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Abstract

Auxiliary basis sets specifically matched to the correlation consistent cc-pVnZ-PP, cc-

pwCVnZ-PP, aug-cc-pVnZ-PP and aug-cc-pwCVnZ-PP orbital basis sets (used in conjunc-

tion with pseudopotentials) for the 5d transition metal elements Hf-Pt have been optimized

for use in density fitting second-order Møller-Plesset perturbation theory and other corre-

lated ab initio methods. Calculations of the second-order Møller-Plesset perturbation theory

correlation energy, for a test set of small to medium sized molecules, indicate that the den-

sity fitting error when utilizing these sets is negligible at three to four orders of magnitude

smaller than the orbital basis set incompleteness error.

1 Introduction

The evaluation of four-index two-electron integrals has traditionally represented a major bottle-

neck in the application of post Hartree-Fock (HF) methods, such as second-order Møller-Plesset

perturbation theory (MP2), leading to prohibitive time, disk and memory requirements for

larger scale systems. Density fitting (DF) reduces this computational cost by robustly approx-

imating the integrals via an expansion of orbital product densities in an auxiliary basis set

(ABS).1–3 While some progress has been made in the automatic generation of ABSs,4 typically
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DF-MP2 calculations employ a pre-optimized fitting set that is matched to a specific atomic

orbital (AO) basis set and this generally leads to a saving of at least an order of magnitude in

computer time. DF for post-HF methods has its roots in related integral approximation tech-

niques applied to density functional theory5,6 and is conceptually similar to DF-HF,7,8 although

in most of these implementations each DF method requires a different ABS.

DF for post-HF methods is not limited to DF-MP2, with the approximate coupled-cluster

singles-and-doubles model CC29 representing a popular example of a method that often utilizes

the same ABS. Much progress has also been made in combining DF with additional efficiency

improvements. One example of this is local electron correlation methods10 where distance based

criteria are used to reduce the size of the configuration expansion, resulting in methods such

as DF-LMP2,11 DF-LCC212 and DF-LCCSD(T).13 A second area of interest is in explicitly

correlated methods that greatly improve AO basis set convergence by including terms that

depend on the interelectronic distance into the basis, again four-index two-electron integral

evaluation can be approximated in methods such as MP2-F12 and the various flavors of CCSD-

F12.14,15 It should be noted that in some circles DF is referred to as resolution of the identity

(RI). In the current article DF is favored to reduce confusion with the RI basis sets used in

explicitly correlated methods, which are designed and optimized in a distinctly different way to

the DF ABSs employed in DF-MP2. To indicate that the ABS are designed for use in post-HF

methods, the suffix /MP2Fit will be employed.

The correlation consistent (cc) series of basis sets16,17 provide systematic convergence to-

wards the complete basis set (CBS) limit, hence they have seen a great deal of use in investiga-

tions that employ correlated electronic structure methods. Efforts have been made to augment

the cc AO sets with additional tight functions to correlate core electrons,18,19 and with diffuse

functions to describe negative ions and weak intermolecular interactions.20 By designing cc

basis sets to be used in combination with relativistic energy-consistent pseudopotentials (PPs)

it has also been possible to expand the cc coverage of the periodic table to include the post-

d main group elements21–23 and the 4d and 5d elements.24–27 Most of the cc AO sets now
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have complimentary ABSs for use in density fitting,28–33 enabling efficiency and convergence

improvements for a large number of elements.

In the present work DF ABSs for use in post-HF methods are optimized for the 5d transition

metal (TM) elements Hf-Pt. These ABSs are specifically matched to the recently developed

cc-pVnZ-PP family of basis sets, including the weighted core-valence and diffuse augmented

variants.

2 Basis set construction and optimization

The ABSs were designed and optimized to be used in conjunction with the correlation consis-

tent, cc-pVnZ-PP (where n = D, T, Q, 5), family of basis sets and accompanying relativistic

energy-consistent pseudopotentials.27 Optimization of the ABSs employed the analytic gradi-

ents29 implemented within the RICC29,34 module of the TURBOMOLE package.35,36 This

optimization proceeds by minimizing the quantity

δDF =
1
4

∑

aibj

[〈ab||ij〉DF − 〈ab||ij〉]2
εa − εi + εb − εj

. (1)

Where 〈ab||ij〉 = (ai|bj)− (aj|bi), with i, j denoting occupied orbitals, a, b virtual orbitals and

εx the HF orbital energies.3 It should be noted that cc-pVTZ-PP ABSs for Hf-Pt are already

available from the Environmental Molecular Sciences Laboratory Basis Set Exchange.37,38 As

details of the design and construction of these sets are not available,39 new cc-pVTZ-PP ABSs

were developed during the course of the current investigation. This ensures that all of the ABSs

for Hf-Pt were optimized in a consistent manner and are tested on the same set of small to

medium sized molecules.

The principal design goals for the MP2Fit ABSs in this investigation is that the number of

basis functions within a particular ABS will remain the same for all of the elements Hf-Pt, and

that the total number of functions should match those for analogous sets previously published

for the 4d elements. In order to be able to describe the various oxidation states of the transition

metal elements, tight functions for Hf, Ta and W were optimized for the 2+, 3+ and 4+ cations,
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respectively, with the remaining functions optimized for the neutral atom. For the remaining

elements, the tightest functions were optimized for the 4+ cation, intermediate functions for

an intermediate cation (2+ for Re and Pt, 3+ for Os and Ir) and the more diffuse and higher

angular momentum functions for the neutral atom. This procedure is explained in more detail

in ref. 30. For ABSs matched to the cc-pVnZ-PP AO basis sets, the 5s and 5p electrons were

treated with the frozen core approximation and their orbitals excluded from the calculation of

the δDF functional and gradient.

It is highly recommended that the weighted core-valence cc-pwCVnZ-PP AO basis sets are

employed in calculations that wish to describe both valence (5d6s) and outer-core (5s5p) elec-

tron correlation. To enable DF approximations for such investigations cc-pwCVnZ-PP/MP2Fit

ABSs were also optimized, with orbitals from the 5s and 5p orbitals included in the opti-

mization. Core-valence MP2Fit ABSs for lighter elements have typically been designed around

augmenting cc-pVnZ/MP2Fit sets with a small number of additional tight exponents, in a sim-

ilar fashion to the construction of the matching AO sets. This was not possible for Hf-Pt as

the core-valence AO sets had a large number of exponents re-optimized, relative to the stan-

dard correlation consistent sets. This necessitated that the cc-pwCVnZ-PP/MP2Fit sets were

completely re-optimized, along with the addition of a small number of extra functions. The

compositions of the cc-pVnZ-PP/MP2Fit and cc-pwCVnZ-PP/MP2Fit ABSs are presented in

Table 1, along with the compositions of the matching AO sets. The composition of the cc-

pVnZ-PP/MP2Fit ABSs is identical to the equivalent sets for the 4d elements Y-Pd,31,32 and

for the remaining 5d elements Au and Hg.40 The compositions also conform to the trend that

it is necessary to include auxiliary functions in the angular momentum shell equal to `occ + `bas,

corresponding to the highest occupied angular momentum symmetry for the neutral atom and

the largest symmetry included in the AO basis, respectively.

The correlation consistent family of basis sets are often augmented with additional diffuse

functions for the description of, e.g., negative ions and intermolecular interactions, with such

sets denoted in the form aug-cc-pVnZ-PP. ABSs matched to these AO basis sets were produced
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by adding a common set of diffuse functions to both the cc-pVnZ-PP/MP2Fit and cc-pwCVnZ-

PP/MP2Fit sets. There is an additional exponent included for each existing angular momentum

symmetry and they were produced by an even-tempered extension of the cc-pVnZ-PP/MP2Fit

ABS, such that ζ3 = ζ2/(ζ1/ζ2), where ζ3 is the new exponent, ζ2 is the next most diffuse

exponent etc. While it will be later demonstrated that the energetic error when using augmented

ABSs produced in this manner is negligible, it should be noted that tests have yet to be carried

out on Rydberg-type excited states and some degree of caution should be employed when using

the resulting ABSs for such systems.

3 Results and discussion

The ABSs optimized in this work were evaluated by comparing the basis set incompleteness

error (BSIE) in the AO basis (at the MP2 level) with the DF error for a test set of molecules

that includes HfF, HfF3, HfO, HfO2, TaF, TaF3, TaO2F, TaO2, WF3, WH, WO, WO2, WO3,

WC, WC2, ReH, ReO, ReO2, ReO3, ReO3F, OsO2, OsO3, OsO4, OsOF5, IrF6, IrCl2, IrO2,

Pt(CO)4, PtO, PtO2 and PtCl2. For the 5d elements this was carried out using the cc-pVnZ-

PP and aug-cc-pVnZ-PP AO basis sets with the 5s and 5p electrons treated with the frozen core

approximation, and for the cc-pwCVnZ-PP and aug-cc-pwCVnZ-PP AO sets with all electrons

correlated. For the non-5d elements, the usual frozen core (1s electrons for B-Ne, 1s, 2s and 2p

for Al-Cl) approximation was used throughout, along with the cc-pVnZ and aug-cc-pVnZ AO

basis sets.16 For Cl the cc-pV(n+d)Z and aug-cc-pV(n+d)Z sets were employed.41,42

An estimate of the CBS limit for the conventional MP2 correlation energy was produced

using an extrapolation formula inspired by that of Helgaker and co-workers:43,44

Ecorr
n = Ecorr

CBS +
A

`3
max

. (2)

For the transition metal basis sets `max = n + 1, if n is the cardinal number of the correla-

tion consistent basis set. Although the molecules in the test set are not entirely composed

of transition metal elements this prescription has been used throughout. Whilst this formula

has been employed extensively for molecules containing 2p and 3p elements, it has not been so
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thoroughly investigated for the transition metal elements. This suggests that the estimates of

the CBS limit produced by the formula for the d-elements should be treated with more caution,

yet the term CBS limit will be used herein for simplicity. The BSIE is defined as the difference

between the MP2 correlation energy produced by basis sets with a given cardinal number and

the estimate of the CBS limit. The statistics of the BSIE over the whole test set are shown in

Table 2 as the mean, standard deviation and maximum error for each basis set. It should be

noted that conventional MP2 calculations with the aug-cc-pwCV5Z-PP basis set on the OsOF5

and Pt(CO)4 molecules were beyond the computational resources available. This means that all

of the error statistics for the aug-cc-pwCVnZ-PP AO and ABSs in Tables 2 and 3 exclude data

for these two molecules. Extensive benchmarking of the AO basis sets is beyond the scope of

the current investigation, yet it is clear from Table 2 that, as expected, the correlation energies

converge towards the estimated CBS limit in a regular fashion as the quality of the basis set is

increased.

The unsigned error due to the density fitting approximation is evaluated for each molecule

in the test set as

|∆DF
n | = |Ecorr

n − Ecorr
n,DF|. (3)

The DF errors for each ABS developed within this work are summarized in Table 3 as statistics

for the test set of molecules. More specifically, the mean unsigned error (|∆̄DF|), standard devi-

ation (∆DF
std) and maximum error (∆DF

max). Upon comparison of Tables 2 and 3 it is immediately

obvious that the DF errors are negligible compared to the observed BSIE. In general the mean,

standard deviation and maximum errors are three to four orders of magnitude smaller for the

DF error than for the BSIE, irrespective of the chosen AO basis. From Table 3 it can also be

seen that as the cardinal number of the basis set is increased the error introduced by the DF

approximation decreases, which is presented graphically in Figure 1 as normalized Gaussian

distributions of the density fitting error for the cc-pVnZ-PP ABSs (similar figures for the other

ABSs are almost identical and not presented here). It is also evident from Table 3 that correlat-

ing the core electrons does not have a significant effect on the magnitude of the DF errors when
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the correct basis set combinations are utilized. Comparing the DF errors of the cc-pVnZ-PP

and aug-cc-pVnZ-PP sets (and analogously for the weighted core-valence sets) indicates that

adding the additional diffuse exponents to the ABSs in an even-tempered manner has only

introduced negligible errors, and in some cases the DF fitting for the diffuse augmented set pro-

duces marginally lower error statistics than for the base ABS. For reference, the unpublished

cc-pVTZ-PP/MP2Fit set of Hättig produces a mean unsigned error of 0.033 mEh, but possesses

fewer functions than the equivalent set optimized in this work. Plots showing the DF error for

each molecule are included in the Supplementary Material45 as Figures SI - SIV. These plots

indicate, in general, that the total DF error for each molecule increases as the atomic number

of the 5d element within the molecule increases. This is perhaps unsurprising as the number of

electrons correlated, both on the TM center and the ligands, also increases.

The errors introduced by density fitting are often expressed in the literature as relative

percentage errors, which are obtained as:

∆DF,rel
n = |(Ecorr

n − Ecorr
n,DF)|/Ecorr

n × 100%. (4)

The statistics of the DF errors in terms of relative percentage error are provided as Table S1 in

the Supplementary Material45 for comparative purposes. These errors are comparable to those

published for molecules containing the 4d elements.32

4 Conclusions

New auxiliary basis sets for use in the density fitting approximation at the MP2 level have been

optimized for use with the cc-pVnZ-PP, cc-pwCVnZ-PP, aug-cc-pVnZ-PP and aug-cc-pwCVnZ-

PP orbital basis sets and pseudopotentials for the 5d transition metal elements Hf-Pt. The errors

introduced by utilizing these ABSs in the DF approximation have been assessed by comparing

the AO basis set incompleteness error with the DF error for a test set of molecules that contain

the 5d transition metal elements. In all cases the mean error, standard deviation and maximum

error of the DF error were three to four orders of magnitude smaller than the BSIE, indicating

that the errors introduced by using these ABSs is negligible and that they may be used with

7



confidence for accurately reproducing conventional correlation energies. These ABSs can also

be employed in other correlated wavefunction based methods such as DF-CC2, DF-LCCSD(T)

and CCSD(T)-F12. However, these methods require integrals over four orbitals in the virtual

space compared to the two virtual orbital exchange integrals that occur in DF-MP2, suggesting

that larger ABSs with higher angular momentum functions may be required.13 In practice

this often leads to cc-pV(n + 1)Z/MP2Fit ABSs being employed for the fitting of the four-

external integrals, as, to the best of the author’s knowledge, density fitting sets specifically for

coupled-cluster methods have yet to be published.

All of the ABSs optimized in this work can be found in the Supplementary Material45 and

will be made available for electronic download from the Basis Set Exchange38 website.
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Figure 1: Normalized Gaussian distributions of the relative percentage errors in the MP2 va-

lence correlation energy introduced via the density fitting approximation with the cc-pVnZ-

PP/MP2Fit auxiliary basis sets (shortened to VnZ in the legend) for a test set of molecules

that include the 5d elements Hf-Pt.
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Table 1: Composition of the MP2Fit auxiliary basis sets compared to the atomic orbital sets.

The ratio of functions assumes spherical orbitals.

AO basis ABS Ratio of functions

cc-pVDZ-PP [4s4p3d1f ] (8s8p6d6f4g2h) 4.3

cc-pVTZ-PP [5s5p4d2f1g] (10s10p9d7f6g3h2i) 3.9

cc-pVQZ-PP [6s6p5d3f2g1h] (11s11p10d8f7g5h3i2k) 3.4

cc-pV5Z-PP [7s7p6d4f3g2h1i] (12s12p11d10f9g6h4i3k2l) 3.0

cc-pwCVDZ-PP [5s5p4d2f ] (9s9p7d7f6g3h) 3.8

cc-pwCVTZ-PP [7s7p6d3f2g] (12s12p11d9f7g5h3i) 3.3

cc-pwCVQZ-PP [8s8p7d4f3g2h] (12s12p11d9f9g6h5i3k) 2.9

cc-pwCV5Z-PP [9s9p8d5f4g3h2i] (13s13p13d11f10g7h6i4k3l) 2.7
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Table 2: Absolute basis set incompleteness errors (per molecule) in MP2 correlation energies

for a test set of molecules containing 5d elements. Errors are presented as mean (∆̄), standard

deviation (∆std) and maximum error (∆max), all in mEh. Calculations employing weighted

core-valence basis sets correlated the 5s and 5p electrons on the TM element. See text for

further details.

TM basis set ∆̄ ∆std ∆max

cc-pVDZ-PP 278.486 170.716 725.167

cc-pVTZ-PP 122.256 74.670 316.977

cc-pVQZ-PP 61.843 37.726 161.828

cc-pV5Z-PP 35.789 21.832 93.651

aug-cc-pVDZ-PP 240.810 147.025 623.082

aug-cc-pVTZ-PP 104.015 63.557 269.416

aug-cc-pVQZ-PP 52.336 31.913 135.997

aug-cc-pV5Z-PP 30.287 18.468 78.702

cc-pwCVDZ-PP 399.013 179.321 857.583

cc-pwCVTZ-PP 172.091 77.713 372.243

cc-pwCVQZ-PP 88.711 39.097 190.594

cc-pwCV5Z-PP 51.337 22.626 110.298

aug-cc-pwCVDZ-PP 332.995 125.863 749.217

aug-cc-pwCVTZ-PP 142.553 54.490 322.635

aug-cc-pwCVQZ-PP 73.926 27.473 164.365

aug-cc-pwCV5Z-PP 42.781 15.899 95.119
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Table 3: Density fitting errors in MP2 correlation energies (per molecule) for a test set of

molecules containing 5d elements. Errors are presented as mean unsigned error (|∆̄DF|), stan-

dard deviation (∆DF
std) and maximum error (∆DF

max), all in mEh. Calculations employing weighted

core-valence basis sets correlated the 5s and 5p electrons on the TM element. The molecule

producing the largest density fitting error is denoted in parentheses. See text for further details.

TM basis set |∆̄DF| ∆DF
std ∆DF

max

cc-pVDZ-PP 0.080 0.082 0.431 (Pt(CO)4)

cc-pVTZ-PP 0.023 0.021 0.088 (Pt(CO)4)

cc-pVQZ-PP 0.004 0.004 0.020 (PtO2)

cc-pV5Z-PP 0.003 0.003 0.011 (PtO2)

aug-cc-pVDZ-PP 0.092 0.088 0.415 (Pt(CO)4)

aug-cc-pVTZ-PP 0.015 0.014 0.067 (Pt(CO)4)

aug-cc-pVQZ-PP 0.005 0.004 0.013 (PtO2)

aug-cc-pV5Z-PP 0.004 0.003 0.016 (Pt(CO)4)

cc-pwCVDZ-PP 0.086 0.080 0.422 (Pt(CO)4)

cc-pwCVTZ-PP 0.027 0.020 0.087 (Pt(CO)4)

cc-pwCVQZ-PP 0.004 0.004 0.020 (PtO2)

cc-pwCV5Z-PP 0.003 0.003 0.012 (PtO2)

aug-cc-pwCVDZ-PP 0.090 0.070 0.281 (ReO3)

aug-cc-pwCVTZ-PP 0.016 0.012 0.047 (PtO2)

aug-cc-pwCVQZ-PP 0.004 0.004 0.013 (PtO2)

aug-cc-pwCV5Z-PP 0.003 0.003 0.008 (IrF6)
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