Theoretical and Experimental Investigations on Nonlinear Capacitance and Loading Effects on Power PHEMT's Linearity

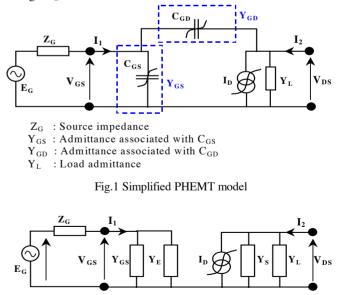
S. Forestier, T. Gasseling*, P. Bouysse, D. Barataud*, R. Quere, J.M. Nebus*

IRCOM, CNRS, Université de Limoges, IUT GEII, 7 rue Jules Vallès, 19100 BRIVE, France *IRCOM, CNRS, Université de Limoges, 123 Av. Albert Thomas, 87060 LIMOGES, France

Abstract- This paper presents a theoretical and experimental analysis of the phase conversion phenomena in a power PHEMT transistor. Relationships between the linearity of the device and the intrinsic gate-source capacitance C_{GS}, gate-drain capacitance C_{GD} , transconductance G_M as well as the load impedance Z_L , are explained. A judicious choice of the transistor's operating conditions allows to reduce the phase conversion AM/PM. In the case of PHEMT devices, the behaviors of CGS, CGD, GM elements and Z_L value induce internal compensation phenomena between the intrinsic non-linearities. These compensation mechanisms can be exploited to minimize the amplifier's phase conversion. The proposed approach is validated by comparisons between Load-Pull measurements at the frequency of 18 GHz and Harmonic Balance simulations. It reveals good accuracy for AM/PM predictions and shows the dependence of the phase conversion versus the load impedance and intrinsic non-linearities.

I. INTRODUCTION

When designing an amplifier, in addition to the power performances, the linearity is a significant criterion for applications that require the amplification of variable envelope modulations. In order to reach a good linearity, the required objectives are power characteristics for which the gain and the phase conversions are both minimal whatever the variations of the input power. The intrinsic non-linearities of the transistor generate distortions which result in variations of the phase and the power gain [1]. These variations are at the origin of the degradation of the linearity criterion according to the input power level. The objective of this work is to analyze the phase conversion phenomena in PHEMT transistors.


The analysis focuses on the intrinsic non-linear phenomena which are at the origin of the phase conversion. In section II, a theoretical analysis, based on a simplified electrical model of the PHEMT device, points out the contribution of the intrinsic non-linearities to the phase conversion. It is shown that some non-linear effects can compensate themselves to reduce the phase conversion. Load-pull measurements have been performed in order to validate the theoretical study and are compared to non-linear simulation results in section III.

II. THEORETICAL ANALYSIS OF PHASE CONVERSION

The electrical model used (Fig. 1) for the theoretical study is derived from the usual non-linear model of a FET transistor. Only the three main non-linear elements are kept. The model is made of the non-linear gate-source and gate-drain admittances, respectively Y_{GS} and Y_{GD} , and of the drain current source I_D . Admittance Y_L represents the load admittance and impedance Z_G is the source impedance. For a normal operation of the amplifier, the effect of the gate-source diode and the gate-drain breakdown phenomena are considered as negligible.

The drain current source $I_{\rm D}$ is considered, at first approximation, independent from the drain-source voltage $V_{\rm DS}$, this corresponds to a zero drain conductance. The previous assumptions imply that the intrinsic dynamic load-line is limited to the saturation zone of the output current characteristics I(V). In order to simplify calculations, the extrinsic passive elements of access are not taken into account explicitly but can be included in the elements Z_G and Y_L of figure 1. Series resistances $R_{\rm GS}$ and $R_{\rm GD}$, usually associated with capacities $C_{\rm GS}$ and $C_{\rm GD}$ are ignored.

The application of Miller's theorem leads to the circuit presented on figure 2 by taking into account the input and output Miller admittances, respectively Y_E and Y_S . The phase conversion $\Delta \phi$ is defined as being the variation of the phase ϕ between the output drain-source voltage V_{DS} and the generator voltage E_{G} .

Y_E : Input Miller Admittance

Y_s : Output Miller Admittance

Fig.2 Modified model (Miller's theorem)

The application of Miller's theorem leads to the expressions of the admittances Y_E and Y_S (eq. 1).

$$Y_E = Y_{GD} \left(\frac{G_M + Y_L}{Y_{GD} + Y_L} \right) \text{ and } Y_S = Y_{GD} \left(\frac{G_M - Y_L}{G_M - Y_{GD}} \right)$$
(1)

where G_M represents the drain transconductance associated to the drain current source I_D . The phase ϕ is calculated starting from equation (2):

$$\varphi = Arg^{t} \left(\frac{V_{DS}}{E_{G}} \right) = Arg^{t} \left(\frac{V_{DS}}{V_{GS}} \right) + Arg^{t} \left(\frac{V_{GS}}{E_{G}} \right)$$
(2)
$$\varphi = -Arg^{t} \left(\frac{G_{M}}{Y_{S} + Y_{L}} \right) - Arg^{t} \left(1 + \left(Y_{E} + Y_{GS} \right) Z_{G} \right)$$

Hence :

$$\varphi = -\operatorname{Arctg}\left[\frac{\Im m\{G_{M}/(Y_{S}+Y_{L})\}}{\Re e\{G_{M}/(Y_{S}+Y_{L})\}}\right] - \operatorname{Arctg}\left[\frac{\Im m\left\{Z_{G}\left(Y_{GS}+Y_{GD}\left(\frac{G_{M}+Y_{L}}{Y_{GD}+Y_{L}}\right)\right)\right\}}{1+\Re e\left\{Z_{G}\left(Y_{GS}+Y_{GD}\left(\frac{G_{M}+Y_{L}}{Y_{GD}+Y_{L}}\right)\right)\right\}}\right]$$
(3)

The following assumptions will allow us to reduce the previous expressions:

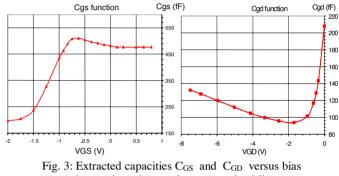
- the overall load admittance $1/Z_{OPT}$ is the sum of the output admittances Y_L+Y_S . It is assumed to be only real and optimal for the output power matching of the transistor.
- the source impedance Z_G is real.
- The transconductance G_M is complex: $G_M = |G_M| \angle \varphi_{G_M}$

Under these conditions, one shows that φ depends, at first order approximation, on the C_{GS}, C_{GD} and G_M intrinsic elements and on the Z_G and Z_{OPT} extrinsic elements according to equation (4).

$$\varphi = -\varphi_{Gm} - \operatorname{Arctg} \left\{ \begin{array}{l} Z_G C_{GS} \omega \\ + Z_G C_{GD} \omega (1 + |G_M| \cdot Z_{OPT} \cdot \cos(\varphi_{Gm})) \end{array} \right\} (4)$$

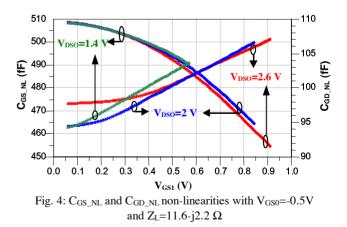
In order to perform a non-linear analysis, the elements C_{GS} , C_{GD} and G_M of equation (4) must be replaced by their equivalent non-linearities $C_{GS_NL}(V_{GS1})$, $C_{GD_NL}(V_{GS1})$ and $G_{M_NL}(V_{GS1})$ at the fundamental frequency. These describing functions depend on the magnitude of the intrinsic voltage V_{GS1} at the fundamental frequency. The describing functions are determined with a harmonic balance simulation taking into account all the environment in which the non-linearities C_{GS} , C_{GD} and G_M are placed. C_{GS_NL} and C_{GD_NL} functions are given with the computation of the imaginary part of Y_{GS} and Y_{GD} admittances at the fundamental frequency (eq. 5).

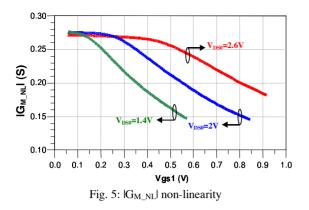
$$C_{GS_{-}NL}(V_{GS1}) = \frac{1}{\omega_o} \Im \left\{ \frac{I_{GS1}(V_{GS1})}{V_{GS1}} \right\} = \frac{1}{\omega_o} \Im \{Y_{GS1}(V_{GS1})\}$$
(5)
$$C_{GD_{-}NL}(V_{GS1}) = \frac{1}{\omega_o} \Im \left\{ \frac{I_{GD1}(V_{GS1})}{V_{GS1}} \right\} = \frac{1}{\omega_o} \Im \{Y_{GD1}(V_{GS1})\}$$


The function G_{M_NL} is given by the computation of the fundamental current component I_{DS1} divided by the fundamental voltage component V_{GS1} .(eq.6)

$$G_{M_{NL}}(V_{GS1}) = \left| G_{M_{NL}} \right| e^{j\varphi_{GM_{NL}}} = \frac{I_{DS1}(V_{GS1})}{V_{GS1}} \quad (6)$$

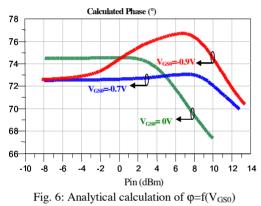
Hence, the phase φ depends on the voltage V_{GS1} (eq.7). $\varphi(V_{GS1}) = -\varphi_{GM}$ NL


$$-\operatorname{Arctg} \left\{ \begin{array}{l} Z_G C_{GS_NL} \omega \\ + Z_G C_{GD_NL} \omega \left(1 + \left| G_{M_NL} \right| Z_{OPT} \cdot \cos(\varphi_{GM_NL}) \right) \end{array} \right\}^{(7)}$$


The phase conversion $\Delta \phi$ is defined as the variation of $\phi(V_{GS1})$ compared to its small signal value. According to equation (7), the variations of C_{GS_NL} , C_{GD_NL} and G_{M_NL} can compensated themselves partially and lead to a minimal phase conversion $\Delta \phi$. The capacities C_{GS} and C_{GD} , obtained by extraction along the intrinsic dynamic load-line on a 8*75 μ m PHEMT transistor, are presented figure 3 [2,3].

voltages along the transistor output load-line.

The particularity of PHEMT devices is that the capacity C_{GS} decreases in the normal operating range of V_{GS} , in our case this appears for V_{GS} values greater than -0.7 V. The direct consequence is the decreasing behavior of the non-linear function C_{GS_NL} (Fig. 4) The describing functions C_{GS_NL} and C_{GD_NL} , simulated for different drain bias points, present opposite variations. Simulations have been made with a fixed gate source bias voltage at -0.5V and a load impedance Z_L =11.6-j2.2 Ω at the frequency of 18 GHz.



III. EXPERIMENTAL RESULTS

The theoretical analysis has been validated on a 0.15 μ m gate length Power-PHEMT transistor with a 8*75 μ m total gate width at the working frequency of 18 GHz.[4]

A. Influence of C_{GS} capacity

The behavior of the C_{GS_NL} non-linear function depends on the value of the gate bias point. The minimum phase conversion is obtained according to the equation (7) when the variation of C_{GS_NL} compensates as well as possible, on the input power range, the variation of term " $C_{GD_NL}(1+|G_{M_NL}|.Z_{OPT,COS}(\phi_{GM_NL}))$ ".

Experimentally, the dependence of $\Delta \phi$ versus C_{GS} can be observed up to 2dB compression of the transistor's power gain by changing the gate bias point V_{GS0} . Three different values of V_{GS0} have been chosen, the load impedance $Z_L=8.9+j.4.8\Omega$ and the drain bias point $V_{DSO}=3V$ are kept fixed (Fig. 6 and Fig. 7). These results show that the phase conversion is minimum for $V_{GS0} = -0.7V$, this corresponds to a gate bias located in the region where C_{GS} capacity value (Fig. 3) is maximum and begins to decrease. Notice that the values of the phase φ are different between analytical and experimental results, this is due to the fact that the analytical calculations are made with intrinsic voltages and it does not take into account the extrinsic passive elements. Nevertheless, the phase conversions $\Delta \phi$ (variations of the phase φ) can be compared and the three analysis: analytical, experimental and HB simulations are coherent and give the same dependence of $\Delta \phi$ with regards to the gate bias.

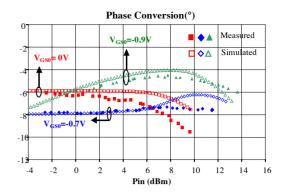


Fig. 7: $\varphi = f(V_{GS0})$ Load-pull measurements/ HB simulations

B. Influence of C_{GD} capacity and G_M transconductance

The influence of C_{GD_NL} cannot be dissociated from that of the non-linear transconductance G_{M_NL} since their contributions to the phase conversion are given by the term: " $C_{GD_NL}(1+|G_{M_NL}|, Z_{OPT.}cos(\phi_{GM_NL}))$ " (eq.7). Experimentally, C_{GD_NL} and G_{M_NL} vary according to the drain-source bias voltage V_{DS0} , without significant changes of C_{GS_NL} and Z_{OPT} . The gate bias point V_{GS0} =-0.47V and the load impedance Z_L =11.5-j.2.3 Ω are kept unchanged. The phase conversion is then measured for various values of V_{DS0} . The curves (Fig. 8 and Fig. 9), plotted up to 3dB compression gain, show that the phase conversion decreases when V_{DS0} increases.

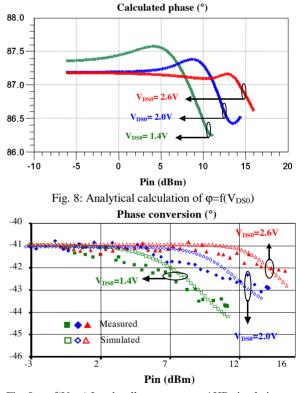


Fig. 9: $\varphi = f(V_{DS0})$ Load-pull measurements/ HB simulations

With a fixed load impedance, the growth in V_{DS0} value allows to increase the output power and thus to reach the same gain compression level for higher input powers. An increase in V_{DS0} makes it possible to move away the load cycle from the ohmic region of the I(V) characteristics and thus allows to reach the same power gain compression at a greater output power. The influence of G_{M_NL} is in this case most significant compared to that of $C_{GD \ NL}$ and $C_{GS \ NL}$ capacities.

C. Influence of the load impedance Z_L

The phase conversion also depends on the load impedance Z_{OPT} .[5] Z_{OPT} represents the total equivalent impedance at the access of the intrinsic current source I_D. When the output circuit is properly tuned at the fundamental frequency, the imaginary part of Z_{OPT} is almost null. In this case, the intrinsic load line has a minimum area and Z_{OPT} is thus only a real impedance whose value controls the slope of the load line. Equation (7) shows that the value of Z_{OPT} controls the contribution of the C_{GD NL} non-linearity in the compensation phenomenon. Experimentally, a bias point (V_{GS0}=-0,47V, $V_{DS0}=3,2V$) is chosen in order to obtain the compensation phenomenon between C_{GS NL} and C_{GD NL}. Three different values of the module of the external load impedance $|Z_{L}|$ are then used. The phase of the impedance Z_L is always chosen in order to minimize the load line area.

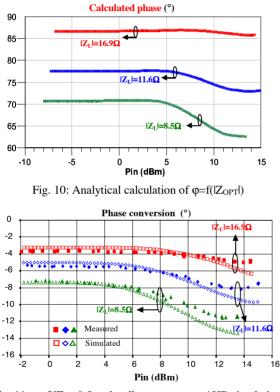


Fig. 11: $\varphi = f(|Z_{OPT}|)$ Load-pull measurements/ HB simulations

The input power varies until the 4dB gain compression point is reached for each of the three values of $|Z_L|$.(Fig. 10 and Fig. 11) The most important phase conversion is obtained with the lowest value of $|Z_L|$ ($|Z_L|=8.5\Omega$). A minimum phase conversion is achieved with an impedance equal to $|Z_L|=11.6\Omega$. Simulations show that the variations of intrinsic impedance Z_{OPT} are similar to the variations of the extrinsic load impedance Z_L . Contrary to an usual operation of FET transistors, an increase in Z_{OPT} can improve the linearity of the PHEMT transistor. This is due to the particular behavior of the PHEMT gate-source capacity. Hence, the usual trade-off linearity/PAE according to the load impedance may not exist under particular operating conditions of the PHEMT device.

IV. CONCLUSION

The simplified theoretical approach highlights the dependence of the phase conversion towards gate-source and gate-drain capacities and towards the load impedance. The results obtained on a 8*75µm Power PHEMT device show first a good agreement between Load-Pull measurements and the large signal HB simulations and it also validate the non-linear model used. In addition, these results show the dependence of the phase conversion, by the means of the bias points, with regards to non-linearities due to the C_{GS} and C_{GD} capacities. A judicious choice of the bias point and of the load impedance allows to control the internal compensations phenomena in the PHEMT and make it possible to achieve a reduced phase conversion over a large input power range. Physical simulations [6] have shown that the particular form of the C_{GS} capacity is related to the gate recess. Other work [7] shows that the linearity of the amplifier is better in the case of a double recess compared to the simple recess. The study presented in this paper confirms these results and gives designing rules for the optimization of PHEMT amplifier's linearity.

ACKNOWLEDGEMENTS

The authors would like to thank the CNES Toulouse for their contribution, especially L. Lapierre and A. Mallet and, P. Fellon of United Monolithic Semiconductors for all the help provided during this work.

REFERENCES

- [1] T. Iwai, and al., "High Efficiency and High Linearity InGaP/GaAs HBT Power Amplifiers : Matching Techniques of Source and Load Impedance to Improve Phase Distorsion and Linearity ", IEEE Transactions on Electron Devices, vol. 45, n° 6, pp. 1196-1200, June 1998.
- [2] Staudinger and al., "An examination of Several Large Signal Capacitance Models to Predict GaAs HEMT Linear Power Amplifier Performance", , RAWCON'98 Proceedings, pp. 343-346, IEEE 98..
- [3] S. Forestier, and al., " A New Nonlinear Capacitance Model of Millimeter Wave Power PHEMT for Accurate AM/PM AM/PM Simulations", Microwave and Wireless Components Letters, pp.-, June 2003.
- [4] D. Barataud, and al., "Measurements and control of current/voltage waveforms of microwave transistors using an harmonic load-pull system for the optimum design of high efficiency power amplifiers", IEEE transactions on Instrumentation and Measurement, vol. 48, n° 4, pp. 835-842, August 99.
- [5] K. H. Ahn, and al., "Effects of Source and Load Impedance on the Intermodulation Products of GaAs FETs", MTT-Digest, vol. 1, pp. 469-472, 2000.
- [6] J. Hedoire ,"Simulation hydrodynamique bidimensionnelle de transistors de type HEMT pseudomorphique. Analyse physique et optimisation pour l'amplification de puissance hyperfréquence", Thèse de doctorat. Université des Sciences et Technologies de Lille, n° d'ordre 2051, 7 Juillet 1997.
- [7] C. Gaquière and al., "Effects on the Linearity in Ka Band of Single or Double-Recessed PHEMT's", IEEE Microwave and Guided Wave Letters, Vol.10, N°.7, July 2000.