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ABSTRACT

An application of optically controlled gap integrated in an active MMIC is presented. The gap, inserted in a

feedback amplifier, can optically modulate the active device. This topology could reduce the design

complexity of digital wireless communication systems.

1. INTRODUCTION

Monolithic Microwave Integrated Circuits (MMIC) are very used in Wireless Digital Communication

Systems because of the increase of the propagating frequency. Digital modulation is generally introduced

via modulating circuits which cause degradation and losses on the modulating signal. Direct modulation

introduced by optical technique is better suited for rapid wireless communication systems because of the

poor losses and the very large modulation signal band-pass.

We present, in this article, a direct digital modulation introduced by a laser diode lightening a gap designed

on a GaAs substrate. This gap can be integrated on an active MMIC like an amplifier or an oscillator which

operates at RF frequencies. This kind of topology suppresses the modulating circuit, reducing design cost,

consumption and dimensions.

2. OPTICALLY CONTROLLED GAPS : MODELLING AND EXPERIMENTAL RESULTS

The structure of the gap is realized on a GaAs substrate of 200 µm thickness and in a microstrip technology

(figure 1). Illumination of this structure by an adequate laser diode creates a conductive plasma in the GaAs

substrate between the two 50Ω-lines and increases the transmission of the microwave signal across the gap.

These optically controlled microwave structures offer many advantages [Simons and Bhasin (1)] and have

been investigated first on silicon substrate. The applications are numerous like switching, phase shifting or

modulation [Haidar (2)].

2.1. Modelling

The microstrip gap has been modelized both by electrical and electromagnetic simulations [Merrar et al (3)]

and on the ON and OFF states. Due to the particular GaAs technology, the electrical model, based on

measurement results on a vectorial network analyzer (VNA) from 0.1 to 40 GHz, is presented on the figure

2. The numerical values of the equivalent circuit components depend on the dimensions of the gap,

principally the length which has four different values : 20, 50, 100 and 200 µm.

2.2. Experimental Results

The gap is lightened with an AlGaInP laser diode of 671 nm length-wave coupled to an optical fiber. The

maximum power level at the output of the fiber is about 140 mW.
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Due to the high-pass response of the microstrip gap, the experimental results showed that gaps produce

better ON/OFF ratios at low frequencies than at high frequencies (figure 3). The best ON/OFF ratio has

been obtained with the 50 µm-length gap on the entire test frequencies band. This result can be attributed to

the intrinsic structure of the gap.

Indeed, a large gap presents a strong isolation between the input and the output. So, the lightening spot of

the laser diode (100 µm typically) is smaller than the length of the gap and the transmission gain is not

optimal. If the spot covers the entire active region of the gap, the plasma zone is generated between the two

electrodes and they are electrically connected : the transmission gain is better. If the gap length is too small,

the optical reflections on the two metallizations of the gap are strong and the optical losses, too

[Gevorgian (4)]. So, a length of 100 µm for a gap is an appropriate value for our applications.

3. ANALOG MODULATION ON PASSIVE GAPS

Introducing analog modulation via laser diode DC-polarisation, we can show that the modulation is

transmitted to the microwave signal which propagates across the gap.

The demonstrating circuit is represented on the figure 4. A CW microwave generator is connected at the

input of the gap. A spectrum analyzer on the output visualizes the modulated microwave signal. The

generator frequency is 20 GHz and the amplitude modulation frequency is 100 kHz.

Figure 5 shows the measured modulating spectrum at the output of the optical fiber and the measured

modulated microwave spectrum at the output of the gap. The AM modulation is recuperated on the

microwave signal with an attenuation of the carrier frequency introduced by the frequency response of the

gap.

An higher modulation frequency than 500 kHz cannot be introduced on the optical signal because of the cut-

off frequency of the DC-polarisation circuit of the laser diode.

4. DIRECT DIGITAL MODULATION ON ACTIVE AMPLIFIER MMIC

Digital modulation at higher frequency can be introduced via optical illumination on the microstrip gap. A

cut-off frequency can be very high due to the large frequencies band of both the microwave gap and the laser

diode.

Electrical simulations, using envelope method [Yap (5)], of a microwave gap supplied to a digital modulated

optical signal has been performed. The equivalent photoconductance has been submitted to an amplitude

modulation, synthesizing the physical phenomenon (figure 6). These simulations showed no cut-off

frequency of the modulated signal (until 1 GHz) and better results at low microwave frequencies (from 0.5

to 10 GHz).

These encouraging results determined the design of a feedback amplifier at 24 GHz in coplanar technology

on GaAs. The CPW gap is introduced between the gate and the drain of a 0.15 µm-HEMT. Adaptative cells

have been calculated on the input and the output of the transistor at 24 GHz. The envelope simulation results

showed an amplified AM modulated microwave spectrum at the working frequency (figure 7). Other active

function can be designed introducing modulated signal via optically controlled gap, like oscillator.

5. CONCLUSION

Rapid digital modulation is well dedicated to wireless applications such as ISM bands like 24 GHz. Due to

his high-pass response, a gap is well suited for this application. The modulating frequency could be very

high because of the large frequencies response of the laser diode, too. But, the ON/OFF ratio of the gap at

the carrier frequency is important : the gap is an attenuator when the light is off and a transmitter when the

light is on. So, the carrier frequency should be selected with this criterion.



Envelope simulations on a commercial software showed that high digital modulation applying by optical

controlled gap integrated on an active MMIC has good performances. This concept could be introduced both

in microstrip and CPW technologies and in various substrates like GaAs, Si and InP.
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Figure 1 : Illumination of a photoconductive

microwave gap.

Figure 2 : Electrical model of the lightened

microwave gap.
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Figure 3 : Measured responses of microwave gaps on ON and OFF states.
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Figure 4 : Synoptic of AM optically modulated gap.
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Figure 5 : Measured modulated spectrums.
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Figure 6 : Envelope circuit simulation of the

optically modulated microwave gap.

Figure 7 : Amplifier output AM modulated signal

obtained by envelope simulations.
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