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ABSTRACT 
 
The electrodynamic analysis of a dielectric disk resonator with imperfect conducting end walls is carried out at 
excitation of "whispering gallery" oscillations. The possibility of solving the inverse problem is considered: it consists 
in the determination of permittivity tensor components of anisotropic uniaxial crystal. The spectral characteristics of 
teflon disk resonator with copper end surfaces are studied in the 8 mm wave band. 
 
INTODUCTION 
 
Open cylindrical resonators excited by the lowest-type oscillations and made of a material with a high permittivity are 
widely used for making stable microwave generators and filters. The resonator with impedance end walls permits 
measurements of low-magnitude thin-film high-Tc superconductor surface resistance in a low-frequency band of 
microwave range. 
 
Now dielectric resonators with low permittivities (2÷10) are widely applied. They are excited on higher types of 
oscillations, which are characterized by high azimuthal indexes. In these resonators the excited oscillations are formed 
by waves incident on the cylindrical surface at very small angles. This decreases the energy radiation of the resonator. 
The oscillations are known as "whispering gallery"-type oscillations. A high Q-factor of these quasi-optical resonators 
determines their application in the devices for millimetric wavelengths. They are also used for study of high-Tc 
superconductor properties. 
 
DIELECTRIC DISK RESONATOR 
 
In the dielectric disk resonator (DDR) made from a uniaxial single crystal with the anisotropic axis parallel to the 
resonator longitudinal axis the permittivity tensor has the form 
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where zε  and ⊥ε  are the components of ][ ijε  in parallel and perpendicular directions to the crystal optical axis; 0r  is 

the radius of resonator; ijδ  is the Kronecker symbol. 
 
The fields of monochromatic oscillations in such a resonator are described by the expressions [1]: 
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ck /ω= ; the azimuth index ... ;2 ;1 ;0=n , zk  is the axial component of wave vector, 22
zH kkq −= ⊥ε , 
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HzE qq ⊥= εε  and 22
0 zkkq −=  are the radial components of wave vector inside and outside the dielectric, 

respectively; nC  and nD  are constants; 22
Hqq =  for 0rr ≤  and 2

0
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The frequency '''

ppp iωωω −=  ( 0'' ≥pω ) for the p -mode resonance oscillation is given by the solution of the 
characteristic equation: 
 

2
00 ))(( aEzH =−− ααεαα ,     (1) 

 

where 
)(
)(1

0

0
'

0 rqJ
rqJ

rq jn

jn

j
j =α ; 

)(
)(1

00
)1(

00
')1(

00
0 rqH

rqH
rq

=
n

nα ; ( )⊥−ε12
0

22
0 rqq

nkka=
H

z ; the prime denotes the derivative with 

respect to the argument; J xn ( )  and H xn
( ) ( )1  are the Bessel and first-kind Hankel cylindrical functions of the n -th 

order. The index p  characterizes the triple index nsm , with n , s  and m  being the azimuthal, radial and axial 
indexes, respectively. 
 
For the disk resonator with ideally conducting infinite end surfaces (Fig. 1) the axial component of wave vector is given 
by the expression lmkz /π= , where l  is the resonator height, ... ,2 ,1 ,0=m . 
 
In the DDR there are independent ЕН and HE-mode oscillations. In the case when the following condition 
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is realized, the eigenoscillations of the resonator will be of the HE type, and the nD  constant will be found from the 

energization condition, and 
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The rigorous theory is lacking for the case when the resonator end planes are non-ideally conducting. The frequencies 
of resonance oscillations in such DDR were calculated by the magnetic-wall method, the variational methods and the 
method of partial areas with application of an appropriate approximation of electromagnetic field distribution outside 
the dielectric and with the registration of singularity field behaviour near the dielectric edges (see Tzibisov et al [2] and 
Lee and Kin [3]). In papers by Filippov and Kharkovsky [4] and Barannik et al [5] it has been suggested to use an 
experimental identification of resonance oscillations with azimuthal and radial indexes. The radial and axial 
components of wave vector are thus described by the solutions of the above-mentioned characteristic equation (1), and 
the relation zeff kml /π=  introduces an effective resonator height. 
 
DDR WITH IMPEDANCE END WALLS 
 
The square-law relation is obtained from the set of Maxwell's equations, which describe resonance oscillations in the 
resonators with both ideal and imperfect conducting end walls. Using the condition of a radiated damped wave at 

∞→r , and the continuity of tangential components of electromagnetic field strengths on the resonator curvilinear 
surface 0rr = , and also the impedance condition on the end walls, Prokopenko and Filippov [6] came to the integral 
equation which define the resonance frequency shift as a result of the influence of imperfect conductivity of DDR end 
walls: 
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Here zer  is the basis vector of longitudinal resonator axes; ω , E
r

 and H
r

 are, respectively, the frequency and the 

vectors of electrical and magnetic field strengths of the resonator with the final conducting end walls; pω , pE
r

, 



pH
r

are the resonance frequency and the fields of p -mode oscillation in the DDR with ideally conducting end walls (* 

designates the complex conjugation). On the left, the integration is over whole volume V , and on the right, it is carried 
out on the end plane surfaces S  characterized by the surface impedance SS iXR +=ζ . 
 

Using the representation of vectors E
r

 and H
r

 as a linear combination of corresponding DDR eigenfields pE
r

 and pH
r

 
with ideally conducting end walls, we obtain the following set of equations: 
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Here 'pβ  is the expansion constant; ∫ +=
V

pijpppp dVEEHHW )][(
8
1 **

rrrr
ε

π
 is the electromagnetic field energy 

produced by the p�mode oscillation in the resonator with ideally conducting end walls. The parameter 
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ζ  takes into account the losses in the end walls of final conductivity and 

describes the interaction between the modes in the DDR. The compatibility condition of the homogeneous linear 
equations system relative to 'pβ  gives the characteristic equation for the calculation of eigenfrequencies in the DDR 

with imperfect conducting end walls: 
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The given relation determines the resonance frequency shift of DDR with imperfect conducting end walls relative to the 
eigenfrequency of the resonator with ideally conducting end surfaces for the respective oscillation type. The change in 
the resonance-frequency real part is determined by the imaginary part of surface impedance (reactance) SX . The 
nondissipative energy accumulated in the surface strata of DDR end walls depends on the reactance magnitude. The 
surface resistance SR  determines the average Joule heat losses per cycle Spp RI 2  in the end impedance surfaces of 
resonator. 
 
For a small surface impedance ζ  ( 1<<ζ ) and with neglection of interaction between the modes ( 02

' =ppI  at 

pp ≠' ) relation (2) takes the form 
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where ppI  is the surface current in the resonator end planes with final conductivity. This current is generated by 
penetration of electromagnetic wave in the planes. The obtained relation makes it possible to determine the surface 
impedance ζ  of the resonator end walls at the DDR resonance frequencyω  measured in experiment. 
 
SPECTRAL CHARACTERISTICS OF DDR 
 
The spectral characteristics of the DDR with impedance end surfaces are shown in Fig. 2 at SR =4×10-2 Ohm (for 

copper). In calculations and experimental studies we used the DDR made from a teflon sheet ( ⊥ε = zε =2.04) and being 

3.9 cm in the radius and 0.71 cm in the height. The frequency dependences of the slow-down factor 1/ 0
' −= rknξ  

have been obtained from relation (3) for the reactance SS RX = . The resonator quality factor 0Q  values was 
determined by Barannik's et al expression [5]. Fig. 2 shows the results for the DDR with EH and HE-mode oscillations 
which have the radial index 2 ;1=s  and the axial index 1 ;0=m  within the azimuthal indexes 3930 ÷=n . 



The resonance frequency deviation of the resonator with copper end walls from respective eigenfrequency values of the 
DDR with ideally conducting surfaces was (10÷15) MHz. The resonance-oscillations power losses in copper end 
surfaces have led to a decrease of resonator basic Q-factor by factors of 10 to 100. 
 
CONCLUSION 
 
The integral equation that describes the influence of end-wall final conductivity on resonance oscillations is obtained 
and investigated. The slow-down and Q-factor dependences of teflon DDR with copper end walls are given. The 
solution of the self-consistent set of equations on the basis of the characteristic relation (1) and experimentally measured 
azimuthal and axial indexes at resonance frequencies of "whispering gallery" oscillations determine the permittivity 
tensor components ][ ijε  of the uniaxial crystal that has its optical axis coinciding with the direction of the DDR 
longitudinal axis. It is necessary to note that the solution of the integral equation (3) allows determining the frequency 
dependence of the surface impedance at known experimental values of resonance frequencies. The approach developed 
by us can be used for studying microwave characteristics of conducting materials, including superconducting films. 
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Figure 2. Slow-down (a) and Q-factor (b) curves for the DDR with copper end walls 
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Figure 1. DDR with conducting end walls 
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