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Abstract 
 

In this paper, we shall discuss some properties of generalized non-homogeneous 
Morrey spaces. In addition, we will also prove the Olsen inequality in the non-
homogeneous setting.  Our proof utilizes the result of  (García-Cuerva and Martell, 
2001) on the boundedness of  the fractional integral operator on Lebesgue spaces of 
non-homogeneous type.  
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1. Introduction 

 We shall study here the fractional integral operator  (for nIα dn ≤<<α0 ), on 

non-homogeneous spaces,  which is defined by the formula 

)()(:)( yd
yx
yfxfI

d
n

n μαα ∫ −−
=

R

. 

The formula reduced to the classical version of  (Hardy and Littlewood, 1927; Hardy 

and Littlewood, 1932;  and  Sobolev, 1938) when dn =  and μ  is the usual Lebesgue 

measure. By a non-homogeneous space we mean a metric space -- here we will consider 

only the Euclidean space  -- equipped with an n-dimensional measure (García-

Cuerva and Martell, 2000). A positive Borel measure 

dR

μ  satisfies n-dimensional 

measure (for 0 < n ≤ d) if there exists a constant such that 0>C
nCrraB ≤)),((μ  
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for every open ball  centered at  with radius r > 0 (García-Cuerva  and 

Gatto, 2004).  This condition -- also known as the growth condition of order n (Sawano, 

2005) -- replaces the doubling condition, which is the key property for a metric space to 

be a homogeneous space. Notice that a positive Borel measure 

),( raB da R∈

μ  satisfies the doubling 

condition if there exists a constant such that for every ball  we have  0>C ),( raB

)),(())2,(( raBCraB μμ ≤  

 (Coifman and Gusmán, 1970/1971). The ball  is concentric to  with 

radius 2r. We may consult (Krantz, 1999) for examples of the spaces of homogeneous 

type and (Verderra, 2002) for that of non-homogeneous type. 

)2,( raB ),( raB

 Now, let ( ) ( )μμ ,dpp LL R= , ∞<≤ p1 , denote the non-homogeneous Lebesgue 

spaces. It is well known from (García-Cuerva and Martell, 2001) that   is a bounded 

operator from  to  for 

nIα

)(μpL )(μqL
α
np <<1  and

npq
α

−=
11 .  Further, the following 

Olsen inequality 

  ,)(:)(:)(: μμμ α
α

pnp LfLWCLfWI ≤  

for )(: μα
n

LW∈ , can be viewed as a consequence of the  boundedness of  

(Sihwaningrum, et.al., 2008b). The inequality was first introduced -- in homogeneous 

setting -- by (Olsen, 1995) to study the solution of the Schrödinger equation with a 

small perturbed potential W on Morrey spaces. Later on, (Kurata et al., 2002; Gunawan 

and Eridani, 2008) extended the Olsen's result to the homogeneous generalized Morrey 

spaces. In this paper, we will extend further the Olsen's result to the generalized Morrey 

spaces of non-homogeneous type.    

)()( μμ qp LL − nIα

 

2. Main Results 

2.1 Generalized non-homogeneous Morrey spaces  

For ∞<≤ p1  and ),0(),0(: ∞→∞φ , let us define the generalized non-

homogeneous Morrey spaces  )  to be the set of all functions 

 for which 

=Μ )(, μφp ,(, μφ dp RΜ

)(μp
locLf ∈ ∞<Μ )(: , μφpf .  Here,  
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Our definition is in line with the definition of Hardy-L ittlewood maximal operator nM  

given  by the formula 

)()(1sup:)(
)),(0

ydyf
r

xfM
raB

n
r

n μ∫
>

= . 

The reader may also refer (Gunawan, et.al., 2007) and (Sawano, 2008) for other types 

of generalized non-homogeneous Morrey spaces – which are defined in accordance with 

the k-dilated Hardy-Littlewood maximal operator  : kM

∫
∋

=
QxQ

k ydyf
kQ

xfM )()(
)(

1sup:)( μ
μ

 

 Note that along with our definition, if p
n

rr
−

=)(φ , we obtain . 

Meanwhile, for , we have  (see 

(Sihwaningrum, et. al., 2008a) for the proof). Furthermore, the generalized non-

homogeneous Morrey spaces obey the following property. 

)()(, μμφ pp LM =

∞<<< qp1 )()()( ,1,, μμμ φφφ MMM pq ⊆⊆

 

Fact 2.1  If ∞<≤ p1  and )()( rCr ψφ ≤  (for ), then  and  0>r )()( ,, μμ φψ pp MM ⊆
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The above inequality implies that )(:)(: ,, μμ φψ pp MfCMf ≤ , and so does  

.  )()( ,, μμ φψ pp MM ⊆

 

As a consequence,  and )()( ,, μμ φψ pp MM = )(: , μψpMf ∼ )(: , μφpMf  for φ∼ψ.  
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2.2  Olsen Inequality 

 As an extention of the Olsen's result, we will present here an Olsen inequality on 

generalized non-homogeneous Morrey spaces. The inequality simply says that a 

multiplication of operators W and   is bounded on .  To proof the inequality, 

we use the the boundedness of  from  to .  

nIα )(, μφpM

nIα )(μpL )(μqL

 

Theorem 2.2. Suppose that φ satisfies the doubling condition for function, that is there 

exists a constant C such that C
s
t

Cs
t

≤≤⇒≤≤
)(
)(12

2
1

φ
φ .  Suppose further that φ 

satisfies  .  Then, the inequality  )()(1 rCrdttt
r

φφ αα ≤∫
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−
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holds provided that α
n

LW ∈ .   

 

Proof.  Let  dan  where . Then, we decompose the 

function  as 

),(: raBB = )2,(:ˆ raBB = da R∈

)(, μφpMf ∈ .
ˆˆ21 CBB

fffff χχ +=+=  Recall that   is a bounded operator 

from  to , so that we have 
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Now,  by using the Hölder inequality and - )  boundedness of , we obtain )(μpL (μqL nIα
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As the  measure μ  satisfies the growth condition, then for every Bx∈  we could find 

the estimate  
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We see that the right hand side of the inequality contains the summation from  to 

. So, we utilize the doubling condition of 

0=k

∞=k )(tφ  and  to get αt
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Furthermore, the Hölder inequality allows us to obtain 
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Now, we apply the Minkowski inequality to the estimate (2.1) and (2.2) to get  
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By taking the supremum over all , we complete our proof.  0>r

 

3. Concluding Remarks 

 We may also proof Theorem 2.2 by using the   boundedness 

of  ,  where ,  

)(, μφpM - )(, μψqM

nIα ∞<<< qp1
npq
α

−=
11

 and .  The alternative proof is 

simpler than that of presented here (see (Sihwaningrum, et. al.,  2008b) for detail) . 

)()( rCrr ψφα ≤
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