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Abstract

We propose the use of a classical tool in PDE theory, the parametrix method, to build
approximate solutions to generic parabolic models for pricing and hedging contingent claims. We
obtain an expansion for the price of an option using as starting point the classical Black&Scholes
formula. The approximation can be truncated to any number of terms and easily computable
error measures are available.

1 Introduction and motivation

Under the standard dynamically complete market hypotheses (see e.g. [7], Sects. 5.2 and 5.7),
the forward price Ot = f(St, T − t) computed at time t of an European option expiring at time
T with payoff H(ST ), where the underlying asset S evolves according to the stochastic differential
equation

dSt = µ(t, St)dt + σ(t, St)dWt, (1.1)

is given by
Ẽt(H(ST )) (1.2)

where Ẽ represents the expected value with respect to the martingale measure under which the
dynamics of the forward price of the underlying is driftless. Accordingly, in the case of null riskless
interest rate, f is also the solution of the Cauchy problem

{
∂tf = σ2

2 ∂SSf,

f(x, 0) = H(x).
(1.3)

From both (1.2) or (1.3) we have the representation

f(St, t) =
∫

R
H(x)Γ(St, t; x, 0)dx, (1.4)

∗Piazza di Porta S. Donato 5, 40126 Bologna (Italy). E-mail: pascucci@dm.unibo.it

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by AMS Acta

https://core.ac.uk/display/11068591?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


where Γ(S, t; x, 0) is the transition density of St from (x, 0) which corresponds to the so called
“fundamental solution” of the PDE in (1.3).

As a matter of fact the fundamental solution Γ is explicitly known only for a rather small set of
models. Among these the most relevant cases are the arithmetic and geometric Brownian motions
(Gaussian and lognormal densities), the general linear case (affine models studied e.g. in [5]), the
square root process (e.g. [3]) and classes of models derived via transforms from these models (see
e.g. [1])). In view of the paramount advantages, both in terms of understanding and computation
time, given by the existence of an analytical solution for (1.3), actual modeling has largely been
restricted to this rather small set of diffusions. On the other hand the analytical tractability of
these models is not accompanied by good statistical properties in the sense that the distributions
implied by these models give poor fit to actual market data.

This motivates a growing interest for models whose solution can be computed only by numerical
methods (deterministic or Montecarlo based). A major problem which severely limits the use of
these models is that, while their practical relevance has been found in the valuation of exotic or
very far from the money vanilla options, the numerical burden implied by their use for such payoffs
is still by far too big to allow widespread application. It is to be noticed that such a burden
can be excessive even in the case of standard model when applied to the computation of hedging
parameters for some exotic payoff.

Even if we do not consider the numerical problem, a second relevant obstacle to the imple-
mentation of more statistically satisfactory but less tractable models is that the lack of analytical
solution severely restricts the ability of the practitioner to understand, pending the reaction times
allowed by the market, the implications of a given model and its possible weak points. This is
relevant, in particular, when a real time position risk management is required.

A third and connected problem with analytically untractable models is that they do not allow
for an easy valuation of the consequences of model misspecification. In an applied milieu where
model risk management is becoming a central portion of the financial decision making process, such
weakness is rapidly becoming an heavy burden for elastic but not tractable models.

Two possible ways out of this problem can be suggested. The first one is to extend the class of
analytically solvable models by the use of properly chosen transforms; the second one is to develop
tools capable of calibrating analytically computable approximations to non analytically computable
models and to evaluate the error of this approximation.

This paper is concerned with the second alternative. We suggest the use of a classical tool in
PDE theory: the parametrix expansion. A parametrix expansion can be used to build an approxi-
mate fundamental solution to a generic parabolic PDE using as starting point the explicit solution
of a simpler parabolic PDE. The approximation can be truncated to any number of terms and easily
computable error measures are available. A comprehensive presentation of the parametrix method
for uniformly parabolic PDEs can be found, for instance, in [6]: in [4] a more recent presentation
of this technique applied to a wider class of (possibly degenerate) PDEs can be found.

While well-known in the classical theory of parabolic PDEs, the parametrix series is, as far as we
know, unknown in the field of mathematical finance (with the exception of [2]). Apart from being a
tool for the approximate solution to pricing problems, the parametrix series can be of use as a tool
for model risk management and as a way to unify a number of sparse results about approximate
option valuation already available in the financial literature under a common principle. A welcome
bonus of the parametrix is that, far from being an abstract mathematical tool, it yields to an
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interesting financial interpretation.

The paper is organized as follows. In Section 2, we give a heuristic derivation of the parametrix
series, connected to the evaluation of pricing and hedging errors implied by the use of a “wrong”
model. We also give a financial interpretation to the derivation of the parametrix. In Section 3,
we formally introduce the parametrix series, derive it under conditions suitably general but easy
to assess in the case of financial application and present explicit valuations of error terms: in this
section our main results, the forward and backward parametrix expansion Theorems 3.7 and 3.15,
are stated. In Section 4, we use the parametrix series to approximate the solution for already
solvable models and compare the resulting approximations with exact results. In Section 5 we
conclude.

2 A heuristic derivation of the parametrix series

The purpose of this section is to stress the financial intuition underlying the meaning and the
derivation of the parametrix expansion. In so doing it is sufficient for us to work in the one
dimensional (space variable) case. In the following section the parametrix will be derived in its full
generality for the case of any finite number of space variables.

We begin by noticing that a parametrix expansion can be computed both for the standard
parabolic PDE implied in a valuation problem and for its adjoint PDE. While the fundamental
solutions of the two equations are strictly related, the two parametrix approximations are distinct
and offer two slightly different and very interesting financial interpretations so we will discuss both.

Let us start by sketching the derivation of the parametrix for the standard parabolic PDE. We
are interested in the fundamental solution Γ = Γ(z; ζ) where z = (x, t) and ζ = (ξ, τ) ∈ R×R of L

Lu = a(z)∂xxu− ∂tu = 0, (2.1)

that is: LΓ = 0 and for every suitable function h(x) the solution of the Cauchy problem
{

Lu = 0, x ∈ R, t > 0,

u(x, 0) = h(x), x ∈ R,
(2.2)

is given by

u(x, t) =
∫

R
h(ξ)Γ(x, t; ξ, 0)dξ, x ∈ R, t ≥ 0. (2.3)

In financial terms, formula (2.3) gives the (forward) price at time to maturity t for an European
option expiring at time to maturity 0 with payoff h.

Suppose now that a is such that equation (2.2) cannot be solved explicitly. It is then inviting
to find an approximation formula for (2.3) whose first term is given by, or at least similar to, the
Black&Scholes formula. In the sequel we assume ζ = (ξ, 0) and use the notation zj = (xj , tj) for
j ∈ N.

The parametrix approximation is based on two ideas. The first one is to locally approximate
Γ(z; ζ) by the so-called parametrix Z(z; ζ) = Γζ(z; ζ) where Γw given by the fundamental solution
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to the “frozen” operator1

Lw = a(w)∂xx − ∂t. (2.4)

The second idea is that of supposing that the fundamental solution Γ of L is in the form (recall
that ζ = (ξ, 0))

Γ(z; ζ) = Z(z; ζ) +
∫

St

Z(z; z0)Φ(z0; ζ)dz0, St ≡ R×]0, t[. (2.5)

In order to identify Φ we notice that from LΓ = 0 we get

0 = LZ(z; ζ) + L

∫

St

Z(z; z0)Φ(z0; ζ)dz0. (2.6)

But formally it holds

L

∫

St

Z(z; z0)Φ(z0; ζ)dz0 = −Φ(z; ζ) +
∫

St

LZ(z; z0)Φ(z0; ζ)dz0 (2.7)

so that
Φ(z; ζ) = LZ(z; ζ) +

∫

St

LZ(z; z0)Φ(z0; ζ)dz0. (2.8)

Formula (2.8) yields an iteration on Φ so that:

Φ(z; ζ) = LZ(z; ζ) +
∫

St

LZ(z; z0)LZ(z0; ζ)dz0 +
∫

St

LZ(z; z0)
∫

St0

LZ(z0; z1)Φ(z1; ζ)dz1dz0

= LZ(z; ζ) +
∫

St

LZ(z; z0)LZ(z0; ζ)dz0

+
∞∑

n=0

∫

St

LZ(z; z0)
∫

St0

LZ(z0; z1) · · ·
∫

Stn

LZ(zn; zn+1)LZ(zn+1; ζ)dzn+1 · · · dz1dz0.

(2.9)

In terms of formula (2.3) this implies an expansion of the “option price” given by:

u(z) =
∞∑

n=0

un(z) (2.10)

where

u0(z) =
∫

R
Z(z; ξ, 0)h(ξ)dξ

u1(z) =
∫

St

Z(z; z0)
∫

R
LZ(z0; ξ, 0)h(ξ)dξ dz0,

(2.11)

1The context of this paper suggests us to use, as a parametrix, the fundamental solution of the heat equation which
is strictly connected with the Black&Scholes formula. However it is to be noticed that, in principle, the fundamental
solution of any solvable parabolic PDE could be used as a starting point. Ideally that parametrix should be used
which solves the parabolic problem “most similar” to the problem under analysis.
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and in general

un(z) =
∫

St

Z(z; z0)
∫

St0

LZ(z0; z1) . . .

. . .

∫

Stn−2

LZ(zn−2; zn−1)
∫

R
LZ(zn−1; ξ, 0)h(ξ)dξ dzn−1 . . . dz1dz0.

(2.12)

for n ≥ 2.
This is the expansion which is usually used in the classical PDEs’ theory to prove the existence

of a (fundamental) solution to L. Before interpreting the result let us examine the equivalent
expansion derived from the adjoint PDE. The use of the adjoint parametrix seems to be convenient
by several points of view: first of all, we are able to derive an approximating expansion whose first
term is given exactly by the Black&Scholes formula, while the subsequent terms can be expressed
as solutions to suitable Cauchy problems related to constant coefficients operators. Secondly, the
approximating terms generated in this way are convolutions of a Gaussian function Γz(z; ·) for
fixed z: this seems to be convenient from a numerical point of view since we may rely upon several
known efficient numerical techniques. We define the backward parametrix

P (z; ζ) = Γz(z; ζ). (2.13)

In the next section we prove that the solution to the option pricing problem has an expansion of
the form (2.10) where now

u0(z) =
∫

RN

P (z; ζ)h(ξ)dξ,

u1(z) =
∫

Sτ,t

P (z; z0)
∫

RN

LP (z0; ζ)h(ξ)dξdz0,

u2(z) =
∫

Sτ,t

P (z; z1)
∫

Sτ,t1

LP (z1; z0)
∫

RN

LP (z0; ζ)h(ξ)dξdz0dz1,

(2.14)

and in general

un(z) =
∫

Sτ,t

P (z; zn−1)
∫

Sτ,tn−1

LP (zn−1; zn−2) . . .

. . .

∫

Sτ,t1

LP (z1; z0)
∫

RN

LP (z0; ζ)h(ξ)dξdz0 . . . dzn−2dzn−1.

(2.15)

The main differences between the two parametrix expansions hinted before are now clear. Each
term in the expansion is an “expected value” w.r.t. the distributions with density Z(z; ζ) and
P (z; ζ). But, while P (z; ζ) is the same Gaussian density for each value of the integration variable
(z is frozen and the integration is performed varying ζ) and so is a true PDF, Z(z; ζ) is a different
Gaussian (different variance) for each value of the integrating variable ζ.

Let us examine the first term of the expansion for the parametrix Z:

u0(z) =
∫

R
Z(z; ξ, 0)h(ξ)dξ. (2.16)
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Since the explicit expression of Z(z; ξ, 0) = Γ(ξ,0)(z; ξ, 0) is known,

Γ(ξ,0)(x, t; ξ, 0) =
1√

4πt a(ξ, 0)
exp

(
− (x− ξ)2

4ta(ξ, 0)

)
, t > 0

we see that u0 in (2.16) is very similar to the solution of a Cauchy problem for a constant coefficients
operator. On the other hand, the integration in (2.16) is performed with respect to the variable
ξ which also appears in L(ξ,0) as the point where the operator L is frozen. Hence the first term
of the expansion is an “expected value” of the terminal payoff which uses as density a Gaussian
with a different volatility (corresponding to the “true” diffusion coefficient) for each point in the
integration range. Due to this reason this “state dependent” Gaussian is not a density as it is
nonnegative but does not integrate, in general, to 1 (it is obviously possible to normalize it).

This seems quite sensible a starting point and can obviously compared with standard “implied
volatility” approximations. With implied volatility we use a different Gaussian distribution (for
log S) for each strike. Here the suggestion is to use the same distribution but with a different
volatility for each terminal value of the stock. As we will see in the empirical section of the paper,
this rough, zero order, approximation can give good results for interesting payoffs.

Let us now pass to the adjoint parametrix expansion zero order term:

u0(z) =
∫

RN

P (z; ζ)h(ξ)dξ.

Here the interpretation is straightforward: the zero order term is simply the Black&Scholes option
value. Indeed since

P (z; ζ) = Γ(x,t)(x, t; ξ, 0),

then the parametrix P (z; ζ) is the same density for the full range of the integrating variable ξ and
is the terminal log-price density corresponding to the heat operator frozen at (x, t).

Next we consider the following terms in the expansions. Both expansions are similar in that each
new term is an expected value of a new “payoff”. The difference that makes the adjoint parametrix
more readable is that in that case the expected value is a true expected value (with respect to the
same “frozen” Gaussian P (z; ζ)) while in the case of the standard parametrix, Z(z; ξ, 0) does not
corresponds to an exact density.

Since each new term can be read as the value (exact or approximate) of a new option in a
Black&Scholes world, it is interesting to understand the meaning of the “payoffs” of such options.
The solution to this problem comes from the understanding how the L operator (the original
operator for both expansions) acts.

In both expansions L acts on the first argument of both P and Z that is, on the argument not
involved in the expectation integral. Moreover the operator L for the term of order j acts on the
“option value” derived in the term of order j − 1.

Each action of the L operator can be interpreted as a check of the fact that the term of order
j− 1 satisfies Luj−1 = 0. In other words Luj−1 is a measure of the error implied in supposing that
uj−1 satisfies Luj−1 = 0. This represents the “payoff” of the new option. This error is a function
of the variable on which L acts and the term uj is then computed as the expected value of the error
using the P density or the Z “density”.
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Notice that at each step the use of a density corresponding to the fundamental solution of
L (in other terms the computation of the correct option value for the payoff derived by Luj−1)
would result in a uj term such that Luj = 0. Notice also that, being the values of options in a
Black&Scholes world, each term in the adjoint expansion satisfies the same heat equation with a
different initial condition given by Luj−1.

We see how the parametrix expansion partitions the value of a given option computed in a non
Black&Scholes world (the governing PDE is not the heat equation) into a series of option values
each computed in the Black&Scholes world. This is exact in the case of the adjoint parametrix
and approximately exact, if we recall that Z is not a density, in the standard parametrix case. The
payoff for each option is a valuation of the error made by valuing the option implied in the previous
term in the Black&Scholes world and not in the world described by L.

In the following section we will see how it is possible to bound the overall error derived by trun-
cating the series at the jth term with explicit and easily computable bounds uniformly decreasing
in j. Moreover in the applications section we will see how the iterative nature of the parametrix
series definition allows a fast implementation of the valuation algorithm.

Even at this intuitive level we see how the parametrix series can become a useful tool in model
risk management. Suppose a risk manager is willing to use a price model based on a given operator
L which is believed to faithfully represent the statistical properties of observed underlying and
options prices. It is likely that this operator will not yield to explicit computation. The risk
manager can then compute a number of terms in the parametrix series each of which will be the
value of a (Black&Scholes) option and will be hedgeable as such. The risk manager will also be
able to compute a measure of error, which, as we will see in the next section, will be interpretable
as the value of another option computed in the Black&Scholes world. As such it will be easy for the
risk manager to interpret this option/error value as the price of the approximate model valuation
and hedge it, if necessary.

3 Forward and backward parametrix expansion

In this section we present the parametrix expansion in its full generality. Consider a parabolic
differential equation in the form

Lu ≡
N∑

i,j=1

aij(z)∂xixju +
N∑

i=1

bi(z)∂xiu + c(z)u− ∂tu = 0, (3.1)

where z = (x, t) ∈ RN × R and A(z) = (aij(z)) is a symmetric, positive definite matrix. Set
µ(z) equal to the Euclidean norm of A(z) in RN+1 × RN+1 (also equal to the Euclidean norm of
λ(z) = (λ1(z), . . . , λN (z)), the vector of the eigenvalues of A(z)). Throughout the section we use
systematically the notation z = (x, t) and ζ = (ξ, τ) to denote points in RN+1. Next we state our
main hypotheses:

[H1] M := sup
z∈RN+1

{µ(z)} and m := inf
z∈RN+1

{µ(z)} are finite;

[H2] the coefficients of L are bounded and Hölder continuous functions: in particular, aij , bi

and c belong to C1, 1
2 (RN+1) defined as the space of real functions u on RN+1 such that

|u(x, t)− u(x′, t′)| ≤ C
(
|x− x′|+ |t− t′| 12

)
, ∀(x, t), (x′, t′) ∈ RN+1, (3.2)
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for some constant C > 0.

As a consequence of [H1] we have the usual uniformly parabolicity condition:

m|η|2 ≤
N∑

i,j=1

aij(z)ξiξj ≤ M |η|2, ∀ξ ∈ RN , z ∈ RN+1. (3.3)

It is known that, under the above hypotheses, the operator L has a fundamental solution Γ(z; ζ).
Given w ∈ RN+1, we denote by Γw(z; ζ) the fundamental solution to the frozen operator Lw defined
by

Lw =
N∑

i,j=1

aij(w)∂xixj − ∂t; (3.4)

then we have Γw(z; ζ) = Γw(z − ζ) where

Γw(x, t) ≡ Γw(x, t; 0) =
(4πt)−

N
2√

det A(w)
exp

(
−〈A

−1(w)x, x〉
4t

)
, x ∈ RN , t > 0. (3.5)

Given a constant µ > 0, we also denote by Γµ the fundamental solution to the heat operator

µ
N∑

i=1

∂xixi − ∂t.

Lemma 3.1. For every z, ζ, w ∈ RN+1 with z 6= ζ, it holds

( m

M

)N
2 Γm(z; ζ) ≤ Γw(z; ζ) ≤

(
M

m

)N
2

ΓM (z; ζ).

Proof. We only prove the second inequality in the case ζ = 0. The thesis follow directly from
condition (3.3) keeping in mind formula (3.5): indeed we have

Γw(z) ≤ 1

(4πtm)
N
2

exp
(
− |x|2

4tM

)
=

(
M

m

)N
2

ΓM (z).

Lemma 3.2. For every ε, µ > 0 and n ∈ N it holds

( |x|√
t

)n

Γµ(x, t) ≤
(n

ε

)n
2 (µ + ε)n

(
µ + ε

µ

)N
2

Γµ+ε(x, t),

for any x ∈ RN and t > 0.

8



Proof. Setting α = |x|√
t
, we have

( |x|√
t

)n

Γµ(z, 0) = αn(4πµt)−
N
2 exp

(
−α2

4µ

)
≤ (4πµt)−

N
2 exp

(
− α2

4(µ + ε)

)
sup
a≥0

Φ(a),

where

Φ(a) = an exp
(
−

(
1
4µ

− 1
4(µ + ε)

)
a2

)
. (3.6)

The thesis follows since a straightforward computation shows that Φ attains a global maximum at

ā =
√

2nµ(µ+ε)
ε and

Φ(ā) =
(

2nµ(µ + ε)
eε

)n
2

≤
(n

ε

)n
2 (µ + ε)n.

3.1 Forward parametrix expansion

For z 6= ζ, we define the (forward) parametrix

Z(z; ζ) = Γζ(z; ζ). (3.7)

Notation 3.3. In order to avoid confusion, when necessary, we write L(z) in order to indicate that
the operator L is acting in the variable z.

We remark explicitly that

L
(z)
ζ Z(z; ζ) = 0, for z 6= ζ. (3.8)

We first prove some preliminary result will be crucial in the development of the parametrix expan-
sion.

Lemma 3.4. For every ε > 0 and i, j = 1, . . . , N it holds

|∂xiΓw(z; ζ)| ≤ 1
2
√

ε(t− τ)

(
M + ε

m

)N
2

+1

ΓM+ε(z; ζ), (3.9)

∣∣∂xixjΓw(z; ζ)
∣∣ ≤ 1

ε(t− τ)

(
M + ε

m

)N
2

+2

ΓM+ε(z; ζ), (3.10)

for any z, ζ, w ∈ RN+1 with t > τ .

Proof. For sake of simplicity, we prove the above estimates in the case ζ = 0. We have

|∂xiΓw(z)| = 1
2

∣∣(A−1(w)x
)
i

∣∣
t

Γw(z) ≤

(by Lemma 3.1)

≤ 1
2m
√

t

(
M

m

)N
2 |x|√

t
ΓM (z) ≤
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and (3.10) follows applying Lemma 3.2 with µ = M and n = 1.
Moreover

∣∣∂xixjΓw(z)
∣∣ =

1
2t

∣∣∣∣A−1(w)ij +
1
2t

(
A−1(w)x

)
i

(
A−1(w)x

)
j

∣∣∣∣ Γw(z) ≤

(by Lemma 3.1)

≤ 1
2tm

(
M + ε

m

)N
2

ΓM+ε(z) +
1

4tm2

(
M

m

)N
2 |x|2

t
ΓM (z) ≤

and (3.9) easily follows from Lemma 3.2 with µ = M and n = 2.

Lemma 3.5. For every positive ε, we have
∣∣∣L(z)Z(z; ζ)

∣∣∣ ≤ ηε√
t− τ

ΓM+ε(z; ζ), ∀z, ζ ∈ RN+1, t > τ, (3.11)

where

ηε :=α
N2

ε
3
2

(
M + ε

m

)N
2

+2 (√
M + ε + 2(M + ε)

)
+ β

N

2
√

ε

(
M + ε

m

)N
2

+1

+ γ

(
M + ε

m

)N
2 √

t− τ

(3.12)

and
β := sup

i=1,...,N

z∈RN+1

|bi(z)|, γ := sup
z∈RN+1

|c(z)|

and α denotes the Hölder constant of aij so that (3.2) holds with C = α and u = aij for every
i, j = 1, . . . , N .

Proof. For t > τ , we have

|LZ(z; ζ)| = |(L− Lζ)Z(z; ζ)| ≤ I1 + I2 + I3

where

I1 =
N∑

i,j=1

|aij(z)− aij(ζ)| ∣∣∂xixjZ(z; ζ)
∣∣ ≤

(since aij ∈ C1, 1
2 with Hölder constant α)

≤ αN2
√

t− τ

(
1 +

|x− ξ|√
t− τ

) ∣∣∂xixjZ(z; ζ)
∣∣ ≤

(proceeding as in the proof of (3.10))

≤ αN2
√

t− τ

(
1 +

|x− ξ|√
t− τ

)
1

2(t− τ)

(
1
m

+
1

2m2

|x− ξ|2
(t− τ)

)
Z(z; ζ)

≤ αN2

2
√

t− τ

(
1
m

+
|x− ξ|

m
√

t− τ
+

|x− ξ|2
2m2(t− τ)

+
|x− ξ|3

2m2(t− τ)
3
2

)
Z(z; ζ) ≤
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(by Lemmas 3.1 and 3.2)

≤ αN2

2
√

t− τ

(
M + ε

m

)N
2

(
1
m

+
1√
ε

M + ε

m
+

1
ε

(
M + ε

m

)2

+
3

ε
3
2

(M + ε)3

m2

)
ΓM+ε(z; ζ)

≤ αN2

2ε
3
2
√

t− τ

(
M + ε

m

)N
2

(
(M + ε)

3
2

m
+

(M + ε)2

m
+

(M + ε)2+ 1
2

m2
+ 3

(M + ε)3

m2

)
ΓM+ε(z; ζ)

≤ α
N2

ε
3
2
√

t− τ

(
M + ε

m

)N
2

+2 (√
M + ε + 2(M + ε)

)
ΓM+ε(z; ζ).

Moreover, by Lemma 3.4, we have

I2 =
N∑

i=1

|bi(z)| |∂xiZ(z; ζ)| ≤ β
N

2
√

ε(t− τ)

(
M + ε

m

)N
2

+1

ΓM+ε(z; ζ);

finally, by Lemma 3.1, we have

I3 = |c(z)|Z(z; ζ) ≤ γ

(
M + ε

m

)N
2

ΓM+ε(z; ζ).

We are now in position to state the forward parametrix expansion theorem. Let us first introduce
the following

Notation 3.6. For τ < t we denote

Sτ,t = RN×]τ, t[.

Theorem 3.7. Assume hypotheses [H1] and [H2]. Then for every ζ ∈ RN+1, the following
expansion of the fundamental solution Γ holds

Γ(z; ζ) = Z(z; ζ) +
∫

Sτ,t

Z(z; w)Φ(w; ζ)dw, t > τ, (3.13)

where

Φ(z; ζ) =
+∞∑

k=1

(LZ)k(z; ζ), (3.14)

with

(LZ)1(z; ζ) = L(z)Z(z; ζ),

(LZ)k+1(z; ζ) =
∫

Sτ,t

L(z)Z(z;w)(LZ)k(w; ζ)dw,

11



and, for every T > 0, the series in (3.14) converges uniformly in the strip Sτ,τ+T . Moreover, for
every positive ε, we have the following estimate for the approximation truncated at the n-th term:

∣∣∣∣Γ(z; ζ)−Z(z; ζ)−
n−1∑

k=1

∫

Sτ,t

Z(z;w)(LZ)k(w; ζ)dw

∣∣∣∣ ≤
√

2
π

(
M + ε

m

)N
2

fn

(
ηε

√
2π(t− τ)

)
ΓM+ε(z; ζ)

(3.15)
for t > τ , where ηε is defined in (3.12),

fn(η) = e
η2

2 (η + 1)

(
η2

2

)[n+1
2 ]

[
n+1

2

]
!

, (3.16)

and [· ] denotes the integer part.

Remark 3.8. We remark explicitly that, when η = ηε

√
2π(t− τ) ¿ 1 in (3.16), then the rate

of convergence of the parametrix approximation is very fast. This is the case, for instance, when
t− τ ¿ 1, i.e. for short time to maturiy.

As a consequence of Theorem 3.7, we have the following forward parametrix expansion for
solutions to the Cauchy problem for L.

Corollary 3.9. The solution to the Cauchy problem
{

Lu(x, t) = 0, x ∈ RN , t > 0,

u(x, 0) = h(x), x ∈ RN ,
(3.17)

has the following expansion

u(z) =
∞∑

n=0

un(z) (3.18)

where

u0(z) =
∫

R
Z(z; ξ, 0)h(ξ)dξ

u1(z) =
∫

S0,t

Z(z; z0)
∫

R
L(z0)Z(z0; ξ, 0)h(ξ)dξ dz0,

(3.19)

and in general

un(z) =
∫

S0,t

Z(z, z0)
∫

S0,t0

L(z0)Z(z0, z1) . . .

. . .

∫

S0,tn−2

L(zn−2)Z(zn−2, zn−1)
∫

R
L(zn−1)Z(zn−1; ξ, 0)h(ξ)dξ dzn−1 . . . dz1dz0.

(3.20)

for n ≥ 2.

The proof of Theorem 3.7 is based on the following preliminary result.

12



Lemma 3.10. For every ε > 0 and k ≥ 1, we have the following estimate for the term (LZ)k in
(3.14):

|(LZ)k(z; ζ)| ≤ ΓE

(
1
2

)k

ΓE

(
k
2

) ηk
ε

(t− τ)1−
k
2

ΓM+ε(z; ζ), ∀z, ζ ∈ RN+1, t > τ, (3.21)

where ηε is defined in (3.12) and ΓE denotes the Euler’s Gamma function.

Proof. We prove (3.21) by induction on k. The case k = 1 was proved in Lemma 3.5. Let us now
assume that (3.21) holds for k and prove it for k + 1. We have

|(LZ)k+1(z; ζ)| =
∣∣∣∣∣

∫

Sτ,t

L(z)Z(z; w)(LZ)k(w; ζ)dw

∣∣∣∣∣ ≤

(by Lemma 3.5, the inductive hypothesis and denoting (y, s) = w)

≤ ηk+1
ε

ΓE

(
1
2

)k

ΓE

(
k
2

)
∫ t

τ

1
√

t− s(s− τ)1−
k
2

∫

RN

ΓM+ε(x, t; y, s)ΓM+ε(y, s; ξ, τ)dyds =

(by the reproduction property2 for ΓM+ε and by the change of variable s = (1− r)τ + rt)

=
ηk+1

ε

(t− τ)1−
k+1
2

ΓE

(
1
2

)k

ΓE

(
k
2

)
∫ 1

0

1

r1− k
2
√

1− r
dr ΓM+ε(z; ζ),

and the thesis follows by the known properties3 of the Euler’s Gamma function.

Proof. (of Theorem 3.7)
Estimate (3.21) directly implies the convergence of the series (3.14) uniformly in Sτ,τ+T for every
fixed ζ ∈ RN+1 and T > 0. This also implies that Φ solves the integral equation

Φ(z; ζ) = L(z)Z(z; ζ) +
∫

Sτ,t

L(z)Z(z; w)Φ(w; ζ)dw.

The hard part of the proof consists in showing that

G(z; ζ) := Z(z; ζ) +
∫

Sτ,t

Z(z; w)Φ(w; ζ)dw, t > τ,

2For every x, ξ ∈ RN and τ < s < t, it holds
Z

RN

ΓM+ε(z; y, s)ΓM+ε(y, s; ζ)dy = ΓM+ε(z; ζ).

3It holds Z 1

0

1

r1− k
2
√

1− r
dr =

ΓE

�
1
2

�
ΓE

�
k
2

�

ΓE

�
k+1
2

� .
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is a fundamental solution of L: this is based on the study of some singular integral and can be
performed following the classical theory (cf. for instance [6]).

Next we prove (3.15):
∣∣∣∣Γ(z; ζ)− Z(z; ζ)−

n−1∑

k=1

∫

Sτ,t

Z(z; w)(LZ)k(w; ζ)dw

∣∣∣∣ ≤
∞∑

k=n

∫

Sτ,t

Z(z; w) |(LZ)k(w; ζ)| dw

(by Lemma 3.1, estimate (3.21) and the reproduction property)

≤
(

M + ε

m

)N
2

ΓM+ε(z; ζ)
∞∑

k=n

∫ t

τ

ΓE

(
1
2

)k

ΓE

(
k
2

) ηk
ε

(s− τ)1−
k
2

ds

(using the properties of the Gamma function4)

=
(

M + ε

m

)N
2

ΓM+ε(z; ζ)

√
2
π

∞∑

k=n

(
ηε

√
2π(t− τ)

)k

k!!
. (3.22)

Then estimate (3.15) follows from some elementary computation. Indeed, if n is even then
[

n+1
2

]
=

n
2 and we have

∞∑

k=n

ηk

k!!
=

∞∑

k=n
2

η2k

(2k)!!
+

∞∑

k=n
2
+1

η2k−1

(2k − 1)!!
≤

∞∑

k=n
2

η2k

(2k)!!
+

∞∑

k=n
2
+1

η2k−1

(2k − 2)!!
=

(since (2k)!! = 2kk!)

=
∞∑

k=n
2

1
k!

(
η2

2

)k

+
∞∑

k=n
2

η2k+1

2kk!
= fn(η),

with fn as in (3.16) and using the fact that
∞∑

k=n

ηk

k!
=

eηηn

n!
.

The case of n odd can be treated analogously and is omitted.

As a byproduct of the parametrix method, we obtain the following upper Gaussian estimate of
the fundamental solution.

Theorem 3.11. For every ε > 0, we have

Γ(z; ζ) ≤
(

M + ε

m

)N
2 (

1 + ηε

√
2π(t− τ)

)
eπ(t−τ)η2

ε ΓM+ε(z; ζ), z, ζ ∈ RN+1, t > τ,

with ηε as in (3.12).
4Recall that

ΓE

�
1
2

�k
ΓE

�
k
2

� =
(2π)

k−1
2

(k − 2)!!
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Proof. By Theorem 3.7 we have

Γ(z; ζ) = Z(z; ζ) +
∞∑

k=1

∫

Sτ,t

Z(z; w)(LZ)k(w; ζ)dw;

therefore, as in (3.22), we get

Γ(z; ζ) ≤
(

M + ε

m

)N
2

ΓM+ε(z; ζ)
∞∑

k=0

(
ηε

√
2π(t− τ)

)k

k!!
,

and the thesis follows since ∞∑

k=0

ηk

k!!
≤ (1 + η)e

η2

2 ,

for η > 0.

3.2 Backward parametrix expansion

We begin by stating the dual version of Lemma 3.4.

Lemma 3.12. For every ε > 0 and i, j = 1, . . . , N it holds

|∂ξiΓw(z; ζ)| ≤ 1
2
√

ε(t− τ)

(
M + ε

m

)N
2

+1

ΓM+ε(z; ζ),

∣∣∂ξiξjΓw(z; ζ)
∣∣ ≤ 1

ε(t− τ)

(
M + ε

m

)N
2

+2

ΓM+ε(z; ζ),

for any z, ζ, w ∈ RN+1 with t > τ .

The proof is analogous to that of Lemma 3.4. In the sequel we assume the following additional
hypothesis which allows to introduce the adjoint operator of L:

[H3] there exist the derivatives ∂xiaij , ∂xixjaij , ∂xibi and they are bounded functions in C1, 1
2 (RN+1).

We define as usual the adjoint operator L̃ of L:

L̃u =
N∑

i,j=1

aij∂xixju +
N∑

i=1

b̃i∂xiu + c̃u + ∂tu (3.23)

where

b̃i = −bi + 2
N∑

j=1

∂xiaij , c̃ = c +
N∑

i,j=1

∂xixjaij −
N∑

i=1

∂xibi. (3.24)

Then we have ∫

RN+1

ϕLψ =
∫

RN+1

ψL̃ϕ, ∀ϕ,ψ ∈ C∞
0 (RN+1),

and the following classical result holds (cf. for instance [6] Cap. 1 Theor. 15):
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Theorem 3.13. There exists a fundamental solution Γ̃ of L̃ and we have

Γ(z; ζ) = Γ̃(ζ; z), ∀z, ζ ∈ RN+1, z 6= ζ. (3.25)

For z 6= ζ, we define the backward parametrix

P (z; ζ) = Γz(z; ζ). (3.26)

By Theorem 3.13, the backward parametrix satisfies

P (z; ζ) = Γz(z; ζ) = Γ̃z(ζ; z), (3.27)

and, analogously to (3.8), we have

L̃(ζ)
z P (z; ζ) = 0, for z 6= ζ.

Next we recall Notation 3.3 and state the dual version of Lemma 3.5.

Lemma 3.14. Under hypothesis [H3], for every positive ε, we have
∣∣∣L̃(ζ)P (z; ζ)

∣∣∣ ≤ η̃ε√
t− τ

ΓM+ε(z; ζ), ∀z, ζ ∈ RN+1, t > τ, (3.28)

where

η̃ε :=α
N2

ε
3
2

(
M + ε

m

)N
2

+2 (√
M + ε + 2(M + ε)

)
+ β̃

N

2
√

ε

(
M + ε

m

)N
2

+1

+ γ̃

(
M + ε

m

)N
2 √

t− τ

(3.29)

α denotes the Hölder constant of aij and (see (3.24))

β̃ := sup
i=1,...,N

z∈RN+1

|̃bi(z)|, γ̃ := sup
z∈RN+1

|c̃(z)|.

The proof, analogous to that of Lemma 3.5, is based on Lemma 3.12 and is omitted.

Theorem 3.15. Assume hypotheses [H1], [H2] and [H3]. Then for every ζ ∈ RN+1, the following
expansion of the fundamental solution Γ holds

Γ(z; ζ) = P (z; ζ) +
∫

Sτ,t

P (z; w)Ψ(w; ζ)dw, t > τ, (3.30)

where

Ψ(z; ζ) =
+∞∑

k=1

(LP )k(z; ζ), (3.31)

with

(LP )1(z; ζ) = L(z)P (z, ζ),

(LP )k+1(z; ζ) =
∫

Sτ,t

L(z)Z(z;w)(LP )k(w; ζ)dw,
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and, for every T > 0, the series in (3.14) converges uniformly in the strip Sτ,τ+T . Moreover, for
every positive ε, we have the following estimate for the approximation truncated at the n-th term:

∣∣∣∣Γ(z; ζ)−P (z; ζ)−
n−1∑

k=1

∫

Sτ,t

P (z; w)(LP )k(w; ζ)dw

∣∣∣∣ ≤
√

2
π

(
M + ε

m

)N
2

fn

(
η̃ε

√
2π(t− τ)

)
ΓM+ε(z; ζ)

for t > τ , where η̃ε is defined in (3.29) and fn in (3.16). As a consequence, the solution to the
Cauchy problem (3.17) has an expansion of the form (3.18) where

u0(z) =
∫

RN

P (z; ζ)h(ξ)dξ,

u1(z) =
∫

Sτ,t

P (z, z0)
∫

RN

L(z0)P (z0, ζ)h(ξ)dξdz0,

u2(z) =
∫

Sτ,t

P (z, z1)
∫

Sτ,t1

L(z1)P (z1, z0)
∫

RN

L(z0)P (z0, ζ)h(ξ)dξdz0dz1,

(3.32)

and in general

un(z) =
∫

Sτ,t

P (z, zn−1)
∫

Sτ,tn−1

L(zn−1)P (zn−1, zn−2) . . .

. . .

∫

Sτ,t1

L(z1)P (z1, z0)
∫

RN

L(z0)P (z0, ζ)h(ξ)dξdz0 . . . dzn−2dzn−1.

(3.33)

Proof. Proceeding as in the “forward case”, one can prove that

Γ̃(ζ; z) = Γ̃z(ζ; z) +
∫

Sτ,t

Γ̃w(ζ; w)Φ̃(w; z)dw, t > τ, (3.34)

where

Φ̃(ζ; z) =
+∞∑

k=1

Ik(ζ; z), (3.35)

with

I1(ζ; z) = L̃(ζ)Γ̃z(ζ; z),

Ik+1(ζ; z) =
∫

Sτ,t

L̃(ζ)Γ̃w(ζ;w)Ik(w; z)dw,

and the series converges uniformly on the strips. Moreover an error estimate analogous to (3.15)
holds. In order to conclude the proof, it suffices to invoke Theorem 3.13 and prove that the terms
of the expansions (3.30)-(3.31) and (3.34)-(3.35) coincide, that is

∫

Sτ,t

P (z;w)(LP )k(w; ζ)dw =
∫

Sτ,t

Γ̃w(ζ;w)Ik(w; z)dw (3.36)

for every k ∈ N.
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For k = 1, recalling (3.27), we have
∫

Sτ,t

Γ̃w(ζ; w)I1(w; z)dw =
∫

Sτ,t

P (w; ζ)L̃(w)P (z;w)dw,

so that the thesis follows immediately integrating by parts since we have no contribution at borders.
Indeed, denoting w = (y, s), formally we have

∫

Sτ,t

Γw(w; ζ)∂sΓz(z;w)dw = Ī −
∫

Sτ,t

∂sΓw(w; ζ)Γz(z; w)dw,

where

Ī =
∫

RN

Γ(y,t)(y, t; ξ, τ)Γ(x,t)(x, t; y, t)dy −
∫

RN

Γ(y,τ)(y, τ ; ξ, τ)Γ(x,t)(x, t; y, τ)dy = 0

since Γ(x,t)(x, t; y, t) = δx(y) and Γ(y,τ)(y, τ ; ξ, τ) = δξ(y). On the other hand the above argument
can be made rigorous by performing the integration by parts on a thinner strip Sτ+δ,t−δ and then
applying the dominated convergence theorem as δ → 0+ combined with the summability estimate
(3.28).

For k = 2, we have
∫

Sτ,t

Γz0(z0; ζ)
∫

St0,t

L̃(z0)Γz1(z1; z0)L̃(z1)Γz(z; z1)dz1dz0

=
∫

Sτ,t

Γz0(z0; ζ)
(

L̃(z0)

∫

St0,t

Γz1(z1; z0)L̃(z1)Γz(z; z1)dz1

+
∫

RN

Γ(y,t0)(y, t0; z0)L̃(y,t0)Γz(z; y, t0)dy

)
dz0 ≡ J1 + J2,

where, using again that Γ(y,t0)(y, t0; z0) = δx0(y),

J2 =
∫

Sτ,t

Γz0(z0; ζ)L̃(z0)Γz(z; z0)dz0 =

(proceeding as in the case k = 1)

=
∫

Sτ,t

L(z0)Γz0(z0; ζ)Γz(z; z0)dz0;

on the other hand

J1 =
∫

Sτ,t

Γz0(z0; ζ)L̃(z0)

∫

St0,t

Γz1(z1; z0)L̃(z1)Γz(z; z1)dz1dz0 =

(by parts as before)

=
∫

Sτ,t

L(z0)Γz0(z0; ζ)
∫

St0,t

L(z1)Γz1(z1; z0)Γz(z; z1)dz1dz0

−
∫

RN

Γ(y,τ)(y, τ ; ξ, τ)
∫

Sτ,t

L(z1)Γz1(z1; y, τ)Γz(z; z1)dz1dy =

18



(since Γ(y,τ)(y, τ ; ξ, τ) = δξ(y))

=
∫

Sτ,t

L(z0)Γz0(z0; ζ)
∫

St0,t

L(z1)Γz1(z1; z0)Γz(z; z1)dz1dz0 −
∫

Sτ,t

L(z1)Γz1(z1; ζ)Γz(z; z1)dz1.

Combining the expressions of J1 and J2, eventually we obtain
∫

Sτ,t

Γz0(z0; ζ)
∫

St0,t

L̃(z0)Γz1(z1; z0)L̃(z1)Γz(z; z1)dz1dz0

=
∫

Sτ,t

L(z0)P (z0; ζ)
∫

St0,t

L(z1)P (z1; z0)P (z; z1)dz1dz0,

which concludes the proof. As before the previous argument should be made rigorous by some
approximating procedure. The general case can be straightforwardly achieved by induction.

Remark 3.16. We can express the formulas (3.32)-(3.33) in a more compact form by using a
recursive relation: we set

I(z0) :=
∫

RN

L(z0)P (z0, ζ)h(ξ)dξ

so that
u1(z) =

∫

Sτ,t

P (z, z0)I(z0)dz0;

moreover we consider the operator T defined by

T (I)(z1) =
∫

Sτ,t1

L(z1)P (z1, z0)I(z0)dz0,

so that
u2(z) =

∫

Sτ,t

P (z, z1)T (I)(z1)dz1.

Then clearly we have

un(z) =
∫

Sτ,t

P (z, zn−1)Tn−1(I)(zn−1)dzn−1. (3.37)

We note explicitly that u0(z) = v(z) where v is the solution to the following Cauchy problem
for the frozen operator

Lzv = 0, v(·, τ) = h.

For instance, in the case of a call option, u0 has an explicitly expression given by the Black&Scholes
formula.

Analogously for n ≥ 1, by (3.37), we have that un(z) = f(z) where f is the solution to the
following Cauchy problem for the frozen operator

Lzf = Tn−1(I), v(·, τ) = 0.
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4 A numerical test

In this section we test the parametrix expansions on the shifted lognormal model (see [8] and [9]),
a simple approach alternative to the Black&Scholes model. The shifted lognormal is a computable
model which produces one sided volatility smiles (better known as smirks) when used for pricing
options.

The SDE for the model is
dSt = σ(St − a)dWt

where a is a nonnegative constant which is interpreted as a portion of the firm’s capital not subject
to risk. Suppose, for instance, that the firm whose share has a price S is conceived as a fund partly
invested in default free bonds and partly invested in other firms’ shares.

The relevant feature of the shifted lognormal model is that its risk neutral distribution is easily
computable and, in fact, it corresponds to a lognormal shifted by the constant a.

In order to fix the parameters for our numerical experiment we set σ = 0.3, a = 0.5, S0 = 1 and
t = 1. The interpretation of these values is as follows: the time unit is one year, the value of the
firm at the beginning of the year, evaluated forward for year end, is 1 and half of this forward value
is given by the riskless investment. In Figure 1 we compare the shifted lognormal distribution,
the lognormal distribution with σ = .3 and the P and Z parametrices (that is: the zero order
parametrix approximation of the shifted lognormal).

As we can see, while the lognormal distribution is quite different that the shifted lognormal,
the P and, better, the Z approximation to the shifted lognormal yield a very good approximation.
It is easy to understand what is happening. The shifted lognormal shows a percentage volatility
going rapidly to 0 for S ↓ a while for S ↑ ∞ the percentage volatility rapidly becomes constant and
identical to the lognormal percentage volatility (30%).

In the shifted lognormal this is accomplished by shifting the origin of the distribution by a and
then using a constant percentage volatility. In the Z-approximation this behaviour is mimicked
by the use of a “volatility” dependent on S which goes to 0 as S ↓ a. On the contrary the P -
approximation, more roughly, “freezes” the volatility to a S0 dependent value given by σ(S0−a)/S0

(in this case 15%).
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