and more generally for types that can be injectively

embedded into streams or countably branching trees, a solution is possible assuming the

axiom of countable choice. We also witnessed that essentially the same solution can be

employed to prove that the quotiented delay datatype delivers free ωcppos, again relying

on countable choice.

We also presented a different monad for partiality in homotopy type theory. Our con-

struction differs from that by Altenkirch et al. (2017) in that we only employ ordinary

higher inductive types, while theirs needs higher inductive-inductive types. As a conse-

quence, our construction can be directly implemented in proof assistants such as Coq,

which is currently lacking support for inductive-inductive types.

We would also like to see whether it is possible to prove the quotiented delay monad

to be the initial complete Elgot monad. Classically, the lifting monad enjoys this char-

acterization (Goncharov et al. 2015). At this stage, it is not clear to us whether the

same result can be recovered semi-classically, i.e., without having to subscribe to too

non-constructive axioms such as LPO.
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