
Imperial College of Science, Technology and Medic ine
(University of London)

D e p a r t m e n t of Comput ing

Calculi for
Higher Order

Communicating Systems

by

Bent Thomsen

A thesis submitted for the degree of Doctor
of Philosophy of the University of London and for

the Diploma of Membership of the Imperial College.

September 20, 1990

Abstract

This thesis develops two Calcuh for Higher Order Communicating Systems. Both
calculi consider sending and receiving processes to be as fundamental as nondeter-
minism and parallel composition.

The first calculus called CHOCS is an extension of Milner's CCS in the sense
that all the constructions of CCS are included or may be derived from more funda-
mental constructs. Most of the mathematical framework of CCS carries over almost
unchanged. The operational semantics of CHOCS is given as a labelled transition
system and it is a direct extension of the semantics of CCS with value passing. A
set of algebraic laws satisfied by the calculus is presented. These are similar to the
CCS laws only introducing obvious extra laws for sending and receiving processes.
The power of process passing is underlined by a result showing that the recursion
operator is unnecessary in the sense that recursion can be simulated by means of
process passing and communication. The CHOCS language is also studied by means
of a denotational semantics. A major result is the full abstractness of this semantics
with respect to the operational semantics. The denotational semantics is used to
provide an easy proof of the simulation of recursion.

Introducing processes as first class objects yields a powerful metalanguage. It
is shown that it is possible to simulate various reduction strategies of the untyped
A-Calculus in CHOCS. As pointed out by Milner, CCS has its limitations when one
wants to describe unboundedly expanding systems, e.g. an unbounded number of
procedure invocations in an imperative concurrent programming language P with
recursive procedures. CHOCS may neatly describe both call-by-value and call-
by-reference parameter mechanisms for P. We also consider call-by-name and lazy
parameter mechanisms for P.

The second calculus is called Plain CHOCS. Essential to the new calculus is the
treatment of restriction as a static binding operator on port names. This calculus
is given an operational semantics using labelled transition systems which combines
ideas from the applicative transition systems described by Abramsky and the tran-
sition systems used for CHOCS. This calculus enjoys algebraic properties which are
similar to those of CHOCS only needing obvious extra laws for the static nature

of the restriction operator. Processes as first class objects enable description of
networks with changing interconnection structure and there is a close connection
between the Plain CHOCS calculus and the vr-Calculus described by Milner, Parrow
and Walker: the two calculi can simulate one another.

Recently object oriented programming has grown into a major disciphne in
computational practice as well as in computer science. From a theoretical point of
view object oriented programming presents a challenge to any metalanguage since
most object oriented languages have no formal semantics. We show how Plain
CHOCS may be used to give a semantics to a prototype object oriented language
called 0 .

Acknowledgement

I would like to thank my supervisor Samson Abramsky and my "second supervisor"
Iain Phillips for their guidance and encouragement. I will always remember their
patience and understanding when I came with technical problems which I had spent
days or even weeks thinking about and expected them not only to grasp the prob-
lems, but also to solve them in minutes. I am deeply grateful to them for letting
me carry on during the long writing up period where I should have spent my time
doing work for them.

Many people have commented on previous formal and informal presentations of
this material; I would like to thank them all.
I thank the POPL 89 referees for their comments on the prehminary report on
CHOCS [Tho89] especially for pointing me in the direction of the work by D. Aus-
try and G. Boudol and for making me aware of the fact that my first definition of
procedures in the semantics of P described dynamic binding.
I also thank the ICALP 90 referees for very thorough comments on the prehminary
report on Plain CHOCS [Tho89b]. Their comments have been very useful for the
presentations in chapter 5 and will be invaluable when I attempt to submit a revised
paper on Plain CHOCS for some conference or journal.
Special thanks for comments go to the following people: J. Andersen, C. Atkin-
son, S. Brookes, J. Cozens, M. Dam, A. Giacalone, M. Hennessy, H. Hiittel, K. G.
Larsen, L. Leth, R. Milner, P. Mishra, F. Nielson, L. Ong, S. Prasad, A. Skou, S.
Smolka, B. Steffen and A. Stoughton.
I would like to express my gratitude to M. Dawson and P. Taylor for solving any
problem concerning IKTgX and Unix which I have burdened them with on so many
occasions.

To express enough thanks to my wife is impossible. I dedicate this work to you.
Without our fruitful discussions the material presented here would not have been
the same. This thesis would have contained much more bad English without your
influence.

I would like to thank the many friends that I have made during my stay in
London. In particular I would like to thank Pat and Ron Burnett for their warm
friendship. Special thanks go to the family and friends at home. Without their help
and support life in London would have been a lot more complicated.

Financial support for this work has been provided by the following institutions:
From 1st of April 1987 to the 30th of September 1989 I was employed on a joint
junior research fellowship from Institute of Mathematics, Arhus University, Den-
mark and Department of Mathematics and Computer Science, A alb org University
Centre, Denmark.
Since the 1st of October 1989 I have been supported by a research assistantship
on the Foundational Models for Software Engineering project (SERC GR-F 72475)
within the Department of Computing, Imperial College.
I am grateful to The Danish Natural Science Research Council and The Danish
Research Academy for travel funds, fees and extra living expenses.

Contents

Abstract 2

Acknowledgement 4

1 Introduction 10

1.1 Background 10
1.2 Motivation 13
1.3 Overview 16

2 Operational Theory of CHOCS 19
2.1 Transition Systems and Bisimulation 19
2.2 Syntax and Semantics 21
2.3 Higher Order Bisimulation 26
2.4 Sorts and CHOCS 41
2.5 Observational Equivalence 53
2.6 Recursion 63
2.7 Transition Systems with Divergence 70
2.8 Finite CHOCS 75

3 Using CHOCS 81
3.1 CHOCS and the A-Calculus 81
3.2 CHOCS as a Metalanguage 95
3.3 A Fault Tolerant Editor 101

4 Denotational Theory of CHOCS 105
4.1 Domains and Denotational Semantics 106
4.2 A Domain Equation for Higher Order Communication Trees 112
4.3 A Denotational Semantics for Finite CHOCS 118
4.4 A Denotational Semantics for CHOCS 128
4.5 Recursion 136

CONTENTS

5 Plain CHOCS 137
5.1 Syntax and Semantics 141
5.2 Bisimulation and Equivalence 148
5.3 Algebraic Laws 158
5.4 Plain CHOCS and Mobile Processes 169
5.5 Plain CHOCS Object Oriented Programming 188

6 Conclusion 195
6.1 Loose Ends 196
6.2 Technical Choices and Open Questions 197

6.3 Applications 199

Bibliography 202

Index 210

List of Tables

Table 2.2.1: Operational semantics for CHOCS 26
Table 2.4.1: Sort system for CHOCS 47
Table 2.8.1: Operational semantics for Finite CHOCS 76

Table 3.2.1: Syntax of P 96
Table 3.2.2: Semantics of P 98

Table 5.1.1: Operational semantics for Plain CHOCS 145
Table 5.4.1: Operational semantics for the 7r-Calculus 171
Table 5.5.1: Syntax of O 190
Table 5.5.2: Semantics of O 192

List of Figures

Fig 5.0.1: Dynamic reconfiguration of user/resource system 140

Chapter 1

Introduction

1.1 B a c k g r o u n d

During the past two decades several notions for formal description of concurrent
and nondeterministic systems have been proposed. Such systems may be hardware
or software and they often involve some notion of processes which can evolve in-
definitely. The motivation for such notions can be found in the need for rigorous
specifications and formal verification of implementations meeting their specifica-
tions.

One may group the various theories into two classes according to their view
of "true"-concurrency and nondeterministic interleaving. Theories such as Petri
Nets [Rei85], Event Structures [WinSO] and Mazurkiewicz Traces [Maz77] are rep-
resentatives of the class which treats concurrency differently from nondeterministic
interleaving. The second class mainly consists of the various notions of process
algebras or process calculi such as CCS [Mil80, HenMil85, Mil89], CSP [Hoa85],
s e e s [Mil83], AC? [BerKlo84], MEIJE [Sim85]. We shall use the term process
calculus, as advocated by Milner in [Mil89], for the above class as opposed to the
more common term process algebra, since not everything in this class is done alge-
braically, logic and other mathematical disciplines are used. Although much effort
haa recently been put into finding a commonly accepted theory for concurrent and
nondeterministic systems, to date no such unifying theory has emerged, though
the pioneering work by Boudol and Castellani [BouCas87], the work by Abramsky
[Abr90b] and the work by Aceto [Ace89] show some promising hopes for the future.

In the past decade process calculus has proved extremely successful as a de-
scription tool for specification and formal reasoning about concurrent and nonde-
terministic systems, and the international standardization organization (ISO) have
chosen to base its new standard for network specification LOTOS on the framework
of process calculus [BolBri87].

10

Chapter 1: Introduction ^

Usually in process calculus the semantics of the specification language is given
in terms of a labelled transition system in the style of Plotkin [PI08I] thus yielding
an operational description of system behaviour.

On the basis of the operational semantics various notions of equivalence between
processes (or systems) have been proposed reflecting various views on observability.
Examples are Trace equivalence [HoaSl] identifying processes with the same be-
havioural language, Failure equivalence [Hoa85, Hen88] identifying processes with
the same set of failures (impossible actions or behaviour) after a trace, Bisimulation
equivalence [Par81, Mil83, Mil89] where processes must have matching states with
identical action capabilities.

In process calculus, specifications and implementations are often both expressed
in the same process language, the specification being a high level abstract process
and the implementation being a more concrete description, usually constructed of
several components in parallel. The equivalence relation is then used to relate pro-
cess descriptions on different levels of abstraction and verification or correctness of
the implementation with respect to the specification is then taken to be equivalence
of the two. Usually we do not expect to derive the implementation directly from
the specification. Rather we derive it through a series of small and successive re-
finements of the specification using the stepwise refinement approach. To ensure
correctness of the implementation with respect to the specification it is necessary
to prove equivalence of each refinement of the specification with its predecessor.
To keep the process of refinement manageable each step of the refinement process
usually consists of a small refinement of the current version of the specification. Let
p be the small part considered to be too abstract and subject to refinement and
let q be the more concrete version which replaces p. If C denotes the surrounding
specification which is left unaffected by the refinement step then C[p] is the speci-
fication before the refinement and C\q\ is the specification after. To complete the
refinement step we have to prove that the new version is equivalent to its predeces-
sor. Such a proof would in general not only have to deal with p and q but also the
context C. Since C is usually expected to be large relative to p and q this calls for
an increasing amount of work. However, if the equivalence enjoys the property of
being a congruence relation then this ensures that to prove C[p] equivalent to C\q\
it suffices to prove p equivalent to q. This is one of the main reasons why so much
emphasis is put on ensuring that the equivalence relation under consideration in
most process calculi is in fact a congruence relation.

For some purposes an inequality theory based on a behavioural preorder may
refine the notion of equivalence. In [Hoa85] a preorder p C g with the inter-
pretation of p being more nondeterministic than q is used. One can use this

Chapter 1: Introduction 12

to express a specification with nondeterminism built in. Implementations should
then resolve this nondeterminism and successively become more deterministic. In
[MilSlb, Hen84, Wal88, AbrST] preorders which refine the notion of bisimulation by
an explicit treatment of divergence were presented. [LarThoSS] presents a preorder
which refines the notion of bisimulation by explicit treatment of under or partial
specification. It is pointed out that the stepwise refinement strategy normally used
in process calculus may have one drawback. The subspecification may be more
complex than strictly necessary because it has to cover not only the behaviour in
the particular system C but in order to ensure congruence it has to cover behaviour
in any context. The preorder may be used to ease the task of stepwise refinement by
leaving parts of the subsystem unspecified, the only constraint being that the overall
specification is total. In [WalBB, LarThoSS] the preorders under certain constraints
(e.g. absence of divergence resp. total specification) degenerate to bisimulation
equivalence.

Most process calculi provide a set of laws which are sound with respect to the
underlying operational equivalence/preorder. This allows the task of verification
to be subjected to algebraic reasoning. In many cases (see e.g. [HenMil85, HenSS,
Mil89]) sound and complete proof systems for laws concerning various sublanguages
are provided. Recently several proof checking systems have been constructed. Tools
like the Concurrency Workbench [CleParSteSQ], TAV [GodLarZeeS9] and AUTO
[LecMadVerSS] may be used to construct specifications and implementations and
leave the task of verification to be carried out automatically by the system.

Instead of using the same language for both specification and implementation
logical languages have been developed to ease the task of specification. Languages
such as Hennessy-Milner Logic (HML) [HenMilSS], Synchronization Tree Logic
(STL) [GraSifSe] and also a Modal Process Logic (MPL) [LarThoSSb] may be
viewed as representatives for this discipline. The task of verification then boils
down to showing that an implementation satisfies its logical specification. STL and
MPL may be seen as attempts to extend logical specifications with composition
operators relating to the constructs on the underlying process. This yields a form
of compositionality in the specification that gets inherited in the implementation.
Logical specifications may be used to do process synthesis automatically. Algo-
rithms that construct a process from the logical specification have been made see
e.g. [LarST, BouLar89]. These processes may be taken as idealized implementations
and may of course be further refined by the usual algebraic methods.

Although denotational semantics have been used to validate equational laws in
process calculi [Hoa85, HenSS] the methods of denotational semantics have not been
widely used for verification purposes in process calculus though its inherent compo-

Chapter 1: Introduction 13

sitional nature should encourage its use. To some extent the success of the opera-
tional approach has overshadowed the need for denotational descriptions. Another
reason may be early failures to find denotational semantics which were fully ab-
stract with respect to bisimulation equivalence, but recently very promising results
have shown how to obtain fully abstract denotational semantics for bisimulation
equivalence [Abr90a] enabling the use of denotational methods to be introduced in
process calculus.

1.2 M o t i v a t i o n

A calculus for computation should provide a mathematical framework for the de-
scription of and reasoning about computing systems all inside the calculus. CCS
has proved to be a very successful tool for reasoning about the complex nature of
nondeterministic and concurrent systems and it is an excellent representative for the
process calculus approach to specification and verification of such systems. Each
constructor in this calculus has been carefully chosen to provide a minimal set of
primitive constructions from which one may build more complex systems [Mil86].
At the same time CCS provides a rich and well developed theory and its expres-
sive power compares favourably with other process calculi [Sim85]. According to
[Mil80], one of the original intentions of CCS was that it should serve as the A-
Calculus of concurrent systems. Subsequent research shows that it serves well as
such for a large range of applications. But, as already pointed out in [MilSO], it
has its limitations when one wants to describe unboundedly expanding systems as
e.g. an unbounded number of procedure invocations in an imperative concurrent
programming language.

I believe that this deficiency is due to the first order nature of CCS and most
process calcuh in general. Later extensions of CCS, such as SCCS [Mil83], ECCS
[EngNie86] and Mobile Processes [MilParWal89], which allow dynamic use of com-
munication channels, may be used to take care of the above problem.

I take the view that it is natural to attempt to solve the above problems by
introducing some notion of higher order constructs and treating objects of the lan-
guage as first class citizens. The extensions of CCS proposed in ECCS and Mobile
Processes seem low level and far removed from the A-Calculus analogy, since they
do not explicitly support any higher order constructions.

Higher order constructs arise in almost any branch of theoretical computer sci-
ence. The justification for having process passing in a calculus of communicating
systems may be found in the powerful and elegant abstraction technique it yields,
just as with (higher order) functions or procedures in traditional programming Ian-

Chapter 1: Introduction 14

guages. Many systems can be easily described using process passing, some are even
most naturally described in this way. As an excellent example take the system
consisting of a satellite and an earth station originally described by P. Christensen
in [Chr88]. One interesting property of this system is that the satellite is physically
far away from the earth station. If the program controlling the satellite has to be
changed, either because of a program error or because the job of the satellite is
to be changed, then it would be preferable to be able to send a new program to
the satellite, stop the old program and run the new program instead. Alternatively
we would have to send a space shuttle to take the satellite out of orbit to bring it
back to earth for reprogramming and then relaunch it, a rather expensive strategy.
A reprogrammable system consisting of two components could be specified, in a
CCS-Mke syntax, as follows:

sat — newprglx.{x | [intl.sat + error?.sat + end?.sat))

earth = newprg\jobi.newprg\job2....

The satellite is ready to receive a new job on the newprg channel. After reception it
acts according to this job until it is "interrupted" either by a new job or because a
program error has occurred or because the job has finished. In this example we are
beyond CCS because of newprg?x.{x | . . .) , what we receive on the newprg channel
is a program (a process), we then run this program in parallel with the rest of the
system.

Recently some promising treatments of processes as first class objects in CCS-like
languages have been proposed [AstReg87, KenSleSS, ChrSS, Bou89, GiaMisPra89,
Nie89]. The SMoLCS-framework [AstReg87] is a general theory for specifying pro-
cesses as abstract data types including processes as values and higher order func-
tions. The framework includes operational semantics in the form of algebraic la-
belled transition systems [AstGioReg88] and denotational semantics [AstReg87b].
Both [KenSle88] and [Chr88] focus on formulating denotational semantics for CCS
respectively CSP with processes as communicable values. The main emphasis in
these references is to establish speciahzed functors for process passing and ensuring
that these have properties which enable them to be used together with standard
functors used in denotational semantics. In [Bou89] a CCS-like language with spe-
cial operators for "application" and process passing is presented. The language can
also be viewed as a variant of the A-Calculus extended with communication and
interleaving operators. It is shown how this language can describe an interpreta-
tion of the pure A-Calculus. A symmetric integration of concurrent and functional
programming is presented in [GiaMisPra89]. The language FACILE is a typed
higher order functional language with statements for channel creation and includes

Chapter 1: Introduction ^

a process language with parallel composition and (nondeterministic) choice oper-
ators. The semantics of FACILE was given in terms of an abstract machine in
[GiaMisPra89], but has later been given an operational semantics in terms of la-
belled transition systems [GiaMisPra90]. This paper also presents an abstracting
equivalence and some of its algebraic properties. [Nie89] presents a mixture of a
typed A-Calculus and a CCS-like language, called TPL, with processes as first class
objects. It is shown how the types (including sorts of processes) of programs may
be used to detect certain errors statically. An operational semantics for TPL is
described, but no abstracting equivalence or preorder is considered.

To my knowledge, no study of process passing in its purified form has yet been
presented, except for [Tho89] where preliminary results from this thesis were pre-
sented. By process passing in its purified form I mean searching for a minimal set
of operators necessary and sufficient for this purpose along the Mne of viewing the
pure A-Calculus as a set of minimal operators for the study of functions in their
pure form.

We therefore set out to crystallize the foundations of process passing and study
calculi of communicating systems which consider sending and receiving processes
to be as fundamental as nondeterminism and parallel composition.

This leads us to:

• Find a process language consisting of a set of well chosen operators which
conforms to the principles of [Mil86] and provides a minimal but expressive
set of constructors, preferably including or encoding the operators of CCS.

• Find a semantic foundation for the process language and explore its properties.

• Study abstracting equivalences and preorders which preferably have the prop-
erty of being (pre-)congruences to ensure compositionality, enabling the use
of partial specification as described in [Wal88, LarTho88].

• Exemplify the expressive power of the theories by application to examples.

The introduction of processes as communicable values suggests that we have a
notion as powerful as higher order functions and the connection with the A-Calculus
should be investigated. In [MilParWal89] a framework for communicating systems
with dynamically changing interconnection structure is presented. It is suggested
that this may be used to simulate process passing; we should therefore investigate
the relationship between link passing and process passing.

Chapter 1: Introduction

1.3 Overv iew

The main objective of this thesis is to study how processes as first class objects
can be introduced in process calculus and to contribute with an investigation of the
expressive power of doing so.

We stay firmly within the framework of process calculus and treat concurrency
as nondeterministic interleaving.

We put forward two calcuh, CHOCS and Plain CHOCS, with slightly different
syntaxes, semantics and abstracting equivalences. Common to both is that they
consider sending and receiving processes to be as fundamental as nondeterminism
and parallel composition.

The thesis is divided into two parts. Part I consists of chapter 2 to 4 and
concerns the CHOCS calculus. Part II consists of chapter 5 and describes the Plain
CHOCS calculus.

The CHOCS calculus may be seen as an extension or an adaptation of CCS
with value passing. In chapter 2 we present the syntax and operational semantics
of CHOCS. Inspired by the developments of [Tho87] we propose a definition of
bisimulation which takes processes passed in communication into account, we call
this predicate higher order bisimulation and we investigate the algebraic theory of
CHOCS. This theory turns out to contain the algebraic theory of CCS, the only
addition being some natural laws concerning sending and receiving processes in
communication. We show how process passing can be used to simulate recursion
using a construction which resembles the y-combinator of the untyped A-Calculus.
Clearly the set of port names which processes may use for communication through
their life time plays an essential role especially for implementation considerations.
We show how the concept of sort may be used when reasoning about higher order
communicating systems. We present a sort inference system inspired by the type
system of [Nie89]. The syntax and operational semantics of CHOCS may be formu-
lated using the SMoLCS framework [AstReg87] and the definition of higher order
bisimulation may be obtained as a specialization of the generalized bisimulation of
[AstGioRegSS] as demonstrated to me by Prof. E. Astesiano in [Ast89]. I shall not
pursue this any further in this thesis since the framework of SMoLCS [AstReg87]
does not seem to clarify the formulation of theories in this thesis. A bisimulation
predicate similar to higher order bisimulation has been presented in [Bou89]. This
predicate takes termination of processes into account to allow certain sequential
behaviour which we shall not study in this thesis.

A new theory of communicating systems should be able to describe interesting
systems which are hard or impossible to describe using existing theories. In chapter

Chapter 1: Introduction 17

3 we study three applications of CHOCS in the description of higher order com-
municating systems. First we study the A-Calculus and we show how to encode
function abstraction and function application in CHOCS. We show how to obtain
different evaluation strategies such as lazy evaluation and call-by-value evaluation
by varying the interpretation. Secondly we study the imperative toy language P
from [Mil80] and we show how neatly process passing can cater for the problems of
unbounded number of call-by-value procedure invocations recognized as a problem
in [Mil80]. We also show how to describe call-by-reference procedure invocation in
P following ideas from [EngNie86]. A third case study consists of a description of a
fault tolerant editor inspired by systems investigated in [Pra88]. The editor system
is described with an automatic reboot system which in the case of a fault occurring
restarts the editor in the state just before the fault occurred, thus protecting the
user from errors out of his/her control. This system can easily be generalized to an
operating systems setting.

There have been a few attempts to give denotational descriptions of process lan-
guages with process passing [KenSle88, Chr88]. Both are formulated in a category
theoretical setting and the main purpose of both papers is to establish functors
describing the properties of process passing. A lot of effort is put into assuring
that these functors can be used together with standard domain constructors and
in recursive domain equations. I believe that it is not necessary to establish spe-
cial functors for this purpose and that standard domain theory is sufficient to give
denotational semantics for languages with processes as first class objects. In chap-
ter 4 we follow the ideas of [AbrQOa] and construct a denotational semantics for
CHOCS which resides in a domain constructed using the standard constructions of
separated sum, Cartesian product, the Plotkin power domain constructor and re-
cursively defined domains. We show, under mild restrictions, that the denotational
semantics and the operational semantics of CHOCS are fully abstract. We also use
the denotational semantics to obtain a simpler proof of the simulation of recursion
result.

Inspired by the ideas of [EngNie86, MilParWal89] of the restriction operator
being a scope binder we put forward the Plain CHOCS calculus which includes
this facility in chapter 5. It turns out that this calls for a different operational
setting and we introduce the notion of higher order applicative transition systems
and propose a notion of applicative higher order bisimulation inspired by the notion
of applicative (bi)simulation from [Abr90] and the notion of strong ground bisim-
ulation of [MilParWal89]. We investigate its algebraic properties which are similar
to the algebraic properties of Mobile Processes [MilParWal89] with the addition of
laws for sending and receiving processes. We make the connection between process

Chapter 1: Introduction 18

passing and link passing explicit by showing that they may be used to simulate one
another. As an example of the use of Plain CHOCS as a metalanguage we show
how one may give a formal semantics to an object oriented programming language
called 0 . The language 0 is a prototype object oriented programming language
which features most common concepts from object oriented programming such as
class, inheritance and even object passing in method calls.

Finally in chapter 6 we summarize the contribution of this thesis and we give
some directions for future work.

Chapter 2

Operational Theory of CHOCS

It has become almost a standard technique to define the semantics of process lan-
guages in process calculi in terms of labelled transition systems and thereby provide
an operational semantics framework. In this chapter we present the CHOCS calcu-
lus, its syntax and its operational semantics. We also present abstracting equiva-
lences and preorders built on the concept of bisimulation and we study the algebraic
properties these enjoy. We start by reviewing the definition of labelled transition
systems and the definitions and properties related to the notion of bisimulation.

2.1 Transi t ion S y s t e m s and B i s imula t ion

When defining semantics of process languages in process calculi it has become al-
most standard to give the semantics in terms of a labelled transition system. This
yields a method of defining processes, concurrent or nondeterministic, by the set
of experiments they offer to an observer. Labelled transition systems are a simple
model of nondeterminism based upon the primitive notion of state and transition.

Definit ion 2.1.1 (Definition I.4 in [PI08I])
A labelled transition system is a structure (St, Act, —>•), where St is a set 0/states
(or configurations), Act is a set of actions (or labels or operations) and >̂C
St X Act X St is the transition relation.

For (5,r, E — w e shall write s —^ t which may be interpreted as in state s
the system may perform a r action and in doing so evolve to a state t. We use the

usual abbreviations as e.g. s for 3^ G St.s t and s y4 for ->3^ E St.s t.
We shall identify the state of a process by the process, yielding a transition

system V = (Pr, Act, — m o d e l l i n g the operational semantics of a system of pro-
cesses.

19

Chapter 2: Operational Theory of CHOCS 20

As an abstracting equivalence between processes defined in terms of labelled
transition systems bisimulation [ParSl, Mil83] is commonly accepted as the finest
extensional or behavioural equivalence between processes one would impose:

Definition 2.1.2 A bisimulation R is a binary relation on Pr such that whenever
pRq and r G Act then:

(i) Whenever p p', then q q' for some q' with p'Rq'

(ii) Whenever q q', then p p' for some p' with p'Rq'

Two processes p and q are said to he bisimulation equivalent i f f there exists a
bisimulation R containing {p,q). In this case we write p ^ q.

Note how the processes have to match each others actions by syntactically equal
actions. We shall relax this constraint in later parts of this thesis.

We may rephrase the above definition in terms of a functional B on the set of
binary relations on Pr.

Definition 2.1.3 (p, g) G B{R) i f f :

(i) Whenever p p', then q q' for some q' with p'Rq'

(ii) Whenever q q', then p p' for some p' with p'Rq'

It is easy to see that B i s a monotone endofunction on the complete lattice of
binary relations over Pr ordered by subset inclusion. Therefore by standard fixed
point result, originally due to Tarski [Tar55], there exists a maximal fixed point for
B and this fixed point equals U{-R : R Q 5 (^)} . This fixed point equals ~ . It is
easily verified that ~ is itself a bisimulation. Moreover ~ is an equivalence relation:

Proposition 2.1.4 ~ is an equivalence

In addition ~ enjoys the property of being a congruence relation with respect
to the process construction in CCS [Mil80]. (The class of constructions for which
bisimulation is a congruence has been studied in detail in [GroVaa89]).

In [MilSO] ~ (now usually denoted was originally defined as the intersection
of a decreasing sequence of equivalences on Pr.

Definition 2.1.5

p ~o 9 is always true (i.e. ~o= Pf x Pr)

Chapter 2: Operational Theory of CHOCS 21

• P~A;+i q G Act:

(i) Whenever p p', then q q' for some q' with
P' q'

(a) Whenever q q', then p p' for some p' with
P' ~A: Q'

(i.e. ~A:+1= Then QtEw ~fc= flngu;

This decreasing sequence is bounded below by ~ and we have for
all k. The definition of is not in general a fixed point. However, under the
condition that the transition systems is image finite it is.

Definition 2.1.6 A transition system V — (Pr,Act, —>) is said to he image finite
i f f for each process p of Pr and all actions r G Act the set {p' : p p'} is finite.

Proposition 2.1.7 IfV is image finite then on V.

~ and are defined relative to a transition system. Often we want to compare
processes from different transition systems. This is done by taking their disjoint
union and use ~ resp. on this new transition system. We shall freely use this
technique without further comment throughout this thesis.

2.2 S y n t a x and Semant ics

In this section we introduce the syntax and operational semantics of a language
for description of higher order communicating systems. CHOCS extends CCS as in
[Mil80, Mil83, HenMil85] simply by allowing processes to be both sent and received
and, equally important: to be used when received.

We presuppose an infinite set Names of channel names ranged over by a, 6, c , . . .
and an infinite set V of process variables ranged over by x, y,z,.. .. A special symbol
r not in Names will be used to symbolize internal moves of processes. Let p,q,r,...
(possible indexed and/or primed) range over process expressions with the following
possible forms:

1. Inaction nil. This process may be thought of as the stopped process with no
further communication capabilities.

2. Input prefix alx.p. The prefix is a variable binder and x occurring free in p will
be bound by this construct. The process has the capability of receiving any
process on the a channel. The received process is put into use by substituting
it for the bound variable.

Chapter 2: Operational Theory of CHOCS 22

3. Output prefix alp'.p. This construct may be thought of as being able to send
the process p' on the a channel and there after act as the process p.

4. Tau prefix r.p. This process performs the silent action r and then behaves as

P-

5. (Nondeterministic) choice p + p'. This process behaves as either p or p'. Which
process is chosen depends on the communication capabilities and the choice
may be nondeterministic.

6. Parallel composition p \ p'. Processes composed in parallel act either asyn-
chronously interleaved or by synchronized message passing producing r-actions.

7. Restriction p\a. This process acts like p except that communications on the a
channel with components in its surrounding context are prohibited. Inside p
communications along a can take place since they become silent r-moves.

8. Renaming ^[5], where S : Names —>• Names. This process acts as p but
communication along channels are renamed according to 5; e.g. if p can com-
municate via a then [̂5"] can communicate via S(a). We use the shorthand
notation p[a/b] for the renaming function which is the identity function on all
c G Names except b where it returns a.

9. Process variables x are to be bound by input prefix. They act as place holders
and do not occur free in programs.

The syntax of the expressions may be summarized as follows:

Definition 2.2.1

p nil

alx.p

alp'.p

T.p

P + P'

P I P'
p\a

P[S]

X

Chapter 2: Operational Theory of CHOCS 23

To avoid heavy use of brackets we adopt the following precedence of operators;
restriction or renaming > prefix > parallel composition > choice.
We denote by Pr the set of processes built according to the above syntax. Readers
familiar with CCS will notice that there is no recursion construct in CHOCS. We
shall later see (Theorem 2.6.2) how recursive behaviours may be simulated using
only process passing in communication.

We focus on the process passing and leave out details about other values. Pure
synchronization may be obtained by ignoring the processes being sent and received.
We shall use the sloppy notation a?.p and a\.p as action prefixing for pure syn-
chronization. Other types of values may — with little theoretical overhead — be
obtained simply by encoding the values in pure synchronization using the approach
of [Mil83] by introducing a family of value indexed guards and generalizing the
(nondeterministic) choice operator. We shall indeed use this technique in section
3.2 and we refer to this section for further discussion.

Input guards are variable binders. This implies a notion of free and bound
variables.

Definition 2.2.2 We define the set of free variables FV{p) by induction:

FV{nil) = 0

FV{a1x.p) = FV{p) \ {z}

FV{a\p'.p) = FV{p)liFV{p')

FVij.p) = FV{p)

FV{p + p') = FV{p)UFV{p')

FV{p\p') = FV{p)UFV{p')

FV{p\a) = FV{p)

Fy(p[g]) = F y (p)

FV{x) = {x}

A variable which is not free i.e. does not belong to FV{p) is said to be bound in

P-

The above definition may be rephrased as: x is free in p if x is not contained
in any subexpression a?x.p'. An expression p is closed if FV{p) = 0. Closed
expressions are referred to as programs and we denote the set of programs by CPr.

To allow processes received in communication to be used we need a way of
substituting the received processes for bound variables. Let q = (^ i , . . . , qn) be
a vector of processes and x = (x i , . . . ,x„) be a vector of variables, then p[q/x]

Chapter 2: Operational Theory of CHOCS 24

describes the simultaneous substitution of expressions q for variables x in p. We
always assume that q and x are compatible, i.e. have the same length and that x
consists of distinct variables. We use the notation FV{q) — FV{qi) U . . . U FV{qn)
and in the case x = (xi) we write p[q/xi]. We also consider x as a set of variables
and write x fl FV{p) — 0 which means that x as a set does not have common
elements with the set FV{p).

Definit ion 2.2.3 The substitution p[q/x] is defined structurally on p:

nil[q/x] =

{a?y.p)[q/x] =

{a\p'.p)[q/x] =

{T.p)[q/x] =

{p + p')[q/x' -

{p I p')[qM

{p\a)[q/x]

(i /) M

nil
a'!y.{p[q/x]) if y and y ^ FV{q)

< a'?z.{{p[z/y])[q/x]) otherwise
for some z ^ FV{jp) U FV{q) U « U {«/}

a\{p'[q/x]).p[q/x]

T.{p[q/x])

{p[q/x]) + {p'[q/x])

{p[q/x]) I ip'[q/x])

{p[q/x])\a

{p[q/^])[s]
f qi i f y = xi
1 y otherwise

This definition extends the definition of substitution given in [Mil81] by allow-
ing substitution in processes built using the parallel composition, restriction or
renaming operators. To a certain extent this definition resembles the definition of
substitution in the A-Calculus as defined in [Bar84]. We shall pursue this further
in a later section (see lemma 3.1.8). Note how substitution is straightforward only
taking care of change of bound variables. In chapter 5 we modify this definition and
study a version of CHOCS where the restriction operator acts as a binding operator
on port names following the ideas of [EngNie86, MilParWal89].

Here are a few useful properties of substitution;

Proposi t ion 2.2.4 Let p[p/x] = {pi\p'/x],... ,pn[p'/x]).

1. / / x n y = 0 then p\p'/x][p'/y] = plp"/yWW/y]M-

2. pIP/x] = p\p"l'3^'] where = xf\FV{p) and p" = (p i , . p m)

with pj E {pj : Xj Gx"h p'j £ p'} i.e. p" is the projection o f p corresponding
to x".

Chapter 2: Operational Theory of CHOCS 25

3. p\p'/x] = p ifxH FV{p) — 0.

4. IfxC) y = 0 and p',p" are closed then p[P/x][^'/y] = p\p"/y]W/x].

PROOF: The proofs of 1. and 2. are easily established by structural induction
on p. The only case which needs special attention is when p = alz.pi and z E
X U y U FV{p) U FV{p"). In this case we choose a "fresh" variable zx and proceed
on a1zx.{pi[zilz]).
3. is a corollary of 2. Note the special case when p is closed.
4. follows as a corollary of 1. and 3. •

The operational semantics of CHOCS is given in terms of a labelled transition
system. In [Mil80] a structure called communication trees, describing transitions of
the form p p', where v is some value, is used to give semantics to CCS with
value passing in communication. We shall pursue this idea and from now on we
shall consider labelled transition systems V = (Pr,Act, —>•), where Pr is the set of
expressions (processes) built according to the syntax of definition 2.2.1 and where
Act has the form Names x{?,!} xPrU{T} and Names is an uninterpreted set referred
to as a set of port names. We also study the subsystem of P where all expressions are
closed: CP = (CPr, CAct, —>), where CAct has the form Names x {?,!} x CPrU{r}.

p p" may be read as "p can receive the process p' at port a and in doing so
become the process p"".

p p" may be read as "p can send the process p' via port a and in doing so
become the process p"".

p —^ p' may be interpreted as "the process p can do an internal or silent move and
in doing so become the process p'".

Note that instead of insisting on an Abelian monoid structure on the set Names
of port names as in [Mil83] we simply use the CSP-like notation of ?,! to indicate
the input/output direction of communication. We call this structure higher order
communication trees. The special symbol r not in Names is used to symbolize
internal moves of processes. We use r to stand for any action a?p, alp or r . For
actions of the form alp or alp let alp = alp and alp = alp.

Chapter 2: Operational Theory of CHOCS 26

Definit ion 2.2.5 Let —^ be the smallest subset of Pr x Act x Pr, where Act —
Names x {?,!} x Pr U {r}, closed under the following rules:

prefixing: alx.p a\p'.p p T.p —^ p

choice:

parallel:

r , r ,
p —>p' p —>p

p + q-^p' q + p-^jy

p p' p-^p' p p" q q"

p I q y I g q\p q\p' P I 9 ^ P " I ? "

P^P" , , P^P" , , P-^P" restriction: — , a 7^ " — , a 9= o

renaming:

p\l,^p"\b ' p\h^p"\h P\b—^p"\b

p ^ p " P^P" P ^ P"
p[5] p"[s] p[5] p"[s] pt'S'] AS]

Table 2.2.1: Operational semantics for CHOCS

A process guarded by input prefix has the capability of receiving any process.
The received process is put into use by substituting it for the bound variable.
Readers familiar with [Mil80] will recognize the similarities with the operational
semantics for input guarding in CCS with value passing. Parallel composition acts
either asynchronously interleaved or by synchronized message passing e.g. a?x.p |
alp'.p" can perform a?q or a\p' as well as r . The restriction and renaming operators
have no effect on the processes sent or received. This is a matter of choice. The
choice we have made for CHOCS in this chapter yields a very simple operational
semantics for the two constructs.

2.3 Higher Order B i s imula t ion

To capture the observational behaviour of processes capable of sending and receiving
processes we extend the notion of bisimulation. Bisimulation is commonly accepted

Chapter 2; Operational Theory of CHOCS 27

as the finest extensional or behavioural equivalence between processes that one
would impose and the equivalence corresponds to a view where processes are black
boxes only distinguishable by their interaction capabilities in different environments.
As an excellent motivating example consider the following systems first presented
in [AstGioReg88]:

Example 2.3.1
Let p j = p3 + p'2— Pi-\- Ps, Pi = a\p[.nil and p^ = a\p'.^.nU for some pz and p^.
If denotes hisimulation equivalence as defined in definition 2.1.2 then pi 9^
since px nil and p2 nil but a\p[^ alp'^. The reason is that p[and p'^ are
not syntactically equal, although we expect them to be equivalent.

The extension of bisimulation should not distinguish between equivalent pro-
cesses even when they are sent or received in communication. This is captured in
the following definition:

Definition 2.3.2 A higher order bisimulation R is a binary relation on Pr such
that whenever pRq and r G Act then:

(i) Whenever p p', then q q' for some q', r ' with rRr'
and p'Rq'

(a) Whenever q q', then p p' for some p', r ' with r'Rr
and p'Rq'

Where R = {(r,r ') ; (r = a?p" & r ' = alq" & p"Rq") V (r = alp" k r' =
alq" k p"Rq") V (r = r ' = r)}.
Two processes p and q are said to be higher order bisimulation equivalent i f f there
exists a higher order bisimulation R containing {p,q). In this case we write p ^ q.

In the above definition R takes care of extending R to the processes passed in
communication. As we shall see later this has the effect that we do not distinguish
between equivalent processes passed in communication.

We may rephrase the above definition in terms of a functional TS on the set of
binary relations on Pr:

Definition 2.3.3 (p, q) E 'H3{R) i f f :

never
and p'Rq'

(i) Whenever p p', then q for some q", r' with rBr'

Chapter 2; Operational Theory of CHOCS ^

(ii) Whenever q q', then p p' for some p', r ' with T'RV
and p'Rq'

It is easy to see that 713 is a monotone endofunction on the complete lattice of
binary relations over Pr ordered by subset inclusion. Therefore by standard fixed
point result, originally due to Tarski [Tar55], there exists a maximal fixed point for
T-B and this fixed point equals U{^ • ^ S This fixed point equals
It is easily verified that ~ is itself a higher order bisimulation. Moreover ~ is an
equivalence relation;

Proposition 2.3.4 ~ is an equivalence

P R O O F ; TO see this observe that the relation; Id = {(p,p) | p G Pr} is a higher
order bisimulation. This proves reflexivity.
Composition of higher order bisimulations yields a higher order bisimulation. This
proves transitivity. Composition of relations R, S ^ Pr^ is taken to be

RS = {(pi,p3) I Bp2-(pi,p2) € - R & (P2,P3) e S}.

Note how this is in the opposite order to function composition.
For all higher order bisimulations R the relation:

= { (p , 9) I (g , p) e R }

is a higher order bisimulation. This proves symmetry. •

It is now easy to see that if a relation A is a bisimulation (definition 2.1.2) then
we can extend R by Id and obtain a higher order bisimulation R U Id. To see that
RU Id is a, higher order bisimulation observe that if (p,q) £ RU Id then

e i t h e r (p, q) G Id and whenever p p' then p = q q' — p' with (r , r) G W C
RU Id and (p', q') E Id C R U Id.

or (p, q) G R and whenever p p' then q q' with (r, r) £ Id Q R\J Id and
(P% g') € E C U Id since Ris a bisimulation. A symmetric argument appHes
whenever q q'.

Note that R above is the set of objects which we want to prove properties about,
i.e. bisimilar processes are also higher order bisimilar. The added Id relation acts
ajs a kind of closure operation taking care of the processes sent and received. We
shall later use this technique in proving algebraic laws for higher order bisimulation.

From now on we use the terms bisimulation and higher order bisimulation to
mean higher order bisimulation. This justifies the ambiguous use of

Chapter 2: Operational Theory of CHOCS 29

We may now relate the process constructions of CHOCS to the underlying se-
mantic equivalence As mentioned in section 2.1 the notion of bisimulation is
relative to a particular transition system though we may relate processes from
different transition systems by taking their disjoint union and usually we do this
without exphcit mention. To prove that ~ is a congruence relation with respect to
the operators of CHOCS we first study ~ with respect to the transition system CP
of closed expressions. Later we generalize this result to the transition system of all
processes V.

Let ~ 92 mean ~ q2j for all qi- G i € 1,2 and let g,- G CPr mean
Qij G CPr for all qi- G q^.

Proposition 2.3.5 ~ is a congruence relation on programs (closed expressions).

1. P [9 I /X] ~ ifqi ~ 92 ^ = FV{p)

2. alx.p ~ a?x.q ifp[r/x] ~ q[r/x] for all r

3. alp'.p ~ alq'.q i f p ^ q and p' ~ q"

4. T.p ~ T.q i f p ~ q

5. p + p' ^ q + q' i f p ~ q and p' ~ q'

6. p\p' ^ q\q' if P ~ 9 o,nd p' ~ q'

7. p\a ~ q\a i f p ~ q

8. p[5] ~ q[S] i f p ~ q

The proof of this proposition is quite involved and we need a few technical
definitions and lemmas before presenting the proof. The reason for this is that we
can not prove the congruence properties for CHOCS using the "standard" process
calculus technique; i.e. prove that for each operator op in the process language the
relation i?op = {op{pi), op{p2) : Pi ~ Pg} is a bisimulation and then prove the
substitution property (i.e. that if ~ gg then p\qi/x] ~ structural
induction on p. This approach fails for CHOCS in the case of parallel composition
since we need to know the substitution property to prove that the relation R\ is
a higher order bisimulation and we thus end up with a circular argument. This
may at first seem surprising, but the "functional" nature of CHOCS may indicate
that this property should be hard to prove: e.g. Abramsky has to give quite an
argument to prove congruence properties of the Lazy-A-Calculus in [Abr90].

Chapter 2: Operational Theory of CHOCS 30

Definition 2.3.6

Let CR = {(p[9i/x],p[92/^]) : p ^ Pr k x = FV{p) k ^ k, q^ G CPr}
and let CR* be the reflexive and transitive closure of CR i.e. {p,q) G CR* if there
is a sequence pi...pn such that {p,pi) € CR, (p,-,p,+i) G CR for 1 < i < n and
{Pn, q) e CR.

Note if qi ~ q2 then {x[qi/x],x[q2/x]) E CR* and we write (91,92) € CR*.

Lemma 2.3.7

I f p € CPr and p p' and (r, r') 6 CR then p p" with {p',p") € CR for some
P".

PROOF: By induction on the length of the inference used to establish p p'
and cases of the structure of p. p = nil, p = a\pi.p2 and p = r.pi are trivial since

a?r
p -h-

p = aly.pi By the operational semantics for input prefix p Pi[^ly\ for any r.
Since p is closed either FV{p\) = 0 and pi[r/t/] = pi and p P\VIy] = P\
and (pi,pi) e CR or FV{pi) = {y}. If (r, r ') e CR then r = ri[q^/x] and r ' =

for some ri with FV{ri) — x and q̂ ~ q^ for some closed q .̂ Then
Pi[r/y] = Pi[ri[qi/x]/y] = (pi[ri/^])[9i/x] and pi[r'/y] = pi[ri[q2/x]/y] =
{P\V\ly])\^2l'^] since FV{p-^) = {?/} and FV{ri) - z we have FV{px[rily]) -
X and ((pi[r'i/y])[9i/x],(pi[ri/?/])[92/x]) 6 CR.

p = P\-\-p2 If p p' then

either p\ p' by a shorter inference. By induction pi p" with (p', p") 6
CR. By the operational semantics for choice pi -\-p2 p" with (p', p") G
CR.

or P2 p' by a shorter inference and we may argue as above.

p = Pi I P2 If p p' then

either pi p[by a shorter inference and p' = p[| p2. By induction
Pi p" with (p'i,pi) G CR. Thus for some ps with FV{p^) = x and
9i ~ 92 for some closed 9, we have p\ - P3[9i/x] and p" = pz\^2l'^\- By
the operational semantics for parallel pi | p2 p" | p2. Since p is closed
P2 is closed and p[\ p2 = (pa | P2)[9i/®] and p'/ | pg = (pa | P2)[92/^] and
we have (pi | P2,Pi | P2) € CK.

or P2 p' by a shorter inference and we may argue as above.

Chapter 2: Operational Theory of CHOCS 31

P = If P p' then Pi p'j by a shorter inference and p' = p[\b and a ^ b.
By induction pi ^ p'{ with (pi,pi) E CR. Thus for some p^ with FV^pz) = x
and Qi ~ 92 for some closed g- we have p[= psiqi/x] and p" = psiq^/x].
By the operational semantics for restriction pi\b Pi\b. Thus we have
p[\b = (P3\t)[?i/^] and p'l\b = {pz\b)[qjx] and {p[\b,p1\b) E CR.

p = Pi[6*] Follows by an argument similar to the case p = pi\b.

•
Lemma 2.3.8
If p ^ CPr and p p' and (r, r') G CR* then p p" with (p', p") E CR* for
some p".

PROOF: By induction on the length of the sequence p i . . .p^. The base case is
covered by lemma 2.3.7 and the inductive step follows by the induction hypothesis
and lemma 2 .3 .7 . •

P R O O F : (of proposition 2 .3 .5 .1)

We show that the relation CR* is a higher order bisimulation.
To see this we show that if (pi,p2) £ CR then pi = p[9i/x] and pg = p[q2/x] for
some p, X, ^2 with FV{p) = x and q^ ~ q^. And whenever p[9i/x] p' then

P" with (r ,r ') G CR* a ^ {p',p") 6 CR*. And whenever pfe/®] ^ p'
then p[qi/x] p" with (r , r ') G CR* and (p',p") G CR*. We only prove the first
case, the second follows by a symmetric argument. The proposition then follows by
induction on the length of the sequence p i . . .p„. To prove the first case above we
proceed by induction on the length of the inference used to establish the transition
p[9i/x] p' and cases of the structure of p.

p = mzZ Trivial since p[g,/z] />.

p = aly.Vi Assume y ^ x (otherwise use a-conversion on y). Then p[g,/s] =
a?2/-(Pi[9./x]) and p[g,/Y] (Pi[9,/^])[r/y] = (Pi[r/^])[g,/Y] since r, q-
are closed and FV{p) — x and y ^ x. Since FV[pi[r/y]) = "x we have
((Pi 2/]) [f i , (Pi [^/3/]) [^2/^]) ^ CR C CR* and since r ~ r we have
{a1{x[rlx\),a1{x[rlx])) G ^CCR*.

p = a!pi.p2 From proposition 2.2.4 we have
pfe /x] = a!(p.[5,Vx]).(p,fe/x]) = . ! (p ,K/x ']) . (R[?? /z :])
where x* = FV{pi) and ^ is the respective projection of q^.

Then p[q,/x] {P2[ql/x'])
^ d {p2Wx%p2[t2/x']) e CRC CR* and {a\{p,[tjx^]),a\{p,[tjx^])) €
CR C CR*.

Chapter 2: Operational Theory of CHOCS 32

p — T.pi An argument similar to the argument given in the case above yields this
case.

p = Pi + P2 If p[<lilA P' then

e i the r Pi[9i/x] P' by a shorter inference. By induction ^1(92/^] P"
with (r ,r ') G CR* and {P'LP") G CR*. By the operational semantics for
choice we have {PI + P2)[Q2/^] P" which is a matching move.

or P' and we may argue as above.

P = Pi \P2 If p[qi/x] p' then

e i the r Pi[?i/x] = Pi\^\lx^] P'^ by a shorter inference and P' = P[|
= P'l I where z" = FV{PI) and ^ is the respective pro-

jection o fg j . By induction P" with (r , r ') E CR*
and {PIIP'D G CR*. By the operational semantics for parallel we have
(Pi I P2)[Q2M = (p i fe /^]) I (pafe/^]) P'I I P2\QLLX'']. Since
{PiiP") € GR* there exist pa, q\, and x^' such that p[= Pz\^X/x^']
and p'l = ^3(92 /x^] with FV{p^) = x^ and "q^ ~ gg . We may assume

n s^ = 0 since if D 0 we proceed by choosing y such that
y N {FV{p3) U U = 0 and we have = {Pz^l'^^'])WIv]
by proposition 2.2.4. Thus p\ | = (ps I U x^] and
P'i I P2[qll^''] = (P3 I P2)[g2' U^l/x^' U x2] and ((pa | P2M U

(P3 I P2M' U g ^ / x ^ ' U x 2]) e CR*.
or Pz^gi/x] P2 we may argue as above.

or r = r and w.l.o.g. Pi[qi/x] p[and P2^xlx] p'2 by shorter infer-
ences and p' = p'l I pg- By induction P2[92/^] P2 with (r, rg) G CR*
and (P2,P2) e CR* and pif^j/^] ^ p'i with (r , r i) G CR* and (pi,pi) G
CR*. By lemma 2.3.8 we have pi[^2/^] P\ with (ri,r2) G CR*
and (Px,Pi') G Ci?*. By the operational semantics for parallel (pi |
P2)[92/^] —^ p'l" I P2- Since (p'i,p'i) G CR* there exist pa, ql and
such that p'l = pa[g|/x^] and p'/' = Pa^gg/^^] with FV(p3) = x^
and ~ and since (p^jPa) G CR* there exist p4, and x^
such that p'2 = Pi^l/x^] and pg = P4[92/^^] with FV{p4) = and
9i ~ 92- We may assume x^ Pi x^ - 0 since if x^ fl x^ ^ 0 we pro-
ceed by choosing y such that y n (i^y(pa) U FV{p4) U x^ U x^) = 0
and wehavep3[gj/x^] = {p3[y/x^])[qi/y] by proposition 2.2.4. Therefore
we have p[| p'j = [p^lql/x^]) I { p a ^ V x ^]) = (pa | PiWi^JqUx^yjx^]
and p'i' I p '̂ = {pM!^^]) I {PAlqllx'']) = (pa | P4)[9^ U u x^] and

Chapter 2: Operational Theory of CHOCS 33

{p'l I P 2 ^ P T I P2) G CR*. (Note that if we have to introduce a "new" y it
is because two or more occurrences of the same x,- refer to different g.'s
after the transition.)

p = Pi\b lip[qi/x] p' then

either r = a?r, then Pi[qi/x] p[by a shorter inference and p' = p[\b and
a ^ b. By induction [52/^] P2 with (a?r, o?r') G CR* and {p'^tp'-^ €
CW. By the operational semantics for restriction (pi\fc)[92/®] PIX^-
Since (PitPg) G CR* there exist ps, 9i, 92 and x such that
and p'2 = P3[92/^] with FV{p3) = x and ~ ^2 and {p'i\b) = (p3\6)[9i/^]
and {P2\b) = {P3\b)[q2/'^] thus {p'i\b,p2\b) e CR*.

or r = a\r and we may argue as above.

or r = T and we may argue as above.

p = pi[iS'] Similar to the case p = pi\b.

p = y By assumption FV{p) = x thus x = (y) and if p[qi/x] p' then qi q[
and p' = q[. Since qi ~ 52 we have q2 gg with (r , r ') e ~ C CR* and
{ill Q2) CR* and we have a matching move for

•

Proposit ion 2.3.9
If p E CPr and p p' and r r' then p p" with p' ~ p" for some p".

PROOF: If r ~ r ' t hen {X[R/X\^X[R'IX]) G CR* t h u s {P'LP") G CR* by proposi t ion
2.3.8 and by proposition 2.3.5 we have p' ~ p". •

PROOF: (of proposition 2.3.5.2 to 2.3.5.8)

2. This is proved by showing that the following relation Ri — R\J ~ where:

R = {(alx.p^alx.q) : FV{p) = FV{q) C {x}&:Vr.p[r/x] ~ ?[r/x]}

is a higher order bisimulation: Note that the above relation consists of two
parts; one part covers the structure we are interested in and the second com-
ponent is a kind of closure to cover the processes sent and received. The
second component is necessary since the processes sent and received do not
have to have the structure of the first part.
That the above relation is indeed a higher order bisimulation is easily estab-
lished.

Chapter 2: Operational Theory of CHOCS 34

Assume (p, q) £ R\. Then either p q and we are done since if p p' then
q q' for some q', r' with (r, r') G ~ C Ri and (p', q') ~ C Ri or p = alx.p'
and q = alx.q'. If alx.p' p" then r = air and p" = p'[r/x] for some r.
Then alx.q' q'[r/x] and by assumption p'[r/x] ~ q'lr/x] which implies
(p'[r/x], ^'[r/x]) € Ri, Also (a?r,a?r) G W C ~ which implies (r, r ') G Ri- A
symmetric argument applies if alx.q' q".

3. - 8. follow from

{{a\x.y)[{p,p')l{x,y)],{a\x.y)[{q,q')l{x,y)]) G CR

{{T.x)\plx\,{T.x)[qlx]) G CR

{{x + y)[{p^p')l{x,y)],{x-\-y)[{q,q')l{x,y)]) G CR

\y)[{p,p')/{^,y)],i^\y)[{<i,q')/{^,y)]) e CR
((a;\a)[p/a:],(a:\a)[9/a:]) G CR

((a;[S'])[p/a:],(a:[S'])[9/x]) G CR

if p ~ 5 and p' ~ q' and x ^ y.

(Note that we could prove 3.-8. directly by construction of bisimulations, e.g.
to prove

p\ p' ^ q \ q' if p ^ q and p' ~ q'

we show that the relation:

R= {{p\p',q\q') : pr^ qkp' ^ g'}U ~

is a higher order bisimulation. To see this we assume (p, q) G R. Then either p ~ 9
and if p p' then q q' with (r, r ') G ~ C ^ and (p', q') G~C R and we have
a matching move or p = pi \p2 and q = qi \ q2- If Pi | P2 —^ p" then

either pi p'(and p" = p'(| p^. Since pi ~ qi we know that qi q'^
and (r ,r ') G ~ C ^ and {p'{,q'i) G~C R. Then qi | q^ q'l | q̂ and
{Pi I P2, 92) G R.

or p2 p'2 and p" = pi \ p'^ and similar arguments as above apply.

or r = r and w.l.o.g. pi p" and p2 p'2 and p" = p'(| p'^. Then qi q'{
with r ~ ri and p" ~ q" since pi ~ qi and % 92 with r ~ r2 and pg ~ q'2
since pg ~ 52- By proposition 2.3.9 we have qi q'" and q'{ ~ q'". Then
9 i I 9 2 9 i ' I 9 2 and (r , T) E R and (p'/ | p'j', | q'^) G i 2 .

If 9i I 92 —^ q" then a symmetric argument applies.) •

Chapter 2: Operational Theory of CHOCS 35

The relation ~ is an equivalence relation on Pr but not a congruence relation
since e.g. x ~ y but alx.x ^ alx.y. Instead of using ~ directly on Pr we define ~
in terms of ~ on CPr and abuse the notation:

Definition 2.3.10

P ^ <1 i f f Vf.p[r/x] ~

where x = FV(p) — FV[q) and r is closed.

This is equivalent to the following definition:

p ~ 9 iff a?Xi . . . alxn.p ~ a l x ^ . . . alxn.q

Proposition 2.3.11 ~ is a congruence relation.

PROOF: We only need to check that if ~ GG then p \^ /x] ~ This is
done by structural induction on p using the above definition of ~ on open terms
and proposition 2.3.5. We show two cases for illustration:

p = a?y.pi Assume y ^ x and y ^ FV{q^) U FV{q2) (otherwise use a-conversion
on y). By induction Pi[qjx] ~ Pilq^/x] = Vr.pi[qjx][r/y] ~ Pi[q2/x][r/y]

where y = FV{pi[qi/x)] = FV{pi[q2/x)] and r is closed. If y G FV{pi)
then y e y, w.l.o.g. assume y = y^ and let r ' = (^ i , . . . , r„_i) and let
r = (y i , . . . , yn - i) . Thus: yr.W.pi[qJx][r'/y'][r/y] ~
and by proposition 2.3.5.2 we have \/r'.a?y.pi[q^/x][r'/y'] ~ a?y.pi[q2/x]\r'/^]
and therefore aly.pilq-i^/x] ~ a?y.pi[q2m. ^ V ^ V then ~
a?y.pi[q2/x] follows immediately.

P = Pi\P2 By induction Pi[qjx] ~ Pi[q2/x] = Vf.p.[9i/x][r/?/J ~
where ?/,• = FV(p,[9i/^]) = ^VipA^/^]) and r is closed. By proposition
2.3.5.6

|p2[9i/z][f2/y2] -P i [92 /^] [n /F i] \P2[q2/nr2/y2]
= Vf.(pi I P2)[qi/x][r/y] ~ (pi I P2)[q2/x][r/y]
where y = Fi UF2 = FV{{pi | P2)[9i/^]) = FV{{pi | and r is closed.

•

Chapter 2: Operational Theory of CHOCS 36

Having established that ~ is a congruence with respect to the process construc-
tions in CHOCS, it is natural to consider ~ a,s an equational theory; containing
equations like: p | p' ~ p' | p. Of course the left hand side of this equation is a
different program from the one on the right hand side, but we would expect to find
their behaviour equivalent, and this is in fact what the equation expresses.

We only need to establish bisimulation proof for closed expressions since ~
for open expressions is expressed in terms of closed expressions. The equational
properties of ~ may yield a better understanding of the underlying semantics of
CHOCS and for the unexperienced user of the language it may turn out to be a
helpful way of understanding the language and the interplay of its constructs. In
the process algebraic framework the semantics of the ACP-language [BerKlo84] is
given entirely as an equational theory in an algebraic setting. We shall not do
so, but in fact Pr / ~ may be considered as an algebra; e.g. (Pr / is an
Abelian monoid as justified by the first three of the following equations:

Proposition 2.3.12

p-\-p' ~ p' + P

p+{p' + p") ~ {p + p') + p"

p + nil ~ p

p-'rp ~ P

PROOF: This follows from showing that the following relations are higher order
bisimulations:

= {(P + p' + p)}^ Id

R2 = {{p+ip'+ p"),{p-^p')-\-p")}md

^3 = {{p + nil,p)} U Id

Ri = {{P + P,P)}^ Id

To see this observe that for {r,q) G Ri,i G {1,2,3,4} we have either (r, q) e Id and
if r r' then r = q q' = r' with (r, r) G W C and (r', q') e Id C and we
have a matching move or {r,q) belongs to the first part of Ri and if r r' then
this must have been inferred by the rules for choice. Then also q r' which is a
matching move since (r, r) € W C i?,- and (r', q') E Id C R^. •

Chapter 2: Operational Theory of CHOCS 37

The following are some expected properties of parallel composition:

Proposition 2.3.13

P\P' ~ P' \P
P\{P' \ P") ~ {P I p') I p"

p I nil ~ p

PROOF: This follows from showing that the following relations are higher order
bisimulations:

= {{p\p',p'\p)}^Id

R2 = {(p I {p' I p"), {p I p') I p")} U Id

-^3 = {{p \ nil,p)} \J Id

Ri Assume {p,q) G Ri- Then either {p,q) ^ Id G and if p —^ p' we can
establish a matching move for q since p = q q' = p' with (r, r) £ W C ^
and (p',q') £ Id C R2 and we are done or p = pi \ p2 and q = p2 \ pi.
If Pi I p2 p' then this must have been inferred by the rules for parallel
composition. There are four cases:

either pi > p'^ and p' = p[\ P2- Then p2 | pi p2 | p'^ which is a
m a t c h i n g m o v e , s i n c e (r , r) G Id C a n d {p[| P 2 , P 2 I K) ^

or P2 p'2 and p' = pi \ p'^. Then similar arguments as above apply.

or r = T and pi ^ p" and p2 p'^ and p' = p" \ p'^. Then p2 | pi p j |
p" which is a matching move, since (r, T) G Id C R^ and {p" | p'^, p'^ \
P'i) G -Ri-

or r = T and pi p" and p2 ^ Pg and p' = p" | p'^. Then similar
arguments as above apply.

If P2 I PI p' t h e n s y m m e t r i c a r g u m e n t s a p p l y .

R2 The argument for this case is similar to the argument for Ri though it is nec-
essary to apply the argument twice.

A . Assume {p,q) € Rs- Then either (p, g) e Id C R^ and if p p' we can
establish a matching move for q since p = q q' = p' with {r,r) G Id C R^
and {p',q') e Id C R^ and we are done or p = pi | nil and q = pi. If

Chapter 2: Operational Theory of CHOCS 38

Pi I nil p' then this must have been inferred by the rules for parallel
composition. Since nil the transition must have been inferred from a
transition of pi, i.e. pi p[and p' = p[| nil. Clearly pi has a matching
move and (r , r) e Id C and {p[| nil,p[) G R3. Also if pi p[then
Pi I nil p\ I nil by the rules for parallel composition. Clearly this is a
matching move and (r ,r) £ Id C and {p[| nil,p[) G R3.

•
The following proposition gives a range of properties satisfied by restriction.

The order of restrictions does not matter and restriction distributes over choice.
Restriction does not in general distribute over parallel composition, but we shall
later show an interplay under certain conditions. The last clause shows that the
processes sent are not affected by the restriction on the sending processes.

Proposition 2.3.14

p\a\b ~ p\b\a

{p + p')\b ~ p\b + p'\b
I r, N, , f a?a;.p\6 \ i b ^ a
(«?x.p)\6 ~ I

PROOF: This follows from showing that the following relations are higher order
bisimulations:

^1 = {(p\a\b,p\b\a)} li Id

-^2 = {{{p +p')\b,p\b +p'\b)} U Id

Rs = {{{a'?x.p)\b,a?x.{p\b)) : a ^ 6} U {((a?a;.p)\6, ni/) : a = b} Li Id

R4 = {{{alp'.p)\b, a\p'.{p\b)) : a ^ b} U {{{a\p'.p)\b,nil) : a = b} U Id

•
As for restriction renaming only affects the sending processes, not the processes

sent. Renaming distributes over both choice and parallel composition. Two renam-
ings after one another act as the renaming using their function composition, and
renaming by the identity function does not affect the process.

Chapter 2: Operational Theory of CHOCS 39

Proposit ion 2.3.15

(a?a:.p)[S'] ~ S'(a)?a:.p[5']

(a!p'.p)[5'] ~ 5'(a)!p'.p[5]

(p + /) [^] ~ + / [5 ']

(P I P')[S] ~ p[S] I p'[5]

p[Jd] ~ p

PROOF: This follows from showing that the following relations are higher order
bisimulations:

i?i = {((a?a:.p)[5],S'(a)?x.(p[S']))}UW

R2 = {((a!p'.p)[S'],S'(a)!p'.(p[S']))} U W

^3 = {((p + p')['S'],p[51+p'[S'])} U Id

^4 = { ((p | /) [^ , P [5 1 | y [5 1) } U M

Rs = {{p[S][Slp[S'oS])}Uld

Re = {ip[Id\,p)}Uld

•
The interplay between renaming and restriction may be formulated as follows:

Proposit ion 2.3.16

(p[5'])\6 ~ {p\ai. . . \a„)[5]

where {ai . . . a„} = {a : S{a) = b} assuming this set is finite.

PROOF: This follows from showing that the following relation is a higher order
bisimulation assuming the premisses of the proposition:

«={((p(.S1)\i ' .(p\<'l- . . \<'n)[51)}UJd

•

Chapter 2: Operational Theory of CHOCS 40

If 5 is a 1 - 1 function we know that its inverse 5"^ exists and the proposition
can be rephrased as:

This law was incorrectly stated as a general law in [Tho89]. The mistake was
pointed out to me by Sanjiva Prasad in a private communication.

We have not listed any immediate interplay between (nondeterministic) choice
and parallel composition above. This is due to the fact that the two operators in
general do not commute, but there is a restricted interplay between them. The
following proposition is a version of the expansion theorem found in most process
algebras. It states that parallel composition may be expressed as the nondetermin-
istic choice of the sequential interleaving of the actions of the components of the
parallel composition. But note that contrary to most process algebras we can not
in general eliminate the parallel operator using this proposition. This is because
we may introduce copying of processes in communication, we may even copy the
process we are trying to eliminate. This will become clear in theorem 2.6.2.

Proposition 2.3.17 Let x = {x^... y = { t / i . . . y„} andxr\y andxC]
FV{q) — 0 andyf] FV[p) — 0 then

if P = T,iai?Xi.pi+ 'Ljaj\pj.pj

and q = l^kh'^Vk-qk + Tnbi\q\.qi
then p\q ~ T^iai1xi.{pi \ q) + T.jaj\p'y{pj \ 9)+

^kh'^Vk-lp I Qk) + ilibi\q'i.{p I qi)+
^{i,l)e{{i,l):ai=b,}r.ipi[qi/xi\ I qi)+
^{j,k)e{{j,k) : aj=bk}'''-{Pj I [P j / j / A ;])

where S,r,.p, describes the sum Ti.pi + ... + when n > 0 and nil i / n = 0,
knowing this notation is unambiguous because of proposition 2.3.12.

PROOF: Assume the premisses of the proposition. Let rhs denote the right hand
side of the above equation. Let

jR = {(p I q,rhs)} U Id

Then i? is a higher order bisimulation. For each transition of p | g we may find a
matching transition of rhs and vice versa.
\ip\q r then

either p p ' and r = p' \ q. If r = a.?p" then p' = p,[p'7x.] for some i and
rhs —> {pi I q)\p'IXi] = pi\p"/xi] | q which is a matching move since z, ^

If r = aj\p'j then p' = pj for some j and rhs pj | q which is a matching
move.

Chapter 2: Operational Theory of CHOCS 41

or q g' and r = p \ q'. Then similar arguments as above apply.

or r = r . Then

biW, either p pM'ilxi] and q —4 qi and r = Pilq'i/xi] | qi and a, = bi. Then
rhs —^ r which is a matching move.
6fc?p' aj !p'

or q — i qklPj/Vk] and p — i pj and r ~ pj \ qklp'j/Vk] | % and aj = 6^. Again
rhs —> r which is a matching move.

If rhs r then a similar case analysis as above will yield matching moves for
P\<1- •

Using these laws we may prove properties about processes without directly con-
structing a bisimulation. This approach is often much more manageable and the
two methods may be combined when convenient. In [HenMil85] and [Mil81] equa-
tions like those given above are used to prove soundness for sets of sound and
complete proof systems for the finite respectively regular sublanguages of CCS. We
shall not do so in this thesis since we cannot hope for a complete axiomatization
of the properties of CHOCS; the reason for this will become clear in the following
sections-

2.4 Sorts and C H O C S

We have deliberately chosen to refer to the set Names as a set of port names empha-
sizing that process values are to be thought of as communicated via ports. In any
implementation of a system described in CHOCS it would be of great importance
to know certain facts about these names as e.g. the number of different names,
substitutivity of names etc. We may ascribe a sort (a set of port names) to each
program. To formally define the sort of a program we need a bit of notation.

Definition 2.4.1 q is a derivative ofp i f p —>* q, where p — > • 5 = 3 r G Act.p
q and >* is the reflexive and transitive closure of—

Definition 2.4.2 For each L C Names, let PrL he the set of processes p such that
for any derivative q of p, if q q" or q q" then a E L. If p ^ Pri, we say p
has sort L (written p :: L).

We may see how the process constructions of CHOCS act on sorts:

Proposition 2.4.3 Assume p,p' are closed expressions, then

1. If p :: L and L C M then p :: M.

Chapter 2: Operational Theory of CHOCS 42

2. If a E L and p[r/x] :: L for all r then alx.p :: L.

3. If a E L and p :: L then alp'.p :: L for any p'.

4. If p :: L then r.p :: L.

5. If p :: L and p' :: L then p + p' :: L.

6. If p :: L and p' :: L then p \ p' :: L.

7. If p :: L then p\a :: L \ {a}.

8. If p :: L then ^[5] {S{a) : a E L}.

P R O O F :

1. Follows directly from definition 2.4.2.

2. Any derivative of a?x.p is either p[r/x] for some r due to alx.p p[r/z] or it
is a derivative of p[r/z].

3. Any derivative of alp'.p is either p due to alp'.p p or it is a derivative of p.

4. Any derivative of T.p is either p due to T.p —^ p or it is a derivative of p.

5. Any derivative of p + p' is either a derivative of p or a derivative of p'.

6. Any derivative oi p\ p' has the form q | q' where ^ is a derivative of p and q' is
a derivative of p'.

7. Any derivative p' of p\a is a derivative p" of p such that if p" p'" then if
r = blq or r = h\q then h ^ a and p' = p"\a.

8. Any derivative p' of p[5] is a derivative p" of p such that if p" p'" then
p' = p"[S] and p"lS1

•

The following semantic function may be used to compute the sort of a process:

Definition 2.4.4 dynamicsort : CHOCS Names
?n' dynamicsort(p) = {a G Names : q', q".p »•* q —f q" or p —»•* q —^ q"}

This set is the minimal sort for an agent. The dynamic sort is often inconvenient.
We are often satisfied by coarser — but easier to compute — information which
may be extracted from the program text.

Chapter 2: Operational Theory of CHOCS ^

Definit ion 2.4.5 fVe define staticsort : CHOCS —> Names structurally on p:

staticsortinil) = 0

staticsort{a?x.p) — {a} U staticsort{p)

staticsort{a\p'.p) = {a} U staticsort{p)

staticsort{T.p) — staticsort{p)

staticsort{p + p') = staticsort{jp) U staticsort(p')

staticsort{p | p') = staticsort(p) U staticsort{p')

staticsort{p\a) = staticsort{p) \ {a}

staticsort(p[S]) — {>S'(a) : a E staticsort{p)}

staticsort{x) = Names

Note how we need to "assume the worst" when encountering a variable. This is
because we do not know the sort of the processes which may be substituted for the
variable. In fact a?x.x p for any p, and p may have any sort which is reflected
both in the dynamic sort and the static sort of alx.x. This "assuming the worst"
resembles how static approximations of dynamic properties of sequential program-
ming languages are made in the framework of abstract interpretation [CouCou79].
"Assuming the worst" in case of a variable implies that it is not necessary to cal-
culate the static sort of process values as may be seen from the clause for output
prefix, the sort of any process received in communication will be covered by the
static assumption on variables.

The dynamic sort and the static sort are of course related:

Proposit ion 2.4.6 dynamicsort C staticsort

In general we cannot hope to show that dynamicsort — staticsort since this is
undecidable, even without process passing, as a consequence of [AusBou84]. But
both dynamicsort and staticsort are sound with respect to definition 2.4.2 of a sort
for p.

We may now give some equational properties which only hold under certain
constraints on the sort.

Proposit ion 2.4.7 1. p\b ~ p if p :: L and b ^ L

2. (p I p')\b ~ p\b I p'\b if p :: L, p':: M and b ^ L D M

3. p\b ~ p[clh]\c if p :: L and c ^ L

Chapter 2: Operational Theory of CHOCS 44

1. shows that restriction has no effect if the restricted port does not belong
to the sort of the agent. 2. shows that restriction only distributes over commu-
nication if the restriction does not involve the ports which the processes are able
to communicate via. 3. shows that the name of a restricted port is not essential
up to renaming. This property corresponds to the notion of ^-convertibility in
[EngNie86].
PROOF; The proposition is proved by showing that the following relations are

higher order bisimulations:

-^1 = {{P\^^P) • p L b ^ L} U Id

-^2 = {((pi I p2)\b,pi\b I P2\b) : Pi :: L k p2 :: M k b ^ L f] M} U Id

•^3 = {(p\6,p[c/6]\c) : p :: L k c ^ L} \J Id

That the above relations are higher order bisimulations is easily established by the
following arguments;

Ri Assume {p,q) E Ri- Then either p = q and since Id C we are done or
p = Pi\b and q = pi. If pi\b p" then this has been inferred by the rules
for restriction and pi —> p" and p" = p"\b and if r = air or r = air then
a ^ b. We have thus established a matching move. If pi p" then if r = air
or r = air then a ^ b since b ^ L and pi ;; L. By the rules for restriction we
have p\ >• p'l\h and we have established a matching move.

R2 Assume (p, g) 6 i?2- Then either p — q and since Id C R2 we are done or
P = {P\ I P2)\b and q = pi\b \ p2\b. If {pi | P2)\b p' then this has been
inferred by the rules for restriction and pi | p2 p" with p' = p"\b and if
r = a?r or r = air then a ^ b. The transition pi \ p2 p" must have been
inferred by the rules for parallel composition and

either p" and p" = p" \ p2. Then pi\b \ p2\b p"\b \ p2\b and we
have a matching move.

or P2 P2 and p" = pi \ pg and we may argue as above.

or r = r and pi p" and p2 P2 and p" = p" | p'^. Assume w.l.o.g. r ' =
a?r, then a ^b since a G LOM. Then pi\b p"\b and p2\b P2\i>.
From the rule for parallel composition we have pi\b | p2\b —^ p1\b \ P2\b
and we have a matching move.

If pi\h I p2\h p" then

Chapter 2: Operational Theory of CHOCS 45

e i the r pi\b p" and p" = p" \ p^ and this is because pi and if r =
air or r = a\r then a^h and p" = p']\h. Then (pi | P2)\h {p'{ \ P2)\b
which is a matching move.

or p2\b P2 and we may argue as above.

or r = r and pi\b p" and p2\b p'^ and p" = p'/ | p'^ and this is
because p\ p'^ and if r ' = air or r ' = a\r then a ^ b and p" = Pi\b

and P2 —>• P2 and if r ' = air or r ' = air then a ^ b and pg = P2\b. Then
by the rules for parallel composition (pi | P2)\b {p" | P2)\b which is
a matching move.

R3 Assume {p,q) G i?3- Then either p = q and since Id C we are done or
P = Pi\b and q = pi[c/b]\c. If p\\b p" then this has been inferred by the
rules for restriction and pi p" and p" = p1\b and if r = air or r = air
then a ^b. By the rules for renaming Pi[c/6] Pi[c/6] and by the rules for
restriction pi[c/6]\c Pi[c/6]\c and we have estabhshed a matching move.
If pi[c/6]\c p"[c/b]\c then pi[c/6] Pi[c/6] and if r = air or r = air
then a ^ c. Then pi p" and if r = air or r = air then a ^b since c ^ L
and Pi :: L. By the rules for restriction we have pi\b p"\b and we have
established a matching move.

•

Sorted C H O C S

The information given by the static sort of definition 2.4.5 is often too coarse as
in p = (alx.x | al{blnil.nil).nil)\a since staticsort{p) = Names \ {a}, whereas
dynamicsort{p) = {6}. As a solution to this problem one could introduce a sort
declaration on each binding of variables and limit conununication to processes of
the prescribed sort. This would correspond to type declarations in typed program-
ming languages like PASCAL. This is indeed the approach of [Nie89] where a type
system including sorts of processes is presented for the language TPL. In this sys-
tem the sort of processes sent and received contributes to the calculation of the
sort of processes. The language TPL is a merge between the typed A-Calculus
and a CHOCS-like process language with processes passing. If we leave out the
non-process expressions we may degenerate TPL to a version of CHOCS (Sorted
CHOCS) with the following abstract syntax:

s ::= als I als I 5 U s' I {5

Chapter 2: Operational Theory of CHOCS 46

p nil | alx e s.p | a\p'.p \ T.p\p + p' \ p \ p' \ p\a | pfS"] | x

where a e Names, S : Names Names and x eV.
We use the term sort instead of type for the degenerated types described by the

first syntactic category of the above syntax. The sort expresses the communication
possibilities of processes but not their causality. We may think of 0 as the empty
sort and it plays the double role of acting as _L and NIL of [Nie89]. The process
part of Sorted CHOCS given by the second syntactic category of the above syntax
is given an operational semantics defined by the rules for (unsorted) CHOCS from
definition 2.2.5. The process language differs shghtly from the process part of TPL.
In TPL communication takes place using a sort dependent parallel operator in the
style of [Hoa85], but p | p' can be interpreted as p | Names | p'. The choice operator
+ differs from the or operator of [Nie89] since the first of the following operational
rules applies to p + p' and the second applies to p or p':

p-^p" p-^ p"
p + p' —^ p" p or p' —^ p" or p'

We now present an inference system for inferring when a process p has sort a.
We have to express sorts of open expressions and in general we have statements
like p \- p : s which can be read as process p has sort s in the sort environment p.
Here p : V Sort is a function from variables to sorts. We write pls/x] for the
environment which acts like p except on x where it returns s. Let describe the
environment such that (x) = 0 for all x.

subsort h 0 C 5 h 5 C 5 h Si C 5i U S2 h 53 C U 52

H C S2 ^2 G 33 H C A I - 5 2 C S I - 5 C 5 ' H S ' C S

C S3 H 5I U 52 G -S H 5 = 5 '

H 5 C 5 ' H S C S'

f- a!s C als' h a?5' C a?s

Chapter 2: Operational Theory of CHOCS 47

non-structural p\- p •. s hsCs'
p\- p •. s'

variables p\- x •. s if p{x) = s

nil p\- nil: ^

PIS/X] \- p-. S' input

output

tau

choice

p h alx 6 s.p : als U s'

pV- p' : s' p[- p: s
p h a\j/.p : a!^' U s

p\- p : s
p h T.p : s

p\- p : s pb p' : s'
p p + p' : s U s'

restriction
p\- p : s

p H p\a : s\a
where s\a =

bis' if s = his' and a ^ h
h\s' if s = b\s' and a h
0 if s = his' and a = b
0 if s = his' and a = h
0 if s = 0

p\- p •. s

parallel

where 5 [5] =

p\- p : s p\- p' : s'

. s'\a U s"\a if 5 = 5' U s"

if 5 = als'
6'(a)!3' if s = a!s '
0 if 5 = 0
a ' M U 5"[5'] iis = s'U s"

p\- p \ p' : s yj s' , lOmatch (s, s')

Table 2.4.1: Sort system for CHOCS

The relation h 5 C 5' facilitates reasoning about subsorts. Intuitively h 5 C s'
says that s' allows more communication possibilities than s. Note that C is a quasi
ordering and U is the least upper bound, with 0 as the least sort. In the rule for a7s
the ordering between types is switched. Intuitively this says that a process allows
more communications the less we assume about its input (see [Nie89] for further
discussion).

In [Nie89] the process nil is given its own sort (type) NIL. Using the sort
inference rules we may establish that p h nil : s for any s such that h NIL C 5. To
a certain extent this follows ideas from [Hoa85] where each nil (or STOP) process

Chapter 2: Operational Theory of CHOCS ^

has to have its sort declared, i.e. STOPA- We have ascribed nil with the sort 0
instead of giving nil its own sort. The reason for this is that we want to keep in
line with ideas about sorts from [Mil80, Mil83, Mil89] where nil can have any sort.
We obtain this by h 0 C s for any s and p \- nil : and the non-structural rule.

The predicate lOmatch (51,52) is intended to express that the output types of
p are compatible with the input types of p' and vice versa. To formalize this we use
the following definition of [Nie89];

Definition 2.4.8 Let d —\ or d =? then

Pad : Sort P{Sort)

PUa'd's) = { M

Pad{s U S') = Pad{s) U Pad{s')

Padi^) = 0

Intuitively Padi^) is the set of communication possibilities that s allows over
channel a in direction d.

Using this definition we may define lOmatch (si, 52) as:

Definition 2.4.9

lOmatch (31,82) -<=:> V; E l,2.Va € Chan (si) D Chan (52).

VSj G Pa?(5j).V53_j- €. Pa\{s3-j). h 5̂ — 5%

where Chaji (s) =
{a} i f s = als' or s = a\s'
0 if s = $
Chan (s') U Chan (s") if s — s'[J s"

This definition differs slightly from the definition of lOmatch in [Nie89] which
would become

lOmatch (51,62) 4=^ Vj G l,2.Va G Names.Ws'j € Pa-r{sj).

V53 • G Pa]{s3-j)- H s[= 52

If Names is infinite an infinite number of conditions is introduced in the inference
system whereas lOmatch from definition 2.4.9 only needs to check a finite number
of conditions.

Chapter 2: Operational Theory of CHOCS 49

We may use the sort information provided by the sort inference system to infer
properties of processes dependent on the sort information. To do this we need to
relate the sort information to the underlying (un-sorted) operational semantics:

Theorem 2.4.10 (Theorem 5.1 of [Nie89]).

Let /)0 h p : 5 and p p"

(1) i f r = T then \- p" : s

(2) i f r = a\p' then a G Chan (a) and {p^ H p" ; s) and (Eb' G Pa\{s).p^ h p' : a')

(3) z /r = alp' then a G Chan (a) and Pat{s) ^ 0 and
(Vs' G Pai{s).p^ h p' : s') => (p0 h p" : s)

Corollary 2.4.11 I/p0 h p : s and Vs' G Pa'>{s).pii, \- q' : s' for all derivatives q of
p such that q q" then p :: Chan (s).

P R O O F : By definition 2 .4 .9 and theorem 2 .4 .10 •

Intuitively corollary 2 .4 .11 states that if we restrict ourselves to supplying pro-
cesses which have sort declared in s when p needs an input then p's computations
will only use the channels in s.

The proof of Theorem 2 .4 .10 follows the proof of Theorem 5 .1 of [Nie89] quite
closely except for a few details due to the difference between operators in TPL
and in CHOCS and the fact that we use functions p for sort environments whereas
[Nie89] uses ordered lists.

Before presenting a proof of theorem 2 .4 .10 we need the following lemmas:

Lemma 2.4.12 (Lemma 5.2 of [Nie89]).
In a deduction of p[- p : s we may assume that the non-structural rule is used after
every structural rule and axiom and nowhere else.

PROOF: If we look at the proof tree fov p h p : s we can transform it into a
new proof tree where we use the non-structural rule after each structural rule since
I- s C s holds for all s. In this new proof tree there might be applications of
the non-structural rule followed by applications of the non-structural rule but we
can eliminate these using the transitivity rule — ~ ~ by replacing

r C S3

each double application of the non-structural rule: ^ ^ ^ ^ ~ followed
p\- p: 3-2

, p\- p : S2 S2 ^ >33
by r with the single application of the non-structural rule:

p\- p: S3

Chapter 2; Operational Theory of CHOCS 50

p : Si \- Si C S3 ^
p[- p: S3

Lemma 2.4.13 (Lemma 5.3 of [Nie89j).
i f ^ s i C S2 then

Vs'i G Pa!(5i).352 G Pa!(-S2)- G s'^

VSI 6 PO7(5I).352 € -PA?(-S2)- H GG C

PROOF: By induction on the structure of the inference T- C For the axioms
H 0 C 5, H S C 5, H 5I C U 52 and H 52 C 5I U 52 the result follows from

H 5 C 5'
Pad{^) — 0 and Padisi U gg) = POD(-Si) U Padisi)- For the rules j—=—— and

r als C a\s'

[— ^ (2 5'
1 „ ~—— the result follows from the definition of Padia'd's'). •
h a!s' C a!s ^ ^

Lemma 2.4.14 if p[s'/x] p : s and p\- p' : s' then p H p\p'/x] : s

PROOF: By induction on the length of the inference p[s'/x] h p : s and cases of
the structure of p with the use of lemma 2.4.12.

We shall use the fact if a; ^ FVip) then p[s'/x] p : s p \- p : s which is
easily established by an argument by induction.

Assume p[s'fx] \- p : s and p\- p' : s'

p = nil Trivial since x ^ FV{nil) and nil\p'/x] = nil we have p h nil\p'/x] : s.

p = y li X ^ y then y\p'/x] = y and x ^ FV{y) thus p h y[p'/x] : 5.
li x = y then y\p'/x] = p'. Since p[s'fx] H ?/ : 5 we must have H 5' C 5. By
the non-structural rule and /) h p' : s' we have p l- y\p'jx] : s

p = aly £ Si.pi If X = y then x 0 FV{a'^.y E Si.pi) and {a?y G Si.pi)\p'/x] = aly E
si.pi and we have p h {aly E Si.pi)[p'fx] : s.
If a: ^ y we may assume y ^ FV{p') otherwise {aly € Si.pi)\p'fx] = alz G
si.{{pi[z/x])\p'Ix]) where z ^ x and z ^ FV{pi) U FV{p') and we may show
p H aly G 5i.pi : 3 iff /) h alz G Si-pilzjy] : s and we will have to argue on
p H alz G Si.pi[z/y\ : s.
By lemma 2.4.12 there exists a sort 62 such that {p[s'lx\)[sily] H : 52
and h alsi U S2 C s. Since {p[s'/x])[sify] = {p['^\Iy])[s'/x] if a: 7̂ y we
have {p[sily])[s'Ix] h pi : 33. By induction (on {p[sily]) h p : 5) we have

Chapter 2: Operational Theory of CHOCS 51

{p[^ily]) I" PI[PV®] • "S2- Since x ^ y and y 0 FV{p') we have (a?j/ E
si-pi)\p'lx] = a?y e 5i.(pi[p72:]) and we have p h (a?y E ai.pi)[p'/z] :
a!^! U S2. By h a1s\ U gg C a and the non-structural rule we have p h (a??/ G

The rest of the cases follow straightforwardly by induction and use of lemma 2.4.12.
We give one case for illustration:

P = Pi \ P2 By lemma 2.4.12 there exist sorts si and gg such that p\s'fx] h : si
and p[s'fx] H p; : .sg and lOmatch (51,52) and h 5i U S2 C 5. By induction
P ^ PI[P7®] : and p h p2[p'lx\ : 52- Since p\[p'fx] \ p2\p'lx\ = {pi \
P2)\p' 1^] '• ^2 we have p {p\ \ P 2) [P V ®] : U 5 2 and by the non-structural
rule p t- (pi I p2)[p'Ix] : 5.

•
With this machinery in hand we now prove theorem 2.4.10.

PROOF: Assume p\- p : s and p —y p'. We proceed by induction on the length
of the inference used to establish p —> p'. Consider the possible forms of p:

p : nil Trivial since nil

p = a7x E Si.pi Then a?x G Si.pi pi\p'/x]. By lemma 2.4.12 there exists a
sort 52 such that [51/a;] ; 52 and f- (a?5i) U 52 C 5. Thus we have
a e Chan (5). Assume h p ' : 5' for all 5' G Pai{s) then by lemma 2.4.13
we know hp': 5% holds. Using lemma 2.4.14 we get p^ h p\[p' Ix] : 52 and
by the non-structural rule we have h p\\p'jx] : 5. Also Pa?(-s) ^ 0 holds.

P = P2 Then a\pi.p2 P2- By lemma 2.4.12 there exist sorts 5% and 52 such
that />0 h Pi : 5i and h P2 • 2̂ and h (alsi) U 52 C 5. Thus we have
a G Chan (5) and by the non-structural rule we have h P2 : s. By lemma
2.4.13 we have Bs' G Pa\{s).p^ h pi : 5' namely 5' = 5i.

p = r.pi Then r.pi —^ pi. By lemma 2.4.12 there exists a sort 5i such that p^ h
Pi : 5i and h 5i C 5. By the non-structural rule we have p^ l~ Pi : s.

P = P I + P 2 If P 1 + P 2 — ^ p' then either pi p' or p2 p' by a shorter inference.
We consider the case where pi p', the other case is similar. By lemma
2.4.12 there exist sorts 5i and 52 such that p^ I- pi : 5i and p^ l~ P2 : S2 and
I- 5i U 52 C 5. We have the following possible forms of r:

r = T By induction pg h p ' : 5i and by the non-structural rule we have
P0 h p' : 5.

Chapter 2: Operational Theory of CHOCS 52

r = aW By induction a € Chan (^i) and h p ' : 5i and h p" : 5"
for some s" € Pa\{si). By the non-structural rule we have p^ b p' : s
and by lemma 2.4.13 we have /og h p" : s" for some s" G Pa<{s) and
a G Chan (5).

r = Assume P^ h P" : 5" for all S" E PAI{SI). By lemma 2.4.13 we
have /70 h p" : s" for all s" 6 Pa?(5). By induction a G Chan (si)
and p0 \- p' : 5i and Pa?(5i) ^ 0. By the non-structural rule we have
/70 \- p' :s and by lemma 2.4.13 we have Palis) ^ 0 and a e Chan (s).

P — Pi \ P2 By lemma 2.4.12 there exist sorts 6% and S2 such that ^ Pi : 6% and

P$ ^ 2 % : S2 and lOmatch (51,52) and h 5i U 52 C s. If pi \ p2 p[| p2
then

either pi p[by a shorter inference and p' = p[| p2- An argument similar
to the one given for p = pi + p2 apphes.

or p2 p'2 by a shorter inference and p' = pi \ p'^. An argument similar to
the one given for p = pi + p2 apphes.

r r
or Pi — y p[and p2 —> P2 by shorter inferences and p' = p[\ p'^. Assume

w.l.o.g. that r = a?r . By induction a G Chan (52) and p^ h : S2
and P0 r : for some 5̂ G ^^,(52). From lOmatch (51,52) we have
whenever 5̂ G f%?(5i) then p^ k- r : 5%. By induction a G Chan (51)
and /90 h p[: 5i and fL?(ai) ^ 0. It follows that pg h p[| p'^ : si U 52.
By the non-structural rule we have p^ h p[\ p'^ : s.

P = Pi\b By lemma 2.4.12 there exists a sort 5i such that p^ pi : 5i and h Si\b C

5. If p i \ 6 p' then pi p[by a shorter inference and p' = pi\b. We have
the following possible forms of r:

r = r By induction p^ h p[: si and p^ h p[\b : 5i\6. By the non-structural
rule we have />0 p[\b : s.

r = alp" Then a ^ b. By induction a G Chan (51) and p^ h p[: 5i and
P0 f- p" : s" for some 5" G Pa\{si). Since a ^ b we have a G Chan {si\b)
and Pa!('Si) = Po!(5i\6). From p^ h p'i\b : si\b and the non-structural
rule we have p^ h pi : 5 and by lemma 2.4.13 we have p^ h p" : s" for
some s" G ^^,(5) and a G Chan (5).

r = a'^p" Assume p^ h p" : s" for all 5" G Pa?(si). By lemma 2.4.13 and if
a^bwe have Pa?(si) = Pa?(-Si\6) we get p^ h p" : s" for all 5" G Pa->{s).
By induction a G Chan (si) and p0 h p[: 5i and f^?(5i) ^ 0. By the
non-structural rule we have p^ h pi : 5 and by lemma 2.4.13 we have

Chapter 2: Operational Theory of CHOCS 53

Paj{s) ^ 0 since Pa->{si) = if o ^ 6. We also get a G Chan (s)
since a ^ h.

P = Pi [•S'] An argument similar to the argument for the case when p = pi\b applies.

p = X Trivial since x y4.

•

2.5 Observat ional Equivalence

When T-actions are interpreted as unobservable internal actions the bisimulation
equivalence between processes is too distinctive. To refine the bisimulation equiva-
lence we need the following derived transition relations based on observable actions:

Definit ion 2.5.1

p ^ p " - p{-^*) p"

p ^ p ' = p-^*p'

where p p" means 3p'.p p' & p' p" and -U* is the reflexive
and transitive closure of—^.

Intuitively we may read p p" as "after a finite number of internal actions
p is in a state where it can receive a process p' on a and in doing so end up in a
state p"". If p p" we know that p has at least one r-transition and
The above definition of derived transition relations follows [MilSlb] and [Abr87]
as opposed to the more common definition: p p" = p y ^he
definition we use facilitates the proofs of congruence properties and we have been
unable to prove these with the usual definition of derived transition relations.

Weak higher order bisimulation equivalence or observational equivalence may
now be defined:

Definit ion 2.5.2 A weak higher order bisimulation R is a binary relation on Pr
such that whenever pRq and $ e (Act \ {r}) U {e} then:

(i) Whenever p p', then q q' for some q', with ^R<t'
and p'Rq'

(ii) Whenever q q*, then p p' for some p', $' with
and p'Rq'

Chapter 2: Operational Theory of CHOCS 54

Where A = {($,$') : ($ = = alq"kp"Rq") V (<5 = a\p"k^' =
a\q" Szp"Rq") V ($ = $' = e)}.
Two processes p and q are said to he weak higher order bisimulation equivalent i f f
there exists a weak higher order bisimulation R containing {p,q). In this case we
write p ^ q.

We may define y\W{R) for R C Pr^ as the set of pairs {p, q) satisfying clause
(i) and (n) above. It is easy to see that W S is a monotone endofunction and that
there exists a maximal fixed point for VW3. This equals

Proposi t ion 2.5.3 % is an equivalence

P R O O F : AS proposition 2 .3 .4 . •

Bisimulation equivalence is more discriminating than observational equivalence
which is a direct consequence of the following proposition.

Proposi t ion 2.5.4 p ^ p' p K, p'

P R O O F : The relation I? = {{p,q) • P ~ 9 } is a weak higher order bisimulation
which follows from p —> p' implies p =>- p'. •

As a consequence of proposition 2.5.4 we know that % satisfies the equations of
propositions 2 . 3 . 1 2 to 2 .3 .17 . Moreover % satisfies the following:

Proposi t ion 2.5.5 p % r.p.

P R O O F : The relation R = {{p,T.p)} U Id is a weak higher order bisimulation.
To see this observe that
if P P' then r .p p =% p' thus r.p p' and ($, $) G W C ^ and
{p',p') e Id C R.
Also if T.p =&> p' then

either $ = e thus r.p —^ p' and

either p' = r.p in which case p ==> p which is a matching move since (e, e) E
R and {p, T.p) G R.

or T.p p - U * p' in which case p p' and since (e,E) e R and
[p'LP') E Id C R WE have a matching move.

or $ = r and r ^ r thus^ .p p p' and then p ^ p' which is a matching
move since (r, r) E Id C R and {p',p') e Id C R.

•

Chapter 2: Operational Theory of CHOCS 55

The observational equivalence % does not enjoy the property of being a congru-
ence with respect to the operators of CHOCS. As for CCS it is the (nondetermin-
istic) choice operator which presents problems as may be seen from the following
counter example first presented in [Mil80]:

Example 2.5.6 r.nil % nil hut al.nil + T.nil Tjb al.nil + nil since al.nil + r.nil €
nil but al.nil + nil nil.

More surprisingly perhaps is that % is not in general preserved by parallel compo-
sition which may be seen from the following example;

Example 2.5.7 Letpi = blx.{a\.nil+x) and qi = h\{T.nil).nil and = h\{nil).nil.
Then pi % pi and qi % 52 but Pi|gi^Pi| 92 since pi | qi (al.nil + r.nil) | nil
whereas pi \ q2 (al.nil + nil) \ nil and as we saw above these two states are
incomparable. In this example the states distinguishing pi | qi from pi \ 92 occur
after just one transition, but it is easy to generalize the example to any depth of
transition.

Let Pr~ be the set of processes constructed according to the syntax of definition
2.2.1 but without the use of the 4—operator. Let V~ = (Pr~, Act~,—*) where
Act~ = Names x {?,!} x Pr~ U {r} and let CPr~ and be defined in the obvious
way.

Proposi t ion 2.5.8 % is a congruence relation on Pr~.

1. p[qi/x] % p[q2/x] ifq^ % q̂

2. alx.p % alx.q if p[rlx\ % q[r/x] for all r

3. alp'.p % alq'.q if p K, q and p' % q'

4. T.p % T.q if p q

5. p\ p' ^ <l\ q' if P ^ q and p' % q'

6. p\a % q\a if p % g

7. P [5] % G[5'] i f p % q

We prove this proposition by showing that 1% is a congruence relation on CPr~
and then lift the definition of % to open expressions in the standard way:
Definit ion 2.5.9

p ^ q iff V r . p [r / z] % g [r / z]

where x = FV(p) — FV(q) and r is closed.

Chapter 2: Operational Theory of CHOCS 56

The proof of the congruence property of % on CPr~ closely follows the proof of
the congruence property of It is useful to have the following alternative definition
of weak higher order bisimulation:

Definition 2.5.10 An alternative weak higher order bisimulation R is a binary
relation on Pr such that whenever pRq and r 6 Act then:

(i) Whenever p p', then q =£=^ q' for some q', r ' with fRv'
and p'Rq'

(ii) Whenever q q', then p =*- p' for some p', r ' with r'^
and p'Rq'

' e if r = r
Where r = < alp if r = a?p

alp if r = alp
If there exists an alternative weak higher order bisimulation R containing {p, q) we
write p q.

We may define A/\ihB{R) for R C Pr^ as the set of pairs {p, q) satisfying clause
(z) and (n) above. It is easy to see that is a monotone endofunction and that
there exists a maximal fixed point for This equals fs'.

Proposition 2.5.11 % = %'

P R O O F :

% To see this we show that Ri = {{p,q) : p % q} is an alternative weak
higher order bisimulation.
This is easily established since if p p' then p ==» p'. Thus q g' with

and p' % q' since p % g. Define r ' = r if $ = e, r ' = alp" if $ = alp" and
r'

r ' = alp" if $ = alp". Then q =>- q' which is a matching move.
A symmetric argument applies if q —^ q'.

To see this we show that i?2 = {(P;?) • P is a weak higher order
bisimulation.
This is easily established since if p p' then

either $ = e and p — p'. In this case q q' and since r = e we have epa'e
and p' Ri' q and we have a matching move.

' = £ and p — p ' . Then q q'
This establishes a matching move.

or $ = £ and p — p ' . Then q q' with r w ' f and p' w' g' since p q.

Chapter 2: Operational Theory of CHOCS 57

or $ = alp" and p p'. Then q q' = q q' with a?p"si'a?p" and
p' q' since p q. This estabhshes a matching move.

or $ = alp" and we may argue as in the previous case.

If q q' a symmetric argument applies.

•

Definition 2.5.12
Let WCR~ — {{pliqi/x],p[q2/x]) : p E Pr~ Szx — FV{p) & 92 9t G CPr~}
and let WCR~* be the transitive closure of WCR~.

Note if qi % q2 then {x[qilx],x[q2lx]) E WCR~ and we write (91,92) E WCR~.

Lemma 2.5.13

If p ^ CPr~ and p p' and (r, r') £ WCR~* for some r' then p p" and
{p',p") e WCR-*.

P R O O F : AS lemma 2 .3 .8 . •

With these preliminaries in hand we may now prove the congruence property of
% on Pr~.
P R O O F : (of proposition 2 .5 .8) To see 1. we show that the relation WCR~* is an

alternative weak higher order bisimulation. First for {pi,p2) € WCR~ we show

that: Whenever pi = p[qi/x] p' then p2 = piWg/z] p" with (r ,r ') e WCR~*
and {p',p") € WCR~*. We proceed by induction on the length of the inference used
to establish the transition p[9i/x] p' and cases of the structure of p. The only
case which differs slightly from the proof of proposition 2.3.5 is the following:

P = Pi\P2 If p[qi/x] p' then

either pi[qi/x] = Pi[ql/x^] p'l by a shorter inference and p' = p[|
P2[QI/X] = P[I p2[91/^^] where ^ = FV{PI) and ^ is the respective

_ _ _ _ _ r '
projection of 9^. By induction Pi[q2lx] = Pi[q\lx^] =>- p" with (r , f ') G
WCR-* and {p[,p'l) € WCR'*. Since {p[,p'l) e WCR-* there exist
P3, 91) 92' &nd x^' such that p[= P3[9i'/^^'] and p" = Pz\^2 l^^'\ with
^ ^ (P s) = and q\ « 92'. We may assume x^' fl = 0 since if

^ 0 we proceed by choosing y such that n (F y (p a) U U) = 0
and we havepafg-'/x^'] = {p3^lx^'])\q\' jy] by proposition 2.2.4. If r ' = e
and p" — Pi[92/^^] then P\\q\lx^] = Pa[92'/^^'] otherwise we use the
operational semantics for parallel and we have

Chapter 2: Operational Theory of CHOCS 58

(pi I P2)[92/^] = (pi[92N) I {p2[q2lA) Pi I P2[ql/x'^]- Thus p[I
= (P3 I P2)[9r U and | = (fa | P2)[g '̂ U

U ^2] and ((% | P2)[gr U U (ps | U u Y]̂) €
WCR-*.

or P2[?i/®] P2 and we may argue as above.

o r r = r and w.l.o.g Pi[9i/x] p'l and P2[9i/^] P2 by shorter inferences
and p' = p'l I p'2. By induction P2[?2/^] ^ P'i with (r,r2) G WCR~*
and {p'2,p2) € WCR-* and pi[q2/x] ^ p'l with (r , r i) G WCR'* and
(p'l'P'i) G WCR~*. Thus Pi [^2/^](—^)P5 Pi for some ps. By lemma
2.5.13 we have ps ^ p'l' with (ri ,r2) € WCR-* and (p'i',p'i") G WCR'*.
Therefore)P5 Pi' = Pi[92/^] Pi'- (Note that we
need to know that p'/ is the state immediately after the input-transition
in order to apply lemma 2.5.13 as we did above. It is an open question
if the proposition can be proved if p'/ occurs after a sequence of internal
moves i.e. if we had used the usual definition of = >) . By the operational
semantics for parallel (pi | P2)[W2/^] p'l" I P r Since (pi,pi") G
WCR~* there exist pa, q\, q\ and # such that p[= P3[q\/x^] and p'" =
P3[ql/x^] with FV{p3) = and q\ % q] and since (p^,pg) G WCR-*
there exist p^, qj, ql and such that p'̂ = P4[ql/x^] and p'̂ = p^lql/x'^]
with FV{p4) — and ql % q\. We may assume x^ fl x^ = 0 since if

n ^ 0 we proceed by choosing y such that y f] {FV{p3) U FV{p4) U
x^ U x^) = 0 and we have = {P2,\ylx^])\^\ jy] by proposition
2.2.4. Therefore we have p\ | p^ = (ps^ /x^]) | (P4[??/^^]) = (p3 |
P^Wi U U x2] and p^" | p^ = (paM/z"]) | (P4[9^/Y^]) = (ps |
P4)[92 U 9^/xi U x^] and (p[\ p'^,p'{' \ p'^) G WCR-*.

Next we^how that if (pi,p2) G WCR * and pi ^ p'l then pg ^ p'̂ and

(r , r ') G WCR~* and {p'lip'2) G WCR~*. This follows by induction on (m, n) in
the lexicographic order on w x w where m is the number of —^-transitions used in
establishing pi = > p'{ and n is the length of the transitive sequence used to estabhsh
(P1,P2) G WCR~*. The base case (0,0) is trivial since p, p, for i G {1,2} and
(Pi,P2) G WCR~. The case (0,n + 1) follows by induction and the base case. To
prove the inductive step it is useful to prove the case (1, n) for all n. The case (1,0)
follows from the first step above. The inductive step (l , n + 1) follows by applying
the first step above to the first pair in the transitive sequence and induction on
the remaining n pairs. To see the case (m + l , n) for all n, we use induction on
(m,n) for all n and apply the result for (l , n) for all n for the last transition in the
sequence.

Chapter 2: Operational Theory of CHOCS 59

The overall result then follows by induction on the length of the transitive se-
quence. The base case N = 0 follows from the first step above and the inductive
step follows by applying the first step above to the first pair (^1,^2) € WCR~ of the
sequence . . .p„+i reducing its length by 1, then applying the induction hypothesis
and the second step above to the rest of the sequence P2 • • • Pn+i •

2. to 7. follow by constructions similar to those given in the proof of 2. to 8. in
proposition 2.3.5. •

The above result only applied to processes in Pr~. We may obtain a congruence
relation on Pr containing % using techniques presented in [Mil80, Mil89].
Definition 2.5.14

p Ri" 9 i f f VC.C[p] % C[q]

where C is a context.

Generally a context is an expression with zero or more "holes" to be filled by an
expression. We write C\P] for C[] with P exchanged for []. We deliberately use the
word exchange instead of substitute since according to the definition of substitution
(definition 2.2.3) change of bound variables is taken care of, whereas free variables
in P may become bound in C\P].

Proposit ion 2.5.15 1. is a congruence

2. if M is a congruence and p x g p % g then p tx q ^ p q.

Corollary 2.5.16 p ^ q p q.

Note that we do not have to define on closed expressions first and then hft
it to open expressions since a?xi . . .] is just a special context.

The definition of observational congruence yields that is the largest con-
gruence containing The definition is rather awkward to work with and it is
useful to find alternative descriptions. A "standard" alternative characterization of
observational congruence first presented in [Mil80] is in terms of -j—contexts:

Definition 2.5.17 p %+ q i f f Vr.p + r ^ q + r

It is surprising to observe that this definition is not in general a congruence
relation on Pr as may be seen from the following example:

Example 2.5.18 Letpi = blx.{a\.nil+x) andqi = h\{T.nH).nil andq2 = h\{nil).nil.
Then pi %+ pi and qi %+ 92 but | 76 | 92 since for all r we have
(Pi I 9 i) + r {al.nil + T.nil) | nil whereas (p i | 9 2) + r (a ! . n z 7 + nil) | nil
and as we saw in example 2.5.6 these two states are incomparable.

Chapter 2: Operational Theory of CHOCS 60

At first this may seem quite surprising, but the power of sending and receiving
processes in communication might suggest that the congruence property should al-
ways hold for the communicated processes since these might turn up at any stage
and that we therefore should look for a recursive formulation of observational con-
gruence.

As an attempt to define a bisimulation-like predicate characterizing observa-
tional congruence we propose the following definition inspired by [Abr90b].

Definition 2.5.19 An irreflexive weak higher order bisimulation R is a binary
relation on Pr such that whenever pRq and r G Act then:

(i) Whenever p p', then q q' for some q', r ' with fRr'
and p'Rq'

(ii) Whenever q q', then p p' for some p', r ' with r'^
and p'Rq'

If there exists an irreflexive weak higher order bisimulation R containing (p, q)
we write p g.

Note that this definition only differs from definition 2.5.10 by insisting that
whenever p p', then q q' and not q q'. This mean that any r-transition
of p must be matched by at least one r-transition of q and vice versa.

We may define JV^hB^R) for R C as the set of pairs (p, q) satisfying clause
(i) and (n) above. It is easy to see that is a monotone endofunction and that
there exists a maximal fixed point for 2VV^. This equals

Proposition 2.5.20 is a congruence relation on Pr.

1. is an equivalence.

2. p[?i/x] p[q2/x] i fq i ?2

3. alx.p a'?x.q if p[r/x] q[rlx\ for all r

4. alp'.p w' alq'.q if p q and p' «' q'

5. T.p T.q if p q

6. p p ' TH* q + q' if p K,* q and p' 9'

7. p\p' <l\q' if P 9 p' w*

8. p\a q\a if p K.* q

Chapter 2: Operational Theory of CHOCS ^

9. p[S] q[S] if p Ri' q

The proof that is an equivalence follows from the same kind of arguments
given for proposition 2.3.5 and proposition 2.5.8. We prove is a congruence
relation on CPr and then hft the definition of to open expressions in the standard
way. The proof of the congruence property of on CPr follows the proof of
congruence property of % on CPr~.

Definition 2.5.21
Let IWCR = {{p[qiM,p[q2/^]) • p € Pr & z = FV{p) & q^ ^2 ^ li ^ CPr}
and let IWCR* be the transitive closure of IWCR.

Note if qi 92 then (x[gi/x], x[q2/x]) E IWCR and we write (gi, 92) E IWCR.

Lemma 2.5.22
If p £ CPr and p p' and (r, r ') E IWCR* for some r' then p p" and
(p ' , /) € fWCR*.

PROOF: As lemma 2.3.8 •
PROOF: (of proposition 2.5.20) The proof of 1. follows the proof of proposition

2.5.8.1 i.e. we show that the relation IWCR* is an irreflexive weak higher order
bisimulation. First for (^1,^2) E IWCR we show: Whenever pi = p[qi/x] p'
then p2 = ^[92/^] p" with (r, r') G IWCR* and {p',p") G IWCR*. To do this we
proceed by induction on the number of inferences used to establish the transition
p[qi/x] p' and cases of the structure of p. The only case which did not occur
in the proof of proposition 2.5.8 is the following:

p = pi+p2 If p[qi/x] p' then

either Pi\jqi/x] p' by a shorter inference. By induction Pi[g2/^] p"
with (r ,r ') G I\^R* and {p',p") G IWCR*. Since Pi[q2/x] ^ p"
implies that at least one transition takes place we can apply the opera-
tional semantics for choice and we have {pi +P2)[92/^] P" which is a
matching move.

or P2\jqilx\ p' and we may argue as above.

As in the proof of proposition 2.5.8.1 we establish that if (^1,^2) G IWCR* and
Pi p'^ then p2 ==^ P2 and (r ,r ') G IWCR* and {p'i^p'i) G IWCR*. This follows
by induction on (m, n) in the lexicographic order on w x w where m is the number of
- ^ - t r ans i t i ons used in establishing pi =£» p" and n is the length of the transitive
sequence used to establish (pi,p2) G IWCR*.

Chapter 2: Operational Theory of CHOCS 62

The overall result then follows by an argument similar to the argument given
for 2.5.8.1 i.e. by induction on the length of the transitive sequence.

2. to 8. follow by constructions similar to those given in the proof of 2. to 8. in
proposition 2.3.5. •

Corollary 2.5.23 p 9 => p ^

PROOF: It is easy to establish that P G P % G. The proposition then
follows from the congruence property of and proposition 2.5.15 •

We may now turn to the algebraic properties of Since p ~ ppy 'g the
algebraic laws for ~ also apply for In addition fa' satisfies the following r-law:
Proposi t ion 2.5.24

p + T.p r.p

PROOF; We show that the relation:

R = {(p + r .p, T.p) : p e CPr} U Id

is an irreflexive weak higher order bisimulation.
To see this observe that if p + T.p p' then

either p p' and r.p p' with (f, f)EldCR and (p', p') ^ Id C R.

or r .p p' and r = r and r.p p' with (f , T) E R and (p', p') £ Id Q R.

Also if r .p p' then P' = P and r = r and p + r.p p' with (f , f) e -R and
{P',P') E IdC R. •

However, the following r-laws are not valid for ?»':

1. alx.T.p alx.p

2. alp'.T.p alp'.p

3 . r . r . p r . p

4 . alx.{p + T.q) + alx.q a?x.(p + r . g)

5 . alp'.{p + T.q) + alp'.q a ! p ' . (p + r . g)

6 . r . (p + r . g) + r . g r . (p + r . g)

The first three laws correspond to the r-law: a.r.p a.p of CCS [Mil89]. In
fact this law is not valid for even without process passing since if p = nil then
al.T.p r .p and al.nil ==> nil with alRi'a! but T.nil 96' nil since T.nil —^ nil

r
whereas nil The last three laws are not valid for because of the definition
of ==^. This fact was noticed by Walker for CCS in [Wal88].

It is an open question if the following r-laws are valid for

Chapter 2: Operational Theory of CHOCS 63

1. alx.T.p alx.p

2. alp'.T.p alp'.p

3. T.T.p T.p

So far I have been unsuccessful in either validating or refuting these. If they were
invalid we should be able to find a context C such that C\pre.r.p\ 76 C[pre.p] where
pre is either alx, alp' or r . Example 2.5.18 suggests that we look for a context which
"strips off" the initial action pre and sends r.p respectively p into the troublesome
context a\.nil-\-[]. However, it does not seem to be possible to define such a context
in CHOCS since the processes we send are inactive until received and instantiated
for a free variable. It is worth noting that if we had the following operational rule

n' —Z—̂ p"
from fNie89l: we could refute the above r-laws.

a\j/.p —> alj/'.p

2.6 Recurs ion

We have seen that almost all properties of CCS carry over to CHOCS but since
CHOCS includes higher order constructs one would expect to find it more powerful
and indeed it is. In CCS the recursion operator r ec x.p is the only operator capable
of introducing infinite behaviours, rec x. is a variable binder and FV and [/] have
to be extended according to this:

FV{Tecx.p) = FV{jp) \ {x}

and
TQcy.{p[qlx]) \iy ^ X and

rec z.{{p[zIy])[qIx]) for some z ^ y
and z ^ x
and not free in
q nor p otherwise

In CCS recursive processes have the following operational semantics:

p[rec z.p/z] p'
R Z, rec x.p —>• p

This inference rule basically says that a recursive process has the same deriva-
tions as its unfoldings. In CHOCS we can "program" a recursion construct to
obtain infinite behaviours. To a certain extent this construct resembles the Curry
paradoxical combinator Y[] = (Ax.[](xx))(Aa:.[](xx)) which is often referred to aa
the Y combinator in the A-Calcuius.

{recy.p)[qlx\ =

Chapter 2: Operational Theory of CHOCS 64

Definit ion 2.6.1 Let be the context:

a?a;.([][(a; | a\x.nil)\a/x])

and let Yx[] be the context:

Note that if FV{p) C {x} then

Yjj)] (p[(a; I a!x.nz7)\a/x][W^[p]/x] I m /) \ a = (p[y;[p]/a:] I m /) \ a

~ (p[^xb]/3;])\a = (p\a)[Kb]/a^]

By proposition 2.4.7 we have ~ p[l^[p]/x] if p :: L and a ^ L.
Note how Yx[] needs a r-transition to unwind the "recursion". This resembles

the unwinding of recursion in the inference rule of recursion in TCCS [HenNic87]:
recx.p p[Tecx.p/x], where may be read as —

Theorem 2.6.2 Yx[p] ~ recx.T.{p\a)

Corollary 2.6.3 I f p :: L and a ^ L then Yx\p] ~ recx.p

P R O O F ; if p :: L and a ^ L then p\a ~ P by proposition 2.4.7 and T.p % P by
proposition 2.5.5. We need to prove that recx.p % recx.q if p % g. We may rely
on the proof in [Mil89] for CCS which only needs minor changes to take the process
passing into account. •

In [Tho89] the following alternative IK-context was presented:

y^[] = (a?a;.([] | alx.nil) | a!(a?a;.([] | a\x.nil)).nil)\a

This context is limited to processes where x does not occur free in a sending
position (i.e. does not occur free in any subsubexpression p' of the form q = blp'.p"
where ^ is a subexpression of p). With the Y-context of definition 2.6.1 we may
program systems which recursively send out copies of themselves.

Example 2.6.4 Let p = blx.x then according to the inference rules of definition
2.2.5 Yx[p\ has the following derivations:

{h\x.x\Yx\p]lx] I nil)\a

Chapter 2: Operational Theory of CHOCS 65

^\Y,[p]
{Yxlp] I nil)\a

J/r
{{h\x.x\Yx\p\lx\ I nil)\a | nil)\a

Ib'-YM

This is almost a specification of a computer virus. Think of the behaviour of
y^[p] where p = ethernet\x.{x \ deletejall-filesl.nil) and the consequences such a
program could have in a network of computers connected via an ethernet.

To prove theorem 2.6.2 we need a bit of technical machinery and we extend the
result about bisimulation up to ~ from [Mil83, Mil89] to take the process passing
into account.

Definition 2.6.5 A binary relation R on Pr is a higher order bisimulation up to
~ if whenever pRq and r £ Act then:

(i) Whenever p p', then q q' for some q', r' with
r~jR~r' and p' q'

(a) Whenever q q', then p p' for some p', r ' with
and p' ~R^ q'

Where = {(r, r') : (r = alp" h t' — alq" hp" ~ ~ q") V (r =
a\p" & r ' = alq" hp" q") V (r = r ' = r)}.
Note that r^Rr^ is relation composition.

Proposition 2.6.6

PROOF: If there are three cases

r = a?p then r ' = alp' and p ~ R^ p'. Thus there exist p'i,p" such that p ~ p[,
p'lRp" and p" ~ p'. Clearly a1p\Ra1p" and a?p"'^a?j/ and we have

r = a!p and we may argue as above.

r = r then r ' = r and r ~ T and TRT and T'^R^T.

If r~ .R~r ' then there are three cases

Chapter 2: Operational Theory of CHOCS 66

r = alp then r ' = alp' and there exists Ti and such that r ~ r i , ri^r'^ and
We must have ri = alpx and = a?p'i and p ~ pi, PiRp'i and p\ ~ p' thus
p p' and we have r ~ i 2 ~ r ' .

r = a\p and we may argue as above.

r = r then r ' = r and r ~ i 2 ~ r ' . O

L e m m a 2.6.7 If R is a bisimulation up to then is a bisimulation.

PROOF: Assume (P, G~ I? This means that for some pi, qi we have p ~
P\Rq\ ~ q. Thus if p —> p' then pi p[with r ~ r i and p' ^ p[. Since i? is a

bisimulation up to ~ we know that qi —^ q[with ri^R'^r[and p[^ R^^ q[and
since ~ g we have q q' with r ^ ^ r ' and ~ p'. By transitivity of ~ we have
p' p, which implies p ^R^ p' and which implies
by proposition 2.6.6 and transitivity of ~ (which is easily established as a corollary
of proposition 2.6.6). Thus we have established a matching move for q.

If q q' a symmetric argument to the above applies. •

P r o p o s i t i o n 2.6.8 If R is a bisimulation up to ~ then R C ~ .

PROOF: Since ~ ~ is a bisimulation we know that ~ R ~ C ~ . Id C ~ so
R which proves the proposition. •

With this machinery in hand we may now prove theorem 2.6.2
PROOF: For this proof we need the following property of substitution:

i f x ^ y then p[p'/ x]\p" / y] = p\p"/y]\p'\p"/y]/x]

and a simple corollary:

if X ^ y and p',p" are closed then p[p'/x]\p"/y] = p\p"Iy]\p'Ix]

which is easily established by structural induction on p. (They are not corollaries
of proposition 2.2.4 since we have to take recursive processes into account.)
Then the relation:

-R = {(9[reca;.T.(p\a)/a;],5[F^[p]/a:]) : FV{q) C {x}}

is a bisimulation up to ~ . To prove this we show that
if q[Tec x.T.{p\a)/x] q' then q\Yx\p]lx\ q"
with (r ' , r") G and {q',q")
(i.e. we show (r ' , r i) € (r^,!^) G R, (ri ' ,r") G (g',?i) G~, {q[,qi) G R and
(9i)9") for some r^, r", gi and q").

Chapter 2: Operational Theory of CHOCS 67

We prove this by induction on the length of the inference used to establish
the transition ^[reca:.r.(p\a)/a;] q' and cases of the structure of q. In the case
where q has the form aly.q' or r e c y.q' we need the above properties of substitution.
The theorem then follows by choosing q = x. (The proof follows the pattern of the
proof of proposition 4.6 of [Mil83]). q may have the following structure:

q = nil Trivial since both nil[Tecx.T.(p\a)/x] and

q = biy.qi Assume y ^ x (otherwise use a-conversion on y).

If g [recz . r . (p \a) /z] q" then r ' = 6?r for some r
and q' = qi[recx.T.{p\a)/x][r/y] = qi[r/y][rec x.T.{p\a)/x] since
q[rec x.T.(p\a)/x] = {b?y.qi)[Tecx.T.{p\a)/x] = b?y.{qi[recx.T.{p\a)/x])
and rec x.T.{p\a) is closed.
Note that since r is closed FV{qi[r/y]) C {x}.
Also q[Y:,[p]/x] q" = iqi[Y,;\p]/x])[r/y] = {qi[r/y])%\p\/x]
since Yx{p] is closed and y ^ x.
This is a matching move since (r ' , r ') C /c? C ~ C
and {q\q") € R

q = blqi.q2 If q[Tec x.T.{p\a)/x] q' then
r ' = 6!(9i[recx.T.(p\a)/x]) and q' = (^2[reca;.T.(p\(z)/a;]) since
^[rec x.r . (p\a) /x] = {blqi.q2)[Tecx.T.{p\a)/x] =
bl{qi [rec x.T.(p\a)/x]).(g2[rec x.r.(p\a)/a;]).
Also q[Yx\p]/x] q" where r" = b\{qi[Yx[p]/and q" = q2[Y:,[p]/x].
This is a matching move and (r', r") G RC and {q',q") € R C ~ i 2 ~ .

q = qi + q2 If g[reca:.T.(p\a)/x] = 9i[recx.T.(p\a)/x] + q2[recx.T.{p\a)/x] q'
then

e i t h e r 9 i [recx. r . (p \a) /x] q' by a shorter inference.
By induction [5^[p]/x] with (r ' , r") E ~ i ? ~ a n d {q',q")
By the inference rules for choice
<l\yx\p]lx] = qx\Yx\p]lx] + 92KM/a:] q"
which is a matching move.

or 2̂ [rec x.T.(p\o)/x] q' and we may argue as above.

q = qi I 92 If 9[recx. r . (p \a) /x] = qi[recx.T.{p\a)/x] | g2[recx.T.(p\a)/x] q'
then

e i t h e r 9 i [recx. r . (p \a) /x] q[by a shorter inference
and q' = q[\ (q2[Tecx.T.{p\a)/x]).

Chapter 2: Operational Theory of CHOCS 68

By induction g" with (r ' , r") G ~ i ? ~ a n d (9^,9") G~-R~
Thus there exists such that ~ r i[reca; .r .(p\a)/x] and
r i [rQcx .T . { jp \a) lx \Rr i \Y j^] lx] and ri\YJ^]lx\ ~ q".
By the inference rules for parallel composition
q\Y^\p]lx\ = ?i[K[p]/a:] | q2[Y^\p]lx\ | (92/a:]).
By definition 2.2.1 we have
9i I (92[reca:.r.(p\a)/x]) ~ ri[reca;.r.(p\a)/a;] | 52[recx.r.(p\a)/x]
= (n I q2)[r&cx.r.{p\a)lx]
and I {q2\Y^\p]lx\) ~ ri[y^[p]/x] | = (n | g2)[54b]/^]-
Clearly ((n | 92)[reca;.r.(p\a)/a:], (n | 92)[K[p]/a;]) G R
and we have established a matching move.

o r q2[r&cx.T.{p\a)lx] and we may argue as above.
r r or T' = T and qi[Tecx.T.{p\a)/x] —> q[and q2[recx.T.{p\a)/x] —y

by shorter inferences and q' = q[\ qi^.
By induction qi[yx[p]/x] q'{ with (r ,r") G ~ - R ~ and {q[, q'{) G~-R~
Thus there exists ri such that q[~ ri[reca:.r.(p\a)/a:]
and ri[Tecx.T.{p\a)/x]Rri[Yx[p]/x] and ri[i^[p]/x] ~ q".

Also q2[yx\p]/x] 92 with (r, r") G and G~-R~.
Thus there exists r2 such that q'2 ~ r2[reca;.r.(p\a)/a;] and
r2[recx.T.{p\a)/x]Rr2[Y^[p]/x] and r2[Y^[p]/x] ~ q'^.
Then by the inference rules for parallel composition
q[yx\p]/x] = qi[Y^\p]/x] I q2[Ya,\p]lx] q'l \ q'^.
By definition 2.2.1 we have

I 92 ~ ri[recx.T.{p\a)/x] | r2[recx.r.(p\a)/rE]
= (n I r2)[recx.r . (p\a) /x] and 9 '̂ | q'̂ ~ ri[l^[p]/x] | r2[Y^[p]/x] = (n
r2)[Ya:[p]/x].
Clearly ((n | r2)[Tecx.T.{p\a)/x],{ri \ r2)[Y^\p]lx]) G R
and we have estabhshed a matching move.

q = qi\b If 9[recx.T.(p\a)/x] = gi\5[recz.T.(p\o)/z] =

(9i[reca;.r .(p\a)/x])\6 q'
then 9i[reca;.T.(p\a)/x] q[by a shorter inference and q' = q[\b.
If r ' = clr or r ' = c!r then c ^ b.
By induction qi[Yx[p]/x] q" with (r ' , r") G and {q'i,qi) G ~ i ? ~ .
Thus there exists ri such that

q[~ r i [recx . r . (p \a) /x] and ri[recx.r.(p\a)/x]i?r-i[y^[p]/z] and ri[%.[p]/z] ^

9i'-
By the inference rules for restriction

Chapter 2: Operational Theory of CHOCS ^

?[n[p]/xi = «, \6[n[p]/x] = (?iii;[pi/2;i)\6 / = ,; ' \6.
By definition 2.2.1 we have
q[\b ~ {ri[Tecx.T.{p\a)/x]\b) = (ri\6)[reca:.T.(p\a)/a:]
and q[\b ~ {ri%\p]/x])\b = (ri\6)[F^[p]/a:].
Clearly {g',q") which is a matching move.

q = qi[5] I f g [r e c z . T . (p \ a) / a ;] = ^ i [S '] [r e c a ; . r . (p \ a) / a ;] =
(9i[reca;.r.(p\a)/a:])[5] q'

r'
then 5i[rGcx.T.(p\a)/a:] —^ q[by a shorter inference and q' =
and = S{r') where 5'(G?p) = S{a)'^p, S{a\p) = S(a)\p and S{T) = r .
By induction qi[Y^[p\/x] with (ri ,r ' /) G and {q[,^{)
Thus there exists such that q\ ~ ri[rec a;.T.(p\a)/x]
and r-i[recx.T.{p\a)/x]Rri[Yx[p]/x] and ri[i^[p]/x] ~ q".
By the inference rules for renaming

q[yx[p\/x] = 9i[5'][l^xb]/^] = q" = where r" =

By definition 2.2.1 we have

q[[S] ~ (ri[recx.r.(p\a)/x][S']) = (ri[5'])[reca:.T.(p\a)/a;]
and q[[S] ~ = (r i [5]) [i^] /a :] .
Clearly {q',q") and (r', r") G
since (r^, r^) 6 imphes (5(r i) , 5(r")) 6 which is easily estab-
lished.

q = x I f q[recx.T.{p\a)/x] = x [r e c x . r . (p \ a) / a ;] = Tecx.T.{p\a) q'
then r' = r and q' = (p\a)[rec a:.T.(p\a)/a:].
Also
q\Y^\p]lx] = Yx\p] q" = {p\Y:,\p]jx\ I nil)\a
~ {p[yx\p]/x])\a = (p\a)[F^[p]/a:].
Clearly ((p\a)[recx .T.(p\a)/x], (p\a)[y2:[p]/a;]) 6 R thus {q',q")

q = recy.qi Assume y ^ x (otherwise use a-conversion on y).
Then g[reca;.r.(;)\a)/a;] = {Tecy.qi)[recx.T.{p\a)/x] =
Tecy.{qi[recx.T.{p\a)/x]) q'
since rec x.T.{p\a) is closed.
Then gi[recx.r.(p\a)/a;][rec j/.(gi[recx.r.(p\a)/a;])/x]
= qi[Tecy.qi/y][Tecx.T.{p\a)/x] q'
by a shorter inference.
By induction (on qi[recy.qi/y]) we have
qi[Tecy.qi/y][Y^\p]/x] = qi[Y:,[p]/x][recy.{qi[Y^\p]/x])/x] q"

Chapter 2: Operational Theory of CHOCS ^

with (r', r") G and (?') ?")
By the inference rule for recursion:
recy.(9i[K[p]/x]) = (rec?/.9i)[F^[p]/x] q"
which is a matching move.

We also have to prove that if 9[l^[p]/a;] q' then q[recx.T.{p\a)/x] q"
with (r', r") G and {q',q") This is straightforward and follows the
pattern of the above argument. •

This proof is limited to the case where at most x is free in q. The extension to
the case where there are other free variables is now routine, using the definition of
higher order bisimulation for open terms from definition 2.3.10.

2.7 Transi t ion S y s t e m s w i t h D ivergence

In previous sections we have only studied transition systems of the form V =
(Pr,Act, -^) and the notion of higher order bisimulation. In this section we add a
fourth component; a divergence predicate.

In the study of concurrent systems divergence plays an essential role since diver-
gent processes may indefinitely do internal actions and thus prevent any external
communications and should therefore be distinguished from stopped processes. Al-
though we shall not study the prospects of using divergent processes as unspecified
parts in a partial specifications technique it is worth noting that the formalisms
introduced in this section provide the necessary machinery to enable the use of the
partial specification techniques presented in [Wal88, LarTho88].

To formalize the notion of divergence we adopt the technique presented in
[HenPlo80, Mil81b, Abr87, Wal88] and extend the semantic model of labelled tran-
sition systems with a unary basic divergence predicate on processes: | .

Transition systems now take the form V = (Pr, Act, |) . The notion of con-
vergence J, is defined as the negation of divergence i.e. p J.= -ip | .

We may now define the notion of a higher order prebisimulation. This predicate
on labelled transition systems with divergence is the extension of bisimulation to
take the additional structure of divergence into account.

Def in i t ion 2.7.1 A higher order prebisimulation R is a binary relation on Pr
such that whenever pRq and r G Act then:

(i) Whenever p p', then q q' for some q', r' with rRr'
and p'Rq'

Chapter 2: Operational Theory of CHOCS 71

(ii) Whenever p | then q | and if q q', then p p' for
some p', r ' with r'Rr and p'Rq'

Where R — {(r, r') : (r = alp" Sz r' — alq" & p"Rq") V (r = a\p" k, r' =
a\q" &: p"Rq") V (r = r ' = r)}.
If there exists a higher order prebisimulation R containing {p,q) we write p q.

As for higher order bisimulation we may define higher order prebisimulation as
the maximal fixed point of a functional on Pr^. We define 71FB{R) for R C Pr^ as
the set of pairs (p, q) satisfying clause (i) and (ii) above. It is easy to see that TiHS
is a monotone endofunction and that there exists a maximal fixed point for TlfB.
This equals E®.

Proposition 2.7.2 E® is a preorder

PROOF: Reflexivity follows from the fact that; Id — {{p,p) | p E Pr} is a higher
order prebisimulation.
Transitivity follows from the fact that composition of higher order prebisimulations
yields a higher order prebisimulation. •

We let denote the equivalence generated by ^. Clearly p q
p ~ q.

In the coming sections we shall make use of an alternative (and more explicit)
characterization of higher order prebisimulation. This is done by giving a decreasing
sequence of relations on Pr^ given by:

Definition 2.7.3

• pZo q is always true (i.e. Eo= Pr x Pr)

• p Efc+i q iffWr G Act:

(i) Whenever p p', then q q' for some q', r ' with
rEfcr' and p' Et q'

(ii) Whenever p J. then q J. and if q q', then p p'
for some p', r ' with r'Efcr and p' Ejt q'

Where Ejt — {(r,r ') : (r = alp" h T' — alq" & p"Zkg") V (r = alp" &: r '
a ! 9 " & p ' W ') V (r = r ' = r) } .

(i.e. Efc+i= TIFBi^k))- Let Et^= Et and HEw"*-

Chapter 2: Operational Theory of CHOCS 72

This decreasing sequence is bounded below by and we have for
all k.

Definition 2.7.4 A transition system V = {Pr, Act, —»•, |) is said to he image finite
i f f :

Wp £ Pr.{(r,p") : p p " } finite

Note that this is equivalent to defining image finiteness as:

Vp G Pr^a E Names.{{p',p") : p p"}U{(p' ,p") : p p"}U{p" : p —^ p"} finite
since the set {(r,p") : p —> p"} has the same cardinality as the set
{{p'lP") '• 3a € Names.p p"}^{{p',?") '• 3a G Names.p p"}^{p" '• P —^ p"}-
The above definition of image finiteness is stronger than the usual definition of image
finiteness given by definition 2.1.6. The stronger version is necessary to facilitate
the proof of the next proposition.

Proposition 2.7.5 I f V = (Pr , A c i , i s image finite then

PROOF: We prove this proposition by showing that if "P = (Pr , Act, |) is image
finite then TfB is anticontinuous. It then follows from classic fix point theory [Tar55]
that it has got a maximal fixed point on a complete lattice. Pr^ is a complete
lattice ordered by subset inclusion and we have r]k7ifB''{Pr'^) = f]f.'HR3''{Pr'^),
where = Id and — TifB'' o TIFB. Since E® is defined as the maximal
fixed point of on Pr^ we have
To see that TifB is anticontinuous we must prove Rk) = Qt where
^1 ^ P2 ^ P3 5 • • • Pn ^ • is a decreasing chain of binary relations over P r .
The "C"-direction follows directly from monotonicity of TiRS and flyt-Rfc ^ Pi for
all i E w. For the "D"-direction, let {p,q) G f]k7iFB(Rk). If p p" we must find
a matching move for q, i.e. r ' and q" such that q q" with (r, r') G Qt P t and

(/ , g'O G At At.
r '

Thus for all k there exist and q'^ such that q —^ q'^ with (r, r^) G Rk and

By the image finiteness condition on P r there is only finitely many pairs (r*., g&).
This means that there exists a pair (r', q") such that (r, r') G Rk and (p", q") G Rk
for infinitely many k G u>. Since Rk is decreasing in k we have (r, r ') G Rk and
(p", q") G Rk for all A; G w and thus {p", q") G (It Rk-
If {p, q) G ^f)B(Pk) then if p j also q j and if q q" we may find a matching
move for p by an argument as above. •

Chapter 2: Operational Theory of CHOCS 73

We briefly turn our attention to CHOCS and see how the new structure of
divergence may be used. First we make an extension of the syntax:

p : : = . . . I f i

where H is a new constant. This new process should be thought of as the always
divergent process with no actions. The operational semantics of CHOCS is then
defined by the transition relation defined in definition 2.2.5 and the divergence
predicate defined below. Note that since 0 has no actions we do not need to alter
the transition relation. The divergence predicate is defined syntax directed as the
maximal relation satisfying the following axioms and rules:

Definition 2,7.6
p T p' T p T p' T p T p T

O f p + p 'T p + p'T p I y T p I y T p \ a T p[S] T

Note that this definition yields that only CHOCS processes with unguarded fi's
are divergent.

P r o p o s i t i o n 2 . 7 . 7 E® is a precongruence.

PROOF: We may prove this for closed expressions as for the congruence properties
of ~ . We may then lift this result to open expressions. •

Since the equivalence implies ~ this equivalence satisfies the laws of section
2.3. In addition 5^ satisfies the following law:

Proposition 2.7.8 fi p

PROOF: The relation i? = {(N,p) : p E Pr} is a higher order prebisimulation. To
see this observe that fl and fZ | . Thus clause (z) and (ii) of definition 2.7.1 are
trivially satisfied. •

Except for Cl we do not have any other basic divergent processes in CHOCS. This
is opposed to CCS where recursive processes with unguarded recursion variables
may be basic divergent as well. This makes the study of basic divergence in the
context of CHOCS rather trivial, though we shall use the basic divergence in the
formulation of a denotational theory for CHOCS in chapter 4.

When r-transitions are interpreted as internal/unobservable moves, as in the
theory of observational equivalence, we may interpret a process with the potential
of evolving into a process possessing the capability of an infinite sequence of r-
transitions as divergent. This is e.g. the case when simulating unguarded recursion:
Y x [X] ~ r e c X.T.X.

To formalize this we define the following derived divergence predicate;

Chapter 2: Operational Theory of CHOCS 74

Definit ion 2.7.9 Let the relation on Pr be the largest relation satisfying:

pfr = (p ^ p' & p't) or p

where p - U ' ^ = 3{pn}.p = Po ^ ^n.pn Pn+\-

We interpret pff as p may diverge. The notion of convergence is defined as the
negation of divergence i.e. pij. = -'(pft")-

We may use this predicate to formulate a notion of weak higher order prebisim-
ulation:

Definit ion 2.7.10 A weak higher order prebisimulation R is a binary relation on
Pr such that whenever pRq and $ G {Act \ {r}) U {e} then:

(i) Whenever p p', then q q' for some q', with
and p'Rq'

(a) Whenever p-lj- then qi^ and if q q', then p ==^ p' for
some p', $' with and p'Rq'

Where R — {($,$') : ($ = alp"^^' = alq" Sz, p"Rq") V ($ = a\p"^<s>' =
a\q"kp"Rq")y{^ = <t' = e)].
If there exists a weak higher order bisimulation R containing (p, q) we write piq-

We may define 'WHfB{R) for R C Pr^ as the set of pairs (p, q) satisfying clause
(z) and (u) above. It is easy to see that yWfB is a monotone endofunction and that
there exists a maximal fixed point for VWfB. This equals 5.

Proposi t ion 2.7.11 « is a preorder

P R O O F : AS proposition 2 .7 .2 . •

As for the theory of observational equivalence weak higher order prebisimualtion
is not a congruence with respect to the + operator of CHOCS. We could carry
through a program as in section 2.5 and prove precongruence properties of the
4—free processes and also generate a congruence along the lines of section 2.5 by
defining p q iff VC.C[p] £ C[q\. We shall not pursue this since the techniques
are tedious, but straightforward generalizations of the results from section 2.5.

Proposi t ion 2.7.12 i fl «

Thus the equational properties of % are also satisfied by the equivalence gener-
ated by i . In addition it satisfies the following law:

Chapter 2: Operational Theory of CHOCS 75

Proposit ion 2.7.13 T.{p + fi) i p + 0

PROOF: We show that the relation

R = {(T.(p + ^),p + 0) } U Id

is a weak higher order prebisimulation.
To see this observe that if p + 0 p' then this is because p ==^ p' and then
T.{p + D) p' which is a matching move.
Also T.{p + and p + fift" thus clause (ii) of definition 2.7.10 is trivially satisfied.

•

2.8 F in i t e C H O C S

In this section we define a finite version of CHOCS. We introduce a new operator
al^p\.p2 called finite input prefix. Informally we use this construct to approximate
the input prefix alx.p\ by p.px\plx] following ideas for encoding value
passing in SCCS from [Mil83].

Let FPr be the set of processes built according to the following syntax:
Definit ion 2.8.1

p ::= nil | al^pi.p^ | a\pi.p2 | T.pi \ p1-\-p2\p1 | P2 | P\\a | Pi[S'] | 0 | a:

where a € Names, x £ V and S : Names —» Names.

Let CFPr be the set of processes built without the use of variables. CFPr is
the set of closed Finite CHOCS processes. Note that since there is no variable
binding construct in Finite CHOCS we may interpret FPr as the free E-algebra
T^{V) generated by V and the following (one-sorted) signature E.

Definit ion 2.8.2 Let E = {E„}„gt^, where E„ is the set of operation symbols of
arity n in E ;

So = {ni/, 0 }

El = {_\a : a G Names} U

: S : Names —»• Names} U

{r._}

E2 = {a?^_._ : a G Names} U

{a! : a G Names} U

{+,1}
E„ = 0,72 > 2

Chapter 2: Operational Theory of CHOCS 76

We define a subsignature E' C E by omitting the operators for restriction,
renaming and parallel composition. CFPr is the term algebra induced by the
operators in E.

The operational semantics for Finite CHOCS is given as a labelled transition
system with divergence:

Def ini t ion 2.8.3 Let be the smallest subset of FPrx FAct x FPr, where FAct =
Names x {?,!} x FPrU {r}, closed under the rules:

prefixing: al^p'.p p I / a!p'
a\p .p —> p T.p —> p

choice:
r ,

P —»P
I r ,

p-\- q —> p'

r ,
P —» P
I r ,

q + p >p^

r ,
P —^P parallel: ^

p\q > p' \q

r ,
P —» P

q \ p - ^ q\p'
p p" q q"
p\q p"\q"

restriction:
a7p' //

P —* P

p\b p"\b

II
,a^b P—^P" , , P —^ P

p\b pf'\h p\b —^ pf'\b

renaming:
p > p

p[S] p"[Sl

p II

p[5] p"[S]
P P"

[̂5"] p"[5]

Also let I be the maximal relation on FPr satisfying the following rules:

p T p' T p T p' T p T P T
n t p + p' T p + p' T p | p ' T p | p ' T p\a T p[S] T

Table 2.8.1: Operational semantics for Finite CHOCS

Chapter 2: Operational Theory of CHOCS 77

We now have transition systems JT' = (FPr, FAct, -4-, T)

KP = (Ts, CFAct,->-, t) , where CFAct = Names x {?,!} x CFPrU {r}, implicitly
defined above.

The following proposition gives a more exphcit description of these systems:

P r o p o s i t i o n 2.8.4 For all pi,p2 ^ FPr ;

(O W nil 1 (b) nil 7^

(M)(o) n t (6) n / ,

(ZM)(0)

(b)
a?^Pi-P2 i

a ? ^ P i - P 2 — ^ P <= =4̂ r — a?pi k p = P2

{iv){a)
(6)

a!pi.p2 i
a\pi.p2 P <= => r = a!pi & p = P2

(u)(a)

(b)
T.px i
T.pi —>• p <= =4- r = T & p = Pi

(t;z)(o)

(b)
(Pi + P 2) T ^

r
Pi + P2 — ^ P ^

Pi T or p2 t
r

=4' Pi > p or p2
r

— > P

Parallel composition:

(v i i) (a) (pi I P2) T Pi T or T
(b) (pi I P2) P either ^P"-Pi Pi p" = p" | P2

or 3P2.P2 P7 ^ P" = P1\PJ

or r = T & 3 r ' , p'{, P'IPI p" & P2 ^ P2

Restriction:

{viii){a) {pi\a) f Pi T
hip'

(6) (pi \a) p" -4=^ r = hip' & 3pi-pi —^ p" h h ^ a h p" = P i \ a
or r = h ^p'i-pi p" h h ^ a k. p" = Pi\a
or r = r & 3p".pi — ^ p" & p " = P i \ a

Renaming:

{ix){a) (pi[5]) T Pi T
(6) {pi[S]) p" r = b?p' & 3p".pi ^ Pi & 6 = S{a) & p" = p"[S]

or r = h\p' k 3pi'.pi ^ p ' l k h = S{a) k p" = p'{[S]
or r = r & Bpi'.pi p'l k p" = p'/[5]

Chapter 2: Operational Theory of CHOCS TO

PROOF: By induction on the number of inferences used to establish p | and
p p". •

Proposition 2.8.5 1. Vp G FPr.p is image finite.

2. Vp, q G FPr.p q p^w q

PROOF: 1. follows easily from proposition 2.8.4 and 2. follows from (1) and propo-
sition 2.7.5 •

For Finite CHOCS we may "ehminate" the use of the restriction, renaming and
parallel composition constructs modulo higher order bisimulation, i.e. the following
equations hold for renaming and restriction:

Proposition 2.8.6

n[s] n
(«?V-p)lsi s(<i)?V.pls)

r!\<! n

For parallel composition we have the following version of the expansion theorem:

Proposition 2.8.7

if p = T,iai'!^p'i.pi + I,jaj\p'j.pj [+n]
and q = q'j^.qk + [+^^]

then p \ q | q) + T,jaj\p'j.{pj | g)+
I 9 f c) + '^ihi\q\.{p I qi)+

: aj=bk p'—qiy^-iPj I 9 k)

where [+f2] means that the summand Cl is optional. StT,-.p,- describes the sum
Ti.pi 4 - . • • + when n > 0 and nil if n = 0.

Note that communication only takes place when both port names and the value
(process) communicated are equal.

In s e e s [Mil83] Milner introduced a generalized choice operator E,g/p,- where
7 is a countable index set. The operational semantics of this construct is defined
by the following rule:

Pi - ^ p
^ r

Chapter 2: Operational Theory of CHOCS ^

With this construct we can encode value passing in pure synchronization using the
following constructs for input prefix: alx.p = and a\v.p = a^.p for
output prefix. Using this strategy we may attempt to encode process passing in the
following way: alx.p = p'.p[p'/x] only using the finite input prefix and
eliminating the use of variables. Clearly alx.p ~ p'.p[p'/x], but the index
set is unfortunately self referential.

If we restrict the index set 7 to a finite set we do not need to introduce a new
operator; we can merely use S/p,- as shorthand notation for + . . . + Pin where
{Z'L,..., = I IS an enumeration of I.

We shall use this fact in the approximation of alx.p in Finite CHOCS.

Definition 2.8.8

Levo = {0}

= {E.g/Pi : I is finite and pi is either fl, a1^pi.p2, a\px.p2 orr.pi

where pi,p2 € LeVn} U LeVn

Note that if NAMES is finite then each set LeVn is finite. Then for any process
in CHOCS we define its n' th approximation p" in Finite CHOCS as follows:

Definition 2.8.9

p° = n for all p

We define structurally:

NIR*' = NIL

' 0

= ^p€Lev„a?^P.Pi[P/x]

= a!p^p2

(T.A)-+' = T-PL

(Pi + K)"''"' - P1+P2

(p. 1 — PI \ P2

= PiXo
= P^S]

= X

Chapter 2: Operational Theory of CHOCS 80

If p is closed then p" G CFPr. The approximation p" does not necessarily reside
in Levn since p"[p/z] where p E LeVn may introduce elements in Lev2n, but we may
state the following relationship between p and it approximation p":

Proposit ion 2.8.10 Assume Names is finite, then:

Wn.p p"

PROOF: It is laborious to prove directly that Vn.p p". Instead we prove it
indirectly by adapting the technique presented in [HenSl]:

Let F C Names be a finite set and Tp be the set of closed terms which contains
no occurrences of any operator a?^, a?, a! where a ^ F. Define Aq = {H}. Assume
there exists a finite set A^ C FPr such that for every p G Tp there exists some
element p" E A^ such that p p". Let A^_^^ = {i;,e/p,- : I is finite and p, is either
fi, a?^pi.p2, alpi.p2 or r.pi where a G F , pi,p2 G A^, i ^ j => pi / pj}. Note
that C FPr and is finite. For any p let:

+
E{A!P".P2 : P P2} +

E { T . P " : P - ^ P I } +

{ n : p t }

Note that p" is well defined under the assumption that Names is finite and
pu+i g j^Names ^ p"+i. •

This proposition will be an important cornerstone in the full abstraction theorem
for CHOCS which we establish in chapter 4. The assumption about Names being
finite might seem a bit too restrictive from a theoretical point of view. (From an
implementational point of view it is quite reasonable.) However, none of the results
we have or are going to present about CHOCS need to assume that Names is infinite.
In the theory of CCS there is at least one theorem [Mil80, Wal88] which needs the
assumption that Names is infinite. This theorem shows that the observational
congruence can be characterized in terms of +-contexts. Since this is not the case
for CHOCS (see example 2.5.18) we have not found any use for assuming Names
infinite.

Chapter 3

Using CHOCS

A process calculus should possess the capability of describing computational phe-
nomena in a way which enables analyses of both existing and new systems. In
this chapter we apply CHOCS to three examples. The first example is the un-
typed A-Calculus. We show how to simulate various reduction strategies from
the A-Calculus by translations into CHOCS. We shall see that some of the most
interesting properties of the A-Calculus are carried over via the translations. We
also study the relationship between abstracting equivalences for the A-Calculus and
CHOCS. The main theorems of this section are the full abstraction results (under
certain restrictions of observations) for the call-by-name A-Calculus and for the
call-by-value A-Calculus presented in theorem 3.1.21 respectively theorem 3.1.32.

The second example consists of a semantics for an imperative programming
language P studied in both [Mil80] and [Mil89]. We show how we may solve the
problem of giving semantics to concurrent procedure invocations with various pa-
rameter mechanisms.

The third example is a description of a fault tolerant editor system inspired by
the general presentation of such systems in [Pra88]. We show how we may specify
and analyze such a system using CHOCS.

3.1 C H O C S and t h e A—Calculus

CCS is a powerful language; it is capable of expressing all Turing definable functions
by encoding of Turing machines [Mil83]. Since CCS is a sublanguage of CHOCS
this must be true for CHOCS as well. But the nature of CHOCS is much closer to
the A-Calculus and in this section we study their relationship.

The language of the A-Calculus consists of variables, function abstraction and
function application:

Definition 3.1.1 The set of X-terms A is defined inductively as follows:

81

Chapter 3: Using CHOCS 82

1. X £ A

2. M G A (Xx.M) G A

3. M,N £ {M N) e A

where x £ V (a set of variables).

The operator Ax. is a variable binder. This introduces a notion of free and
bound variables.

Definition 3.1.2 The set of free variables FV{M) of a term M is defined struc-
turally on M as:

FV{x) = {z}

FV{\x.M) = Fy(M) \ {z}

FV{M N) = FV{M)i^FV{N)

A variable x occurring in a term M is bound in M if x ^ FV{M).

A very important concept in the A-Calculus is the notion of substitution. We
may substitute a term M' for a free variable occurring in a term M provided we do
not bind free variables in M'. This is captured in the following definition;

Definition 3.1.3 Substitution M[y := M'] is defined structurally on M as:

x[y := M'] = [otherwise

{Xx.M)[y ;= M'] —

Xx.M , if x = y
Xx.{M[y := M']) if y ^ x and

X i FV{M')
Xz.{{M[x := z\)[y := M']) otherwise
z ^ FV{M) U FV{M') U {x} U {?/}

(M N)[y := M'] = {M[y := M']) {N[y := M'])

A term M is closed if FV(M) = 0. The set of closed terms is denoted by A°.
Note that the above definition differs slightly from the definition of substitution

given in [Bar84] where all bound variables are assumed to be different and the sets
of bound and free variables are assumed not to intersect.

We shall use the following standard terms:

Chapter 3: Using CHOCS 83

Definition 3.1.4

I = Xx.x

K = Xx.Xy.x

Y = Xf.{Xx.f{xx)){Xx.f{xx))

O = {Xx.xx){Xx.xx)

The A-Calculus has a rich theory as documented in e.g. [Bar84], consisting of
concepts such as conversion, reduction, theories and models.

We focus on the various notions of reduction (sometimes referred to as evaluation
strategies) and the notions of convergence and equivalence.

First we study the perhaps simplest reduction/evaluation/conversion strategy;
the call-by-name or lazy reduction strategy. Formally the theory of the Lazy-A-
Calculus is based on the notion of convergence to principal weak head normal form.

Definition 3.1.5 The relation Mij.N is defined inductively over A° as:

Ml}.Xx.P P[x:=N]ij-Q
Xx.Mij-Xx.M

M

This relation induces an (unlabelled) transition system (A°, ^). As noted in
[Abr90a] the relation _ -IJ- _ is itself too "shallow" to yield information about the
behaviour of a term under all experiments. Motivated by the theory of concurrency
[Abr90a] introduces the notion of applicative (bi)simulation which may be obtained
as the maximal fixed point of the following functional:

Definition 3.1.6 Let R be a binary relation on A° then

{M,N)e^{R) i f f MUx.M' => N\},Xx.N'k
VP G A°.iM'[x := P],N'[x := P]) G R

R is an applicative simulation i f f R ^ J3{R). If there exists an applicative
simulation R containing (M,N) we write M N. We use to denote the
equivalence induced by .

We now give a simple translation of the A-Calculus and we will show that the
evaluation strategy enforced by this encoding coincides with lazy reduction.

Chapter 3: Using CHOCS ^

Definit ion 3.1.7 We define 11 : A —̂ CHOCS structurally:

1. Ix] : X

2. [Ax.M] = ilx.i\\M\.nil

3. | M N} = ([Ml[o/i] I o![[N]|.o?z.z)\o

Note that for any Af E A: [[M| :: {%} and that appHcation only needs two
communication channels. Since the function 11 : A —»• CHOCS has no additional
arguments we may view it as a definition of a set of derived operators in CHOCS.
Clause 3. shows how we may view parallel composition as a generalization of
function application. However, we need a rather elaborate protocol to ensure that
we do not mix arguments in applications and we therefore feed the arguments
sequentially. A tempting definition of the clause for application is | M #]] = (|M] |
%!|[jV]].nz/)\2. Unfortunately this definition does not work since the restriction \i
prevents application to other arguments as in e.g. M N N'. A different approach
is presented in [Bou89] where a special operator takes care of this problem. The
cost of this is a complication of the definition of equivalence between processes.

In the following we shall see that some of the most interesting properties of the
A-Calculus are carried over via the translation. First we make clear the connection
between substitution in the A-Calculus and in CHOCS.

Lemma 3.1.8

lM[x := N]J = [M][[iVl/a:]

PROOF: By structural induction on M. •
Using this lemma we may show that /^-conversion in the A-Calculus is "pre-

served" by the translation:

Proposit ion 3.1.9

|(Ax.M)iVl % lM[x := iV]I

PROOF: We demonstrate how the left hand side of this equation may do an initial
series of internal r-moves to a process equivalent to the right hand side.

|(Ax.M)7V] = {{i'?x.i\lM^.nil)[o/i] | o!|A']|.o?a;.x)\o

((i!!(|Mj[[A^l/a;]).nz7)[o/i] | o?x.x)\o

Chapter 3: Using CHOCS ^

IT

{nil[o/i] I (lMl[[A^l/a;]))\o

lMl[[iVl/x]

Since | M] :: {«} for all Af G A we may use the properties of proposition 2.3.13
and proposition 2.4.7 to infer the conclusion of this proposition. •

The connection to the theory of concurrency for the applicative (bi)simulation
predicate may at first seem somewhat artificial, but we shall attempt to make it
more explicit in the following. Notice that in general we do not have the full rj-
conversion i.e. A h Xx.M x — M if x ^ FV{M) but if M has the form Xy.M'
we have |Ax.(Aj/.M') x] lXx.M[y a:]| fa | M | which is easy to establish using
the properties of proposition 3.1.9 and lemma 3.1.8. This restricted version of r}-
conversion is close to the restricted version valid in the Lazy-A-Calculus of [AbrQOa].
Furthermore connections to the Lazy-A-Calculus are strengthened by the following
proposition:
P ropos i t i on 3.1.10 | n | ~ recx.r.x ~ Yx[x]

This shows that the standard unsolvable term 0 of the A-Calculus yields a
divergent process in CHOCS, i.e. a process only capable of performing an infinite
series of internal moves. These prehminary suggestions may be explored as follows;

T h e o r e m 3.1.11

1. [Ml ^ N

2. N ^ |MI « |A^1

P R O O F :

1. follows from proposition 3.1.14 and theorem 3.1.21 which we prove later.

2. follows from the following counter example also studied in [Mil90].
Let M = Xx.x {Xy.x "E Cl y) "B and N = Xx.x (z E H) Z where 3 = Y K.
Ong shows that M N in [Ong88]. Let c = %!(%[()/*] | z!ni/.|7|).m/.

Then | M] qi for any p, but In fact c implements
the convergence test used as a counter example for the full abstraction result
of the canonical model of the Lazy-A-Calculus discussed in [AbrQOa]. Another
troublesome process is p = i1x.i\{ily.i\{x[oli] | y[o/e] | i\nil.\I\).nU).nU which
implements the parallel convergence test.

•

Chapter 3: Using CHOCS 86

This theorem states that the equivalence on A-terms induced by % is stronger
than This is because % also takes processes which are not translations of A-
terms into account as e.g. c above, but using a restricted version of the observational
equivalence introduced in section 2.5 we can obtain an equivalence on translated
terms which coincides with

Definition 3.1.12 A weak higher order bisimulation restricted to A-observations
R is a binary relation on Pr such that whenever pRq and $ G {Act \ {r}) U {e}
then:

(i) Whenever p p', then q q' for some q', with
and p'Rq'

(ii) Whenever q q', then p ==4> p' for some p', with
^fid p'Rq'

Where Rx = {($,$') : = a ? | P j & $ ' = a ? | P j , P E A°) V($ = a\p"Sz^' =
V ($ = $ ' = G)}.

Two processes p and q are said to be X-observational equivalent i f f there exists a
weak higher order bisimulation restricted to X-observations R containing {p,q). In
this case we write p q.

If we think of observational equivalence as experimenting with the system by
selecting a channel and supplying a process or receiving a process we now restrict
ourselves to supply only processes which are translations of A-terms.

Proposition 3.1.13 is an equivalence

PROOF: It is straightforward to see that Id = {{p,p) : p € Pr} is a weak higher
order bisimulation restricted to A-observations and R^ = {(?, p) : {p,q) G -R}
is a weak higher order bisimulation restricted to A-observations if R is. Finally
composition of weak higher order bisimulations restricted to A-observations are
again weak higher order bisimulations restricted to A-observations. •

Proposition 3.1.14 fs implies

We now turn our attention to proving that the notion of applicative bisimu-
lation on A-terms and the notion of weak higher order bisimulation restricted to
A-observations on translated A-terms coincide.

Lemma 3.1.15 Let |[AJ = {q : 3M £ A.q « [[Af]]}. Then if q E [A] and q q'
for some q' then q ~ |Aa:.M'| for some M'.

PROOF: Obvious, since only translated A-terms of the form Xx.M have ' -^3-
transitions. •

Chapter 3: Using CHOCS 87

Lemma 3.1.16 J/[[M | = 5 q for some q then | M | ~ |Ax.M'| for some M'.

PROOF: By definition 2.5.1 we have | M] '=^̂ 5 q = |M]] —^ q. From
this it is obvious that q' % | M | and therefore q' G |A]. Since q' q we have
q' ~ |Aa:.M']] for some M' by lemma 3.1.15 and we therefore have | M | % |Ax.M'| .

•

Corollary 3.1.17 i / | M] q then q i\lM'[x := P]|.ni/ for some M'.

PROOF: Assume |Af] '==^ q then by lemma 3.1.16 we have J M] % |Ax.M']] for
some M'. By we have |Aa:.M'] i\lM'[x := P]].nz7. Since [MJ % |Ax.M' | we
must have q % ilfM'lx := PlJ.nil. •

Lemma 3.1.18 M-lJ-Ax.M' |M] % |Aa:.M'J

PROOF: By induction on the number of inferences used to establish Mij-Xx.M'
and cases of the structure of M.

M = X Then Ml^Xx.M' can not hold and the lemma holds trivially.

M = Xx.M' Then M\}.Xx.M' by an inference of length one.
We also have |Aa;.M'| % [Ax.M'J.

M = M" N" If Mi}.Xx.M' then, by definition of _ JJ. this is only the case if
M'%Xx.Q and Q[x := N"]i}.Xx.M' for some Q by shorter inferences. Ap-
plying the induction hypothesis we have: |M"] % [Ax.Q] and := N"]}
|Aa;.M'|. Using the congruence properties of % with respect to the operators
used on translated A-terms we can infer that
| M " A^"I = ([M"I[o/i] I o ! M . o ? z . z) \ o % (|Ax.gi[o/i] | o!l7V"|.o?x.a:)\o
= KAx.Q) #"]] ~ \Q[x A^"]l ~ lAx.M'J which proves the lemma in this
case.

•
These properties will enable us to see the relationship between convergence to

principal weak head normal form and A-experiments on translated A-terms.

L e m m a 3.1.19 MJJ-Ax.M' => VP.Bg.lM] = 5 ilq.nil Sz q |M'[x :— P] |

PROOF: By induction on the number of inferences used to establish M\^Xx.M'
and cases of the structure of M.

M = X Then M\^Xx.M' can not hold and the lemma holds trivially.

Chapter 3: Using CHOCS 88

M = Xx.M' Then Mij-Xx.M' by an inference of length one. We also have VP. |M| =
t?rp-' i\lM'[x := P]| .ni/ which establishes the lemma in this case.

M = M" N" Assume MJj-Aar.M'. Then, by definition of we must have
and Q[x N"\\^\x.M' for some Q by shorter inferences. Applying the in-
duction hypothesis we have:

(i) VP.3g.|M"l i\q.nil |[Q[z := f]]

(ii) VP3q.lQ[x := AT"]] ilq.nil & 9 lM'[x := P]]

By lemma 3.1.16 we have | M " | % [Ax.Ql- Therefore, by lemma 3.1.9, we
can infer that | M " N"} % |Q[x := N"]}. By (ii) we have |Q[a; := N"]}
ilq.nil & 9 |M'[x := P] | . This estabhshes the lemma in this case.

•

L e m m a 3.1.20 VP. |M| ilq.nil Sz q |M'[x ;= P] | Mij-Xx.M' for some
M'.

PROOF: By induction on the number of inferences used to establish |M] = 5 q
and cases of the structure of M.

M = x Then [M] ilq.nil can not hold and the lemma holds trivially.

Xx.M' Clearly |M] ilq.nil & q
which yields the lemma in this case.

M — Xx.M' Clearly |M] ilq.nil Sz q [a: := P] | . Also Xx.M'\}.Xx.M'

M = M" N" Assume that for some M' the following holds: |AfJ ilq.nil Sz q phx
|M'[a; := P] | for all P . Then by definition of (and —>) this is only the
case if | M " | —^ q' q" and (^"[o/?] | o1x.x)\o ilq.nil by shorter
inferences. By lemma 3.1.16 we have q' ~ \Xx.M'"'l for some M'" and therefore
q" ~ il\M'"[x := N"].nill. This shows we are able to establish |M"'[x :=
jyjj ^ by a number of inferences not higher than the number

used to establish (^"[o/i] | o?x.a;)\o ilq.nil. By the induction hypothesis
we then have M"i}.Xx.M"' and M"'[x := N"]i}.Xx.M'. By definition 3.1.5 we
then have M" which establishes the lemma in this case.

•

Chapter 3: Using CHOCS 89

The above properties give the essential keys to our main theorem of this section.

Theorem 3.1.21 | M | 1-̂ 1 <=^ M N.

P R O O F :

To see this we show that the relation R — {{M,N) : | M | 1-^1} is an
applicative (bi)simulation. The result then follows from symmetry of
To see that R is an applicative (bi)simulation observe that if Mlj-Xx.M' for
some M' then by lemma 3.1.19 we have V_P.3g.|[M]| ilq.nil h q
|M'[a; := P]]. Since [[M|][#]] we know that fA''] ilq'.nil with q q'.
By lemma 3.1.16 and corollary 3.1.17 we know that [[7V{ for some
TV' and q' [TV'[a; := P] | . Then from lemma 3.1.20 we can infer that
N\}.Xx.N'. Clearly VP.(M'[x := P], N'[x := P]) G R which yields the theorem
in this direction.

<= To see this we show that the relation R = R' U {{ilp.nil, ilq.nil) : {p,q) G
R'} U {{nil, nil)} where R' = {{p,q) : 3M3N.p | M | , q [TV] , M
TV) is a weak higher order bisimulation restricted to A-observations. To see
this observe that if {p, q) G R' then if p = 5 p' then for some M we have
| M | p'. By lemma 3.1.16 and corollary 3.1.17 we have | M | |Aa:.M'|
and p' i\\M'\x := P]|.nz/. So by lemma 3.1.20 we have M-lj-Ax.M'. To
find a matching move for q we look at N. Since M N we know that
TVJj.Az.TV' and \/P.M'[x := P] TV'[x ;= P]. By lemma 3.1.19 we have
|TV] V.q'.nil & q' |TV'[a; := P]J. Since q |TV| we know that q q"
with q" ilq'.nil. This is a matching move since (p', q") G R. We do not
need to check if p p" since we assume p [TV/J for some M and p p"
is impossible. The theorem in this direction then follows by a symmetric
argument for q.

•
From a concurrency point of view the Lazy-A-Calculus is not very interesting

since the calculus enforces sequential evaluation in application; we first evaluate the
function until it reaches a weak head normal form, then we do /^-reduction and the
argument is then evaluated (every time) when needed.

It would be interesting to investigate which properties are necessary to encode
the fuU /5-reduction strategy as defined in [Bar84] by the following rules:

Definition 3.1.22
M —> M'

{\x.M) TV —^ M[x := TV]
M TV — > M' N

Chapter 3: Using CHOCS 90

N —>N' M —yM'
M N —> M N' Xx.M —> Xx.M'

As we have seen in lemma 3.1.9 the translation of A—Calculus given in definition
3.1.7 "preserves" ^-reduction, but it does not seem to be possible to mimic the last
two of the above rules in CHOCS with the semantics given in definition 2.2.5.

In [Bou89] Boudol presents a calculus which features operators from both the A-
Calculus and CCS. The calculus is called the 7-Calculus. Boudol gives a translation
of the A-Calculus which is very similar to the one given by definition 3.1.7, but the
evaluation strategy is a bit more eager since he has the following inference rule for
output-prefix:

P' P"
alp'.p —^ a\p".p

which means that the argument in the application is allowed to have internal activity
of its own. The effect of this is that the evaluation strategy is similar to the Lazy-
A-Calculus, but a bit eager too. In [Nie89] Nielson introduces a merge between the
typed A-Calculus and CSP. This language is called TPL. The operational semantics
for this language is very close to a merge of the call-by-value typed A-Calculus and
the operational semantics for CHOCS with the above rule from [Bou89] included
together with the following rule:

P P"
alp'.p —^ a\pf .j/'

For the translation of the Lazy-A-Calculus this will have no effect since it is
constructed such that the output prefix is only used in the context alp.nil and nil
has no transitions. But perhaps these rules together with the following rule for
input-prefix:

T f t

P—^P
alx.p alx.p"

wiU bring the evaluation closer to full /^-reduction? For example: |Ax.f2] £ | f l] since
|Aa:.f)|-f|- and any transition from [Q] can be matched by [Ax.f)]. However, all the
above suggested extensions to the CHOCS semantics seem to violate the idea that
the prefixes are primitives for sequential behaviour. It is hard to see how changing
the CHOCS semantics would affect the general theory, but as already mentioned
in section 2.5 the rule employed by both Boudol and Nielson will mean that the
theory of observational congruence will be aEected.

Chapter 3: Using CHOCS ^

Another question related to the subject of reduction strategies in the A-Calculus
is the matter of which abstracting equivalence of the A-Calculus to relate to ab-
stracting equivalences in CHOCS.

The standard theory A as presented in [Bar84] may be related to the translation
[I : A — C H O C S and the properties of CHOCS by the following theorem:

T h e o r e m 3.1.23 if X\- M — N then |M] FA [[#]].

PROOF; By s t r u c t u r e of A l- M = # •

The converse does not hold in general, but % induces an equality relation on
A and it is straightforward to verify that the relation R = {{M,N) : | M | %
[#]], M,N G A} is a compatible congruence relation. Proposition 3.1.19 shows
that P = {{{Xx.M)N, M[x := TV]) : M,N G A} C i? and therefore =0C=R. The
notion of ^-equahty is important, but in the standard theory of the A-Calculus it is
the notion of head normal form, based on Bohm trees, which yields the meaning of
a A-term. Terms without a head normal form are identified. But =R (even with the
suggested extensions to the CHOCS semantics) distinguishes more A-terms than

A?p

the standard theory since e.g. |Ax.n| 56 |f l] because |Aa;.fi| —^ whereas [OJ
We have not pursued this any further but this opens a range of possibilities for
future studies.

Both the Lazy-A-Calculus and the standard theory for the A-Calculus contain
the full ^-reduction rule. But there are interesting reduction strategies which only
partly adapt the ^-rule. One such interesting reduction strategy for the A-Calculus
is call-by-value reduction. Formally we may put the theory of the call-by-value
A-Calculus on a similar footing to the Lazy-A-Calculus and define an unlabelled
transition system (A°, -Ij-̂) based on the call-by-value convergence predicate defined
by the following rules:

Def ini t ion 3.1.24 The relation is defined inductively over A° as:

Xx.Mij-^Xx.M
M m.L

Thus both function and argument in an application have to converge to an ab-
straction before application takes place. The above rule suggests that both function
and argument may be evaluated concurrently.

As an abstracting equivalence we may adapt the applicative (bi)simulation of
definition 3.1.5 by using instead of Jj. thus generating a preorder <„ and a derived
equivalence Note that the two preorders and <„ are incomparable since
I Km N and I KIN <„ Q.

Chapter 3: Using CHOCS 92

We now give a simple translation of the A-Calculus and we will show that the
evaluation strategy enforced by this encoding coincides with call-by-value reduction.

Definition 3.1.25 We define 11„ : A —> CHOCS structurally:

1- X

2. |Aa;.Af]„ = i\{ilx.i\\M\y.nil).nil

3. \M = (|[M]]t,[a/z] | |A''|„[6/z] | alx.Vty.{x[cli] | c\{i\y.nil).clx.x)\c)\a\b

where i, a, 6, c are distinct.

Note that for any M 6 A: |M]„ :: {z} but application now needs four communi-
cation channels as opposed to only two in the translation of the Lazy-A-Calculus.

We have to ensure that the substitution properties of the A-Calculus are carried
over by this translation:

Lemma 3.1.26

lM[x := N]l = iMUmjx]

PROOF: By structural induction on M. •
Using this lemma we may show that the restricted /?-conversion for the call-by-

value A-Calculus is "preserved" by the translation:

Proposition 3.1.27

|(Aa:.M)(A?/.A'')]„ % [M[x := (Ay.A'')]l„

PROOF: We demonstrate how the left hand side of this equation may do an initial
series of internal r-moves to a process equivalent to the right hand side.

^x.M)(Ay.A'')|„ =

{{i\(i?x.illMjy.nil).nil)[a/i] | |A?/.A'']t, | alx.b?y.{x[c/i] | c\{i\y.nil).c'!x.x)\c)\a\b

{nil[a/i] \ {i\{i?y.i\lN}y.nil).nil)[b/i] |

b'?y.{{ilx.illM}y.nil)[c/i] \ c\{i\y.nil).c'!x.x)\c)\a\h

IT

{nil[a/i] | nil[b/i] | ((z'?a:.i![AfJ„.m/)[c/i] | c!(z!(%?^.z!|[jV]|^.nzZ).mZ).c?z.a;)\c)\a\6

Chapter 3: Using CHOCS 93

{nil[ali] \ nz/[i/z] | ((i'?a:.i!|M]„.nz7)[c/i] | c!(|A?/.A/'|„).c?a;.x)\c)\a\6

| , T

(m7[a/i] | m/[6/z] | ((i!(|M]„[(|At/.A''I„)/a:]).m/)[c/i] | c?a:.x)\c)\a\6

(m7[a/i] | m7[6/i] | (m7[c/i] | |Ml^[(|A2/.A''l„)/x])\c)\a\6

lMl„[[(A2/.7V)I„/a:]

Since [[M|„ :: {%} for all M G A we may use the properties of proposition 2.3.13
and proposition 2.4.7 to infer the conclusion of this proposition. •

As for the Lazy-A-Calculus we may state the relationship between and % of
translated A-terms:

Theorem 3.1.28

1. [Ml„ Ri |iV|„ M iV

2. M N ^ lM\y % [Njy

PROOF:

1. follows from proposition 3.1.31 and theorem 3.1.32 which we present later.

2. follows from the counter example:
Let Li = Xx.{(x I){x K)) and L2 = Xx.(({Xy.y (x K)){x I)). These two terms
are equivalent under However, there is a difference in the way they use
X (or rather an argument substituted for x when Li and L2 are applied).
will concurrently evaluate both occurrences of x whereas will evaluate the
second occurrence of x before reaching the first occurrence. We may use this
property to distinguish the two terms when we translate them into CHOCS.
To illustrate this point consider the following process:

t r o u b l e s = i!(z'?x.t!|/]„.nz7).m/

+dlx.i\x.nil + d\{i'?x.i\lK}y.nil).i\{i'!x.i\[K}y.nil).nil

Chapter 3: Using CHOCS 94

and consider the following context:

] = ([][a/«] I troubles[6/;] | a?x.6??/.(x[c/i] | c\{i\y.nil).clx.x)\c)\a\b\d

Then C[|Xi|„] — p i ~ as expected. But the two occurrences of
t r o u b l e s may non-deterministically communicate with one another and then

^ Pi ~ W f Also C[|L2|„] P2 ~ as expected, but
T •

C[[[^2lv] 7^ P2 ~ since the only active occurrence of t r o u b l e s will be
prevented from choosing to communicate via d.

•
This theorem states that the equivalence on A-terms induced by %: is stronger

than ~t,. This is because % also takes processes which are not translations of A-
terms into account as e.g. t r o u b l e s above. We may apply the same technique
as we used for the Lazy-A-Calculus and introduce a version of the observational
equivalence which only takes inputs of translated A-terms into account and we show
that this equivalence coincides with on translated terms.

Definition 3.1.29 A weak higher order bisimulation restricted to Au-observations
R is a binary relation on Pr such that whenever pRq and $ G (Act \ {r}) U {e}
then:

(i) Whenever p p', then q q' for some q', with
^R\v^' and p'Rq'

(a) Whenever q q', then p p' for some p', <s>' with
^'Rxv'^ and p'Rq'

Where Rx. = {($, *') : ($ = a?[Pl„ = a?lPl„ , f G A°) V ($ = =
a\q"hp"Rq")y {^ = ^' = e)).
Two processes p and q are said to be \v-observational equivalent i f f there exists a
weak higher order bisimulation restricted to \v-observations R containing {p,q). In
this case we write p q.

Proposition 3.1.30 RiAv is an equivalence

Proposition 3.1.31 % implies

We can prove the following theorem using the above definition of Au-observational
equivalence and proposition 3.1.31 together with an analysis (similar to lemma
3.1.15 to lemma 3.1.20) of the relationship between transitions in the call-by-value
A-Calculus and transitions for the translated terms.

Chapter 3: Using CHOCS 95

Theorem 3.1.32 {M^ M N.

P R O O F :

=> To see this we show that the relation R = {{M,N) : {Mjy is an
apphcative (bi)simulation. The result then follows from symmetry of ~AV

<= To see this we show that the relation R = R'\j{{i'?x.i\p.nil,i?x.ilq.nil) : {p,q) e
R'} U {{i\p.nil,i\q.nil) : {p,q) G i?'} U {{nil, nil)} where R' = {(p, g) :
3M3N.p , q ^xv , M jV} is a weak higher order bisimu-
lation restricted to Au-observations.

•

3.2 C H O C S as a M e t a l a n g u a g e

In this section we study how CHOCS may be used as a metalanguage in the def-
inition of the semantics of programming languages. The study is a case analysis
of a simple imperative toy language, called P , first studied in [Mil80]. The mean-
ing of the language P is given in a phrase-by-phrase style resembling denotational
language definitions though we shall not give any semantic domains. The language
P is devised in such a way that a programmer is partly protected from unwanted
deadlocks. This is obtained through a disciplined form of communication between
components sharing some resources. In [Mil80] Milner points out the difficulties of
describing procedures in P using CCS. It is not obvious that CCS or the extension
of CCS justified by the developments in [Mil83] can describe concurrent procedure
invocations satisfactorily. In [EngNie86] Engberg and Nielsen show how CCS with
labels as first class objects may be used to describe concurrent procedure invoca-
tions, unfortunately their solution is very complicated and it does not look Hke
procedure descriptions of sequential programming languages. We show how proce-
dures in P may be handled straightforwardly in a way resembling how procedures
in sequential imperative languages are handled in denotational descriptions based
on the A-Calculus. Most of the definitions not concerning procedures may be found
in [Mil80], but for the sake of completeness we present the full language definition.

To allow for other values in CHOCS than process values we use the technique of
[Mil83] and introduce a D-indexed family of actions a?d, a!^, d eV foi each value
domain V. Due to the fact that only finite sums of processes can be handled in the
version of CHOCS presented in this thesis we restrict our attention to finite value
domains as e.g. the set of booleans and finite subsets of the integers. We let

Chapter 3: Using CHOCS %

abbreviate d-p{dlx] where {d/x} means exchanging all occurrences of r in p
by d as e.g. alx-^^-x-'nil{dlx} = We shall use the following construct
from [Mil83]: If 6 is a boolean valued expression in x then let a?x-{if b then p else p')
be encoded by Tix̂ u&.bCu'̂ x-P + ^xeD^^bOc^-x-p'• We should not confuse alx-P with
alx.p since the first is a convenient shorthand notation and the latter is part of the
CHOCS syntax.

Alternatively we could extend the syntax and semantics of CHOCS to include
other types of values hke in the FACILE language [GiaMisPra89] or TPL [Nie89].
This is beyond the scope of this thesis and the above encoding of values will suffice
for the presentation in this section.

T h e t o y language P

Programs in P are built from declarations D, expressions E and commands C, using
assignments to program variables X. Some set of functions F is assumed and for
the cause of simplicity we do not consider types of expressions. P has the following
abstract syntax:

Declarations: D
Expressions: E
Commands: C

var % I D; jD I p roc f (value X, r e s u l t X') i s C

X E\C]C \ E then C e l s e C |
while do C I C pax C | input X | output E |
sk ip I begin D\ C end | c a l l P (E , X)

Table 3.2.1: Syntax of P

In the study of concurrent programming languages a question of interest is how
to evaluate programs Hke:

begin
va r X;
% : = 0;

{X :=X + 1 PARX :=X + 1);

output X
end

The semantics presented here will yield the answers 1 or 2. Readers are referred
to [MilSO] for a discussion of an alternative specification to rule out the answer 1.

To give a smooth definition of the semantics of P we need some auxiliary defi-
nitions.

Chapter 3: Using CHOCS 97

To each variable X we associate a register Regx- Generally it follows the pattern:

Loc — a'?x.Reg{x)

R^g{y) = Oilx-Reg{x) + ')\y.Reg{y)

and thus for X we will have Locx — Loc[ax ' yx /a 7]. Initially we write in
a value, thereupon we can read this value on 7 or overwrite the contents of Loc
via a . We have written the above definition in an equation style to make it more
readable. The proper CHOCS definition is: Loc = \ Reg)\h where
R^g = YRgg[h?^.{a?^.hl^.Reg + 'yl^.hl^.Reg)] \ YKeep[h'?x-h\a;-Keep]. The second
component of this process takes care of the parameters in the recursion of the above
equations. (This is in fact a general technique for simulating the parameterized
recursion of [Mil83]). We also associate a register to each procedure P. It may be
defined in the same way as above with x substituted with x.

To each n-ary function symbol F we associate a function / which is represented
by:

- • • • pn'^Xn-P^-f(xi...Xn)-^^^

Constants will thus be represented as e.g. htme = pltrue-nil. The result of evaluating
an expression is always communicated via p. It is therefore useful to define:

p result p' =z[p\ p')\p

We adopt the protocol of signaling successful termination of commands via 8
and it is therefore convenient to define:

done = Sl.nil

p before p' = {p[^l8\ | /3'?.p')\/3 {j3 new)

ppar p' = {p[8il8] \p'[82l8] | 8x^. .82I .done + 82I .done)\8]\82 {81,82 new)

We now give the semantics of P by the translation into CHOCS shown in table
3.2.2.

Declarations:

| v a r X J = Locx

ID-D'l = P l I P ' I

[p r o c f (v a l u e X , r e s u l t K i s C] = ((Locp | ap ! (procedure process).nil)\ap)

I Transform

Chapter 3: Using CHOCS 98

where procedure process =
(((apJ:^.axlx-done) before |C] before {•Jy'^x-'ypjx-done)
I Locx I LocY)\ax\aY\'yx\'yY)[oix' Ix'/^x' 7x']
and Transform = YTran[^X'0ix''^x-0(X'h-Tran + T,x''yx''^x-'yx'^-x-Tran]

Expressions:

m ? a;. ̂ ! a;. 7Z Z /

iimpi/p] I lEv\[Pnlp] I h f) \ p x . . . \ p n

Commands:

I X := E }

IC; C"I

| i f E t hen C e l s e C'J

[while E do CI

ic pa r C'i
| i n p u t X]

[output E]

[sk ip I

[begin D; C end |

[c a l l P { E , Z) }

[£] result {pix.ax'^-x-done)

[C]l before [CJ

[£J result plx-i^f ® then [C] else |C"J)

yu,[[E] result p1x-{if ® then ([C| before w) else done)]

[CI par [C'l

tP. x-(^x^-x-done

[J5| result {pix-o\x-done)

done

(P I I i c m i D

[EJ result {{pix-opjx-done)

par {jplx.x) par {•jp^1x-oiz^-x-done))\ap^\-fp^

Table 3.2.2: Semantics of P

In the equation for [begin D] C end| we let \LD abbreviate restriction with re-
spect to A and 7 channels for all variables and procedures declared in D. The
procedure definition creates a location to store the procedure process. The restric-
tion \ap ensures that this process cannot be overwritten after the definition. The
first parameter to a procedure is the argument and it will use call-by-value param-
eter mechanism. The second parameter is a result variable. The procedure process
needs two locations, one for each parameter. These locations are kept local by the
restrictions XaxXc^yXlxXlY• To ensure static binding of variables in a procedure

Chapter 3: Using CHOCS ^

body the procedure process is enclosed by a renaming of all read and write signals
to variable locations. This is done simply by tagging the signals with the name of
the procedure. The tagged signals are able to escape the restriction \Lr) of any
block except the block where the procedure is defined. The Transform process,
located in the block where the procedure is defined, transforms the tagged signals
back to untagged read and write signals. These will of course affect the variable
locations in this environment. The value to the value parameter is communicated
via ap^, and the result of the procedure is communicated via 7^^. These signals
are not affected by the embracing renaming. The procedure call first evaluates
the argument then reads the location Locp to get a copy of the procedure process.
Note how each procedure process is self-contained with local environments for the
parameters. If a recursive call to the procedure P occurs in the body C a new copy
of the procedure process will be obtained. This is true for concurrent activations of
the same procedure as well and we have:

[[begin proc f (value X, r e s u l t Y) i s C;

c a l l P{E, Z) pa r c a l l P{E', Z') end|

%

[begin va r X] var Y] X := E] C] Z :=Y end

par begin vax X] va r Y; X := E'] C; Z' ;= Y end|

which may be verified by expanding the semantic clauses.
Another common parameter mechanism used in imperative programming lan-

guages is the call-by-reference mechanism. This mechanism can be modelled in
CHOCS by the following semantic definitions:

[[proc P (r e f X) i s C] = ((Locp | ap!(procedure process).nil)\ap) | Transform

where procedure process = lC\[ap^ IpJolx lx][oix> 7 x ' / « x ' Ix']-

| c a l l P (F) I = 7p?a:.(a:[AY 7PJ)

Note how this parameter mechanism works; we just link the register associated with
the parameter in the call with the procedure process via renaming. This is obtained
by the inner renaming in the procedure body which ensures that read and write
signals to the formal parameter escape the outer renaming. This has the effect that
they are linked to the actual parameter in the calling environment.

Chapter 3: Using CHOCS 100

We can also describe the call-by-name parameter mechanism in CHOCS. To do
so we need to redefine the semantics for variables used as formal parameters in
call-by-name procedure definitions as:

The 7x-reg? signal in the above definition will be used as a request signal when X
occurs as a call-by-name parameter in a procedure. We now present the definition
of call-by-name procedure definitions and procedure calls:

[proc f (name X) i s CJ = ((Locp \ ap\{ procedure process).nil)\ap) | Transform

where procedure process = Ipjlx-req lx][cix- Ix']-

[call P{E)} = 'yp?x.(x \ result p'^x-7pjx-w)])\^p-req\7p^

Note that the definition of procedure definitions is almost the same as for the
call-by-reference parameter mechanism. Since we only read the value of a call-
by-name formal parameter we do not have to consider any ax signals since these
are write signals and will not occur in well formed programs. The real difference
arises in the procedure call where any use of the parameter X in the procedure
body yields a request signal jx-req'? which is renamed to a jp-req'^ signal in the
procedure definition. Each time this triggers the Y^[...] construction to evaluate
the argument |[EJ and deliver the result via 7p„ before it restores itself. Note that
every time there is a request for |[E]] it is evaluated from scratch.

If |EJ does not have any side effects, as in the P semantics, it is unnecessary to
evaluate the value of [[£] every time a reference to the call-by-name parameter is
made. Instead we may store the value of [E] after the first evaluation and then just
supply the stored value. This parameter mechanism is known as lazy evaluation
and may be defined as:

Iproc f (lazy X) i s C]] = {{Locp | ap\{ procedure process).nil)\ap) | Transform

where procedure process = Ipjlx-req IxM^x' Ix']-

[c a l l P{E)} = ^p1x.{x I (7p_re ,! .(M result ptx•lP^x•lLo^x•n^l)

I ^ L o c ^ - x - ^ w \ l P - r e q ^ - - ^ P v • 2 : ' ' ^]) \ 7 L o c) \ 0 ' P - r e g \ 7 P t ;

Note that in both the above two parameter mechanisms we may have concurrent
requests to the call-by-name respectively lazy parameter which could mean a mix-
up of values. This does not happen since the 'ix-req signal acts as a semaphore
around the actual parameter.

Chapter 3; Using CHOCS 101

All the above parameter mechanisms need the Transform process to ensure
static binding of variables. This is due to the dynamic nature of the restriction
operator i.e. processes sent out of the scope of the restriction operator are not
affected by the operator. The block structure of P ensures that the Transform
processes work but for general modelling of programming languages it might be
of importance to have a restriction operator with a static nature. We comment
further on this in chapter 5 where we review the semantics of P . It is interesting to
note that if we omit the Trans form process and the renamings it carries we will
encounter procedure invocations with the various parameter mechanisms above, but
with dynamic binding of variables in the procedure body.

The language P presented in this section bears much resemblance to the im-
perative concurrent language studied in [HenPlo79]. A challenging exercise left for
future studies is the question of giving P a labelled transition system semantics di-
rectly using structural operational semantics [Plo81]. This should be a reasonable
task since P has much in common with the language studied in [HenPlo79]. This
would then lead on to an investigation of full abstraction between the structural
operational semantics and the semantics of P presented in this section.

3.3 A Fault Tolerant Edi tor

A simple command editor (like ed in the Unix operating system) is provided in
almost every programming environment. The editor takes in a file, accepts a series
of commands and by the end of the session outputs the updated file. The commands
can be grouped into two categories; altering commands; like i n s e r t a letter and
d e l e t e a line and non-altering commands; hke search for a word and s c r o l l . Such
an editor could be specified as follows:

PEditor = in file?. PEdit

PEdit = Hialtopi?. PEdit + Einonaltopi'!.PEdit -f- exit?.outfilel.nil

Unfortunately this is a very simplistic or ideahzed editor. Most users of such
editors have experienced that the editor crashes due to events (or faults) out of
the user's control. If the user is "lucky" the alterations made to the file during
the editing session are lost and if unlucky the file is lost as well. To recover the
lost work most operating systems provide a log system which monitors the user's
actions by storing every command. The editing session can then be recovered
simply by fetching the stored commands and running them again. Note that in the
first instance the commands to the editor are treated as values stored in the log

Chapter 3; Using CHOCS 102

system, but when we rerun the stored commands they are treated as a program.
The following description in CHOCS specifies a fault tolerant editor system; as in
the editor above, we have ignored the file being edited to simplify the description
and focus on the log system:

FEditor = infile1.(FEdit \ Logsys | Demon | Updater)\intops

FEdit = Tlialtopi?.intaHopi\.log\{intaltopi\.Stop). FEdit

•j-EiUonaltopi?. FEdit + exit?.outfileLnil + faill.nil

Updater = Yjiintaltopil .U pdater

Demon = faiU.restartl. Demon

Logsys = Emptylog \ UpdateLog | Restartlog

Emptylog = Log{Stop)

Log(x) = writelogly .Log{y) + readloglx.Log[x)

Updatelog = log?x.readlog?y.writelog\(y before x).Updatelog

Restartlog — restart?.readloglx.{x before { FEdit \ Restartlog))

Stop = dl.nil

X before y = [x \ d?.y)\d

where \intops is shorthand for \intopi... \intopn\readlog\writelog\restart\fail.
We have simplified the description by considering the log system as part of the

editor system. A more elaborate version would allow the user to restart the system
and faults to occur at any level of interaction. We have specified both FEditor
and FEditor using a recursive definition. This is justified by the simulation of
recursion results of section 2.6.

An interesting point to note about the above system is how the log system
collects a program by piecing together a sequential program consisting of each
command typed in by the user of the editor. This program can then be run in
the event of a fault occurring.

We can prove that the ideal editor and the fault tolerant editor are observational
equivalent and we may thus regard the ideal editor as a specification and the fault
tolerant editor as an implementation. To see this observe that the following relation
is a weak higher order bisimulation:

R = {[nil , nil\intops),

{outfilel.nil , {outfile\.nil)\intops),

Chapter 3: Using CHOCS 103

(PEditor

(PEdit

(PEdit

(PEdit

(PEdit

(PEdit

(PEdit

(PEdit

(PEdit

FEditor),

(EEdit I Logsys

Demon | Updater)\intops),

intaltopi\.log\{intaltopi!.Stop). EEdit

Logsys | Demon | Updater)\intops),

{log\(intaHopil.Stop). FEdit

Logsys | Demon \ Updater)\intops),

FEdit I {Log{curstat)

readlogly.writelog\{y before {intaltopi\.Stop)).Updatelog

Restartlog) \ Demon | Updater)\intops),

{{nil I ... I nil) | Logsys
"< V '

m
restartl.Demon | Updater)\intops),

{{nil I ... I nil) \ {Log{curstat) \ Updatelog

readlog?x.{x before FEdit)) \ Demon | Updater)\intops),

{{nil I ... I nil) | {Log{curstat) | Updatelog

{curstat before (FEdit | Restartlog)))

Demon | Updater)\intops),

{{nil I ... I nil) | {Log{curstat) | Updatelog
m

I FEdit I Restartlog) | Demon | Updater)\intops)}

where m > 0 and m denotes the number of faill. signals which have occurred
so far in the execution of FEditor and curstat is either Stop, corresponding to
FEditor being in its initial state or curstat is a sequence
{intaltopil .Stop before previousstat) where previousstat is a sequence like curstat.
For presentation purposes we have omitted intermediate states caused by the before
construct. These can be added but they clutter the presentation unnecessarily. Thus
PEditor % FEditor . However, FEditor £ PEditor but PEditor ^ FEditor
since PEditori)- whereas FEditori\. The fault tolerant editor FEditor may do an
infinite sequence of internal actions due to faill signals occurring infinitely often.

Readers familiar with the studies of restartable systems presented in [Pra38] wiU
notice that FEditor resembles the systems studied by Prasad in section 4.1.1 of
his thesis. But note that we do not need to parameterize the state of the system

Chapter 3: Using CHOCS 104

by pairs of the initial state and current state, we only need to program a memory
system in CHOCS (or reuse the memory cells defined in the previous section), store
each command as they arrive from the user bit by bit and read this program from
the memory and run it whenever we need to restart the system.

The faults, signalized by fail] signals, are simplified in the above system. They
only occur when the editor is in a state where it is ready to receive instructions
from the user. A more refined version could allow faults to occur at any level. We
could specify this by adding a faill.nil process after any guard e.g. use:

Yiialtopil.{intaltopi\.{log\{intaltopi\.Stop). FEdit + faill.nil) + faill.nil)

or we could use the displace operator <4 from [Pra88] and simply exchange the
+faill.nil component of FEdit hy faill.nil. The introduction of faults at other
levels calls for a more elaborate protocol for adding to the memory of the current
state of the editor to ensure that the last instruction to the editor does not get
lost between the internal updating and the storage of the instruction. We shall not
elaborate further on this but leave it for future studies. For a discussion of fault
tolerant systems in general we refer to [Pra88] where a thorough discussion of their
description in CCS is presented.

Chapter 4

Denotat ional Theory of CHOCS

So far we have only studied the semantics of CHOCS from an operational point of
view. In this chapter we construct a denotational semantics for the language. One
of the main benefits of denotational semantics is its compositional nature which en-
ables a compositional way of reasoning about CHOCS processes. The denotational
semantics also highlights certain features of the operational semantics as we shall
see in the latter part of this chapter.

We begin this chapter by reviewing the definitions and the results from Domain
Theory upon which we build a denotational semantics for CHOCS. In section 4.2
we define a domain equation in which the denotational semantics for CHOCS will
reside. The main result of this section is an "internal fuU abstraction" result show-
ing that if we impose a labelled transition system view on the domain equation
the operational preorder of higher order prebisimulation and the domain ordering
coincide. As a step towards defining a denotational semantics for CHOCS we define
a denotational semantics for finite processes in section 4.3. The main theorem of
this section is the full abstraction result for finite processes in theorem 4.3.5. Most
of the results in section 4.2 and 4.3 are built on section 3 and 6 of [Abr90a] and
are mainly adaptations of the Domain Equation for Synchronization Trees and the
Full Abstraction for SCCS to the setting of Higher Order Communication Trees and
CHOCS. We define a denotational semantics for all CHOCS processes and extend
the full abstraction result in section 4.4. The main theorem of this section is the
(limited) full abstraction result presented in theorem 4.4.7. The result is Hmited to
the case where the set of port names Names is assumed to be finite and is stated in
terms of the preorder These restrictions are due to the well known impossibility
of modelling unbounded nondeterminism in the Plotkin Power Domain. Finally in
section 4.5 we use the denotational semantics to obtain a very simple proof of the
simulation of recursion result from section 2.6.

105

Chapter 4: Denotational Theory of CHOCS ^

4.1 D o m a i n s and Denota t iona l Semant ics

In this section we present a short review of the definitions and results from Do-
main Theory upon which we build a denotational semantics for CHOCS. It is hard
(though possible, see e.g. [Sch86]) to give an overview of this subject without using
a bit of category theory jargon and we shall do so freely.

The denotational semantics we are going to construct will reside in a domain
of an appropriate "shape". This domain will be an object of the category CPO
or rather the subcategory SFP. The category CPO is a very important "tool"
for making meanings of programs and programming languages. It has been exten-
sively studied in [PloSlb] and this reference together with section 2.2 of [Nie84]
have been our main sources for this section. Two important characteristics of the
category CPO is that it admits recursive definitions both of its elements and of
domains themselves. It also supports a rich type structure and we present the type
constructions that we use in this thesis in the latter part of this section.

First we review a few of the basic definitions from Domain Theory:

Definition 4.1.1 A relation ^ on a set D is a partial ordering upon D i f f ^ is:
reflexive, antisymmetric and transitive.

We call a set with a partial ordering a partially ordered set.

Definition 4.1.2 An element e of a partially ordered set D is a least element (or
a bottom element) denoted _L i f f eQd for all d E D.

Definition 4.1.3 If it exists; a join aU b of two elements a and b in a partially
ordered set D is an element such that:

1. a C a U 6 and b Q a\Jb

2. for all d ^ D: a\Zd and 6 • J implies a U 6 • (f

Definition 4.1.4 For X Q D a subset of a partially ordered set D a least upper
bound [_\X denotes the element of D such that:

1. for all X ^ X we have x C j j A"

2. for all d ^ D if x £ X and x C. d then [J A" C

Definition 4.1,5 A subset X of a partially ordered set D is a chain if

1. X is nonempty

Chapter 4: Denotational Theory of CHOCS 107

2. for all a,b G X either a C 6 or 6 C a

Often the elements of a chain are enumerated and the chain is denoted by

Definition 4.1.6 A function f : D ^ E from a partially ordered set D to a
partially ordered set E is monotone i f f c?i C c?2 /(^i) E /(<^2)-

Definition 4.1.7 A monotone function f : D E from a partially ordered set
D to a partially ordered set E is continuous i f f for any chain X Q D: /(U^) =
U{/(x) : X e X}.

Definition 4.1.8 A partially ordered set is a complete partially ordered set (or a
cpo) i f f D has a least element J_ and has least upper bounds for all chains.

Definition 4.1.9 Let D be a cpo. An element b G D is compact or finite i f ,
whenever X G D is a chain and fe C jj X then b Q d for some d G X. We write
K[D) for the set of finite elements of D.

Definition 4.1.10 A function f : D ^ E from a cpo D to a cpo E is strict i f f
/(-L) =-L-

A functional^ is a continuous function f : D ^ D] usually D is a domain of the
form A ^ B, but it does not have to be.

Definition 4.1.11 An element d of a partially ordered set D is a fixed point for a
functional F : D —* D if F{d) = d. A fixed point d for a functional F is a least
fixed point i f f for all fixed points e for F we have d Q e.

Theorem 4.1.12 For any functional F : D ^ D on a cpo there exists a least fixed
point f ix jP given by

f i x F = U { ^ ' (±) : z > 0}

where F°{±) =_L and F'+^ = F(F'(±)).

Definition 4.1.13 The category CPO is the category whose objects are complete
partial ordered sets (cpo's) with continuous functions as morphisms.

^This terminology is used in [Sch86]. As pointed out to me by S. Abramsky this is non-standard
terminology

Chapter 4: Denotational Theory of CHOCS 108

Formally a category consists of a set of objects and for each two objects and
D2 a set of morphisms f : Di ^ D2. There has to be a composition of morphisms
as in f o g : Di ^ D3 which is the composition of f : D2 ^ D3 and g : Di D2.
For each object D there has to be an identity morphism Idu : D D. Composition
and identity have to satisfy the associative law: { f o g) o h — f o [g o h) respectively
the identity laws: f O IdD = / and MD O f = f- It is easily checked that these
criteria are satisfied for CPO [PloSlb].

Analogous to the notion of morphisms between objects of categories we may
consider "functions" between categories. These are called functors:

Definition 4.1.14 A functor F consists of two maps: one from objects D of cate-
gory D to objects F{D) of category E and one that sends a morphism f : Di D2
of category!) to a morphism F { f) : F{Di) F(D2) of category'E. It must satisfy
the composition law: F{fog) — F{f)o F{g) and the identity law: = Idr(D) -

Functors are extensively used in the definition of (recursive) domain equations.
To do so we may draw upon an analogy between cpo's and categories. A cpo-
category is a category where the set of morphisms between any two objects forms
a cpo and where composition is continuous with respect to the partial order.

Definition 4.1.15 A functor between two cpo-categories is locally continuous (mono-
tonic) if its effect upon morphisms is continuous (monotonic). Continuity for a
functor F means F (l J n / n) = Un^ifn) for all chains {/„}„ of continuous func-
tions.

For a continuous functor the analogy to a fixed point of a continuous function
on a cpo is captured by:

Definition 4.1.16 The pair (£),$) is a fixed point for a continuous functor F
over some category i f f D is an object and $: F{D) D is an isomorphism. (An
isomorphism $ in a category is a morphism ^ : D ^ E for which there exists an
inverse : E ^ D such that $ o = Id^ and o $ = ME

Definition 4.1.17 A pair (D,^) is an initial fixed point of a continuous functor F
over some cpo-category i f f it is a fixed point and for every fixed point {D', #') there
exists precisely one embedding e : D —>• D' such that e o $ = $ ' o F{e).

An embedding in a cpo-category is a morphism E : D2 for which there
exists another morphism : D2 —* Di such that e" o e = Idjy^ and e o e" C Idu^.

There are constructs analogous to the notions of chain and least upper bounds,
these are called directed sequences and limiting cones:

Chapter 4: Denotational Theory of CHOCS 109

Definit ion 4.1.18 A directed sequence is a pair ({/)„}„, {e„}„) where each is
an object and each e„ : -Dn+i is a morphism.

Definit ion 4.1.19 A limiting cone, for a directed sequence ({£)„}„, is a
pair (D, where D is an object and each r„ is a morphism satisfying :
Dn —» D and r„+i o e„ = r„. (D is called the limit of the directed sequence)

We may use this to define a construction FIX F for a continuous functor, corre-
sponding to f i x f for a continuous function.

Def init ion 4.1.20

FIX F =({£»„}„,

where Do — U (the one point domain and = F{Dn). CQ = ± and
^n+l — -^(Cn) •

In the subcategory C P O - E of CPO where all functions are embeddings this
construct generates a cone. Let be the limiting cone for FIX F then
(jD, $) where 0 = Un fn+i ° F(rn)" is an initial fixed point of F.

However, initial fixed points for continuous functors need not be unique, though
they are all isomorphic, but it is common to say the initial fixed point about the
fixed point generated for FIX F.

In denotational semantics it is quite common to write domains as recursive
definitions hke D = F{D) involving functors such as F. With the above machinery
we may solve such equations. A solution to recursive domain equation is simply
taken to be the initial fixed point for its defining functor. This means that we only
solve the domain equation up to isomorphism since the initial fixed point is defined
in terms of isomorphisms and we write D = F{D) to emphasize this.

The domain equation we present in the next section will use the Plotkin Power
Domain and we therefore need to work in a category closed under this construction.
We will use S F P [Plo76, PloSlb].

Definit ion 4.1.21 The category SFP (Sequences of Finite Posets) has as objects
those cpo's D which are limits of directed sequences ({!>„}„, of finite cpo's
Dm- Its morphisms are the continuous functions with the usual composition.

The only thing we need to know about SFP, apart from the above, is that it
admits recursive domain equations and it is closed under the constructs of Cartesian
product, separated sum and the Plotkin Power Domain.

Chapter 4: Denotational Theory of CHOCS 110

Cartes ian Produc t

Let D and D' be domains. The Cartesian product D x D' is the domain of pairs of
elements with first component from D and second component from D'. We write
{d, d) for elements of Z) x D' where d G D and d' G D'. D x D' is ordered component
wise i.e.:

{di, c?'i) QdxD' (c?2, d'2) di Cg c?2 & d[C£)/ di^

We may turn the Cartesian product into a functor:
Given

f : Di D[and g : D2 D2

then

X D2 —^D[x D2

is given by

x{f,9){di,d2) = {fdi,gd2)

Separated S u m

Let A be a countable set and {Da}aeA be a family of A-indexed domains. The
separated sum is the domain formed by the disjoint union of the DaS
and adjoining a bottom element. We write {a,d) for the elements of the disjoint
union and _L for the bottom element of the separated sum. We order the domain
as follows:

X y or [x = {a,d) k y = (a, d') k d d']

Separated sum may be treated as a functor:
Given a family of functions:

f a ' . Da Ea

Then

is defined by:
aeA 06A aeA

= -L
aeA

(IZ A) ((^,4 = {a, fad)
aeA

Chapter 4: Denotational Theory of CHOCS 111

Note that for each a E A, the function:

a^A
d I—> {a,d,)

is continuous.

T h e P lo tk in Power D o m a i n

Let D be a domain. We say that a subset X C D is closed if % = X* where
X* — Con o Cl{X) a n d Con{X) = {d : 3di,d2 G X.d\ C C c?2} a n d CI is t h e

closure operation associated with the Lawson Topology (see [PloSlb]). The Plotkin
Power Domain P[D] over D is defined as the set of nonempty closed subsets of D.
The elements of P[D] are given by {X CD : X ^ %^X = %*}. The Plotkin Power
Domain P[D] over D is ordered by the Egli-Milner order;

X ^EM Y E X3y 6 Y.x ^ y & Vy G Y3x G X.x C y

We shall make use of a number of continuous operations associated with the Plotkin
Power Domain:
P is functorial:
Given

then

is defined by

f : D ^ E

Pf : P[D] ^ P[E]

f / (X) = { / (z) : z e X y

Other useful operations are:
Singleton:

defined by:

Union:

defined by

{| - D : D ^ P[D]

{| (Z1} = {d}* = {(/}

1+1 : P[Df P[D]

X l±) r = (X l±l F) * = Con{X U Y)

Chapter 4: Denotational Theory of CHOCS 112

Big Union:

defined by

and Tensor Product:
Given

Then

is defined by

(+) : P[P[D]] P[D]

y (0) = (U 0 r = C o n (U 0)

/ : D" ^ D

/+P[Z)]" P[D]

f \ X i . . . Xn) = {fixi ...Xn) : Xi e X,}*

The Tensor Product has the property:

for (1 < % < n). For n = 1 we have = P f .

4.2 A D o m a i n Equat ion for Higher Order Com-
munica t ion Trees

With the machinery from the previous section in hand we are now ready to con-
struct a Domain in which the denotational semantics for CHOCS will reside. As
in [Abr90a] we shall use the Plotkin Power Domain with the empty set adjoined.
We use the empty set to denote the process nil (i.e. the convergent process with
no action). The empty set is added to the Plotkin Power Domain without being
related to anything but itself under the Egli-Milner ordering and we write P°[D]
for the Plotkin Power Domain over D with the empty set adjoined. The elements
of P°[D] are given hy {X C D : X = X*} = P[D] U {0} with the ordering:

X H Y ^ X = { ± } O T X QEM Y

The operations on P[D] described above may be extended to P^[D], and l+), (+) and
{| • D are continuous on P°[D]. For P ° / to work we need to assume that / is strict
and for p to work we need to assume that / is strict in each argument. We write
{| J I A 1} where d £ D and A is some sentence, meaning {| J |} if >1 is true, and 0
otherwise.

Chapter 4: Denotational Theory of CHOCS 113

Definit ion 4.2.1 Let Names (the set of port names) be a countable set and let
Ev = Names x {!, ?}U {r} (ranged over by e). Then D, the domain of higher order
communication trees, is defined as the initial solution of the domain equation:

c ^ Z -D.l
eeEv

where Daj = D x D, Da\ = D x D and = D.

This domain equation is essentially that of [AbrQOa] with the structure of actions
taken into account. We write ± for the bottom element of and for
the bottom element of f

The structure of D is recursive and may be unpacked by the following two parts:

1. Let $ and be a specified isomorphism pair such that:

o~p°[E D.\
e&Ev

We shall treat D = as identity and thus elide the use of 0 and
They can be put back in without any difficulties, but they will clutter

the presentation.

2. Initiality. As described in the following.

Definit ion 4.2.2 We define a sequence of functions:

TCk : D D

as follows:

TTo : Ax.{|±|}

TTfc+l = ^ e
eeEv

Where = x{wk,7rk) and fr =

D is the "internal cohmit" of the TTjt i.e.:

Proposi t ion 4.2.3 The following properties hold:

(i) Each Tk is continuous and t t ^ C 7rjt+i

(a) Ufc TTjt = ido

Chapter 4: Denotational Theory of CHOCS 114

(Hi) TTfc O TTfc = TTfc

(iv) Vc?i,c?2 € -D.rfi C (Zg ^ Mk.TCkdi C

We may think of elements (f of D as (finite and/or infinite) trees. -K d̂ cuts the
tree to a depth of k. iVkD is the set of all trees with depth at most k.

The following definition gives an inductive definition of the set of elements d of
D which only have depth k:

Definition 4.2.4

LEVo = {|±&

LEVk+i = {{{a'!,{d[,d")) : a e Names,d[,d" G LEVk}

Ll{{a\,{d[,d';)) : a£ Names,d[,d'l e LEVk}

U { (t , 0 : d'leLEVk})*

^LEVk

Proposition 4.2.5

PROOF; By induction on k:
k = 0

Wk.LEVk = TTfc-D

LEVo = {l-Lj} = TTQD

k+l

LEVk+i = ({ (« ? ,)) • a, e Names,d[,d1 e LEVk}

U { (a ! , « , 4 ')) : a e Names,d[,d'; e LEVk}

^LEVk

= {{{al,{d[,d")) : a e Names,d[,d" E iTkD}

U{(a!, cf")) : a e Names,d[,d" e TTkD}

ttlTTjtZ)

by the induction hypothesis

= {{{a'?,{Trkd[,Trkd")) : a e Nanies,d[,d" e D}

Chapter 4: Denotational Theory of CHOCS 115

U{(a!,(Trfct/'i,TTfed'/)) : a £ Nanies,d[,d" E D}

WTTfcD

= TTk+lD

Corollary 4.2.6 ^

D = _\LEVk
k

The elements of each of the LEVkS are compact elements of D. We may give
an explicit description of the compact elements of D.

Definition 4.2.7 We define K{D) C D inductively:

• ^eK{D)
• MeK{D)
• G E Names, di,d2 € K{D) => {| {al^di^d^) |} G K{D)

l±l 6̂2 E Ki^D^

Proposition 4.2.8 K(D) is exactly the set of compact elements of D.

PROOF: Follows from standard results (see [Plo76, PloSlb]). •

Proposition 4.2.9 {\J{LEVk : k > 0})* = K{D).

PROOF: For each k: LEVk C K{D) follows from definition 4.2.4, definition 4.2.7
and proposition 4.2.8 The opposite direction follows by showing that each element
of K{D) is an element of LEVk for some k. This is done by induction on the
construction of elements of K{D):

Base cases 0 C LEVk for all k and {|±|} C LEVk for aU k.

Inductive step Assume di,d2 E K{D) and € LEVk for some k. Then:

{| (a!,Ji,c?2) [} e LEVk+i

(l(TXi) D e LEVt+,

l±l <̂2 G LEVk ^ LEVk^i

•

Chapter 4: Denotational Theory of CHOCS 116

D as a Transit ion S y s t e m

Consider D as a transition system {D,Act,—^, "f):

• d d

, d ^ d" = {al,{d',d")) e d

• d ^ d" ={a\,{d\d")) e d

• d d' = (r, d') e d

We can now show that D is "internally fully abstract" i.e.:

Proposition 4.2.10

Vc?i, c?2 G D.d\ c?2 /' di C d2

P R O O F : The proof of this proposition follows the pattern of the proof of proposition
3.11 in [Abr90a]. We shall prove:

(i) \/k.di Efc d2 => -Kkdi C

(ii) C C c B

Clearly (i) implies and since we have
To see that (i) holds we proceed by induction on k.

= 0 Since d^ Eq (̂ 2 always holds and clearly C TToĈg holds, and we have
di £0 <̂2 E 7roC?2. This establishes the base case.

k+1 Assume di Et+i c?2. Now c?i = 0 and di E&+i ^2 implies c?2 = 0. di = {|±|}
implies di C Jg so we may assume that 0 ^ cfg- It is sufficient to prove
di Qem d,2-

We have Wk+idi = X* where

X = {{a'!,{Trkd[,Trkd")) : {a?,{d[,d")) e di} U

{{al,{Trkd[,Tkd")) : {a\,{d'y,d'{)) e dx] \J

{{R.T^KD'L) : (T,C?I) G C?I} U

{J_ : _LG C?I}

and similarly 'Kk+id2 = Y*. Now

Chapter 4: Denotational Theory of CHOCS 117

. (o ? , (4 , 4 0) e x

3^2) (̂ 2'<̂ 2 ^ ^ (̂ 1 5fc ^2 ^ (̂ 2

BcZj, c/2.c?2 —^ c?2 ^ ""̂ kdi C TTfcĈj & TTfcti" C TTfct/j the induction hypothesis

=> 3(a?, (TTfc ,̂ 7rfc4')) e Y.{al,{Trk,d[,irkd'{)) C (o?, (*-*, ?r& jg))

and similarly for (a!, (%&, d[,Trkd")) G % and we have

. (T , j ; > € X

=> (f;

3c?2.<̂ 2 ^ d'2 Sz d'l Et <̂2

=> 3(̂ 2-(̂ 2 —^ c?2 & 7rfcC?'i C TTfcJj by the induction hypothesis

=> 3(T,7rfc4) G Y.{T,Trk,d[) C

Also

• ±^X

± 0 C?1

=> ± ^ 4 & [[d2 ^ 4 3 j ; , d'l-di ^ £fc d'^ k d'i 5fc 4]

& Mz ^ 4 3d'^,d'l.d^ ^ d'i k d[Efc 4 & J'/ Et 4]
& [̂ 2 ^ 4 3 < , j'/.tfi ^ Et 4]]

± 0 y & [[V(a?, (7rfci2,7rfcC?2)) G y.
3(a?,(7rA:4,7rA;ii)) € X.-Kkd'-^ C n&dg & TTfcf?'/ C -Kkd'^]

k [V(a!,(7rfc4,7rfcc?2)) G y.
3(a!, (TTfcĈ i, -Kkd")) G X.TVkd'^ C -Kkd'^ k iVkd" C

& [V(r,7rfcC?2) G y.3(T,7rfcC?'i) G X.TTkd\ •
by the induction hypothesis

Furthermore we have shown X Eem y which implies X* ^em Y*-
To see (ii) we show that C is a higher order bisimulation. Observe that:

• di n d2

=> [[V(a?,(4,d'D) G 4 . 3 (a ? , (4 , G 4 4 E 4 & 4 E 4]

Chapter 4: Denotational Theory of CHOCS 118

& [V(a!,(j; ,4')) G j i . 3 (o ! , (4 , 4)> e 4 4 C d'^ k d'i c 4']

& [V(r, J j) G <Zi.3(r,(ij) G d2.d\ C cZg]

& ± 0 => jg &: [V(o?, (4 , 4) > G (f2.3(o?, (G di.
d'^ C 4 k d'l C 4']

& [V(o!,(4,4)> € d2.3(o! ,K, E (fi.
d\ c 4 & < c d'i]

k [V(r,4) E (/2.3(T,cZi) G E 4]]

=4> Mae Names, [[di ^ d'l => 4'. J2 ^ 4 & 4 5 4 k d'l C 4] &

u ^ d'l ^ 3d' d''d2 ^ 4 ^ 4 c 4 & d'/ C 4'] &
[(̂1 4 34.J2 4 & 4 ^ 4] &

i =̂> (̂ 2 i & [4 ^ 4 => 3 4 , 4 . 4 ^ d'l k 4 c 4 & d'l c 4] k
[d2 ^ 4 => 3 4 , 4 . 4 ^ d'l k 4 c 4 & d'l c 4'] &
[4 ^ 4 =:> 3 4 . 4 4 & 4 c 4]]

•
This result shows that the denotational domain and the labelled transition sys-

tem model are equally expressive. The above result is syntax free and therefore
not compositional. We need syntax to introduce compositionality and this is the
subject of the next section.

4 .3 A D e n o t a t i o n a l S e m a n t i c s for F i n i t e C H O C S

In section 2.8 we saw that the syntax of Finite CHOCS induces a term algebra
Ts. By standard results [Gog etal77] there exists a unique E-homomorphism A | | :
Te —> A for any E-algebra A.

We now use this result to form a denotational semantics Df | in the domain
D for finite CHOCS. It suffices to define each operation in E as a function of the
appropriate arity over D.

Definition 4.3.1

nil^ = 0

= {|±&
a?^— = A (4) 4) e D X Z).{| (a?, (4? 4)) |}

a!^_._ = A (4 , 4) € D x D . { | (a ! , (4 , 4)) &

T^._ = Xd e D.{\ {T,d)
= l±l

Chapter 4: Denotational Theory of CHOCS 119

Restriction:

_\o^ = ^iF^[D-. £>].l+)oP°(^,F)

where Qa : [D D] ^ EegEv-^e D] is defined by

9aF ± = {|±|}

9.F{T,d) = { | (T , f 4 [}

Renaming:

_[5]^ = f^Fe[D-. D].P°igsF)

where gs : [D ^ D] ^ [EegEv-^e EeeEv-^e] is defined by

gsF ± = ±
9sF{a'!,{di,d2)) = (5(a)?, (J j , Fc?2))

gsF{a\,{di,d2)) = (5(a)!, (rfi, Frfj))

gsF{T, d) = (r , Fd)

Parallel Composition:

- f . = tiF^[DxD-t D] . W o f ' ' (f f W r f W c f)

where l,r,c: [D"^ —* D] [(EegEv^e)^ —» D] are defined by

lF{x,±) = lF{±,x) = {|±5

lF({<i1,(dud2)),x) = {|(o?,(rfi,F(<ii,{|ii})))S

lF{{at,(dud2)),x) = { | (a ! , (4 . f (4 X k l }))) l }

lFi{T,d),x) = {| (T, F W FL X &)) »

and

rF(x,±) = rF{l,x) = {|±|}

rF(x,(o?,(i.,dj))) = {|(.?,(4,f({kl},4)))l}
TF(x,{a<,{d„d^))) = {|{a!,(<ii,F({|i[(,rfj)))|}

rF{x,{r,d)) = { | (T , f ({ | x | } , i)) | }

Chapter 4: Denotational Theory of CHOCS 120

and

cF{x,y) =

{|_L|} ifx=JuOry=l.
{j (t , F (J 2 , 4)) 1) = andy= (a!,(</i,4))

or X = (a!, ((/i,c?2)} and y = (a?, (di, d'2))
0 otherwise

We need to check that the above functions are well defined. This follows since
all functions are strict (bistrict) and in fact they are all continuous which is easily
checked from their definitions.

We denote the continuous E-algebra defined above by D-^.
Restriction, renaming and parallel composition are defined recursively. This

corresponds to the fact that they may be "eliminated" for finite CHOCS processes
modulo higher order bisimulation (see section 2.8).

It follows from proposition 4.2.10 and definition 4.3.1 that

Proposition 4.3.2 The semantic function

DU-.T^-^D^

cuts down to surjections

TE —^ K{D) and % K{D)

Finite CHOCS thus provides a syntax for the finite elements of D. We shall
later (in proposition 4.3.6 and 4.3.7) see how this statement can be strengthened to
the elements of Levk of section 2.8 and LEVk of section 4.2.

As for the operational semantics for finite CHOCS we may relate the denota-
tional operators to the transition system view of D. In the following we shall abuse
the notation from the operational description of CHOCS and we write: d d"
if r = a?d' &: d d" or r = a\d' & d d" OT r = T Sz d —^ d" and we
use the notation f for actions of the form aid' or aid' with the following meaning:
a?d' = aid' and aid' = aid'.

Chapter 4: Denotational Theory of CHOCS 121

Proposi t ion 4.3.3 For all cZi,c?2 G K{D):

(0(o) niP j.

(u)(a) T

(m)(a) jg) i
(6) a?^{di,d2)

(it;)(a) al^{di,d2) i
(6) a\^{di,d2)

W(<:) T^{di,d2) [
(b) T^(Ji) d

{vi){a) {d\ C?2) T
(b) d\ c?2 (Z

(b) nil^ -f^

(6) -h

r = a1d\ &: d = ^2

-<==>' r = a\d\ &: d = c?2

T = T h d = dx

di I or ^2 t
di d or d2 d

Parallel composition:

{vii){a) {di p ((2) T di t or ^2 T

(6) (di dz) j r = a W & 3r/ , e^, ey(% = l , 2) . d i <•'
& = a?ê - & • ti' • Cj
& ei' 1̂ d^ C (f" C e'2' 1̂ d2

or 3r:.,e;,ey(t = l , 2) . j 3 - [L e ; '
& r(- = a?ej- & C (f' C
& P e'/ C d" C p e'2'

or r = aW' & 3r(-, ê -, e"(i = 1,2).d-i e"
& r(= a\e'- & e'^ C cZ' C
& e'/ 1^ 4 E d" C e'2' 1^ (^2

or 3r-, e-, e-'(i = 1,2).c?2 e-'
& r'- = a\e\ & e'̂ C (f' C e'2
& 1^ e'/ C d" C di p e"

or r = T & 3e"(i = l,2).c?i
2 ft

k e'{ 1^ d2 C rf" C e'2' p d2
or 3e'/(i = 1,2).c?2 — ^ e'/

& P e" C d" C di e"
3r:. ,er,/ ; ' (i = l ,2) .

rfi </ & ^2 / / '
& el' I" / ; ' c r c 4' r

Chapter 4: Denotational Theory of CHOCS 122

Restriction:

{viii){a) {d]\a^) |

(6) {di\a^) — y d"
di T
r = bid' &

or r = bid' &;

or r = r &

3r:,e;,e;'(i = l,2).<i, i i e ; '
& r(- = 6?e(- Sz b ^ a ^ e'^ Q d' ^ e'2
& C d" C

3r;.,e<,ey(* = i , 2) . j i - Z L e y
& r(' = ble'i & 6 7̂ a & gj • d' C 62
k e'i\a^ C d" C e'^\a^
3ey($ = l ,2) . j i eV
k e'l\a^ C d" C e'^\a^

Restriction:

(6)
di T
r = bid' k

or r = b\d' k

3r<,e;.,ey(t = l , 2) . (f i - [l
& r (= o?e; & 6 = 5'(o)
k e'l C (f' C e'2
k e'llSY" C d" C e'^[S]^

k = ale'i k b = S{a)
k e'l Qd'n e'. — '=•2

or r = T k
k e'liSf C d" C e'^lS]^
3e'/(i = l,2).di ^ e'f
k e'l[Sf C d" C e'^[Sf

P R O O F : (*) — (v) are immediate from definition 4 .3 .1 .

(vi) is derived from Ji c?2 = c?i W c?2 = Con(di U ̂ 2).
For (un) we define

8 =

U{{
U{{
U{{
U{{
U{{
U{{
U{{

: M , (4 , 4)) E ^2}

r4))}
r,Kr4))}
T,Kr4))}

U{{-L} : J - E (̂ 1 o r J_GC?2}

4'

4'

(r, (̂ 2) € (̂ 2}

(o ? , (4 X ')) E ^2}

(a!,((f^,4')> G & (G ? , (4 , 4)) E 4 }

Chapter 4: Denotational Theory of CHOCS 123

and

U{

U{

U{

U{

U{

U{

U{

o ! , (4 , 4 r (f 2)) : (o ! , K , 4) > e 4 }

: <o? , (4 ,4)>

: (a ! , (4 ,4)>G(f2}

T,(j i r 4) > : <T,4>G(f2}

(a!, (4 , 4 0) e & (o ? , (4 , 4) > e ^2} T, (4 r 4)>
U{_L : _LG d\ or J_G ((2}

Now

((Z 2) = (7on(l j0*)

= Con((l j0)*) by [Plo76] p. 477

= Con(|J 0) since d G K{D)

= Con($)

and {yii) is derived from this description.
{viii) and {ix) are derived similarly. •

Proposition 4.3.4 For all p ^T-^.p

PROOF: Let us define a height function on TE in the following way:

ht{cr{pi,.. .,Pn)) = sup{ht{pi) : 1 < i < n} + 1

Note that both pi and p2 contribute to the height of p in a1^px.p2 and a\pi.p2. As
an easy consequence of proposition 4.3.3, we have:

V

P

P P"

P

P"

ht{p') < ht{p) & ht{p") < ht{p)

ht{p') < ht{p) &: ht{p") < ht(p)

ht(p") < ht{p)

The proposition is proved by induction on ht{p), and the structure of p. The
cases arising from the operators in E' are obvious from the close match of moves as
can be seen from proposition 2.8.4 and proposition 4.3.3. We give the case where:

Chapter 4: Denotational Theory of CHOCS 124

P = Pl\P2

Firstly,

p T <=> Pi T orpzT by proposition 2.8.4
Dlp\\ t or -DUfzH T by induction hypothesis
(Z)[[pi] 1̂ D\p2\) T by proposition 4.3.3
D\pi P P2I T

Next,
*?p' //

P —>P

or p2 ^ P2 & p" = Pi I p'i
by proposition 2.8.4

=> 3d'^.d'{.D\pii ^ d'i k p' d[& p'l d'l
by induction hypothesis on pi

or ^ 4 & p' 5^ & p'2' 4 '
by induction hypothesis on p2

=> p'i IP2 IP2I
by induction hypothesis on p" | p2
=DM r DM
E® d'l r DM
by proposition 4.2.10 and monotonicity of

or Pi \p2^^ Dfpi I p'2'l
by induction hypothesis on pi | pg
= D f o l |0 D M
E® Dlftl p d'i
by proposition 4.2.10 and monotonicity of

=> 3d', d".D\p\ ^ d" k p' d' k p" d"
Similarly, we can show

p ^ p " = ^ 3d', d".DM ^ d" k d' p' k d" E^ p"

If p p" we may argue as above with ? replaced with !.

Chapter 4: Denotational Theory of CHOCS 125

P^P"
Pi ^ P'l & P" = Pi I P2

or p2 P2 & p" = PlJ_P2
or Br'.pi p'l kp2-^ p'^ & p" = p'i | Pg

by proposition 2.8.4
=). 3d';.DM d'i k p'l 5® d'l

by induction hypothesis on pi
or 3d'^.Dlp2} d'i k p'i 4

by induction hypothesis on p2

or r ' = alp' k 3.d'^,d'{.D\pi\ ^ d'l k p' < k p'l E® d'l
by induction hypothesis on pi

k DM ^ d'i k p' 5^ 4 k p'i d'i
by induction hypothesis on p2
p ' ~ ® D M • < , (. = 1,2)
by induction hypothesis on p'

DM d'l k DM d'i
since DlpJ is convex closed

or r = a\p' and we may argue as above with ? substituted for !
P'l I P2 DIp'I I P2I
by induction hypothesis on p'l \ p2
= h m I" D M
E® 4 1 " D M
by proposition 4.2.10 and monotonicity of

or Pi I p'i D\pi\ Pal
by induction hypothesis on p\ | p'i
= DM r Dm
5^ 1̂ d'i
by proposition 4.2.10 and monotonicity of p

or p'l I p'i Dyi I p '̂I
by induction hypothesis on p'l | p'i
= Dh>n r D M

by proposition 4.2.10 and monotonicity of
3d".Dip] d" k p" d"

Similarly, we can show

p-^p" => 3d".Dip] ^ d ! ' k d" E® p"

Chapter 4: Denotational Theory of CHOCS 126

Also,

DM ^ d"

& 4 ^d'\z 4 k d'(1^ DM c d" c d'i 1^ DM
by proposition 4.3.3

or =
k d\ ^d'Q 4 k DM 1^ d'i c d" c D|pil 1^ d'i

by proposition 4.3.3
= s - 3p;.X'(' = l ,2) .pi k p[E ® d[,d', E ® Pi & p'i E ® S ® p j

by induction hypothesis on

or 3p-.p-'(« = 1> 2).p2 ^ Pi' & pi E® 4 , 4 P2 &: P'l 4% 4 5^ Pg
by induction hypothesis on p2

= > P ^ P i I P 2 & P i I P 2 D | p ' / I P 2 I = - D [p ' / 1 p D I P 2 I 5 ^ (Z
by induction hypothesis on p'{ \ p2

or p ^ p i l Pi & Pi I p'l D|[pi I p'/l = £)|[pil p DIp'/I d
by induction hypothesis on pi | p"

and similarly d pg | p 2 o r J pi | pg.

If j D J p] d" we may argue as above with ? substituted for !.

DM ^ d"
3d'l{i = l,2).D[pil 4' & d'i 1^ DM E d" C 4' p DM

2 or 3d'l{i = 1 , 2) . D M <•' & i^IPil I"" d'i C (Z" C D |b i l ^ d'.'
or 3 4 , <•', e':{i = 1,2).D[piI ^ k D M ^

& 4 ' P e'/ C ĉ " C d'i p e'2'

or 3 j;., ey(2 = 1,2).D[pi] & D M ^ eV
k d'i 1^ e'i C d" C d'i 1^ e'2'

by proposition 4.3.3
=4. 3p:'(i = l ,2) .p. - ^ p ' l k p ' i z " d'Ud'iZ^

by induction hypothesis on p\
or 3py(% = 1,2).p2 p;' & Pi' < , 4 5^

by induction hypothesis on p2

or 3X,p;', = 1,2).pi py & &
Pi 4 , p; & Pi' p;̂ & gi' E^ ei',
by induction hypothesis on pi and p2
P P'i I P 2 & P i I P 2 Dlp'i I P2I = D[pi' | 1̂ D M E® d
by induction hypothesis on p'i | p2

or p ^ Pi 1 p'i k Pi I p'i D[[pi I p'/l = D|[pil 1^ D\p'il E® d
by induction hypothesis on pi | p'i

or p I «!' & p. I DIM I rfl = C[rfl r f M E® d
by induction hypothesis on p'i | q'i

Chapter 4: Denotational Theory of CHOCS 127

and similarly d p'^ \ p2 or d pi \ p'^ or d pg | qi^.

The cases where p = pi\a or p = pi[S'] can be derived similarly.
Altogether we have p Dip}. •

Theorem 4.3.5 (Full Abstraction for finite processes) For all pi,p2 € Ts;

Pi P2 <=> Dlpil C DIP2}

PROOF: Follows from proposition 4.2.10 and proposition 4.3.4. •

Proposi t ion 4.3.6 Assume Names is finite, then

Wk.Vp e Levk-Sd G LEVk.Dfp} = d

PROOF: By induction on k:
k = 0

Levo — {0}; = {| J_|} £ LEVQ

fc + 1 If p G Levk+i then

either p G Levk and by induction there is a c? G LEVk C LEVk+i such that
DlpJ = d and we are through

or p has the form Sig/p, where 7 is a finite index set and p, has one of the
following forms: a?^p-.p(', a\p'-.p", T.p'- or fl, where p'i,p" G LeVk and
a G Names. By induction there is d'-,d" G LEVk such that D^p'^ = d'-
and = dl Then Dla^l^p\.p'l\ = = al^{d\,d'!) G
LEVk+r and Dla\p',.p'l\ = a \ ^ D \ p n) = a\^{d\,d'l) G LEVk^^ and
Dlr.p'il = r^{D\p[\) = r^{d',) G LEVk^^ and D M = {|±|} G LEVo C
LEVkJ^\. Since E.g/p, is shorthand for pi + . . . + Pn where is
an enumeration of I we have Z)|E,g/p,| = Dlpij 1+)... l+lZ)[p„J G LEVk+i.
This proves the proposition in this caae.

•

Chapter 4: Denotational Theory of CHOCS 128

Proposit ion 4.3.7 Assume Names is finite, then

VA;.V(f G LEVk3p G Levk-Dlp} = d

PROOF: By induction on k:
A: = 0

Levo = {Q}; DM = E LEVo

k + 1 Then

either d € LEVk and by induction there exists a p E Levk C Levk+i such
that Dip} = d and we are through.

or

d = {{{al, (d', d")) : a E Names, d',d" E LEVk}

[J{{a\,{d',d")) : a E Names, d',d" G LEVk}

U{(r, c?') : a G Names, d' G LEVk}

U{d : de LEVk})*

By induction there exist p',p" G Levk such that D\p'\ = d' and D\p"\ =
d". If Names is finite we may write d as the union of singleton sets
{| {a?,{d',d")) |}, {| {a\,{d',d")) [}, or {| {T,d") |} and for each such set
define p,- as al^p'.p", alp'.p" or r.p" respectively. Clearly -D[pi]] = </,• and
Pi G Levk+i- Then define p as Sp,-. Clearly D^p] = d and p G Levk+i
and we are through.

•

4.4 A D e n o t a t i o n a l Semant ics for C H O C S

The semantics given in the previous section only applies to finite processes. We now
use these results to extend the denotational semantics to the CHOCS language.

The semantic function has to take free variables (to be bound by input prefix)
into account and therefore takes an environment p : V D as an argument. We
use the standard notation p[d/x] for updating an environment. The environment
p[d/x] is the same as p except on x where it returns d.

Chapter 4: Denotational Theory of CHOCS 129

Definition 4.4.1 DU : CHOCS ^ D

D\nil lp = 0

D M P = {|±&
Dla'l^pi.p2lp = a?^(D|[piI/9,£)[]>2l^)

Dlalx.pijp = FD{Xd.D^ilp[d/x])

= (U W (j , D | [p i M (f / z]) : j e D }) *

Dla\pi.p2}p = a\^{Dlpilp,Dlp2lp)

Dlr.pilp = T^(Z)|pi1P)

DIpi+P2}P = Dfpi^pDlpilp

Dlpi I p2}p = {Dlpijp) f {DIP2}P)

= {Dlpi}p)\a^

Dlpi[S]}p = {DMp)[S]''

Dlxjp = p{x)

where F = \D e P°[D].\f G [D £>].li)((P°(AJ.a?^(J,/d)))Z))

Note that the semantics of input prefix is given as the Big Union of all possible
sets of triples (a?, (cZ, lpilp[d/x])) where d e D, reflecting that any value d could
be received. Alternatively we could say that input prefix has a choice of any value
d E D which is similar to the intuition in the operational semantics of CHOCS.

We need to check that the above definition is sound i.e. that Df] is continuous
in its environment argument. The proof of this is similar to the proof of continuity
of the denotational semantics for the A-Calculus as presented in [Bar84].

Proposition 4.4.2 Xd.Dlplp[d/x] is continuous.

PROOF: We proceed by structural induction on p. The only nontrivial cases are:

p = aly.pi Define G = FD. Then:

D\p\p[dlx\ = G{\e.Dlpi}p[dlx\[ely])

= G(Ae./(j ,e))

for some / . Clearly / is continuous in each argument separately by the induc-
tion hypothesis and thus continuous. Let g{d) = G{Xe.f(d, e)) then g — Go f
and / = curry f . Then clearly g is continuous since G, / , curry and o are
continuous.

Chapter 4: Denotational Theory of CHOCS 130

p^y

g{d) = Dly}p[d/x] = I otherwise

Clearly g(d) is continuous.

All other cases follov/ straightforwardly from structural induction. We give one case
for illustration:
P = Pl \ P2

g{d) = DIpx\ P2\p[dlx] = Dlpi\p[dlx] Dlp2\p[dlx\ = gi{d) g2{d)

By induction 5̂ 1, ^2 are continuous and is continuous in both arguments.
Thus g IS continuous.

•
Before proceeding to extend the full abstraction result for finite CHOCS to the

CHOCS language we present the following useful relation between the syntactic
substitution as defined in definition 2.2.3 and updating of environments:
Proposition 4.4.3

= Dlp}p[Dlqjp/x]

PROOF: We proceed by structural induction on p.
p = nil

Dlnil[q/x]lp = Dlniljp - niP = Dlnil}p[Dlqlp/x]

p = n

Din[q/x]lp = = = Din]p[Dlq}p/x]

p = aly.px Assume y ^ x and y ^ fv{q) (otherwise use a-conversion on y):

Dl{aly.pr)[qlx\lp = Dlaly.{px[ql x])lp

by the definition of Z) | |

= FD{\d.D\pi[qlx]lp[dly\)

by the induction hypothesis

= F D{\d.D\pilp[dl y][Dlq\p[dly]j x])

since y ^ x and y 0 fv{q)

= FD{\d.D\pi\p[Dlqlplx][dly])

by the definition of £)[]

= Dlaly.p]\p[Dlqllx]

Chapter 4: Denotational Theory of CHOCS 131

p = y if y — X then
Dly[q/x]}p = Dlqlp = Dlylp[Dlqlp/x]

p = y if y ^ X then

Dly[q/x]}p = Dlyjp = p{y) = p[Dlq}p/x]{y) = Dly}p[Dlqlp/x]

All other cases follow straightforwardly from structural induction. We give one case
for illustration:

P^Pl\P2

Dl{pi\p2)[q/x]jp = Dl{pi[q/x])\{p2[q/x])}p

by the definition of Z)|[|

= Dl{pi[q/x])jp\'^ Dl{p2[q/x]

by the induction hypothesis

= Dl{pi)lp[Dlq}p/x] p Dl{p2)}p[Dlq}p/x]

by the definition of Z?|]

= Dlpi I p2MDMP/X]

•
In section 2.8 we defined a set of operational approximations p" to p. We now

define a set of denotational approximations an[p)p. These are given relative to an
environment p.

Definition 4.4.4 For every p G Fr U FPr and every n we define an{p)p G D

«o(p)/3 = {i-L|} for any p

an+i{nil)p = 0

an+i{^)p =

an+i{a'!^pi.p2)p = a?^(a„(pi)/3,an(P2)/>)

a„+i(a?x.pi)/9 = FLEV„{\d.an{pi)p[d/x])

= {\J{a?°{d,aMp[d/x]) : d e LEV,,})*

an+iia\pi.p2)p = a^-^{an{pi)p,an{p2)p)

an+i{r-pi)p = T^.(a„(pi)p)

an+lipi+p2)p = {anipi)p) {anip2)p)

Chapter 4: Denotational Theory of CHOCS 132

an+\{P\\P2)p = {an{pi)p)f {an{p2)p)

an+\{p\\a)p = (a„(pi)/9)\a^

a„+i(pi[5])/> = (a„(pi)/j)[5]^

a„+i(x)/j = p{x)

Note that if p{x) G K{D) for every x G FV{p) then a„(p)/fJ € K{D).
The above definition is sound by arguments similar to those given for -D[1-

The following proposition establishes the relationship between the operational
approximation p" and the denotational approximation a„(p) of p.

Proposition 4.4.5 For all n and p and any environment p: D\p^\p — a„(p)/j.

PROOF: We proceed by induction on n.

n = 0 Trivial since for all p and p: = {|_L|} = ao{p)p.

n + 1 For the induction step we use a subinduction on the structure of p:

p = nil

Dlnir'^^p = Dlnillp = 0 = an+i{nil)p

p = CI

p = a?x.pi

= 0 ^ = a„+i(f2)/9

by definition of p" and definition of |

= {[j{^'^^(Mp,bi\p/^]]p) • P ^ Levn}y
by proposition 4.4.2

= (U{«-^(lb]/'5 lbiIp[bl/'/a;]) : peLeVr,})*
by the induction hypothesis

= {[jW^^{Mp^(^n{pi)p[Mp/x]) -peLeVn})*

by proposition 4.3.6 and proposition 4.3.6

= i[jU'^^{d,an{pi)p[d/x]) : d e LEVn})*

by the definition of an{p)p

Chapter 4: Denotational Theory of CHOCS 133

p = x

= Dlxjp = p{x) = an+i{x)p

All other cases follow straightforwardly from structural induction. We give
one case for illustration:

P = Pl\P2

o k p , I P 2 r " i / > =

by definition of p" and deiinition of i J []

= (D\p"W\''(DMIP)

by the induction hypothesis

= {an{p\)p) 1̂ {an{p2)p)
by the definition of an{p)p

= a n + l { p i I P 2) P

Proposi t ion 4.4.6 For all p and p: Dlpjp = [J n < ^ n { p) p -

PROOF: By structural induction on p:
p = nil

p = Cl

p = alx.pi

Dlni l lp = 0 = [J an{nil)p

DlQjp = {|±[} = l Ja„ (l))^

Z)|a?x.pi]/J = FD{Xd.D^}p[d/x])

by the definition of Z) []

= FD{Xd._\an{pi)p[d/x])
n

by the induction hypothesis

= _\FD{Xd.an{pi)p[d/x])
n

by continuity of F

•

Chapter 4: Denotational Theory of CHOCS 134

= •F(ULEKn)(Ad.a„(pi)p[d/a:])
n m

by corollary 4.2.6

= _\[}FLEVm{\d.a^{p^)p[dlx])
n m

by continuity of F

= _\FLEVn{Xd.an{pi)p[d/x])
n

by [PloSlb]

= |Ja„+i(a?x.pi)/)
n

by the definition of an{p)p

= _\an{o,1x.px)p

p = x

Dlxjp = p{x) = [Ja„(a:)/)

All other cases follow straightforwardly from structural induction. We give one case
for illustration:

P = Pi\P2

Dlpi 1 P2I/9 = {Dlpijp) 1̂ (Dlpilp)
by definition of Z) | |

= {U^n{pi)p) {U^nip2)p)
n n

by the induction hypothesis

= U(('^"(Pi)/') 1̂ Mp2)P))
n

by continuity of p

= \Jan+liPl\P2)P
n

by the definition of an{p)p

= [_\ar,{pi\p2)p

•

Chapter 4: Denotational Theory of CHOCS 135

We may now combine all the results obtained so far and state the main theorem
of this section;

Theorem 4.4.7 (Full Abstraction for CHOCS processes) Assume that the set Names
is finite, then:

P Ew 9 D\p\ C j^l^l

P R O O F :

P ~u; ^ ^Tl>p £71 Q

by definition 2.7.3

Vn.p" £„ g"

by proposition 2.8.10

Vn.p" 5® g"

by proposition 4.3.5

V n . D M C Dlq-j

by proposition 4.4.5

Vn.a„(p) C a„(g)

by continuity

U«n(p) E U«"(9)
n n

by proposition 4.4.6

DM E

•
The full abstraction result for CHOCS processes is limited in two ways. It

only applies under the assumption that the set of port names Names is finite. As
discussed in section 2.8 this is not a significant constraint and from an implemen-
tational point of view it is quite natural. The other limitation is that the theorem
is stated in terms of the preorder and not in terms of 5^. This restriction is
due to the well known impossibihty of modelling unbounded nondeterminism in
the Plotkin Power Domain. We may consider the preorder as representing the
"finitary" part of in line with the view of Abramsky [Abr87a, AbrQOa].

Chapter 4: Denotational Theory of CHOCS 136

4.5 Recurs ion

Let us use the denotational semantics of CHOCS to obtain a much simpler proof
of the simulation of recursion theorem i.e.:

r ec x.T.{p\a) ~ Y^lp]

Let |reca:.p]/9 = f i x Xd.lplp[d/x] (i.e. we give a least fixed point semantics to
recursion) and let us demonstrate that

V/9.|y^[p]|/) = {rec x.T.{p\a)

To see this we apply the semantic equations given in definition 4.4.1;

-DlWa:[p]l/j = FD{Xd.Dlp[{x I a\x.nil)\a/x]}p[d/x])

= {[J{a'?'^{d,Dlp[{x \ a\x.nil)\a/x]}p[d/x]) : d e D})*

DlYr\p]}p

= r o P (d k [p]] / , , 0)) \ o ^

m\' '{DlW,\p]}p,DlW,\p]}p f 0)

\ST^{DIP[{X I a\x.nil)\a/x]lp[DlW:^\p]jp/x]) 0))\a^

= T^{{Dy[{x I a\x.nil)\alx]lp[D\Wjj>]\p/x\)\a^)

= {{DIPIP[[{X I a\x.nil)\alx]\p[DlWa:\p]lplx]lx)\a'°)

= r^'UDMpmYMlplxW)
= T^{Dlp\a\p[DlY^\p]}plx\)

= DlT.{p\a)\p[DlY^\p]\plx]

Since we have chosen the initial solution to the domain equation we have

D\Ya;\p^p - f i x \d.{DlT.{p\a)}p[d/x]) - D f r e c x . T . (p \ a)] /)

Chapter 5

Plain CHOCS

In the previous three chapters we have studied the CHOCS calculus and shown
how CCS can be extended with processes as first class objects. We have seen that
we can model rather important computational phenomena such as recursion and
the A-Calculus. But some peculiarities may arise due to the dynamic binding of
port names in processes sent and received. Port names that intuitively would be
considered restricted or bound can become unbound and vice versa as e.g.

{blx.{x I q)) I {{b\p'.p)\a) p' \ q \ {p\a) (5.1)

{b?x.{{x I q)\a)) | (6!/.p) ((/ | q)\a) | p (5.2)

In (5.1) any occurrence of a in p' becomes unbound after the communication
even though we would expect them to be bound if we analyze the system before the
communication. In (5.2) we have the opposite situation. Now any occurrence of a
in p' unbound before the communication would be bound after the communication.
These examples show that sending the process p' amounts to passing the text of p'.
This is closely related to the treatment of function parameters in LISP cis originally
defined by McCarthy and often referred to as dynamic binding. This parameter
mechanism is compHcated to work with when analyzing the behaviour of programs
from their text.

The approach in the previous three chapters was chosen because the semantics
of CHOCS could be given as a straightforward extension of the CCS semantics
and because it yielded simple algebraic laws. However, some of the laws included
reference to the sort of the process (i.e. the set of port names the process might
use). The calculation of the sort is either a costly calculation needing to run the
process (or even worse needing all possible runs of the process) or a very rough
approximation to the actual sort. This approximation often yields infinite sort for
processes intuitively having finite sort.

137

Chapter 5: Plain CHOCS ^

Inspired by the idea presented in [EngNie86, MilParWal89] of the restriction
operator p\a being a scope binder, which intuitively should bind all occurrences of
a in p, we now present a calculus of higher order communicating systems with static
binding of port names by restriction. We call this calculus Plain CHOCS.

We are looking for a calculus which has the property that scope extrusion, as
we call the technique to take care of the problem in (5.1) above, will automatically
take care of a static binding mechanism for the restriction operator. For example
(5.1) becomes:

(6?x.(a: I q)) \ {{b\p.p)\a) {p'{b/a} \ q | p{b/a})\b (5.3)

where {b/a} is a label substitution such that b does not belong to the set of free
names in q and the restriction will therefore not bind any port in q only in p and p'.
Also scope intrusion, as we call the problem in (5.2), will be taken care of by a new
definition of process substitution which takes the static nature of the restriction
operator into account. Therefore (5.2) above becomes:

{b?x.{{x I q)\a)) | {blp .p) ^ ((x | q)\a)[p'/x] | p = ((/ | q{b/a})\b) | p (5.4)

where {b/a} is a label substitution such that b does not belong to the set of free
names in p' and the restriction will therefore not bind any port in p' only in q. It
turns out that it is interesting to have the capabihty of describing a kind of dynamic
binding of port names of processes received in communication. This is obtained by
allowing free names to be renamed to bound names upon reception of a process:

(fe?x.((a:[a w a'] | {o'/o}g)\o')) I W-P) ((/[«a'] | {o'/«}9)\o') I P (5-5)
where a' does not belong to the set of free names of p' and q. This construction
simulates the behaviour described in (5.2). However, we cannot program the be-
haviour described in (5.1) since in Plain CHOCS a bound name remains bound and
can never become unbound again.

To illustrate these concepts, before presenting a formal syntax and semantics
of the Plain CHOCS calculus, we first study a small example. In this example we
shall rely on the knowledge of CHOCS and the above remarks.

Example 5.0.1 The example consists of a simple user/resource system similar to
the system studied in [EngNie86]. The system is constructed from a number of
users, a resource manager and a resource. In this example the resource is a process
which takes in a number and multiplies it by 2. A resource is obtained on the c
channel, then put into use in parallel with the user process. Note how free names
of the resource are renamed and bound when received by the user process.

Chapter 5: Plain CHOCS m

U\ = clx.(x\b^ a] I a\8.a'ly.di\y.nil)\a

U2 = clx.{x[b I—»• a] I a\5.a'?y.d2\y.nil)\a

RM = {c\{R).fin1.RM)\fin

R = fe?a;.6![2 * x\.fin\.nU

SYS = (Ui I t/2 I RM)\c

The finl signal from the resource R tells the resource manager RM when the
resource has finished its task for a user. The resource manager can then (recursively)
restore itself and thus provide a resource for other users. The restriction of fin
ensures that there is a private communication channel between resource and resource
manager which cannot be interfered by any user process.

It is interesting to observe how the system executes and how scope extrusion
takes care of preserving private links with the sending process. We give an example
of one execution sequence where U2 gets the resource first.

SYS = {Ui I U2 I RM)\c
J,T Since %(r[6H-a]|a!5.a7i/.^2.n:V)\a and RM —y RM'=}in1.RM

{U\ I {{R[b H-)' a] I a\h.a1y.d2\y.nil)\a | finl.RM)\fin)\c
J,T Since fi[6>-+o]-^^6![2*a;]./tn!.n.«/ and a\5.aly.d2\y-nil^^aly.d2\y.nil

(Ui I {{{b\[2*5].fin\.nil)[b^ a] | a1y.d2\y.nil)\a \ fin1.RM)\fin)\c
J,T Since b\[2*5].fin\.nil^^fin\.nil Sind a'!y.d2\y.nil^^d2\y.nil

(Ui I {{{fin\.nil)[b i-> a] | d2\10.nil)\a | fin'!.RM)\fin)\c
Jfi2!10 Since d2'.10.nil nil

{U\ I {{{fin\.nil)[b a] \ nil)\a \ fin'!.RM)\fin)\c
IT Since finlnil^-^nil and JM-RM'-^RM

{U\ I {{nil[b I—> a] | nil)\a | RM)\fin)\c

h-

This derivation of transitions illustrates how the system may evolve. However,
the linear representation of the system in the Plain CHOCS syntax does not show
very well how the underlying process network dynamically reconfigures itself. As an
attempt to illustrate this the following cartoon is intended to show how the system
evolves spacially when going through the first of the above transitions:

Chapter 5: Plain CHOCS 140

fin

RM'

Fig 5.0.1: Dynamic reconfiguration of user/resource system.

We have adopted the convention from the process diagrams in [MilParWaWQj
and displayed private links inside the circles representing processes and public links
along the edges of the connections. The box around the resource R is symbolizing
the renaming of the public name b to the private name a which is not a process, but
more like an encapsulation construct.

It is interesting to note that should a user make copies of the received resource
i.e.: Us = c?x{x[b i—>• a] | x[b a] | a\A.a1y.dz\y.niT)\c then the resource manager
will restore itself after the first copy has finished its task. Since the signal is private
between the resource manager and the particular copy of the resource sent to U3 the
signal from the "second" copy will be ignored (or rather the "second" copy will he
in the state finl.nil which is equivalent to nil since no process is able to match this
signal). U3 will nondeterministically send out either 8 or 16 on d^ depending on
whether only one copy of the resource or both copies are used.

Note that the number of users and resources is not hard wired into the system. As
for the system studied in [EngNie86] we may add any number of users or resources
without changing the structure of the overall system e.g.:

= (f/i Un I RMi I . . . RMm)\c

The above system is very simple, but it easily generalizes to systems with a queue
system for resource requests from users, multiple resources or even systems where the
resource is returned to the resource manager instead of just stopping and allowing
a new copy to be used. Some quite elaborate examples of user/resource systems
with the above facilities which use process passing have been studied by Cozens in
[Coz90]. This work presents a promising motivation for the use of process passing
in system description.

Chapter 5: Plain CHOCS 141

5.1 S y n t a x and Semant ics

The syntax of Plain CHOCS is essentially that of "dynamic" CHOCS with a re-
stricted renaming construct.

Processes are built from the inactive process nil, three types of action prefixing,
often referred to as input, output and tau prefix, (nondeterministic) choice, parallel
composition, restriction, renaming and variables to be bound by input prefix. We
presuppose an infinite set Names (the set of port names) ranged over by a, 6, c,..
and an infinite set V of process variables ranged over by x,y,z,... We denote by
Pr the set of expressions built according to the following syntax;

p ::= nil | alx.p | alp'.p | T.p | p + p' | p j p' | p\a | p[a 6] | z

To avoid heavy use of brackets we adopt the following precedence of operators:
restriction or renaming > prefix > parallel composition > choice.
We shall write p[S] for p[a b] where S = a ^ b and let Dom{S) = {a} and
Im{S) = {&}. The operator \a acts as a kind of A-binder for port names (elements
of Names) in a sense to be formalized later, e.g. we have a notion of ^-convertibility
of restricted names. To formalize this we define the set of free names fn{p) of a
process p.

Definition 5.1.1 We define free names fn{p) structurally on p:

fn{nil) — 0

fn{a?x.p) = {a} U fn{p)

fn{a\p'.p) = {a} U fn{p') U fn{p)

/n(r .p) = fn{p)

fn{p + p') = fn{p) U fn{p')

fn{p I p') = fn{p) U fn{p')

fn{p\a) = fn{p) \ {a}

fn(p[S]) = fn{p) U Dom(S) U Im{S)

fn{x) = 0

The set of free names of processes constructed using the renaming construct
carries a potential overhead since it is not necessarily the case that the names in
Dom{S) U Im{S) are going to be used, but the overhead is necessary since we may
receive processes in communication with free names which will be renamed by S.
The free names of Plain CHOCS processes are going to play an important role in the

Chapter 5: Plain CHOCS 142

definition of the semantics of the language and as we shall see in the next section,
where we define a notion of equivalence, the free names are the windows through
which we can observe the processes. As opposed to the static sort of dynamic
CHOCS we point out that processes to be sent contribute to the free names of the
overall system whereas the empty set of free names is ascribed to process variables.

We may need to syntactically substitute one port name for another. Using the
above definition we may now define a label substitution.

Definition 5.1.2 First for a,b,c E Names let

1
Then label substitution {b/c}p is defined structurally on p:

{b/c}nil = nil

{6/c}(o?z.p) = {{b/c}a)?x.{{b/c}p)

{b/c}{a\p'.p) = {{b/c}a)\{{b/c}p').{{b/c}p)

{b/c}{T.p) = r.{{b/c}p)

{b/c}{p + p') = ({6/c}p) + ({6/c}p')

{b/c}{p I p') = i{b/c}p) I {{b/c}p')

fit T / \ \ i P\^ (Z C
{ /^J\P\^) — I (^^b/c}{{d/a}p))\d otherwise for some d ^ fn{p\a) U {b}

{b/c}{p[ah-^ a']) = ({6/c}p)K{6/c}o),^({6/c}a^l]
{b/c}{x) = X

Input prefix is a variable binder. This implies a notion of free and bound vari-
ables.

Definition 5.1.3 We define the set of free variables FV{p) structurally on p:

FV{nil) = 0

FV{a?x.p) = FV{p) \ {x}

FV{alp'.p) = FV{p) U FV{p')

FV{T.P) = F V { p)

FV{p + p') = FV{p)\JFV{p')

FV{p\p') = FV{p)UFV{p')

Chapter 5: Plain CHOCS 143

FV{p\a) = FV{p)

FK(p[Sl) = FV{p)

FV{x) = {i}

A variable which is not free i.e. does not belong to FV{p) is said to be bound in

V-
An expression p is closed if FV{p) = 0 . Closed expressions are referred to as

processes. The set of closed expressions is denoted by CPr.

To allow processes received in communication to be used we need a way of
substituting the received processes for bound variables. We shall use the definition
of label substitution to avoid unintentional binding of free names when processes
are substituted.

Definit ion 5.1.4 The substitution p[q/x] is defined structurally on p:

nil[q/x] = nil

a?y.{p[q/x]) if y ^ x and y ^ FV{q)
{aly.p)[qlx] = a?z.((p[z/?/])[g/z]) otherwise

z 0 FV{p) U FV{q) U {x, y)
{a\p'.p)[qlx\ = a\{p'[qlx\).{p[qlx])

{T.p)[qlx] = T.{p[qlx\)

{p + p')[qlx\ = {p[ql x]) + {p'[ql x])

{p\p')[qlx] = {p[qlx\)\{p'{qlx\)

(P\a)k/a:] = {{{dla]p)[qlx\)\d for some d ^ {fn{p\a)[J fn{q))

- { I ilrJise

The only difference between the above definition of substitution and the one
given for dynamic CHOCS in definition 2.2.3 is in the clause for restriction. In the
above definition we ensure that we do not restrict names in q.

Here are a few useful properties of substitution:

Proposi t ion 5.1.5

1. I f x ^ y then p[p'/ x][p" / y] = p\p"/y][p'[p"/y]/x].

2. PIP'/X] =P if X ^ FV{p).

PROOF: The proof of 1. is easily established by structural induction on p. Then
2. is a corollary of 1. •

Chapter 5: Plain CHOCS 144

With the above machinery in hand we may now give the operational semantics
for Plain CHOCS. The operational semantics is given in terms of a labelled transi-
tion system in the style of [PI08I]. The transition relation —»• is a family of binary
labelled relations between elements of CPr (processes) and CPrU [CPr —CPr]
(either processes or functions from processes to processes) of the form p —> p'.
The action r may have one of the following forms: a^x, alsp, r, where a G Names,
B C Names, x E V and p G CPr. Let the bound names bn of an action be defined
as:

{ 0 otherwise^

In the definition of the semantics of Plain CHOCS it is convenient to write p\B
where B C Names is a finite set: p\B is shorthand for p\bi... \6„ where B =
{ 6 1 , , bn} and p if B = 0.

Definition 5.1.6
Let —» be the smallest transition relation closed under the rules of table 5.1.1.

input alx.p p

, , , / a!0P' output a\p .p —> p

tau T.p —^ p

choice P P"

ren

, r p + q —

r p —^ P"
1 r p\q —V p" 1 q

a?x p » p"

par — , bn{r) n fn{q) = 0

p[5) p"[SI

Chapter 5: Plain CHOCS 145

p p"

p[S] P"[S']

p ^ p "

,Br\{Dom{S)KMm{S)) = %

p[5]

p ^ p "

p\b ^p"\b

P " 'a / y/

p\b'

P ^ p "

res

,a^b,b^ {fn{p') D fn{p"))

p\b j/'\b

a'-BP' // p ^ p
open 1 ,J,, -I ,, ,a^cMfn{p\c),ce(fn(p>)nfn(p"))sB

p\c

p p"
non-struct : ; ,Bn(/n(p')U/n(p"))=B'n(/7i(p')U/n(p"))

The choice, par, corn-close rules have symmetric counterparts.
Table 5.1.1: Operational semantics for Plain CHOCS

The structure of this transition system is tailored to cater for the behaviour we
have in mind for systems hke those described by (5.3) and (5.4) in the introduction
to this chapter, but it also carries some philosophy of its own. The three kinds of
actions yield the following types of transitions or observations:

Input action p p', this kind of transitions may be interpreted as, "the process
p is capable of receiving on channel a". We only allow transitions of this kind
where p E CPr and p' G CPr —> CPr. We want to model input transitions
in such a way that no further observations are possible until a value is sup-
plied. The reason for this is both technical and philosophical. Technically it
ensures that we do not "rewrite" to open terms which, without care, could
lead to confusion of free variables e.g.: a?x.x | b?x.x alx.x \ x x | x.
Philosophically it follows a point of view of only observing systems by atomic
observations or combinations of atomic observations. The input observations

Chapter 5; Plain CHOCS 146

consist of observing that input on channel a is possible and the systems readi-
ness to accept a value. To make further observations about this process we
have to supply a value say q E CPr and observe the system p'[q/x] with this
value. A more suggestive notation would perhaps be p Xx.p', but it is
not essential in the present calculus since x only acts as a place holder. We
have chosen the notation p p' since p' is describable in the Plain CHOCS
syntax. We could extend the above transition system to open expressions. To
avoid confusion of variables introduced by the input-rule we would have to
ascribe the par-rule by the additional constraint FV{p") fl FV{q) = 0. We
have not done this since the theory of equivalence will be defined in terms of
closed expressions and extended to open expressions using the definition for
closed expressions.

Output actions (with scope extrusion) p p" , if B = ^ this kind of tran-
sitions may be interpreted as, "the process p can output the process p' on
channel a and in doing so become p"". To observe this action we observe
that output on channel a is possible, to make further observations we have to
observe both the value p' and the resulting state p". If p' and p" share some
private channels these will be in the set B and a scope extrusion is necessary.
We observe this by the combined observation as for normal output actions
together with the additional observation of the scope extrusion. A more sug-
gestive notation for output transitions might be p {B,p',p"). We refer to
p' as the emitted process and p as the emitting process or rather p" since this
is the state of the system after emitting p'.

Silent actions p —^ p', this kind of transitions may be interpreted as, "the pro-
cess p can do an internal or silent move and in doing so become the process
p'". Silent actions arise from communications between two processes. Since
communications are the only computations in our calculus these are in a sense
the real computations of the system, r-transitions may of course arise from
processes of the form T.p as well.

The input, output and com-close rules form the basis for inferring a communi-
cation between two agents. In the rules of table 5.1.1 all transitions of the form
p p' have the property that p G CPr and p' G CPr CPr and all transitions
of the form p p" have the property p,p',p" G CPr, therefore p'[q'Ix\ G CPr in
the com-close rule. This set of rules gives an operational description where input is
modelled as a function and communication acts as a generalized application. This
is very different from the nature of inferring communication in dynamic CHOCS

Chapter 5: Plain CHOCS 147

(or in CCS with value passing [Mil80]). In dynamic CHOCS we have the following
three rules as the basis for inferring communication;

a?p' „ a'.p' ,1
o a?p' r / / 1 I / p —^ P 9 —^ 9 a?x.p —*p\p/x] alp .p —>p —j ; ——

p\q —,pfi\q"

Note that in these rules the transition relation is always between elements of
CPr. One way of interpreting the above rules is to say that the process with input
prefix knows all the possible values it can receive. What it does is to offer a (an
infinite) choice between all the possible new states and when the communication
takes place it is only a signal from the output process to the input process telling
which value to use (choose). The value is not really transmitted. This viewpoint
is further strengthened by the (elegant) way of encoding value passing in SCCS as
described in [Mil83]. In [MilParWal89] a scheme similar to the above for inferring
communication has been termed early instantiation, referring to the fact that the
instantiation of the free variable takes place in the axiom for input prefix as opposed
to the scheme used in table 5.1.1. The scheme we are using has been termed late
instantiation, though there is a difference since processes are allowed to offer new
transitions after an input transition. This calls for some machinery to ensure that
free variables are not confused. We have chosen the late instantiation scheme with
the restriction that p' G CPr CPr in p p' for the reasons given above;
late instantiation also seems necessary for the scope opening and closing rules for
the restriction operator. The rules concerning the restriction operator have several
alternatives, e.g. in dynamic CHOCS this operator does not bind names in the
process emitted but only in the emitting process as the examples in the introduction
show. Another possibility would be the following rule

i.e. the res-rule without the side condition b ^ fn{p') D fn{p"). This approach
would ensure that bound names would be bound both in the emitted process and
in the emitting process, but it is too restrictive since they can not use the local
channel to communicate with one another since the \b encapsulates the process.
To elaborate on this we follow the ideas of [EngNieSG, MilParWal89] and adopt the
restriction rule above, but with the mentioned side condition. We also introduce
two new rules; open and com-close. The opening rule signals that in the emitted
process there are some bound names, names which are shared with the emitting
process. The com-close rule ensures that exported restrictions are reintroduced

Chapter 5: Plain CHOCS 148

upon reception. The condition on this rule ensures that we do not bind free names
in the receiving processes. When jB = 0 this rule is just a communication rule.

We conclude this section by Hsting a few useful properties of the transition
system defined in table 5.1.1

Proposition 5.1.7

1. If p p" and b ^ fn{p) U B then p ^ ^ {6/c}p" for any
ce B.

2. If p p" then p p" for some B' with B n (/n(p') U fn{p")) =
B' n {fn{p') U fn{p")) and B' C fn{p') fl fn{p") and B' fl fn{p) = 0.

3. If p ^ p' then fn{p') C fn{p).

4. I f p p" then fn{p') C fn{p) U B and fn{p") C fn{p) U B

5. If p-^ p' then fn{p') C fn{p).

PROOF: By induction on the length of the inference used to establish the transition
and cases of the structure of p. •

5.2 B i s imula t ion and Equivalence

In the previous section we presented the operational semantics for Plain CHOCS
in terms of a labelled transition system. The structure of this transition system
resembles a merge between the applicative transition systems of [Abr90] and the
higher order communication trees used in the semantics for CHOCS in chapter
2. The transition relation forms the basis for the observations we can make
about processes, but it is in itself too shallow to use as a distinguishing equivalence.
Instead we use the notion of (bi)simulation [ParSl, Mil83] redefined to the kind of
observations the transition allows:

Definition 5.2.1 An applicative higher order simulation R is a binary relation
on CPr such that whenever pRq and a € Names then:

(i) Whenever p p', then q q' for some q', y and
p'[r/x]Rq'[r/y] for all r G CPr

(a) Whenever p p", then q q" for some q',q" with
B n {fn{p) U fn{q)) = 0 and p'Rq' and p"Rq"

Chapter 5: Plain CHOCS H9

(Hi) Whenever p —^ p', then q q' for some q' with p'Rq'

A relation R is an applicative higher order bisimulation if both it and its inverse
are applicative higher order simulations.
Two processes p and q are said to be bisimulation equivalent i f f there exists an
applicative higher order bisimulation R containing {p,q)- In this case we write

The first clause of this predicate is essentially the clause for applicative (bi)simu-
lation in the Lazy-A-Calculus as defined in [Abr90]. It can be interpreted as saying
that if p can do an input on channel a and become the function p', then q must
match this by being able to input on channel a and become the function q' and for
all values (arguments) we can receive on this channel the resulting process together
with this value should continue to simulate each other. The second clause with
B — $ and the third clause are similar to the clauses of higher order bisimulation
defined in definition 2.3.2. The second clause supports a kind of black box view of
the processes being sent. If p can output a process p' on channel a and in doing so
become p", then q should be able to output some q' on channel a and in doing so
become q" and p' and q', as well as p" and q" should be equivalent. The second clause
with 5 ^ 0 is a generalization of the clause for scope extrusion in the strong ground
bisimulation defined in [MilParWal89]. 5 is a set of private channels between p'
and p". These channels are exported from their original scope and are intended to
become restricted upon reception.

Now for R C Pr^ we can define A^{R) as the set of pairs (p, g) satisfying
for all a € Act the clauses [i) to (in) and their symmetric counterparts above.
From this definition it follows immediately that i? is a bisimulation just in the
case R C JI-B{R). Also, JhB is easily seen to be a monotone endofunction on the
complete lattice of binary relations (over CPr) under subset inclusion. Standard
fixed point results, due to Tarski [Tar55], yield that a maximal fixed point for JH3
exists and is defined as U{-R : R C JH3{R)}. This maximal fixed point actually
equals ~ .

Proposition 5.2.2 ~ is an equivalence

PROOF: Reflexivity and symmetry are straightforward since the relation Id =
{{PiP) '• P G CPr} is an applicative higher order bisimulation and the relation

= {(g, p) ; (p, g)} is an applicative higher order bisimulation if R is an applicative
higher order bisimulation. Transitivity follows from the fact that if R and S are
applicative higher order bisimulations then i? o 5 is an applicative higher order
bisimulation. To see this observe that if (pi,p3) ^ R o S and pi p[then for

Chapter 5: Plain CHOCS

some p2 such that (pi,p2) G R and {jp2-,pz) E S we have p2 p'2 for some pj,
y and ip'iir/x],p'2[r/y]) E R for all r and we have p^ p'^ for some p'^, z and

G S for all r. Thus {p'\[rIx\,p'^[rIz\) ^ Ro S iox all r.

If Pi p'l then for some p2 such that (^1,^2) G R and (^2,^3) E S and B fl
(/'^(Pi) U fn{p2)) = 0 and B n (/n(p2) U fn{p3)) = 0 which implies B fl {fn{pi) U
fn{p3)) = 0 we have p2 P2 for some p'̂ , p'̂ such that (^'1,^2) G R and G

R and we have ps pg for some pg, such that {p'2iPz) G 5 and (P2,P3) G 5.
Thus {p'lip's) E Ro S and (p'/, p") G i? o 5.
If Pi —^ Pi then for some p2 such that (pi,p2) G R and (p2,p3) G 5 we have
P2 P2 for some pg such that (p",?^') G jR and we have pa p̂ for some pg
such that (p2,P3) G S". Thus (Pi,P3) ^ Ro S. •

Lemma 5.2.3 / / p ~ q and b ^ fn{p) U fn{q) then {b/a}p ~ {b/a}q.

Before relating the process constructions of Plain CHOCS to the underlying
semantic equivalence ~ we present a technical construction called an applicative
higher order bisimulation up to restriction. This construction resembles the higher
order bisimulation up to ~ presented for CHOCS in section 2.6.

Definition 5.2.4 An applicative higher order simulation up to restriction R is a
binary relation on CPr such that whenever pRq and a G Names then:

(i) I f b ^ fn(j)) U fn{q) then {b/a}pR{b/a}q

(ii) Whenever p p', then q q' for some q', y and
p'[r/x]Rq'[r/y] for all r G CPr

(Hi) Whenever p p", then q q" for some q^q" with
B n {fn{p) U fn{q)) = 0, p'Rq' and p"Rq"

(iv) Whenever p p', then q q' for some q' and either
p'Rq' or for some p", q" and b: p' = p"\h, q' = q"\b and
p"Rq"

A relation R is an applicative higher order bisimulation up to restriction if both
it and its inverse are applicative higher order simulations up to restriction.

Lemma 5.2.5 If R is an applicative higher order bisimulation up to restriction
then R C ~ .

Chapter 5: Plain CHOCS 151

PROOF: We show that the relation B) = Une^^n where

Ro = R

Rn+i = {{p\b,q\b) : {p,q) G Rn-,b e Names}

is an applicative higher order bisimulation.
First we show by induction on n that if pRnq and c ^ fn{p) U fn{q) then
{cla]pRn{cla}q.
For n = 0 this is immediate from the definition of applicative higher order bisim-
ulation up to restriction. Suppose n > 0 and p\bRnq\b where pRn-iq and c ^
fn{p\b) U fn{q\b). If a = i then {c/a}{p\b) = p\bR^q\b = {c/a}{q\b). li a ^ b
then {c/o}(p\6) = ({c/o}({6i/6}p))\6iA\({c/o}({6i/6}g))\6i = {c/a}{q\b)
Next we show by induction on n that if pRnq then

(i) Whenever p p', then q q' for some q', y and
p'[r/x]R^q'[r/y] for all r 6 CPr

(ii) Whenever p p", then q q" for some q',q" with
B n {fn{p) U fn{q)) = 0, p'R^q' and p"l{Sq"

(iii) Whenever p p', then q —^ q' for some q' and p'R^q'

n = 0 This case is immediate from the fact that RQ is an applicative higher order
bisimulation up to restriction and from the definition of jRV

n > 0 Suppose pRnq where p = pi\b and q = qi\b.

1. If p p' this must have been inferred by the res-rule and pi p[
with a ^ b and p' = p[\b. Then for some q[, y we have qi q'^
and p'i[rIx\RSq[[rjy] for all r G CPr. Then q q' = q[\b and for all
r G CPr and some c ^ fn{p'i\b) U fn(q[\b) U fn(r) we have p'[rjx] =
(({c/6}p;)[r/a;])\ci?\(({c/6}9l)[r/a:])\c = q'lr/x],

2. Suppose B n {fn{p) U fn{q)) = 0. K p p" and this has been inferred
by the res-rule then pi p'[with a ^b and 6 ^ S U ifn{p[) fl fn^p"))
and p' = p[\b and p" = p"\b. So for some q[, q" we have qi q" and
p'LR^q'I and p'{R^q'{. Thus q q" with = q[\b and q" = and
p'l^q' and p"I^q".
If p p" and this has been inferred by the open-rule then pi p"

Chapter 5: Plain CHOCS 152

with a ^ b, B = B' D {c} and b G fn{p[) U fn{p") and c ^ fn{pi\b) U B'
and p' = {c/6}pi and p" = {c/6}p". So for some g" we have
qi q" and p'lB^q'i and p"BSq". Thus q q" with q' = {c/b}q[and
q" = {c/b}q" and p'B^q' and p"B^q".
If p p" and this has been inferred by the non-struct-rule then p
p" with B'r]{fn{p')\J fn{p")) = Br\{fn{p')U fn{p")). So for some 9', q"
we have q q" and p'R^q' and p"R^q". Thus B' D {fn{q') U fn{q")) =
B n {fn{q') U fn{q")) and q q" and we already know p'BSq' and
p"R\q".

3. If p p' then pi p'-^ and p' = p'^\h. Then q^ and p\BSq[.
Thus q —^ q' = q[and p'R^q'.

•
Let X = (x i , . . . , a;„) be a vector of variables of length n and z, ^ Xj if i ^ j. We also
consider z as a set of variables { z i , . . . , a:„} and we write x C FV{p) which means
that the set x is a subset of FV{p). Let p^jx] mean (. . . {p[qi/xi]).. .)[9„/x„]. We
only consider substitutions of compatible vectors, i.e. of vectors of the same length.
Let ~ 92 mean qi- ~ q^^ for all G ?,•, i G 1,2 and let g, G CPr mean q^ G CPr
for all qi- G qi-

Proposition 5.2.6 ~ is a congruence relation on processes (closed expressions).

1. p\qilx] ~ ~ I2 ^ C FV{p)

2. alx.p ~ alx.q if p[rlx] ~ qlr/x] for all r

3. a\p'.p ~ a\q'.q ifp^^q and p' ~ q'

4. T.p ~ T.q if p ~ q

5. p + p' q + q' if P ~ 9 GMff p' ~ 5'

6 . p I ~ 9 1 9 ' if P ~ 9 p' ~ 9 '

7. p \o ~ q\a i f p ~ g

8. ^ [5] ~ q[S] i f p ~ 9

Chapter 5: Plain CHOCS 153

P R O O F :

1. We prove this by showing that the relation ACR*, the reflexive and transitive
closure of ACR, where

ACR = {(p[9i/^],p[92/'^]) : pE PrLxC FV(p) & ^ gg &: g,- E CPr},

is an applicative higher order bisimulation up to restriction.

Note if qi ~ g2 then {x{q]_lx\,x[q2lx]) G ACR* and we write (91,92) E ACR*.

We only show that ACR* is an applicative higher order simulation up to restric-
tion, symmetry of ACK* then yields the result. To see that ACR* is an applica-
tive higher order simulation up to restriction we show that if (pi,p2) E ACR
then Pi = p\jiilx] and:

(i) If 6 ^ U fn{p%lx]) then
{ 6/a } /-x]) A CR* {6/0} (P[92/X])

(ii) Whenever p', then ^[92/^] for
some 9', y and p'[r jx]ACK'q'{r jy\ for all r 6 CPr

(iii) Whenever p[qi/x] p", then ^[^2/^] for
some q',q" with B PI {fn{p) U fn{q)) = 0, p'ACR*q'
and p"ACR*q"

(iv) Whenever p[9i/x] p', then p[q2/x] —^ q' for
some q' and either p'ACR*q' or for some p", q" and b:
p' = p"\b, q' = q"\h and p"ACR*q"

If (p,g) e ACR* then there is a sequence p i . . .p„ such that (p,pi) E ACR,
{pi,pi+i) 6 ACR for 1 < z < n and {pn,q) € ACR. The result then follows by
induction on the length of the transitive sequence p i . . . p„ of ACR*.
First (i) is easily proved by structural induction on p using lemma 5.2.3 in the
case p = y.

Next we show (ii)-(iv) simultaneously. We proceed by induction on the length
of the inference used to establish the transitions of plgi/x] and cases of the
structure of p. We only need to consider transitions inferred by use of the
structural rules since we may transform any derivation of a transitions into
an equivalent one where we use the non-struct-rule excatly once after each
application of a structural rule.

p = nil Trivial since p[g,/z]

Chapter 5: Plain CHOCS 154

p = aly.pi Assume y (otherwise use a-conversion on y). Then p\iqjx] =
«?2/-(Pi['9./^]) and p[qi/x] Pi[g,/z]. Since FV{pi) C (x U {y}) and
y ^xwe have {pi[qi/x])[r/y] = pi[q-i^,r/x,y]ACR*pi[q2,r/x,y] =

for r E CPr, since r ~ r and q- are closed.

P = a!pi P2 Then p[?,/x] (pziW,/'^])
and P2 [?! /z] A CR*p2 [92 /^] and Pi [9% /^] A [gg /z]

p = r.pi An argument similar to the argument given in the case above yields
this case.

p = Pi+P2 If p[9i/z] p' then

either pi[qi/x] p' by a shorter inference. There are three cases
depending on the structure of r. We show the case when r — alx:
By induction Pi\q2/^] —^ p" and p'[r/x]ACR*p"[r/z] for all r G CPr.
By the operational semantics for choice we have (pi +P2)\^2/^] P"
which is a matching move.

or p2\jqi/x] p' and we may argue as above.

p = Pi \P2 If p[qi/x] p' then

either Pi[qi/x] p[by a shorter inference and p' = p'^ | Piiqi/^].
There are three cases depending on the structure of r:

r = alx Then by induction Pi[g2/z] p" and {p'i[rIx],p'{[rjz\) £
ACR* for all r G CPr. Then by the operational semantics for
parallel we have {pi | P2)[q2M = {Pii^M) I (P2[92/^]) Pi I

Since {p'i[r/x],p"[r/z]) G ACR* for all r € CPr there
exist ps, q\', q]' and x' for each r E CPr such that p'i[r/x] =

and p"[r/z] = with FV{p^) C ^ and qX ~ q^.
We may assume D x = 0 since if x' fl x 7̂ 0 we proceed by
choosing y such that y D {FV{p3) U x' U x) = 0 and we have
Pslq]'/'^] = i P 3 [y / x '] W i ' / y] by proposition 5.1.5. Thus {p[|
P2\q\m)[rlx] = p'i[r/x] I P2[9?/x] = (ps | P2)[gi' and
(P i I P 2 \ ^ i m) [r l z \ = P i [r / z] I P 2 [? l / x] = (p 3 I P 2) [9 ^ U g ^ / x ' U x]

a n d ((p 3 I P2){qX U 9 ? / ^ U x] , (p a I P a) [9 ^ ' U qHx' U x]) € ACR*
f o r e a c h r G CPr b y p r o p o s i t i o n 5 . 1 . 5 s i n c e r a n d q] a n d qf a r e

a l l c l o s e d .

r = cIbp' Then B D /"(p2[9i/^]) = 0- By induction pi[92/^] Pi
with (p',p") 6 ACR* and (p'i,pi) G ACR* and B r i { f n { p i [q i / x]) \ J
/"(Pi[92/^])) = 0- Thus B n fn{p2\^2/^]) = 0 and by the opera-
tional semantics for parallel Pi[92/^] I P2[92/^] Pi I P2[92/®]-

Chapter 5: Plain CHOCS

Since {p'i,p") € ACR* there exist ps, q\', and z' such that p[=
Psiql'/'^] and p" = pslq]'/'^] with FV{pz) C x' and qX ~ We
may assume x' H x = 0 since if x' fl x 7̂ 0 we proceed by choosing
y such that y D {FV{pz) U x' U x) = 0 and we have =

by proposition 5.1.5. Thus (pi | P 2 [9 ? / ^]) = {pz I

P2M U q\l^ U x] and (p'/ | p^lqll^) = (Ps I P2M U U x]
and ((p3 I P 2 M U U x], (p3 I P2)[t2 U U x]) e ACR*.

T = T and we may argue as above.

or P2[9i/®] —^ p'2 and we may argue as above.

or r = r and w.l.o.g. Pi[gi/z] pi and Pz^Wi/̂] Pg by shorter
inferences and p' = (p'i[r'/x] | P2)\B and B Cl fn{p[) = 0. By in-
duction P2[92/^] P2 with {r',r") E ACR* and (P2,P2) G ACR*
and Pi[^2/^] Pi with (pi[r/x],p"[r/z]) € ACR* for all r € CPr.
By proposition 5.1.7 we may assume that B fl fn{jp") = 0. By the
operational semantics for parallel (pi | P2)[92/^] {p'iV" IA I
P2)\B. To see that p[[r'/x] | p'2ACR*p"[r"/z] | p̂ and thus show-
ing that ACR* is an apphcative higher order bisimulation up to re-
striction we observe that (pi[r/x],p"[r/z]) G ACR* for all r G CPr,
in particular this is true for r'. Clearly p'l[r'Iz\ACR*p'l{r"jz\ since
r'ACR*r" and if (r', r") G ACR* then r' = n^g^/x] and r" = ^[gg/x]
for some ri with FV(ri) C x and ~ gg for some closed g,.
Then p'i[r'Jz] = Pi[ri[gi/x]/z] = {p'i[rilz\)\q^lx] and p'i[r"jz] =
P\[n\^2l'^]lA = (Pi[ri/z])[g2/x] since FV{p'l) = {z] and FV{ri) = x
we have Fy(pi[ri /z]) = x and ((Pi [ri/z])[gi/x], (p"[ri/y])[93/x]) G
ACR*. Thus ip'i[r'/x],p"[r"/z]) G ACR*. Therefore there exist ps,
q\, q\ and x^ such that p'^[r'fx] = Pz^\lx^\ and Pi[r"/z] =
with FV{P3) C # and q\ ~ q^. Also, since (P2,P2) G ACR* there
exist p4, ql, ql and x^ such that pg = P4[9i/^^] and pg = P4[92/^^]
with FV{P4) — x^ and ql ~ q^. We may assume x^ D x^ = 0 since if
x^rix^ ^ 0 we proceed by choosing y such that yn(FV(p3)UFV'(p4)U
x^ U x^) = 0 and we have = (P3[y/^^])[9,-/y] by proposition
5.1.5. Therefore we have pi[r ' /x] | pg = 1 (P4[9i/^^]) =
(P3 I P4)[G| UG^/X^ Ux^] and p"[r'/z] | p^ = {p3[ql/x^]) | (P4[9I/^^]) =
(P3 I P4) [92U92/ ' ^^Ux2] and (pi[r /x] | P2,PI[r/z] | p^) G ACR*. (Note
that if we have to introduce a "new" y it is because two or more oc-
currences of the same x,- refer to different 5,'s after the transition.)

p = Pi\b Then p[g,/x] = (({c?i/6}pi)[9,/x])\rf.- for some di 0 /n(pi \6)U/n(9,) .
By (i) we may assume h = dx = 6,2 ^ /n(pi \6) U /n(g^) U K

Chapter 5: Plain CHOCS 156

p[qilx\ p" then if

r — alx Then Pi[9i/^] —^ p'x by a shorter inference and p' = p'i\h and
a ^ b. By induction Pi[92/^] P2 G ACR* for all
r G CPr. By the operational semantics for restriction (pi\6)[^2/^]
P2\b. Since {Piir/x],pi^lr/z]) E ACR* for all r E CPr there exist p^,
Q^, 92 and X for each r such that p[= PSIQI/x] and pg =
with FV{pz) C X and ~ (p'i\^) = (P3\6)[9i/^] and =
{P3\b)[q2/x] thus {p[\b,p'^\b) G ACR*.

r = alfip' Then

either Pi[qi/x] p'{ by a shorter inference and p' = p'i\b, p" = Pi\b,
b ^ a, b ^ B, b ^ fn{p[)r]fn{p"). Then by induction pi[52/^] P2
with (^'1,^2) € ACR* and {p'i^p'i) G ACR* and B fl (/n(pi[9i/x]) U
/n(px[92/^])) = 0- Then by the res-rule we have {pi[q2/x])\b
P2\b and we may argue as above that (p^\6,p2\^) ^ ACR* and
(p;'\6,pg\6) G A C R \

or Pi[qi/x] p" by a shorter inference and p' = {d/b}p[^ p" =
6 ^ o, 6 ^ B' , 6 e n / n (p ; ') , B = B' U {d},

d ^ B' li fn{{pi[qjx])\b). Then by induction Pi[g2/z] pg
with (p'i,p2) € ACR* and (Pi,P2) G ACR* and fl (/w(pi[9i/'ic]) U
/n(pi[92/^])) = 0- If G fn{p2) n fn{p2) then by the open-rule we
have (pi[g2/^])\6 {d/b}p2 and by (i) we have
({j/6}p;,{(f/6}P2) E ACR' and G ACR*. H 6 ^

fn{p2)r\fn{p2) then by the non-struct-rule we have (pi[92/^])\^
P2 and P2 = {d/b}p2 and pg = {d/b}p2 and by (i) we have
({j/6}p;,{(f/6}P2) G ACR' and G ACR'.

r = r and we may argue as above.

P = Pi[S] lip[qjx] = (pi[gi/x])[S'] p" then if

r = a?x we have Pi[Wi/^] Pi by a shorter inference and a = S{b) and
p" = p'/f^]. By induction Pi[g2/^] P2 and p'/[r/x]ACR*P2[r/z]
for all r G CPr. Then (pi[9i/^])[5] P2[S] with (p'/[r/a:])[S'] =
(Pi[51)[r/z]ACR'(p^[g])[r/z] = (pg[r/z])[51 for aU r G C f r .

r = alsp' we have Pi[9i/^] p" by a shorter inference and a — 5(6)
and B D {Dom{S) U 7m(5')) - 0 and p' = p[and p" = Pi[5].
By induction Pi[92/^] P2 and p[ACR*p2 and p"ACR*p2. Then
(Pi[9i/^])['S1 P2[S] with p[ACR*p'2 and p'/[5]ACRV2'['S'].

r = r this case is similar to the above.

Chapter 5: Plain CHOCS 157

p = y By assumption FV{p) C x thus x = (y) and if p[9i/x] = qi q[then
if

r — a?® we have p \^ /x] = % —^ 9% for some q'2 and z. Since ~ 92 we
have {q'i[r/x], for all r G CPr and thus {q'i[r/x], G
ACR* for all r G CPr

r = alsp' we have p[^/x] = 52 2̂ some q'̂ and q'̂ . Since qi ~ 92
we have G~ and (91,^2) and thus G ACR* and

€ ACR'
r = r A similar argument as above applies.

Thus in each case we have a matching move for

2. This is proved by showing that the relation Ri = jRU where:

R = {(a?x.p,a?x.q) : FV{p) = FV{q) C {zj&Vr G CPr.p[r/x] ~ q[r/x]}

is an applicative higher order bisimulation Note that the relation Ri consists
of two parts; one part covers the structure we are interested in and the second
component is a kind of closure to cover the processes sent and received. The
second component is necessary since the processes sent and received do not
necessarily have the structure of the first part.
That the above relation is indeed an applicative higher order bisimulation is
easily established.

Assume {p,q) G Ri- Then

either p q and we are done since if p p' then q q' for some 5', r'. If
r = a?x then r' = aly and for all r G CPr we have (p'[r/x], q'[r/y]) G~C
Ri. If r = alsp" then r ' = alsq" and we have B fl {fn{p) U fn{q)) = 0
and {p", q") ~ C R^ and (p', q') ~ C R^. If r = r then v' — T and we have
{p\^) -Ri-

or p = alx.p' and q = alx.q'. If alx.p' p' then r = alx. Then alx.q'
q' and by assumption p'[r/x] ~ q'[rlx\ for all r G CPr which implies
{p'[rlx\,q'[rlx]) G Ri-

3. follows from {{a\x.y)[{p,p')/{x,y)],{a\x.y)[{q,q')/{x,y)]) G ACR if p ~ 5 and
p' ~ q' and x ^ y.

4. follows from ((T.X)\P/X], (r.x)[g/x]) G ACR if p ~ q-.

5. follows from {{x + y)[{p,p')/{x,y)],{x + y)[{q,q')/{x,y)]) G ACR if p ~ g and
p' ~ q' and x ^ y.

Chapter 5: Plain CHOCS 158

6. follows from ((x | y)[(p,p')/(x,y)],(x | y)l(q,q')/(x,y)]) G ACR if p ~ 9 and
p' ~ g' and x ^ y.

7. follows from {x\plx]^x[qlx\) G ACR if p ~ 9 and the fact that ACR* is an
applicative bisimulation up to restriction.

8. follows from ((x[5'])[p/x], (a:[5])[g/a;]) € ACR if p ~

•
The congruence result easily generalizes to open terms by standard techniques

by defining p ~ 9 iff V r i . . . r^-pfr i . . . r^ /z i • • - x^] ~ q[ri . . . r„ /xi . . . a:„] where
xi. . .Xn are the free variables of p and q and r i . . . r„ are closed terms. This is
equivalent to the following definition: p ~ g iff a ?x i a?a;„.p ~ a^xi alxn.q.

5.3 Algebraic Laws

From establishing bisimulations between Plain CHOCS processes we may show that
two processes are equivalent, but this technique often involves quite an amount of
ingenuity in the construction of a bisimulation relation. Instead we may prefer the
more well known techniques of algebraic reasoning. A lot of interesting properties
of Plain CHOCS may be inferred from equational reasoning. This kind of reasoning
may of course be combined with establishing bisimulations directly.

The first set of laws concerns the choice operator and shows that nil is a zero
for + and that + is idempotent, commutative and associative.

Proposition 5.3.1

p + nil ~ p
p + p ~ p

p + p' ~ p' + P
p + (p' + p") ~ (p + p') + p"

PROOF: This follows from showing that the following relations are higher order
applicative bisimulations:

R\ — {{p + nil,p)} U Id

R2 = {{p + p,p)}^ld

R3 = {(p + P',p' + p)} U W

Ri = {(p + {p'+ p"),{p + p') + p")}^id

Chapter 5: Plain CHOCS 159

To see this observe that for {r,q) G Ri,i G {1,2,3,4} we have either (r,g) € Id and
if r r' then r = q —>• q' = r ' and we have a matching move or (r, q) belongs to
the first part of R, and if r r' then this must have been inferred by the rules
for choice. Then also q r' which is a matching move. •

We now proceed with some properties of the restriction operator and its inter-
play with the other operators. To smooth the presentation of equations we intro-
duce a fourth (derived) prefix; an output prefix with scope extrusion: OIBP'- Thus
QIBP'-P is shorthand notation for {a\p'.p)\B with the obvious operational semantics:
alsp'-p P- We shall always assume that B C fn{p') fl fn{p).

Proposi t ion 5.3.2

p\a

p\a\b

{P + P')\a

{a?x.p)\b

(a'!x.p)\b

{T.p)\b

{a\Bp'.p)\b

{alBp'-p)\b

{a\Bp'.p)\b

p if a ^ fn{p)

p\b\a

p\a + p'\a

a'?x.{p\b) if a ^ b

nil if a = b

T.{p\b)

A\B{p'\b).{p\b) if a^h and b 0 fn{p') D fn{p)

(i^-Bu{b}P'-P if a ^b and b e fn{p') D fn{p)

nil if a — b

PROOF: The proposition follows from showing that the following relations are
applicative higher order bisimulations:

Rx = {{p\a,p) : p e CPr,a 0 fn{p)}

R2 = {(p\o\6, p\6\a) : p€ CPr} U Id

R3 = {((P + + P'\®) • Pi ^ CPr} U Id

= {((a?x.p)\&,a?x.(p\6)) ; a?x.p ^ CPr^a ^ b} D Id

i?5 = {((alx.p)\b,nil) : alx.p £ CPr,a = b}

Re = {{{T.p)\b,T.{p\b)) : p e CPr}\J Id

RR = {{{a^-BP'-p)\b,a\B{p'\b).{p\b)) : p,p' G CPr, a ^b,b^ fn{p') n fn{p)} U Id

Rs - {{{a\Bp' .p)\b,a\Bu{b}p'-p) • p,p' ^ CPr, a ^ b,b e fn{p') D fn{p)] U Id

RQ = {{{a\Bp'-p)\b,nil) : p,p' e CPr,a = b]

Chapter 5: Plain CHOCS 160

We must include Id in relation R2 to R4 and RQ to R^. For relation R3, R4
and Rs to Rs this is clear since if {p,q) G G {3,4,6,7,8} then after the first
transition p p' and a first matching transition q —>• q' we will have (p', q') G Id.
For i?2 it is necessary to include Id since the restrictions may disappear due to
applications of the open-rule. •

The following theorem states an expected property of restriction, namely that
the restricted name may be a-converted without affecting the behaviour of the
process involved.

Theorem 5.3.3 p\a ~ {{b/a}p)\b ifb^ fn{p)

PROOF: This theorem follows by showing that the relation

R = {{p\a, {{b/a}p)\b) ; p G CPr, b ^ fn{p)} U Id

is an applicative higher order bisimulation.
The Id component of this relation is necessary in case of scope extrusion due to
an application of the open-rule in which case the restrictions will disappear and a
respectively b will be substituted with a new name c ^ fn(p) U {&}. The matching
moves are easily established by appealing to proposition 5.1.7. •

Before presenting any additional laws we need to introduce a concept related
to the concept of an applicative higher order bisimulation up to restriction. The
new concept is called an applicative higher order bisimulation up to ~ and allows
a relaxation of applicative higher order bisimulation in the sense that the relation
only has to satisfy the applicative higher order bisimulation properties up to the
closure property of

Definition 5.3.4 An applicative higher order simulation up to ~ is a binary
relation R on CPr such that whenever pRq and a G Names then:

(i) Whenever p p', then q q' for some q', y and
p'\rlx] ~ ~ q'i^'ly] for all r G CPr

(a) Whenever p p", then q q" for some q',q" with
B n {fn{p) U fn{q)) = 0 and p' ^ R ^ q' and p" ^ R ^ q"

(Hi) Whenever p —^ p', then q —^ q' for some q' with p' ~
R q'

A relation R is an applicative higher order bisimulation up to ~ if both it and
its inverse are applicative higher order simulations up to

Chapter 5; Plain CHOCS 161

Lemma 5.3.5 I f R is an applicative higher order bisimulation up to ~ then R C~ .

PROOF: Follows by arguments very similar to the arguments given for lemma
5.2.5 •

Definition 5.3.6 An applicative higher order simulation up to ~ and restriction
R is a binary relation on CPr such that whenever pRq and a 6 Names then:

(i) I f b ^ /"(p) U fn{q) then {b/a}p R rJ {b/a}q

(ii) Whenever p p', then q q" for some q', y and
p'[r/x] R ^ q'[r/y] for all r G CPr

(Hi) Whenever p p", then q q" for some q',q" with
B n {fn{p) U fn{q)) = 0 , p ' ~ j R ~ g ' and p" R ^ q"

(iv) Whenever p —^ p', then q —^ q' for some q' and either
p' R ^ q' or for some p", q" and b: p' ~ p"\b, q' ~ q"\b
and p"Rq"

A relation R is an applicative higher order bisimulation up to ~ and restriction
if both it and its inverse are applicative higher order simulations up to restriction.

Lemma 5.3.7 If R is an applicative higher order bisimulation up to ~ and restric-
tion then i? C ~ .

PROOF: Let = Unew where

RQ = ~ ~

Rn+i = ~ { (p \ a , g \ a) : (p, 9) G-R„, a G Names} ~

The argument that R^~ is an applicative higher order bisimulation follows the same
pattern as the proof of lemma 5.2.5 •

Chapter 5: Plain CHOCS ^

With this machinery in hand we may now prove the following interplay between
the restriction operator and parallel composition:

Proposition 5.3.8 pi\a | p2 ~ {pi | P2)\a if a ^ /?%(%)

PROOF: This proposition is proved by showing that the relation

R = {{pi\a I p2, (pi I P2)\a) : Pi € CPr, a ^ fn{p2)} U Id

is an apphcative higher order bisimulation up to ~ and restriction. To see this we
show that when {p, q) ^ R and p p' then q q' with a move which satisfies
the conditions of applicative higher order bisimulation up to ~ and restriction. If
(p, q) G Id the case is obvious so assume that p = pi\a | p2 and q = {px\ p2)\o- and
a 0 fn{p2).
If p p' this transition must have been inferred in the following way:

either this has been inferred from the par-rule and p2 P2 and p' = pi\a | pg.
There are three cases:

r = hlx then h ^ a since a 0 fn{p2)- Then by the par-rule and the res-
rule we have (pi | P2)\o. (pi | P2)\a and for all r G CPr we have
(Pi\a I P'Dl^/x] ~ ({d/o}pi)\6 I p'^[r/x]R{{d/a}pi \ P2[r/x])\d ~ ((pi |
P2)\a)[r/a:] for some d ^ fn{pi) U fn{p2) U fn{r).

r = 6!sP2 then b ^ a and we may assume B fl ({a} U fn{pi)) = 0. Then by
the par-rule and the res-rule we have {pi | P2)\a {pi | P2)\® which
is a matching move since a ^ /n(p2) U B and therefore pgVo ~ P2-

T = T and we may argue as in the above case.

or this transition has been inferred by the par-rule and p\\a p'{ and this has
been inferred from the res-rule and pi p'" and p' = p" \ p2. There are
three cases:

r = blx then p'(= Pi\a and b ^ a. Then by the par-rule and the res-
rule we have (pi | P2)\a {p"' | P2)\a- This is a matching move
since for all r 6 CPr we have {p'"\a \ P2)['r'/x] ~ {{{d/a}p"')[r/x])\b |
P2R{{{d/a}p'{')[r/x] I p2)\d ~ {{p'l' | p2)\a)[r/x] for some d 0 fn{pi) U
fn{p2) U /n (r) .

r = blBp'i then pi '''•^^ p'" and b^ a and

either a 0 fn{p"") fl fn{p'") in which case p[= p'l"\a and p" = p1'\a.
Then by the par-rule and the res-rule we have (pi | P2)\(i {p'" |
P2)\<i which is a matching move.

Chapter 5: Plain CHOCS 163

or a G (/"(Pi") n fn{p'")) \ B in which case p[= p'(" and p" = p'"
and B = B' Li {a} for some B' with a 0 B'. We may assume
B' n fn{p2) = 0. Then by the par-rule and the open-rule we have
(pi I P2)\a PT I P2 which is a matching move.

r = r and we may argue as in the above case.

or r = T and the transition has been inferred by the com-close-rule and p i \ a
p'i\a which has been inferred by the res-rule and pi p[with h ^ a and

P2 P2 and p' = {{p'\\a)[p'2lx] | P2)\B. We may assume B U fn{pi) =
0 and a ^ Thus by the com-close-rule and the res-rule we may
infer that {pi | P2)\a —^ I P2)\B\a which is a matching move
since [p'llp^x] | p2)\B\a ~ {p'llpy^] I P2)\®\-^ by proposition 5.3.2 and
((Pl \o)[P2N \P2)R{Pi\P2/^] |P2)\a-

or r = r and the transition has been inferred by the com-close-rule and pi\a p"
which has been inferred by the res-rule and pi p'" and b ^ a and
a 0 fn{p'{") n fn{p"') and p[= p'{"\a and p" = Pi\a and p2 Pg and p' =
{Pi I P2[pi/^])\-^- We assume Br\fn{p2) = 0. Then by the com-close-rule and
the res-rule we have (pi | P2)\a —^ {p'" | p2\pi"/x])\B\a which is a matching
move since {p'" | p'^lp""/x])\B\a ~ {p'" \ p2[{p"")\a/x])\a\B by proposition
5.3.2 and proposition 5.2.6 (and an argument by structural induction on p'̂
which is straightforward since by the assumptions either p"'\a ~ p'" or p""\a ~
Pi") and p'l I P2\p'Jx]R{p'{' | P2[(Pi")\«/a;])\a-

or r = r and the transition has been inferred by the com-close-rule and pi\a

p1 which has been inferred by the open-rule and pi p"' and b ^ a
and a E fn{p'"') fl fn{p'") and p[= p"" and p" = p'" and B = B' ij [a]
for some B' with a ^ B' and p2 pg and p' = {p" \ p2[p[/x])\B. We
assume B' D /"(pg) = 0- Then by the com-close-rule and the res-rule we
have (pi I P2)\a {p"' | p'^lp""/x])\B'\a which is a matching move since
(p'l" I PX"/^])\^'\^ ~ (PT I P2\PI"/^])\^ by proposition 5 .3 .2 and p'l |

We omit the proof for the cases showing R~^ is an apphcative higher order simula-
tion up to ~ and restriction. The arguments in these cases are very similar to the
above and follow almost from symmetry. •

The next set of laws shows some expected properties of the parallel operator. It
would perhaps have been more natural to present these laws before the laws of re-
striction and its interplay with other operators, but to prove the law of associativity
for the parallel operator we need some of the above properties.

Chapter 5: Plain CHOCS 164

Proposition 5.3.9

p I nil ~ p

Pl\P2 ~ P2\ Pi

Pi I {P2 I Ps) ~ {Pl I P2) I P3

PROOF: This proposition is proved by showing that the first two of the following
relations are applicative higher order bisimulations and that the last relation is an
applicative higher order bisimulation up to ~ and restriction:

Ri — {(p I riil,p) : p E CPr} U Id

R2 = {(Pi I P2-,P2 I Pl) : Pi G CPr} U Id

Rs = {(Pi I (P2 I Pa), (Pi I P2) I Pa) : P, G C P r } U Id

The Id component in each of the above relations is necessary to cover the cases when
processes are communicated since these processes might not have the structure of
the first part of the relation. To see that the above relations are indeed applicative
higher order bisimulations respectively applicative higher order bisimulations up
to ~ and restriction we analyze each relation in turn. (The Id part of the above
relations is obvious.)

Ri Any transitions of p | nil must have been inferred from a transition of p and
the rule for parallel composition since nil has no transitions, thus p has a
matching move for each move of p | nil and vice versa.

i?2 This is easily established by noting that both rules (par and com-close) involving
the parallel operator are symmetric.

i?3 The proof that this relation is an applicative higher order bisimulation up to
~ and restriction is surprisingly complicated. This is due to the fact that
the communication of processes may introduce restrictions and thus alter
the structure of the term. To illustrate this point we show the case when
Pl I (P2 I Ps) —^ p' and this transition has been inferred by the com-close-rule
and Pl p'l and (pg | p^) p'" and this is due to an application of the par-
rule and p2 P2 with B fl fn{p3) — 0 and p'" = I Pa and p' = {p\\p"jx] |
(P2 I P3))\B- Then by the com-close-rule pi | p2 —^ (p'lb"/^] I P2)\-® and by
the par-rule {pi | P2) \ Pa [p'lWIA I P'2)\B \ Pa- Since B fl fn{pz) we can
apply proposition 5.3.2 and (pi[p7^] I P D \ ^ I Pa ~ ((pilp'V^:] I P2) I Pz)\B

Chapter 5: Plain CHOCS ^

and we have estabhshed a matching move which satisfies the conditions of
an applicative higher order bisimulation up to ~ and restriction. There are
five other similar cases: one when pi does an output transition and p2 does
an input transition, two when pi and p3 communicate and two when p2 and
P3 communicate. These cases follow the same pattern of argument as above.
The only three remaining cases are when either of the three components does
a transition on its own but in each case a matching move can be established
by two applications of the par-rule.

•
Using the above properties we may now present a law of interplay between

parallel composition and restriction which will look more famihar to readers with
knowledge of CCS.

Theorem 5.3.10 {pi | P2)\a ~ pi\a | p2\a if a ^ fl fn{p2)

PROOF; If a ^ n fn{p2) then a can not be a free name in both p^ and
P2. Suppose a 0 fn{p2). Then by proposition 5.3.8 and proposition 5.3.2 we have
{Pi I P2)\« ~ P i \ a I P2 ~ P i \ a I P2\a- The other case where a 0 /ra(pi) follows by a
similar argument after commuting pi and p2 using proposition 5.3.9. •

We now present some expected properties of renaming:

Proposi t ion 5.3.11

nz7[S^ ~ nil
p[5] ~ p[S][S]

p[5]\6 ~ p\6[5'] if b ^ Dom{S) IS Im{S)

{Pi + P2) [5] ~ Pi [S'] + P2 [5"]

(P i | P 2) [5] ~ P i [5] I P 2 [5 1

(a?a:.p)[5] ~ S{a)'!x.{p[S])

(r.p)[5] ~ r.(p[5'])

(a ! s y . p) [S '] ~ 5'(a)!Bp'.(p[S']) if B 0 {Dom{S) U Im{S)) = 0

PROOF: The proposition follows from showing that the following relations are
applicative higher order bisimulations:

Ri = {(ni/fS"], nz7)}

R2 = : pe CPr}

Chapter 5: Plain CHOCS 166

R3 = {(p['S']\&,p\6[5] : p G CPr, b ^ Dom{S) U Im{S)] U Id

R4 = { ((p i+P2) ['S '] ,p i [S ']+P2['5 ']) : p.-G C P r } U Id

Rs = { ((P i I P 2) [5 '] , P i [5 '] I P 2 [5 ']) : Pi e CPr} U Id

jRe = { ((a ? x . p) [5] , S'(a)?a;.(p[5])) : alx.p E CPr} U Id

Rr = { ((r .p) [5] , r . (p [S '])) : p.-G C P r } U Id

Rs = {((a!sp'.p)[5'],S'(a)!Bp'.(p[S'])) :

p,p' G CPr, B n {Dom{S) U Im{S)) = 0} U Id

The Id component in relations R^ to i?8 serves to cover processes being sent. In
addition the Id component of relation R^ covers the case when the restriction dis-
appears due to an application of the open-rule. It is relatively straightforward to
find matching moves for each relation and we omit the details. (The proof for re-
lation i?5 relies on the fact that p[5'] ~ p['S'][5'] and this is easily established since
S" = [a I—»• 6] and either a = 6 in which case ^[5] ~ p or a 6 in which case the
second renaming will have no effect.) •

We have not listed any immediate interplay between (nondeterministic) choice
and parallel composition. This is due to the fact that the two operators in general
do not commute, but there is a restricted interplay between them:

Proposi t ion 5.3.12 Let x = { x i . . . Xn}, y = {yi... y„} and x fl y 7̂ 0 and Aj D
fn{q) = 0 and Bi H fn{p) = 0 then

if p = E,a,?a:,-.p, +
and q = Tikbk'^yk.qk + TiMsiq'i-qi

then p\q ~ E,a,?a:,-.(p,- | q) + T,jaj\AjP'j.{pj | ?)+
^ k h ' ^ y k - { p I q k) + S / 6 (! s , g , ' . (p | q i) +

• a i = b i } ' ^ - { P i [Q l / ^ i] I
(̂j,A:)e{(j,A:) : aj=6fc}''"-(Pj | qk\Pj/yk])\Aj

where S,T,-.p,- describes the sum Ti-pi + ... + r„.pn when n > 0 and nil if n = 0,
knowing this notation is unambiguous because of proposition 5.3.1.

PROOF: Assume the premisses of the proposition. Let rhs denote the right hand
side of the above equation. Let

R = {(p I q,rhs)} U Id

Then i2 is an applicative higher order bisimulation. For each transition of p | g we
may find a matching transition of rhs and vice versa.
If p I g r then

Chapter 5: Plain CHOCS 167

either p p' and r = p' \ q. If r — ailxi then p' = p, for some i and
rhs Pi I q which is a matching move since Xi 0 FV{q).
If r = ajlAjPj then p' = pj for some j and rhs pj | q which is a matching
move.

or q q' and r = p \ q'. Then similar arguments as above apply.

or r = r . Then

either p p, and q qi and r = {pi[qi/x{] | qi)\Bi and a,- = bi. Then
rhs —^ r which is a matching move.

or q qk and p pj and r = {pj | qklp'j/Vk] I and aj = 6 .̂
Again rhs —> r which is a matching move.

If rhs r then a similar case analysis as above will yield matching moves for
p\q. •

We can not hope that these equations form a basis for a sound and complete
proof system for Plain CHOCS. One reason for this is hinted in the translation
given in the next section from Plain CHOCS into Mobile Processes [MilParWal89].
This translation needs parallel composition under the scope of recursion to work.
In [Mil83] Milner shows how this combination could be used to simulate a Turing
machine. Another reason is that we may encode recursion using the constructs of
Plain CHOCS. In fact the protocol we use is the one defined in [Tho89]:

Definition 5.3.13 Let Yx[] be the following context:

(a?.'C.([] I alx.nil) | a!(a?a:.([] | a\x.nil)).nil)\a

To see how this construction works consider the following example also presented
in [Tho89]:

Example 5.3.14 Let p = bl.x then according to the inference rules of definition
5.1.6 YX\p] has the following derivations:

Yx\p] = {a?x.{b\.x I alx.nil) | a\{alx.{b\.x | a\x.nil)).nil)\a
i-r

{b\.{a'lx.(h\.x I alx.nil)) | a\{a?x.{b\.x | a\x.nil)).nil | nil)\a
it!

[alx.{h\.x I alx.nil) \ al{a?x.{bl.x | alx.nil)).nil | nil)\a
J.T

(bl.(alx.{bl.x I alx.nil) \ a!(a?a;.(6!.x | alx.nil)).nil) | nil | nil | nil)\a

Chapter 5: Plain CHOCS 168

Ji>!

Note how Yx{] needs a r-transition to unwind the "recursion". This resembles
the unwinding of recursion in the inference rule of recursion in TCCS [HenNic87]:
recx.p^ p\recx.plx\, where may be read as —

As mentioned in section 2.6 this protocol only simulates recursion in "dynamic"
CHOCS when x is not free in a sending position. But because of the static nature of
the restriction operator in Plain CHOCS we may use the above construct to program
systems which recursively send out copies of themselves:

Let p = b\x.x then according to the inference rules of definition 5.1.6 has
the following derivations:

Yx[p] = {a?x.(b\x.x I alx.nil) | a\{a?x.{blx.x | a\x.nil)).nil)\a

h-
{b\{alx.{b\x.x I alx.nil)).{a?x.{b\x.x | alx.nil)) | al{a?x.{blx.x | alx.nil)).nil | nil)\a

(a?ar.(6!a;.a;|a!2;.nti))
{a?x.(bl.x I alx.nil) | a!(a?x.(6!.x | alx.nil)).nil | nil)

After this transition we have a scope extrusion on a but when the "copy" {alx.{blx.x |
alx.nil)) is received the com-close-rule will ensure that this "copy" can communicate
with a!(a?x.(6!.x | alx.nil)).nil and thus continue the "recursive unfolding" of p.

As in section 2.6 we may introduce a recursion operator recx.p with the follow-
ing operational semantics:

p[rec x.p/x] p'
r ~

r e c x.p —> p

r e c x . is a variable binder and fn, { / }, FV and [/] have to be extended to
cater for the new operator.

We cannot prove a simulation of recursion theorem for Plain CHOCS as directly
as theorem 2.6.2 for "dynamic" CHOCS. This is because when we send out copies
of the recursive process we have to do a scope extrusion for a in the Y construct to
keep a connection to the remaining part and keep the "recursion" going, whereas
the recursion construct does not need to do a scope extrusion and the two terms
are incomparable until they are received and we have closed the scope in the Y
construct.

However, we conjecture the following relationship:

Chapter 5: Plain CHOCS m

Conjecture 5.3.15 If x is not free in a sending position in p and a ^ fn{p) then

i^[p] ~ rec x.T.p

It would be interesting to formulate an equivalence theory where the kind of
distributed property of a system linked by internal channels such as the above Y
construct is taken into account. I imagine that such a theory would have to use the
ideas of context dependent bisimulation described by Larsen in [Lar 86].

5.4 P l a i n C H O C S and Mobi l e P r o c e s s e s

In this section we compare the approach taken in this thesis of sending processes
to that of sending labels as described in [EngNie86, MilParWal89]. We shall not
embark on a discussion of which is the best or the correct way of expressing mobility
in concurrent systems, since we feel that both approaches have their justifications.
This is further strengthened by showing that the calculi may simulate each other.

The description of Plain CHOCS in Mobile Processes uses the capability of
changing the interconnection structure of processes describable in Mobile Processes
in a very disciplined way. Whenever a process is sent in Plain CHOCS a hnk to
a trigger construct (which provides copies of the process to be sent) is sent in the
Mobile Processes translation. To a certain extent this resembles invocations of
procedures in conventional programming languages. The triggering of a copy of the
process to be sent and the instantiation of its names could correspond to a new
activation record for a procedure and instantiations of its parameters.

The description of Mobile Processes in Plain CHOCS is done by passing very
small processes around. These small processes are essentially one element buffers
which simulate the behaviour of channels.

We briefly review the 7r-Calculus as presented in [MilParWal89]. This calculus
is a description tool for Mobile Processes with link passing as a means for expressing
process networks with dynamically changing interconnection structure.

Processes are built from the following range of constructs: The inactive process
0, three types of prefixes; input prefix x{y), output prefix ly and r prefix, (non-
deterministic) choice, parallel composition, restriction, match and recursion.

This is summarized by the syntax of the vr-Calcuius:

^ 0 I x{z).p I xy.p \ T.p\p + p' \ p \ p' \ {y)p | [x = y]p | r ec X.p | X

Here X € Var (a set of variables to be bound by the recursion construct). In
[MilParWal89] agent identifiers are used to express recursion, but we prefer the
equivalent but more explicit recursion construct above.

Chapter 5: Plain CHOCS m

In the TT-Calculus the communicable values are links or rather names of links,
thus x,y above belong to the set Names of port names. The constructs of input
prefix and restriction bind port names in their scope. The set of free names of a
process is denoted by /n(p), the set of bound names of a process is denoted by
bn(p) and the set of names of a process is n{p) = bn{p) U fn[p).

We may substitute one label for another and label substitution in the vr-Calculus
follows the pattern of label substitution in Plain CHOCS. We have to take care not
to bind free names by input prefix or restriction. If the names coincide we do
a-conversion:

{z'/z}{x{y).p) = {z'/z}x{y').{{z'/z}{{y'/y}p)) where y' ^ fn{{y)p) U { / }

{z'/z}{{y)p) = {y'){{z'/z}{{y'/y}p)) where y' ^ fn{(y)p) U {z'}

Free and bound (recursion) variables are defined as usual and substitution of
processes is the usual one taking care of not accidentally binding free names by
restriction and free recursion variables by the recursion construct.

The dynamic behaviour of processes is defined in terms of an operational se-
mantics given as a labelled transition system. Processes may evolve by performing
actions of the following kind: input actions x(y), free output actions ay, r actions
and bound output actions x{y). Actions are ranged over by a . A name occurring
in brackets in an action is said to be a bound name and the set of bound names
of an action is denoted by bn(a). fn(a) denotes the set of free names of an action
and n{a) denotes the set of all names of an action. c(a) denotes z in a = x(y) and
a = x{y).

In the following we give the operational semantics for the 7r-Calculus as presented
in [MilParWal89]. Formally the operational semantics is given as the smallest rela-
tion satisfying the following rules:

TAU-ACT: T.p p

OUTPUT-ACT: x y . p ^ p

INPUT-ACT: x{z).p ^ {w/z}p 0 fv{{z)p)

SUM: P — ^ P '
P + 9

Chapter 5: Plain CHOCS 171

MATCH:

REC:

P

[a: = x]p p'

/)[rec X.p/X] p'
rec X.p p'

PAR: , k;(a) A fv{q) = 0
p\q — I ?

COM:

CLOSE:

P^P' q ^ q '
p \ q ^ p ' \ q'{y/z}

p ^ p ' q^-Hq'

p\q-^ {w){p' I q')

RES; / T f , ,
{y)p —^ {y)p'

v ^ v '
OPEN: xw , , ^ ^ fv{{y)p')

{y)p —^ {w/y}p'

Table 5.4.1. Operational semantics for the 7r-Calculus. Rules involving the binary
operators + and | additionally have symmetric forms.

To compare terms in the 7r-Calculus we use a generahzation of the notion of
bisimulation called strong ground bisimulation:

Definition 5.4.1 A strong ground simulation R is a binary relation on CPr such
that whenever pRq then:

(i) Whenever p p' and y ^ n{p) U n{q), then q q' for
some q' and {w/y}p'R{w/y}q' for all w G Names

(ii) Whenever p p', then q q' for some q' and p'Rq'

(Hi) Whenever p p' and y 0 (n(p) U n{q)), then q g/
for some q' with p'Rq'

(iv) Whenever p p', then q —^ q' for some q' vnth p'Rq'

A relation R is a strong ground bisimulation if both it and its inverse are strong
ground simulations.
Two processes p and q are said to be strong ground bisimulation equivalent i f f there
exists a strong ground bisimulation R containing {p,q). In this case we write p q.

Chapter 5: Plain CHOCS 1T2

In [MilParWal89] the relation ~ is shown to be an equivalence relation and
it has the expected congruence properties with respect to the constructs of the
TT-Calculus. It also satisfies a set of expected properties:

p + 0 P

p + p P

p + q g + p

p + {q + r) {p-\-q) + r

{x)p p \i X ^ f n (p)

{x){y)p iy)ix)p

{x){p+q) {x)p + {x)q

(x)a.p a.{x)p if X ^ n{a)

{x)a.p 0 if z = c{a)

P 1 0 P

P 1 9 9 1 P

(^)(P 1 9) {x)p \q if X ^ fn(q)

p 1 (9 1 r) { p \ q) \ r

The relation ~ is however not preserved by arbitrary label substitutions. A no-
tion of strong bisimulation equivalence ~ is introduced in [MilParWal89] as p ~ 9
iff {a/b}p ~ {a/6}g for all label substitutions {a/b}. We shall not concern our-
selves with this relation since the strong ground bisimulation relation suffices for
the presentation in this section.

Before turning to translations between the 7r-Calculus and Plain CHOCS we
present a useful construct and show a few facts about this. We shall need commu-
nications which carry no parameters. This could be modelled by presupposing a
special name e which is never bound and we write x.p in place of xe.p and x.p in
place of x{y).p where y is not free in p.

Definition 5.4.2 Let
b p = rec X.b.{p \ X)

where b ^ n{p) and X ^ FV{p).

This construction is intended to provide copies of p when triggered by b actions
e.g:

{b)(b.nil I b.nil \ b p) ^ ^ > {b){nil \nil\p\p\b=^p)^p\p

Chapter 5: Plain CHOCS m

This construct satisfies several interesting properties;

b
Lemma 5.4.3 if pi i G {1,2} and b ^ n{q) then

LHS = {b){pi \ b^ q) + {b){p2 I 6 => 5) ~ {b){{pi + P2) \ b q) = RHS

PROOF: First note that the p,'s are allowed to trigger b q, but we assume that
only b ^ q —> q \ b ^ q. We use 6 as a private name in both summands of LHS
and in RHS, this is convenient and obtainable by a suitable a-conversion on the
private names.
To prove the lemma we show that the relation:

R= {{LHS, RHS)} \J Id

is a strong ground bisimulation.

To see this observe that if LHS r then

either (6)(pi \ b ^ q) r and this is because

either pi p[with a ^b and r = {b){p[| b q).
Then RHS {b){p[| 6 => g) which is a matching move.

or Pi —^ p\ with A = T and r = {b){p[\ q \ b ^ q).

Then RHS {b){p[\ q \ b q) which is a matching move.

or {b){p2 I 6 => g) r and an argument as above applies.

Also if RHS r then

either pi p'^ with

either a' = a ^^b and r = {b)(p[| 6 ^ g).
Then LHS (^)(K \ b => q) which is a matching move.

or A' = b and A = T and r = {b){p[\ q \ b q).
Then LHS —^ {b){p[\ q \ b ^ q) which is a matching move.

or P2 P2 and an argument as above applies.

We have abused the notation slightly when a ^ bin the above proof since we should
analyze each case of a: a(x), ab, a(c) or r . We shall not do so since it is not hard
(only elaborate) and each case follows the general pattern. •

Chapter 5: Plain CHOCS 174

b

Lemma 5.4.4 if for all derivatives X ofpi, i G {1,2} and b ^ fn{q) then

LHS - {b){pi \b^ q)\ {b){p2 1 & =4> 9) ~ (6)((pi t P2) t 6 ^ 9) = RHS

PROOF: TO prove the lemma we show that the relation:
R= {{LHS, RHS)}

is a strong ground bisimulation.

To see this observe that if LHS r then

either {b){pi \ b q) r' and r = r' \ {b){p2 | 6 => g) and this is because

either pi - % p[with a ^b and r ' = {b){p[| b q).
Then RHS (^)(p'i 1 P2 | 9) which is a matching move.

o r Pi — ^ p[w i t h a = r a n d r ' = {b){p[| g | 6 => g).

Then RHS —^ {b){p[\ P2 \ q \ b q) which is a matching move.

or {b){p2 \b q) r' and an argument as above apphes.

or PI P'L and P2 P2 and a = T and r = (6)(p'i \ b q) \ (6)(p2 I ^ ^
q), where a is an action with opposite polarity of a [MilParWal89]. Then
RHS (b)(p'i i P2 I ^ 9) which is a matching move.

Also if EHS r we may argue in a similar way as above. •

b
L e m m a 5.4.5 ifp'^ for all derivatives P\ of PI, i G {1,2} and b 0 fn{q) and
c 0 fn{pi) U fn{p2) U fn{q) then

LHS = (c {b){pi I 6 ^ g)) I {b){p2 \b => q) ^ {b){c => Pi | P2 | ^ g) = RHS

P R O O F : TO prove the lemma we show that the relation:

R= {{LHS, RHS)}

is a strong ground bisimulation up to ~ (strong ground bisimulation up to ~ is
defined similarly to the definition of bisimulation up to ~ in [Mil89]).
To see this observe that if LHS r then

e i t h e r a = c a n d r = {b){pi | 6 g) | (c {b){pi | 6 => g)) | {b){p2 | 6 g) ~

(c =>- {b){pi I 6 g)) I {b){pi \ P2 \ b => q) which follows by lemma 5.4.4.
Then RHS —^ {b){pi \ c => Pi \ P2 \ b q) which is a matching move.

Chapter 5: Plain CHOCS 175

or a ^ c and {b){p2 \ b q)
because

r' and r = c ^ (b){pi,b => g) | / and this is

either p2 p'2 with a - a' ^ b and r' = (6)(p2 | 6 => g). Then RHS
(6)(c ^ Pi \ p'^ \ b ^ q) which is a matching move.

or p2 - L . p'^ with Q = r and r ' = {b){p2 \ q\b=^ q). Then RHS (6)(c =>
Pi \ P2 \ <1 \ b q) which is a matching move.

Also if RHS r we may argue in a similar way as above. •

We now turn to the question of translations between Plain CHOCS and Mo-
bile Processes. First we give a translation of Plain CHOCS without the renaming
construct into Mobile Processes. This subset of Plain CHOCS corresponds very
closely to the informal idea of encoding process passing in Mobile Processes de-
scribed in [MilParWal89]. This translation carries no additional parameters which
shows that Plain CHOCS programs can be viewed as a set of derived operators in
Mobile Processes.

Definit ion 5.4.6 U : PlainCHOCS MP

|nz7] = 0
|a?a:.p| =

lalp'.pj = {b){ab.{l
| r .pl = T.IPI

lb + = M + y.

b 1 p'l = b l 1 b ' l
[b\al = («)lbl

M = Y.O

6 => M)), ^ € fiT'ip) U fn(p') U {a}

Note how a process variable in Plain CHOCS is translated into a process which
is only capable of synchronizing on the x channel and then stop. This is exactly the
idea described in [MilParWal89] of an executor to trigger the start of the process.

An interesting point to note about the above translation is that only a rather
special kind of recursion is needed. We only need a construction which provides
"copies" of the process to be sent. This construction resembles a Kleene-star opera-
tor. Combining this with conjecture 5.3.15 (which would show that general recursion
may be simulated in Plain CHOCS) we see that using this Kleene-star operator and

Chapter 5: Plain CHOCS 176

the dynamic interconnection mechanism provided by Mobile Processes we may sim-
ulate recursion in e.g. CCS. In fact we do not need to appeal to conjecture 5.3.15
to show this; The lemmas above suffice to prove {z)('z.O | z p[2.0/X]) ~ r e c r . p
iiz ^ fn{p).

Note that this translation ensures static scope for the restriction operator since
the process p' being "sent" stays in the "sending" environment e.g:

[a?a;.(a; | z) | (o ! / . p) \ c]] = a(x) . (x .O | x.O) | (c) (a (6) . ((6 =4̂ |p ' l) | [p]))

i-T
{b){b.O I 6.0 I (c)((6 => [p'D I [pD)

{b){b.O I 0 I (c) (M I {b ^ M) I [pD)

mo 1 0 1 (c) (| p ' i I M I (b ^ I p D I M))

(c)(lb'l I [p'l I M)

In this example we see how the recursion in the translation of the output prefix
ensures that a sufficient number of copies of the process to be passed is provided.

As we can see from the above example the translated terms need an additional
r -move to simulate the substitution. Let us specify this at the Plain CHOCS level
by introducing a notion we call r-substitution [/]T- This substitution is defined as
\ P I X \ T = [r . p / x] . In the following two propositions let —>• be a transition relation
defined as the transition relation of definition 5.1.6, but with [/]T instead of
[/] in the com-close-rule. Let be the applicative higher order bisimulation
equivalence defined as in definition 5.2.1 relative to the new transition system with
r-substi tution instead of the usual substitution in clause (i). Using these definitions
we can now formally relate the two calculi. In the following ~ is the strong ground
bisimulation defined in [MilParWal89].

Proposi t ion 5.4.7 ~ (^)(IP1{V^} I ̂ M) where b 0 fn{p) U fn{q)

PROOF: By structural induction on p using lemma 5.4.3 to lemma 5.4.5.

p = nil lnil[q/x]rl = by definition of [/
[ni/ | = by definition of |]
0 ~ by algebraic laws
(6)(0{6/x} I {b [9])) ~ by definition of [|
{b)ilniq{b/x}\{b^

Chapter 5: Plain CHOCS 177

p = aly.px Assume y ^ x and y ^ FV{q) (otherwise use a-conversion)
l{a?y.pi)[q/x]rl = by definition of [/] ^
la1y.{pi[q/x]r)} = by definition of 11

~ by I.H.
(^{y)-lb){lpi}{b/x} I {b M)) ~ since b 0 fn{p)
(6)(a(y).([[pil{6/x} I {b =#. I^l))) ~ since y ^ FV{q) and y ^ x
(^)((«(y)-lbil){V3:} I {b ^ M)) = by definition of | |
(6)((|a?2/.pil){Va:} I (6=> M))

p = a\pi .P2 |(a !pi .P2)[q/x]r}
= by definition o f [/] r
lal{pi[q/x]r).{p2[q/x]r)}
= by definition of [|
(b){ab.{{b^ lpi[q/x]rl) \
~ by I.H. (b ^ fn{pi) U /n(p2) U fn{q))
{b){ab.{{c){{b => (c)([pil{c/a;} | (c {q})))
I (c) (M { c / z } I (c => M)))))
~ by lemma 5.4.5.
(6)(o6.(c)((6 => b i l { c / a ; }) I [P2l{c/a:} | (c=> {q})))
~ since c ^ a and c ^ b, otherwise use a-conversion on c
(c)(6)(a6.((6 => bil{c/a;}) I I (c=> M)))
= by definition of { / }
{c){b){ab.{{{b [piD I \p2f){clx] | (c => {q})))

{c){{b){ab.{{{b IPJ) | \p2\){clx}) | (c => M)))
~ since b ^ fn{q)
(c)([a!pi.p2l{c/a;} | (c =4- {q}))

P = Pl+P2 l{pi + P2)[q/x]r}
= by definition of [/]̂ and by definition of [|
[Pl[9/3:]rl + lP2[q/x]r}
- by I.H.

I {b M)) + (&)(lb2l{V^} I {b => M))
~ by lemma 5.4.3.
(6) (([P i] | { V 3 : } + M{b/x}) I (6 => Iqj))
= by definition of { / }
(6)([pi + P2Ub/x} I (b ^ M))

P = PiIP2 liPl\P2)[q/x]r}
= by definition of [/],- and by definition of |]
lPl[q/x]r} I lP2[q/x]r}
~ by I.H.
{b){M{b/x} I (6=> H)) I ib){lp2}{h/x} I {b=^ [?]))
~ by lemma 5.4.4.
(^)(([biI{V3^} I lP2}{b/x}) I (6=> Iq}))
= by definition of { / }
(&)(lbi I P2}{b/x} I (6=1

Chapter 5: Plain CHOCS 178

p = Pi\a Assume a ^ fn{q) otherwise use a-conversion.
|(pi\a)[9/a;]^] = by definition of [/
tt(Pi[9/4T)\aI = by definition of [I
(а)(lbi[9/3;]rl) ~ byl .H.

I (6 M)) ~ since a ^ fn{q)
(б)((o)(|[piMVa;}) I {b => M)) = by definition of { / }
(^KlbiVMV^:} I {b =4> M))

p = y if y ^ X then
ly[q/x]r} =
f y j =
y.O
{b){{y.O){b/x} I (6 {q}))

if y = X then
ly[q/x]rl =
[T.gil =

(6)((y O){6/a;} I (b => M))
•

Proposition 5.4.8

1. i f p ̂ p' then [p| ^ |[p']

2. if p ^ p" then [p] q ~ (6 i) . . . (6n)(6 => [p'l | |[p"|) where B =
{6i,..., bn} for some q.

3. i f p p' then |p] [p'l

4. if q [pI and q q' then p p' for some p' with q'{b/x} ~ lp'^{b/x}
for all b G Names.

ab
5. if q [p] then q

6. if q'^ [pI q 4 then p p" with q' ~ (6 i) . . . {bn){b |p'l | [p"])
for some B,P',P" where B =

7. if q [PI and q —^ q' then p p' with q' ~ l y] for some p'.

P R O O F :

1. By induction on the length of the inference used to estabhsh p p' observing
the structure of the process p. The cases when p = nil, p = a\pi .p2 and p = r.pi

alx
are trivial since p 7^.

Chapter 5: Plain CHOCS 179

p = alx.px Then a?x.pi p^ by the input-rule and p' = pi. Also {a?x.pi] =

a(^)-IPiI ^ [Pil by the INPUT-ACT-rule.

p = pi+p2 If p p' then

either pi p' by a shorter inference, and by induction we have |[pi]]

Ip'J and by the SUM-rule we have [pi 4- P2I [p'l-

or P2 p' by a shorter inference, and by induction we have [pal

Ip'I and by the SUM-rule we have |pi + P2I [p'l-

p = Pi \ P2 If p p' then

either pi p[and p' = p[| p2 by a shorter inference, and by induction

we have |pi] [pj | and by the PAR-rule we have |[pi | p^J [p'l-

or p2 p'2 and p' = pi | p'2 by a shorter inference, and by induction we

have IP2I IP2I and by the PAR-rule we have |pi | P2I [pi-

p = pi\b If p p' then pi with a ^ b and p' = p[\b by a shorter

inference, and by induction we have [pij and by the RES-rule

we have [pi\6| ^ Ip'j.

By induction on the length of the inference used to establish p p" observing
the structure of the process p. The cases when p = nil, p = alx.pi and p = r.pi

a'.Bp'
are trivial since p .

p = a!pi.p2 Then a!pi.p2 P2 by the output-rule. Also |a!pi.p2l (6 =>
[PiD I b2l by the INPUT-ACT-rule.

p = Pi -f- P2 If p p" then

either pi —% p" by a shorter inference, and by induction we have

[p i l p'" ~ (&i) • • • (6n)((6 => IP'I) I b " l) 3.nd by t h e SUM-rule we

have I P I + P2I p'" ~ (&i) • • • {K){ib => [p'l) | |[p"I)

or P2 p" by a shorter inference, and by induction we have
k]] p'" ~ (61) • • • {bn){{b =4̂ IP'I) I [p"]l) and by the SUM-rule we
have [pi + P2I p'" ~ (61)... (6n)((6 ^ b ' l)

p = PI I P2 If p p" then

either pi p" and p" = p" | p2 by a shorter inference, and by induc-
tion we have [p j p'(' ~ (61)... (6„)((6 [p'D | [p'/J) and by the
PAR-rule we have [[pi | P2I ^ p'" ~ (61)... (6„)((6 M) | [p'/D |
|[p2l ~ (6 1) . . . (6 n) ((6 = > I P ' I) I [p"]) (using a suitable a-conversion).

Chapter 5: Plain CHOCS 180

or p2 P2 and p" = p\ | pg by a shorter inference, and by induction we
have IP2I P2 ~ (&i)... (k) ((6 M) I M) and by the PAR-
rule we have [pi | P2I ^ p'" ~ [Pil I (61) • • • (6n)((6 => b ' l) I b^'l)
~ (6 1) . . . (6„)((6 l[p'l) I |b"I) (using a suitable a-conversion).

p = pi\d If p p" then

e i t he r pi p" by a shorter inference and d E {fn{p') fl fn{p")) \ B
and B = B' yj {d} and a ^ d and p" = p". By induction we have

IPiI ^ pT ~ (61) • • • ih){{b ^ Ip ' I) I b i l) a n d b y t h e R E S - r u l e we

have [pi\dl = (c?)(|pil) ^ p'" ~ id){bi)... (6„)((6 |p'I) I b i D -
or Pi p" by a shorter inference and d ^ f'n{p') H fn(p") and a ^ d

and p' = p']\d. and p" = p'l\d. By induction we have [[pij
pT ~ (&i) • • • {h){{b =4- Ip'Y) I [PiD and by the RES-rule we have

l k \ 4 = (4 (k « ^ p'" ~ M) I M) ~

3. By induction on the length of the inference used to establish p p' observing
the structure of the process p. The cases when p = nil, p = a?x.pi and

T
p = a\pi.p2 are trivial since p -/4.

p = T.pi Then p —^ pi by the tau-rule and p' = pi. Also [[p] = T.|[pi| —^ |p i |
by the TAU-ACT-rule.

p = Pi + P2 If p p' then

e i t h e r pi p' by a shorter inference, and by induction we have |pil —^
Ip'I and by the SUM-rule we have fpi + P2I [p'l-

o r P2 —^ p' by a shorter inference, and by induction we have IP2I
I p ' I and by the SUM-rule we have |[pi -|- P2I [p'|.

p = Pi I P2 If p p' then

e i t he r pi —^ p[and p' = p[| p2 by a shorter inference, and by induction
we have [pij —^ [p'll and by the PAR-rule we have [[pi | P2I —^ [p'l-

or p2 —^ P2 and p' = pi | pg by a shorter inference, and by induction we
have IP2I —^ I P J I and by the PAR-rule we have [pi | P2] —^ [p'J.

or Pi Pi and p2 P2 by shorter inferences and p' = (Pib^/^]? |
P2)\B. By induction and propositions 5 .4 .8 .1 and 5.4.8.2 we have

b i l ^ b ' l l and [P2I (bi)... {K){{b =» [[p'J) | Then by
the CLOSE-rule we have [[pi | P2} (^)(lb'I{V®} I (^) • • • (^n)((&
M) I M)) - (6 i) . . . N ((6) (M { 6 / 4 I (6 ^ M) I

Chapter 5; Plain CHOCS 181

\{p\\p'-il^\r I P2)\^l by proposition 5.4.7 and assuming BC\fn[p') = 0
(otherwise use a-conversion).

or p2 p'2 and p" and we may argue as above.

p = Pi\b If p —^ p' then pi —^ p[by a shorter inference, and by induction we
have [pi | —^ [py and by the RES-rule we have |[pi\6| = (&)(Ipi1) —^
(^)(lbil) = IP'1-

4. Assume 9 ~ |[p| and q q'. Then |[p| q" for some q" with q'{b/x} ~
q"{b/x} for all b E Names since q ~ |[p|.

We proceed by induction on the length of the inference used to establish [[p]
q" observing the structure of p.
If |[p] q" then p must have one of the following forms:

p = alx.pi In this case [p| |pi]|. By the input-rule we have alx.pi pi
which proves the lemma in this case.

p = Pi -f P2 In this case

e i t h e r jpi] q" by a shorter inference and by induction px p^ and
^"{6/x} ~ for all b G Names. By the sum-rule we have
PI +P2 —^ Pi and q"{b/x} ~ [P iKV^} for all b E Names.

or [P2I q" by a shorter inference and by induction p2 P2 and
q"{b/x} ~ |[P2MV^} for all b G Names. By the sum-rule we have
Pi -f P2 P2 and q"{b/x} ~ [p^MV^} for all b G Names.

p = Pi I P2 In this case

e i t h e r [pi | q" by a shorter inference and q" = q" | [[p2l- By induction
Pi p'l and q[{b/x} ~ for all b G Names. By the par-
rule we have pi | p2 p'l | P2 and q"{b/x} ~ lp[| p2]]{V^} for all
b G Names.

or jp2]] 92 by a shorter inference and q" = [pi] | q'^. By induction
P2 P2 and 2̂ ~ IP'-A- By the par-rule we have pi | p2 pi | p j
and ~ [pi | p'^Ubjx] for all b G Names.

p = Pi\c In this case |[pi| q" and a ^ c. By induction pi p\ and
[]pi|{6/rc} ~ #"{6/2} for all b G Names. By the res-rule we have p i \ c
P j \ c and q"{b/x} ~ [p'i\cl{6/^} for all b G Names.

ab
5. From the definition of | | it is easy to see that [[p] /». Since g ~ [pj this must

be true for q.

Chapter 5: Plain CHOCS 182

6. Assume ? ~ jj?] and q q'. Then [p] q" with q' ~ q", since ? ~ [p].
We proceed by induction on the length of the inference used to estabhsh |p]
q" observing the structure of p.
If [LPI q" then p must have one of the following forms:

ACT-rule we have |[p] (6 => |[pi|) | |p2l which proves the lemma in
p = a\px.p2 From the output-rule we have p -—> p2 and from the OUTPUT

ACT-ruL
this case.

p = Pi + P2 either |pi]] q" by a shorter inference and by induction we
have Pi Pi and q" ~ (6 i) . . . (6„)((6 |p'J) | [p'/]). Then

Pi +P2 p'i by the sum-rule and by the SUM-rule we have [[p]
q" which proves the lemma in this case.

or IP2I q" and an argument as above apphes.

p = Pi I P2 either |[pi| q" by a shorter inference and q" ~ q" | |p2l- By

induction we have pi p" with q" ~ (61)... (6„)((6 =>- [[p'll) | [PiD-

By the par-rule we have pi | pg p" \ p2 and by the PAR-rule and

RES-rule we have [pi | P2I q" ~ (61)... (L)((6 ^ Ip'il) I IPI I
P2I) by a suitable a-conversion such that B D /n(p2) = 0.

or [P2I 92 and symmetric arguments as above yield the result,

p = pi\d Then [[pi| q" by a shorter inference and a ^ d and q" = (c?)(g").

By induction we have pi p'/ with q'l ~ (61)... (6»)((6 ^ jlp'J) | [p'/]).

If J ^ fn{p'i) U fn{pi) then by the res-rule we have pi\d Pi\d and

by the RES-rule we have [[p| q" ~ (61) . . . {bn){d){{b =>- [p'lD | [p'/J) ~
(6 i) . . . (W ((6 = ^ (4 M) l (4 M) .
lid £ {fn{p'i)r]fn{pi))\B then by the open-rule we havepi \d p '̂
and by the RES-rule we have |p]| q" ~ (61)... (6„)(c?)((6 [p'J) |
M) -

7. Assume 9 ~ [pi and q q'. Then [p] —^ q" with q' ~ q" since 9 ~ |[p|.
We proceed by induction on the length of the inference used to establish |[p]
q" observing the structure of the process p.
If I P] —^ q" then p must have one of the following forms:

p = T.pi Then by the tau-rule we have p —^ pi and by the TAU-rule [[p] —^
I P I] which proves the lemma in this case.

p = Pi + P2 either [pi] —^ q" by a shorter inference. By induction we have
Pi —^ p'l with q" ~ IpjI. By the sum-rule pi p2 —^ Pi and by the

Chapter 5: Plain CHOCS 183

SUM-rule we have [pi + P2I q"

or IP2I —^ q" and a similar argument as above applies.

p = Pi \ P2 e i t h e r [pi] q" by a shorter inference and q" = q" \ |[p2l-
By induction we have pi —^ p[with q" ~ [pi]. By the par-rule
Pi 1 P2 —^ Pi I P2 and by the PAR-rule we have | P2} q" \
M ~ [pi I P2I

or IP2I —^ 92 and an argument as above applies.

or I p i J q[and [^2] q^ by shorter inferences and q" ~ {b){q[{b/x} |
q'^) modulo the appropriate a-conversions. By proposition 5.4.8.4 we
have Pi p[with q'i{b/x} ~ for all b G Names and by

proposition 5.4.8.6 we have p2 P2 with ~ (bi) • • • {bn){{b
Iby) I K D - By the com-close-rule we have pi | p2 {PI\P2/^]T |
P2)\B assuming Br]fn{p[) = 0 (otherwise use a suitable a-conversion).
By the COM-rule we have
b i I P2I q" ~ (&)(Ibil{V^} I {bi) • • • {K){{b => b y) I Ip"}))
~ [(P'I[P2/^]T I P2)\B} according to proposition 5.4.7.

or [pi] q[and [[P2I 2̂ which is a symmetric case to the above.

p = pi\b Then | p i | —^ q" with q" = {b){q") by a shorter inference. By
induction pi —^ p[with q[~ By the res-rule we have pi\b p[\b
and by the RES-rule we have |[pi\&I —^

•
The above proposition shows a strong connection between transitions of pro-

cesses in Plain CHOCS and their translations into Mobile Processes. We have so
far been unsuccessful in proving that the translation preserves equivalence but we
conjecture that this holds under certain restrictions on the observations we allow
ourselves i.e.:

C o n j e c t u r e 5.4.9 p ~T 9 [pI ~ M

An immediate attempt to prove the above conjecture is to show that the realtion:

^1 = {(91,92) : 3pi,p2.9i ~ [pili92 ~ [pzLPi ~T P2}

is a strong ground bisimulation and that the relation

R2 = {{Pi,P2) : |pil ~ M)

is an applicative higher order bisimulation w.r.t. [/ Unfortunately this attempt
has so far been unsuccessful. The reason for this is that for relation Ri I have

Chapter 5: Plain CHOCS 184

been unable to prove that if q[then % q'2 and q[{b/x} ~
for all b G Names from pi p[and p2 p'2 and p'i[r/x]r P 2 [^ / ^] T for all
r. [p'lfr/a;]^] ~ [P2[^/^]t1 does not seem to imply lp'il{b/x} ~ for all
b G Names. For relation R2 I have been unable to prove that if pi p'{ then

P2 P2 and p[p'2 and p'/ from qi ^ ~ (&i) • • • (̂ 'n)(& ^ [[p'll I b i l)
and 52 ?2 ~ (61) • • • {bn){b => | p y | IP2I) and q[~ q'^. It does not seem to be
possible to infer from (6 => [p'J | Ip'/l) ~ (6 => | [pjD that fp'J ~ [p^ and

bi ' I - M -
The above only applies to the sublanguage of Plain CHOCS where the renaming

operator has been omitted. The type of systems we can describe in this language
is limited in the sense that there is no real need for passing the process in the
communication since the receiving process can do no more than copy it and start
each copy at different times. This is reflected in the above translation in the sense
that the process to be "sent" stays in the sending environment and the "receiving"
process only receives a link which can be used to trigger copies of the "received"
process. The renaming construct allows us to change the way we communicate with
each copy by renaming some of the free names to locally bound names. This may
be incorporated into the translation by extending the translation function by a list
of names L i.e.:

Definit ion 5.4.10 O : PlainCHOCS —> Names* MP

|m/]L = 0

\alx.p\L = a{x).lplL

lalp'.pjL = (fe)(a6.([p|L | b{L) => MZ,)) , b ^ fn{p) U /n (p ') U {a} U X

Ir.pJL = T.IP]L

| p + p ' l l = I P J L + I P ' I I

H p I p ' j L = f p j L I I P ' } L

| p \a]L = (d)l{d/a}plL where d ^ fn(p\a) U L

|[p[ai-^6]]L = {b/a}{lpjL)

|a;]L — xL.O

where b{L).p means b{li) b{ln)-p and bL.p means bli bln.p
for L = {Zi, • • • 5 ^n}•

When translating a Plain CHOCS expression p we then instantiate Z- to a list
consisting of the elements of fn(p) to obtain the desired effect.

Chapter 5: Plain CHOCS 185

Let us consider the following small example to give an idea about how the above
translation works:

Assume {a, b} = fn{p) U fn{p') U fn{p") and b' 0 {a, b}.

la'!x.{x[b b'] \ b'lx.p)\b' \ a\p'.p"\a,h]

a{x).{b'){xah'.Q | 6 ' (a:) . [[pi [„ , (,]) | (c) (a c . ((c (a) (6) [[p']l[a,6]) I [p " I [a , 6]))

(c) ((6 ') (c a f e ' . 0 I 6 ' (a ;) . | [p] [a , b]) | (c (a) (f e) = > |b'I[a,6]) I l b " I [a , 5])

i-T

(c) ((6 ') (0 I 6 ' (a :) . b l [a , 6] I ({ « / « } { ^ 7 ^ } ([b ' I [a , 6]))) I (c (o) (6) I b ' l [a , 6]) | | b " l [a , i >])

{b'){b'{x).^][a,b] I ({ a / a } { f e 7 ^ } (b ' l [a , ! .]))) I b " I [a , 6]

Note that if p' has any 6-ports they will be renamed to b' and thus be pri-
vate between &'(a;) - [p] [a ,6] and | [p ' l [o , 6] - The translated terms need a sequence of
r-transitions to estabhsh the connection between the "receiving" process and the
"copy" it is "receiving". This sequence has the same length as the parameter L.
In the above example we needed two r-transitions and in general we will need as
many r-transitions as the cardinality of the set fn(p).

We now turn to the question of encoding label passing using process passing.
This may seem as an artificial question, but as a theoretical result it is of inter-
est since it will provide a basis for discussion of the expressive power of the two
approaches.

The idea in the translation below is that instead of sending a channel a we send
a wire (a — chan) defined as i?.a?x.c\.nil + o1 .c1 x.a\x.nil. This wire has a multi-
purpose plug c and a switch to indicate in which direction the wire is to be used. We
assume c, z, o are distinct names not used in the Mobile Processes expression being
translated. When this wire is received it is plugged into the receiving process by
the localizing constructions: (. . . [c c'][i i'][o i—>• o '] . . .)\c'\i'\o'. The receiving
process will choose in which direction to use this wire by sending an o' signal for
output or an i' signal for input. The wire will be private to the sending and receiving
processes in the case of a bound name in the Mobile Processes expression. This is
ensured by a scope extrusion caused by the static restriction operator.

Mobile Processes [MilParWal89] was developed from ECCS [EngNie86] by sim-
plifying the notions of values, labels and variables into one concept called names.
This, however, presents a problem when translating Mobile Processes into Plain
CHOCS since a name in a process p may act as a name of a link (as e.g. y in

Chapter 5; Plain CHOCS 186

y{x).p) or it may act as a variable (as e.g. x in y{x).p) or it may act as a local link
name (as e.g. x in {x).p). To overcome this difficulty we first translate all free names
and all names bound by input prefix into process variables. Then we instantiate the
process variables corresponding to free names in the Mobile Processes expression
to names in Plain CHOCS. Names bound by restriction will be allocated names in
Plain CHOCS in the first translation step.

Definit ion 5.4.11 [| i : MP Plain CHOCS is defined structurally:

[O i l = nil

l l a ; (j /) . p l i = (a ; [c 1—> c '] [i H i']\o 1—> 0 '] 1 i'\.c"ly.

py-p\i = (a : [c >-»• c '] [i 1- i'\[o t—> 0 '] 1 o'\.c'\y.

= T - b l i

\p + p'h = b l i + b ' l i

l b 1 p'h = b l i 1 b ' l i

= (b l i [(a — c / i a n) / x]) \ a , where a has not been used before

II2 : MP Plain CHOCS is defined as:

Iph = (• •. (Ibli[(«i - chan)/xi]).. .)[(a„ - chan)/xn]

where i^V(|[p|i) = {zi,...,a:„} and a^.. .an are allocated by some 1 — 1 mapping
between V and Names (usually established by the 1 — 1 mapping between fn{p) and
FViMi))-

We have omitted the match construct of Mobile Processes. This can be elim-
inated in the Mobile Processes expression according to [MilParWal89]. Recursion
could be translated using the Yx[] construction from the previous section.

It is easy to see from the above definition that the label passing in the Mobile
Processes is mdmiced by the translation only requiring two additional communica-
tions for each use of the wire, i.e:

IA(A;).P]2 ~ T .al x .T .LP\2

|a6.p]]2 ~ T.T.a\{b — chan).lp\2

We may state this more precisely:

Chapter 5: Plain CHOCS 187

Proposition 5.4.12

1 . i f p p' then [[p| ^

3 . . / p m p' then M w

4 . i f p —^ p' then | p] — > | p '] or |[p] —^—>•—»•—»•—»• | | y |

PROOF: By induction on the length of the inference used to establish the transition
of p observing the structure of p. •

We conjecture the following relationship between Mobile Processes and their
translations into Plain CHOCS:

Conjecture 5.4.13 if p ~ q then [[p]2 % I9I2, where « is a suitable formulation of

weak higher order applicative bisimulation.

We can not hope for the implication to hold in the opposite direction since
the translation may introduce non-determinism not present in the original term
e.g: Consider the following term p = {a)(b){a[x).c{x).0 + b{x).0 \ ac.O) then p ~
T.c{x).0 p + T.O whereas | P] ~ T.T.T.T.T.T.C^.X.TMH + R.O ~ |J» + T . 0 | .

To see how the translation works we study the following small system consisting
of two components. Initially the first component is ready to receive a channel on
a and the second component is ready to send the 6-channel on a. Upon receiving
a channel the first component is ready to send a bound channel d on the newly
received channel. The second component is ready to receive this channel. The
end result is that the second component receives a private (f-channel from the first
component.

la{x).{d)(xd.P) I ab.b{x).Q}

T.a?x.T.l{d){xd.P)J I r.T.a\{b — chan).lb(x).Q^
r T T T r y y > > •

{l{d){xd.P)}[{b - chan)/x] | |^6(z).Q])

{{T.T.b\{d — chan).lP}[{b — chan)/x])\d | T .6?X.T . | (51)

{i[PWb — chart)/x] | [(5][(c? — c/ian)/a;])\<Z)

Chapter 5: Plain CHOCS 188

Comparing the two translations presented in this section we see that the two
calculi Mobile Processes and Plain CHOCS are equally expressive in the sense that
they may simulate one another. However, the translations are rather ad hoc. It
would be of interest if this comparison could be formulated in a more general frame-
work for comparison. In a private communication Chen Liang has told me that he
is working on such a generalized framework and he is using the translations between
Plain CHOCS and Mobile Processes as an example. His framework is built on a
category theoretical characterization of transition systems and the translations are
expressed as functors.

5.5 P l a i n C H O C S Object Oriented P r o g r a m m i n g

Over the past two decades object oriented programming has grown into a strong
discipline in the world of industrial programming. One reason for the success of
this programming notion is the link with ideas of structured programming. Object
oriented programming allows problems to be broken down into "objects" of man-
ageable size. There is to date no unifying definition of what exactly an object is and
what an object does although over the years much effort has been devoted to finding
such definitions. It seems as if each object oriented programming language (and
even each object oriented programmer) seems to have its (his/her) own definition
of an object.

This having been said, there seems to be a consensus that an object is regarded
as an encapsulating entity and there are strong analogies to the ideas of abstract
data types. Thus objects encapsulate "things" and users access these "things"
via "methods" which are the terms used for the diverse access strategies used in
object oriented programming. The idea behind the method paradigm is to present
the user with an interface through which objects can be accessed and at the same
time hide the way the objects are implemented. Most present day object oriented
programming languages have roots in ideas presented in the SIMULA language
[DahMyhNyg68] designed in the late sixties and ideas presented in the Smalltalk
language [GolRobSS] have had substantial influence.

The object oriented approach has mostly grown out of an imperative sequen-
tial programming discipline as a structuring device for large scale programs, but
recently it has been recognized as a useful tool in the description and construction
of distributed and concurrent systems [Atk89]. As we shall see in this section there
seems to be a strong analogy between the idea of objects and processes, encapsula-
tion and restriction, method call and communication via named channels. We shall
also see that it is possible to make connections between concurrency theory and

Chapter 5: Plain CHOCS 189

inheritance, which for many object oriented programmers seems to be a vital part
of the definition of what can be characterized as object oriented programming.

Many object oriented programming languages do not have a formal seman-
tics but rely on (thorough) verbal descriptions of the semantics. Recently some
more thorough studies of semantics foundations of object oriented programming
languages have emerged, POOL [Ame87] and Dragoon [Atk89] are very good ex-
amples of how far the current state of affairs for real life programming languages
has reached.

In this section we study the connection between concurrency and object ori-
ented programming in more details. We do this via a small toy language O. We
may consider O as a prototype core of most imperative concurrent object oriented
programming languages. In O we may define a class of objects and instantiate
objects to be of a defined class. In each class we may define a number of methods
and a thread of control. This thread of control is the primary means for concur-
rency since objects may be started and executed in parallel. The parallelism is
asynchronous and synchronization is obtained by method calls. O was inspired by
the toy language P studied in [Mil80] and in section 3.3, and the thread of control
in each object is similar to the sequential part of P. The language O is untyped
and we only consider type meaningful programs. We assume that objects are de-
clared before they are created, that all objects are created before started and that
all objects are started only once.

The semantics of O is described in Plain CHOCS in a phrase-by-phrase style re-
sembling a denotational semantics. However, we do not give any semantic domains.
Instead we may view the O semantics as a set of derived operators in Plain CHOCS
since the translation carries no parameters. Plain CHOCS only caters for process
values in communication. To allow for other values in Plain CHOCS than process
values we use the technique of [Mil83] and introduce a D-indexed family of actions
aid, d £ V ioT each value domain V. Due to the fact that only finite sums of
processes can be handled in the version of Plain CHOCS presented in this thesis we
restrict our attention to finite value domains as e.g. the set of booleans and finite
subsets of the integers. We let alx-P abbreviate d-p{dlx} where {d/x} means

exchanging all occurrences of i in p by d as e.g.
We shall use the following construct from [Mil83]: If 6 is a boolean valued expression
in X then let 6 then p else p') be encoded by T̂ xeD&.bOilx-P +
We should not confuse al^-P with alx.p since the first is a convenient shorthand
notation and the latter is part of the Plain CHOCS syntax.

Chapter 5: Plain CHOCS 190

T h e language O

Programs in O are built from declarations D, expressions E and commands C,
using assignments to program variables X. Variables Y always refer to objects and
variables Z refer to classes. Some set of functions F is assumed and for the cause
of simplicity we do not consider types of expressions. O has the following abstract
syntax:

Declarations: D ;;= vax X 1 obj y 1 Z); JD 1
method P (r e f X) i s C | c l a s s Z is D body C

Expressions; E ;:= X\F{E„...,E^)
Commands; C ::= X E \C-,C \ if E t hen C e l s e C |

whi le E do C\ sk ip | begin Z); C end |
y . c r e a t e Z | Y . s t a r t | Y .ca l l P{X)

Table 5.5.1: Syntax of 0

To give a smooth definition of the semantics of O we need some auxihary defi-

nitions.
To each variable X we associate a register Regx- Generally it follows the pattern:

Loc = Q:?j;.jRe5'(x)

Re^g{y) = al^.Reg{x) -f •y\y.Reg{y)

and thus for X we will have Locx = Loc[a t—*- ax][7 ^ "tx]- Initially we write in
a value, thereupon we can read this value on 7 or overwrite the contents of Loc
via a . We have written the above definition in an equation style to make it more
readable. The proper Plain CHOCS definition is: Loc — {a^x-hlx-nil \ Reg)\h
where Reg = Yfieg[h'^x-{oi'^x-hlx-R^9 + "f^-x-h^x-R^d)] I Yxeeplh'^x-h^-x-^^^p]- The
second component of this process takes care of the parameters in the recursion
of the above equations. (This is in fact a general technique for simulating the
parameterized recursion of [Mil83]). We also associate a register to each class Z,
each object Y and each method P. It may be defined in the same way as above
with X substituted with x.

To each n-ary function symbol F we associate a function / which is represented

by:
bf = Pl^-x\ • • • • Pn'^ x„-P^-f(xi..JEn)-^^^

Constants will thus be represented as e.g. btrue = The result of evaluating
an expression is always communicated via p. It is therefore useful to define;

p result p' = {p\ p')\p

Chapter 5: Plain CHOCS 191

We adopt the protocol of signaling successful termination of commands via 6
and it is therefore convenient to define:

done = Sl.nil

p before p' = {p[6 ^ /?] | ^1.p')\^ , ^ ^ fn{p) U fn{p')

We now give the semantics of O by the translation into Plain CHOCS shown in
table 5.5.2.

Declarations:

| v a x X} = Locx

| o b j Y} = LOCY

ld;d'l ^ mild'l
[[method P (r e f X) i s CJ = {{Locp \ ap ! (method process).nil)\ap)

[c l a s s Z is D b o d y C | = {{Locz \ azK process).nil)\az)

where method process = | C | [A X I—>• OP„][7A' 7P„]

and class process = ([D]|[ap, «pJ[7p„ ^ lp^ I ICI)\^z?

Expressions:

[[^(Ei, . . . , E„)] = {leil[f>ilp\ I . . . I [£^„1[/9„//9] I -.-xpn

Commands:

IX := E| = |E| result [pix-otx^-x-done)

[C ; C 1 = iciheforelc'i

| i f E t h e n C e l s e C"| = |£^] result r then |(7|| else |C"|)

[w h i l e E Ao C\ — yw[[_B][result ^ then (| (7 | before w) else done)]

[s k i p I = done

[b e g i n D ; C endl = ([-DI | [C]) \L£)

[F . c r e a t e ZJ = 7Z?a:.Q:Y!(a;[Q;|^ a f j [7 ^ 7PJ) .c?one

Chapter 5: Plain CHOCS m

| y . s t a r t I = 7y?x.(a:[6 t—» /3] | .done)\P

i K c a l l P{X)} = 7p?x.(x[ap^ axlbp^ 7x][<5 | p..done)\^

Table 5.5.2: Semantics of O

In the definition of class process we let \VD abbreviate restrictions with respect
to all variables and objects declared in D and in the equation for |begin £); C end]
we let \ L d abbreviate restriction with respect to a and 7 channels for all variables,
objects, classes and methods declared in D. The method and class definitions each
create a location to store the method process respectively the class process. The
restrictions \ap respectively \az ensure that these processes cannot be overwritten
after their definitions.

Note that if we disregard the object oriented part of O we have essentially a
language definition similar to the definition of P from section 3.3. However, if we
compare the semantic definition of procedures in P with the semantic definition of
methods in O we note that the Transform process needed to ensure static binding
of variables in the P semantics is no longer present in the 0 semantics. This is not
because we advocate dynamic binding for variables in the object oriented paradigm.
It is because the static nature of the restriction operator in Plain CHOCS will ensure
that static binding is obtained. The static nature will ensure (by a scope extrusion)
that any variable reference is kept with the defining environment. Assignments to
variables may be nondeterministic since two or more methods may refer to the same
variable and we can have situations where one method reads the value currently
stored then another method writes a new value before the first method overwrites
the current value. As for the semantic description of P we can avoid this problem
by surrounding each variable with a semaphore construct.

A class is defined as a process stored in a register. The class process behaves
like a block except that we can invoke the methods defined in the declaration part.
These will execute concurrently with the thread defined by the command part of
the class process. A class is a passive entity in the sense that it is stored in a
register. An object Y of class Z is just a copy of the class process stored in another
register. It becomes active when started by the K s t a r t command which reads
the register and activates the process by the 7y?z . (z . . .) construct. Each method
is also just a process stored in a register. When a method is called the register

Chapter 5: Plain CHOCS 193

is read and a copy of the method process is activated. The renaming surrounding
the variable x ensures a call-by-reference parameter mechanism in the method call.
This parameter mechanism seems to be most in line with current trends in object
oriented programming, but we can also define call-by-value, call-by-name and lazy
parameter mechanisms for method calls in O using the same approach as in the
definition of parameter mechanisms in P discussed in section 3.3.

The semantic definition of O has not taken the object oriented paradigm to its
extreme where everything is an object. We have kept a distinction between objects,
values and methods. We can go a bit further and describe how objects can be
passed in method call. To some object oriented programmers this is the true spirit
of the object oriented paradigm. Let us see how object passing in method call can
be described semantically:

[method P (o b j Y) i s C] = {{Locp | a p ! (method process).nil)\ap)

where method process = IC'l[«p„ ^ iPv]

[[y . c a l l P{Y')} = 7^?x.(x[ap„ ap„'][7P„ 7^1 ^^fore done)

Passing an object in a method call works very similar to the call-by-reference
parameter mechanism for normal method calls. We simply rename the method calls
of the formal parameter to method calls of the actual parameter.

Another phenomenon often connected with object oriented programming lan-
guages is the concept of inheritance. This is often considered the main structuring
mechanism. We may describe this semantically as follows;

[c l a s s Z i n h e r i t s Z' i s D body CJ = {{Locz | class process).nil)\ap)

a n d class process — (7z/?x.(a:[Q:p^ ^p„][7p„' 7p„] before (|-D][ap„ t-*-

This describes that the class Z inherits the methods and the thread of control
of class Z'. All methods of Z' are renamed to methods of Z and the thread of
control of Z' is sequentially composed with that of Z. It is easy to generalize this
to multiple inheritance simply by sequentially composing each inheritance class. In
some object oriented programming languages programmers are allowed to redefine
inherited methods. This is easily obtained by restricting the a and 7 channels of
the redefined method from the inheritance class and redefining it in the declaration
part of the class.

This section represents a small step towards a semantic description of object ori-
ented programming in Plain CHOCS. Except for a few syntactic differences the core

Chapter 5: Plain CHOCS IM

of POOL [Ame87] is very similar to o. There are many interesting and challenging
aspects in investigating a comparison of the semantics of POOL with the semantics
of o more thoroughly and perhaps establishing a translation of POOL into Plain
CHOCS and thus provide a basis for a formal comparison. These prospects are left
for future studies.

Chapter 6

Conclusion

The aim of this thesis has been to provide a thorough investigation into the foun-
dations of calculi for higher order communicating systems. I have aimed at putting
this study on the same kind of principles as the studies of functions using the A-
Calculus. The achievements reported in this thesis do of course not compare to
those achieved for the A-Calculus but they are a first step towards exploring the
expressive power of calculi for higher order communicating systems. I have tried to
follow the path of simplicity and minimality and I have tried to carefully select a
small set of operators (as small as possible in fact) which can be used to express
complicated and sophisticated operators. This provides a minimal syntax (in the
sense of [Mil86]) for the calculus and I have investigated several semantic models.

The first part of this thesis described the CHOCS calculus with an operational
semantics given as an extension of the operational semantics for CCS with value
passing. We have shown how the fundamental notions of bisimulation and obser-
vational equivalence may be extended to take processes sent and received in com-
munication into account. We have shown that these equivalences satisfy almost the
same set of algebraic laws known from CCS only needing some obvious new laws for
process communication. As an interesting point to note we have shown how process
communication may be used to simulate recursive behaviour. We have also shown
how to define a denotational semantics for CHOCS and we have shown that this
semantics, with mild restrictions, is fully abstract with respect to the operational
semantics. These restrictions are due to the well known impossibility of modelhng
unbounded nondeterminism in the Plotkin Power Domain. It is a challenging task
to see if the Plotkin Power Domain for countable nondeterminism [Plo82] could be
used to resolve this problem for a denotational semantics for CHOCS.

195

Chapter 6: Conclusion 196

6.1 Loose E n d s

The study of calcuh for higher order communicating systems presented in this thesis
has touched on most of the usual subjects of process calculus and successfully
extended these results to take processes sent and received in communication into
account. Only one major study has been "neglected": most process calculi study
the subject of process logic. One outstanding representative for this approach is the
so-called Hennessy-Milner-Logic (HML) for CCS [HenMil85]. So far we have not
presented any results about process logic, but HML may be extended to a version
relevant for CHOCS. This logic takes processes sent and received in communication
into account and we therefore introduce binary modal operators which correspond
to the unary modal operators of HML.

Let the language C of formulae be the least set such that:

1. T e C

2. F,F' EC ^ (a?)(F, F'), {a\){F, F'), F A F' E C

3. F e e => (r)F, - F € £

The satisfaction relation 1=C "P x £ is the least relation such that:

1. p T for all p € Pr

2. p \= F A F' p F and p j= F '

3. p \= -'F iff not p \= F

4. p \= {a?){F, F') iff for some p',p", p p" and p' \= F and p" \= F'

5. p [= (a!)(F, F') iff for some p', p", p p" and p' \= F and p" |= F'

6. p\= {t)F iff for some p", p —^ p" and p" |= F'

T h e o r e m 6 . 1 . 1 IfV is image finite then

p^ q i f f e{p) =

where C{p) = {F : p \= F}.

PROOF: The proof of this theorem follows the corresponding proof for HML given
in [HenMil85]. •

Chapter 6: Conclusion 197

It is an interesting subject for further studies to see if this extension of HML can
be reconstructed using the domain logic framework of [Abr87a] along the lines of the
reconstruction of HML in [Abr90a]. From the domain equation: D =
where dai = d X d, dai = d X d and dr = d, defined in Chapter 4, we may
generate a domain logic using the framework based on Stone Duality presented in
[Abr87a]. Once this study is completed it is a natural next step to investigate if
and how this domain logic and the denotational semantics may be used to give a
compositional proof system for CHOCS along the lines of [Sti87] and [Win85].

6.2 Technical Choices and O p e n Quest ions

Throughout this thesis several technical choices have been made during the develop-
ment of the theory; often these choices have been motivated by technical necessity
to make the theory work or they have been made from "gut" feeling about the in-
tuition behind the theory. But wherever choices are made alternatives exist. I have
tried to list the most obvious ones and explain their implications at the appropriate
point in the text but one choice has been bigger and deserves more attention and
may turn out to be a worth-while path for future studies.

The choice relates to the question of the observational theory for CHOCS. This
theory is based on the definition of p p" as p —^ p" motivated by technical
necessity. I have not been able to prove congruence properties about weak higher
order bisimulation with the more common definition of p =£> p" as p —^ ^ ^ >
p". Of course this does not imply that it is not possible to do so and philosophically
there should be no reason for not doing so. This is not the case for an observational
theory for Plain CHOCS however. For technical reasons we would have to define

since Pr X [Pr Pr] and it would not make sense to write
^ > . We could define the output transitions as : = ^ = — ^ >- ̂ >

but this would introduce an unnecessary asymmetry. In general the formulation of
an observational theory for Plain CHOCS is an open and interesting question.

We have not solved the problem of finding an alternative description of the
largest congruence containing higher order observational equivalence. What we have
shown is that we can define an irrefiexive weak higher order bisimulation predicate
and prove that this equivalence is a congruence. There are a few suggestions to how
to proceed. One could define a recursive bisimulation-like version of the congruence:

Def ini t ion 6.2.1 A weak higher order context bisimulation R is a binary relation
on Pr such that whenever pRq and r G Act and C is a context then:

(i) Whenever C [p] = = ^ p', then C[q\ ===> q' for some q', r '

with fRr' and p'Rq"

Chapter 6: Conclusion 198

(ii) Whenever C[q\ q', then C\p] => p' for some p', r'

with and p'Rq'

If there exists a weak higher order context bisimulation R containing (p, q) we

write p q.

It is relatively easy to see that the relation is a congruence relation containing
However, also contains the following relation:

Def ini t ion 6.2.2 A weak higher order plus bisimulation R is a binary relation on
Pr such that whenever pRq and r G Act and r € Pr then:

(i) Whenever p -\- r p', then q + r q' for some q', r'

with fRr' and p'Rq'

(ii) Whenever q + r q', then p + r p' for some p', r'

with r'Rr and p'Rq'

P

If there exists a weak higher order plus bisimulation R containing {p,q) we write
-/4- rt

This relation generalizes the usual definition of %+ to a recursively defined
predicate on Pr^. Unfortunately this immediately refutes the law pre.r.p pre.p,

where pre is any of the prefixes a?x, alp' or r and thus leaves open the question of
the validity of this law for

It is interesting to see if the approach of denotational semantics may help an-
swering this question. It seems possible to define a denotational semantics which
is fully abstract with respect to an operational semantics built on the notion of ir-
refiexive higher order bisimulation. Abramsky has recently discovered how this can
be used in the context of SCCS to get to full abstraction with respect to the obser-
vational congruence by "factoring" out the denotational semantics by the equation:
pre.T.p pre.p [Abr90b].

The second part of this thesis has provided an alternative operational semantics
for the calculus of higher order communicating systems. We have called this study
Plain CHOCS since it exhibits a static nature for the operators of restriction and
renaming. The study of Plain CHOCS is still in a rather preliminary stage. There
are various tasks to be continued. As mentioned above there is the immediate task
of establishing an observational theory for Plain CHOCS. Another major challenge
is to establish a denotational theory. The operational modelling of input suggests
that input should be modelled by function space D D, but the behaviour is

Chapter 6: Conclusion 199

also dependent on the set of bound names exported in scope extrusion, thus one
suggestion for a denotation domain worth investigating is:

D = D] ^ D + x D x D + D]

In the context of Plain CHOCS there is a very interesting variant of the appHcative
higher order bisimulation which deserves to be explored:

Def ini t ion 6.2.3 A variant applicative higher order simulation R is a binary
relation on CPr such that whenever pRq and a £ Names then:

(i) Whenever p p', then for all r G CPr there is some q',

y such that q q' and p'[r/x]Rq'[r/y]

(ii) Whenever p p", then q —^ q" for some q',(^' with

B n { f n { p) U fn{q)) = 0 and p'Rq' and p"Rq"

(Hi) Whenever p —^ p', then q —^ q' for some q' with p'Rq'

A relation R is a variant applicative higher order bisimulation if both it and its
inverse are applicative higher order simulations.

If there exists a variant applicative higher order bisimulation R containing {p,q) we

write p ~ q.

This relation is obtained by commuting the quantifiers in the first clause of
definition 5.2.1. The relation ~ is interesting since it is stronger than the applicative
higher order bisimulation relation. A similar variation of strong ground bisimulation
was suggested in [MilParWal89] and it was shown that in the context of Mobile
Processes the variant relation is strictly stronger. It is an open question if the
inclusion is strict in the context of Plain CHOCS.

6.3 Appl ica t ions

The calculi studied in this thesis are idealized cores for the study of process passing
in communicating systems and we have shown how other values, including higher
order functions, sequential programs and objects may be encoded. Several examples
throughout this thesis have shown that there are systems which naturally may be
described in terms of communicating systems passing processes in communication.
Even so it is my opinion that we need other types of values as primitive constructs
in the language for real programming languages and large scale specifications.

Chapter 6: Conclusion 200

Both the formaHsms of LOTOS [BolBri87] and SMoLCS [AstReg87] have non-
process values as algebraic data types incorporated in their specification languages.
This seems to be an appropriate way of specifying communicable values from the
point of algebraic reasoning about values, but it offers little from the point of an
operational description of their behaviour. Therefore in my opinion non-process
values should be introduced together with an operational semantics and an appro-
priate integration of equivalences should be studied which could form a basis for
algebraic reasoning along the ideas of laws presented in this thesis. These ideas
have partly been pursued in TPL [Nie89] and more thoroughly studied in FACILE
[GiaMisPraQO]. It is my hope that the calculi studied in this thesis may serve as a
foundational tool for future multi-paradigm programming languages. Already both
TPL and FACILE use foundational models similar to the higher order communica-
tion trees studied in detail in the first part of this thesis.

The introduction of non-process values calls for a notion of types. Both FACILE
and TPL are equipped with type structures, but in my opinion the FACILE type
structure which assigns the type code to process values is too restrictive since there
is no reference to the sort of the process, and the type structure of TPL which has
no distinction between process expressions and other expressions is too fiexible. A
suggestion for a type structure is a merge between the FACILE type structure and
the sort system described in section 2.4 which should be pursued in the future.

Design of a new multi-paradigm language with non-process values and processes
as communicable values seems to be a major challenge. The theory presented in
this thesis is hopefully a useful tool, but for real life programming languages there
is also the inevitable question of how to implement them on real computers. The
translation of Plain CHOCS into Mobile Processes presented in section 5.4 gives
some ideas about how process passing could be implemented on a lower level using
processes on dynamically reconfigurable networks. This again calls for a study of
an implementation strategy for such processes. Some hints are given in [Mil90]
where a Chemical Abstract Machine [BerBou90] for Mobile Processes is considered.
A more thorough study of implementations of processes on dynamically reconfig-
urable networks will appear in [LetQl]. Another suggestion is to use the frame-
work of Chemical Abstract Machines directly as demonstrated for the 7-Calculus
in [BerBou90]. All the above approaches towards implementations are relatively
abstract. To get closer to a real implementation I think it is necessary to consider
implementations in an occam-like^ language on a Transputer-hke machine architec-
ture [INM88]. This is one of the tasks that the ProCos Project under the ESPRIT
Baaic Research Action 3104 [Bj089] aims at doing for multi-paradigm languages

'occam is a trademark of INMOS Limited.

Chapter 6: Conclusion 201

based on a CSP/occajn/Transputer approach. However, occam does not seem to be
quite adequate for implementing a multi-paradigm programming language built on
the ideas of CHOCS because it does not allow one to describe dynamically reconfig-
urable networks; such networks can only be simulated using large static networks.
Another promising machine architecture is the Alice machine [DarReeSl]. This ma-
chine has a network of processors linked via a kind of telephone exchange mechanism
which allows physical connections between processors to be changed dynamically.
One problem I foresee with implementations on either a Transputer or an Ahce
machine architecture is that they both seem to require large blocks of sequential
sub-computations to efficiently utilize the computing power of each processor in
the network. However, the translation of Plain CHOCS into Mobile Processes and
more generally the results on simulation of functional languages reported in [Let91]
indicate that we should be looking for a machine architecture where there are very
small blocks of sequential sub-computations and where the basic computation is re-
configuring the network. It will be a major challenge to see how this can be realized
in practice.

Bibliography

[Abr87] S. A b r a m s k y : Observation Equivalence as a Testing Equivalence,

Theoretical Computer Science 53, pp. 225-241, North-Holland, 1987.

[AbrSTa] S. Abramsky: Domain Theory in Logical Form, Proceedings of LICS
87, 1987. Full version to appear in Annals of Pure and Applied Logic.

[Abr90] S. Abramsky: The Lazy Lambda Calculus, Chapter 4 in D. Turner
(ed.). Research Topics in Functional Programming, pp. 65-116, Ad-
dison Wesley, 1990.

[Abr90a] S. Abramsky: A Domain Equation For Bisimulation, (to appear
in Information and Computation 1990), Department of Computing,
Imperial College, London University, 1987.

[Abr90b] S. Abramsky: Causal Semantics in Process Algebra, Draft , Depart-
ment of Computing, Imperial College, London University, 1990.

[Ace89] L. Aceto: On Relating Concurrency and Nondeterminism, Report
No. 6/89, Dept. Computer Science, University of Sussex, 1989.

[Acz84] P. Aczel: A Simple Version of SCCS and Its Semantics, Unpub-

lished notes, Edinburgh 1984.

[Ame87] P. America : POOL-T: A Parallel Object-Oriented Language, Pro-

ceedings of Object Oriented Concurrent Programming, pp. 199-220,
MIT Press, 1987.

[Ast89] E . Astes iano: Open Letter to Mr. Bent Thomsen, author of the

POPL'89 paper: "A Calculus of Higher Order Communicating Sys-

tems", Email, 1989.

[AstGioReg88] E. Astesiano, A. Giovini, G. Reggio: Generalized Bisimulation in
Relational Specifications, Proceedings of STACS 88, Lecture Notes
in Computer Science 294, pp. 207-226, Springer-Verlag, 1988.

202

BIBLIOGRAPHY 203

[AstReg87]

[AstReg87b]

[Atk89]

[AusBou84]

[Bar84]

[BerBou90]

[BerKlo84]

[Bj089]

[BolBri87]

[Bou89]

[BouCas87]

E. Astes iano & G. Reggio: SMoLS-Driven Concurrent Calculi^ Pro-

ceedings of TAPSOFT 87, Lecture Notes in Computer Science 249,
pp. 169-201, Springer-Verlag, 1987.

E. Astes iano & G. Reggio: Direct Semantics for Concurrent Lan-

guages in the SMoLCS approach, IBM J o u r n a l of Research and De-

velopment, vol. 31, no. 5, pp. 512-534, 1987.

C. Atk inson: An Object-Oriented Language for Software Reuse and

Distribution, Ph. D. Thesis, Department of Computing, Imperial
College, London University, 1989.

D. Aus t ry & G. Boudol: Algebre de Processus et Synchronisation,

Theoretical Computer Science 30(1), pp. 91-131, North-Holland,
1984.

H. P. Barendreg t : The Lambda Calculus

tics, North-Holland, 1984.
Its Syntax and Seman-

G. Berry & G. Boudol: The Chemical Abstract Machine, Proceed-
ings of POPL 90, pp. 81-94, The Association for Computing Ma-
chinery, 1990.

J . Bergs t ra &: J . W . Klop: Process Algebra for Synchronous Com-

munication, Information and Control, vol. 60, pp. 109-137, 1984.

D. Bj0rner : A ProCos Project Description ESPRIT BRA 3104, Bul-

letin of the EATCS number 39, pp. 60-73, 1989.

T. Bolognesi &: E. Brinksma: Introduction to the ISO Specification
Language LOTOS, in Computer Networks and ISDN Systems 14,
pp. 25-59, North-Holland, 1987.

G. Boudol: Towards a Lambda-Calculus for Concurrent and Com-

municating Systems, Proceedings of TAPSOFT 89, Lecture Notes
in Computer Science 351, pp. 149-161, Springer-Verlag, 1989.
Preliminary version in Research Report no. 885, INRIA Sophia An-
tipolis. Autumn 1988.

G. Boudol & I. Castellani: On the Semantics of Concurrency: Par-
tial Orders and Transition Systems, P roceed ings of T A P S O F T 87,

Lecture Notes in Computer Science 249, pp. 122-137, Springer-
Verlag, 1987.

BIBLIOGRAPHY 204

[BouLar89] G. Boudol & K. G. Larsen: Graphical Versus Logical Specifications,

Technical report R 89-33, University of Aalborg, 1989.

[Chr88] P. Christensen: The Domain of CSP Processes, incomplete draft,
The Technical University of Denmark, 1988.

[CleParSte89] R. Cleveland, J. Parrow & B. Steffen: The Concurrent Workbench:
a semantics based tool for the verification of concurrent systems,

report ECS-LFCS-89-83, University of Edinburgh, 1989.

[CouCou79] P. Cousot & R. Cousot : Systematic design of Program Analysis

Frameworks, In Conf. Record of the 6th ACM symposium on Prin-
ciples of Programming Languages, 1979.

[Coz90] J. Cozens: Adaptable Computer Systems, incomplete draft. Univer-
sity of Surrey, 1990.

[DahMyhNyg68] O. J. Dahl, B. Myhrhaug &: K. Nygaard: SIMULA 67 Common
Base Language, Norwegian Computing Center, 1968.

[DarRee81] J. Darlington, M. Reeve: Alice - A Multiprocessor Reduction Ma-
chine for the Parallel Evaluation of Applicative Languages, in Pro-

ceedings of the 1981 ACM Symposium on Functional Languages and
Computer Architecture, pp. 65-76, 1981.

[EngNie86] U. Engberg & M. Nielsen: A Calculus of Communicating Systems
with Label Passing, Technical report DAIMI PB-208, Computer Sci-
ence Department, Aarhus University, 1986.

[GiaMisPra89] A. Giacalone, P. Mishra & S. Prasad: FACILE, A Symmetric In-
tegration of Concurrent and Functional Programming, In J . Diaz &

F. Orejas (eds.). Proceedings of TAP SO FT 89, pp. 184-209, Lecture
Notes in Computer Science 352, Springer-Verlag, 1989.

[GiaMisPra90] A. Giacalone, P. Mishra & S. Prasad: Operational and Algebraic
Semantics for Facile: A Symmetric Integration of Concurrent and

Functional Programming, Proceedings of ICALP 90, pp. 765-780,
Lecture Notes in Computer Science 443, Springer-Verlag, 1990.

[GodLarZee89] J. C. Godskesen, K. G. Larsen & M. Zeeberg: TAV (Tools for
Automatic Verification) users manual, r epo r t R 89-19, Universi ty

of Aalborg, 1989.

BIBLIOGRAPHY 205

[GolRob83] A. Goldberg & D. Robson: Smalltalk 80: The Language and its
Implementation^ Addison Wesley, 1983.

[Gog etal77] J. A. Goguen, J. W. Thatcher, E. G. Wagner & J. B. Wright: Initial
algebra semantics and continuous algebras, J o u r n a l of t h e A C M , vol.

24, pp. 68-95, 1977.

[GraSif86] S. Graf & J. Sifakis: A Logic for the Description of Non-
deterministic Programs and Their Properties, I n f o r m a t i o n a n d Con-

trol, vol. 68 pp. 254-270, 1986.

[GroVaa89] J. F. Groote & F. Vaandrager; Structured Operational Semantics
and Bisimulation as a Congruence, Draft, Centre for Mathematics
and Computer Science, Amsterdam, 1989.

[HenMil85] M. Hennessy & R. Milner: Algebraic Laws for Nondeterminism and
Concurrency, Journal of the Association for Computing Machinery,
vol. 32, No. 1, pp. 137-161, 1985.

[Hen81] M . Hennessy : A term model for synchronous processes, I n f o r m a t i o n

and Control, vol. 51(1), pp. 58-75, 1981.

[Hen84] M. Hennessy: Axiomatising Finite Delay Operators, Acta Informat-
ica 21, pp. 61-88, Springer-Verlag, 1984.

[Hen88] M. Hennessy: An Algebraic Theory of Processes, MIT Press, Cam-
bridge Massachusetts, 1988.

[HenNic87] M. Hennessy & R. de Nicola: CCS without r 's . Lecture Notes in
Computer Science 249, pp. 138-152, Springer-Verlag, 1987.

[HenPlo79] M. Hennessy & G. Plotkin: A term model for CCS, Proceedings of
MFCS 79, Lecture Notes in Computer Science 74, Springer-Verlag,
1979.

[HenPloSO] M. Hennessy & G. Plotkin: A term model for CCS, Proceedings
of MFCS 80, Lecture Notes in Computer Science 88, pp. 261-274,
Springer-Verlag, 1980.

[Hoa81] C. A . R . Hoare : A Model for Communicating Sequential Processes,

Technical monograph. Computer Laboratory, University of Oxford,
1981.

BIBLIOGRAPHY 206

[Hoa85] C. A. R. Hoare: Communicating Sequential Processes, Prentice Hall,
1985.

[INM88] INMOS Limited: occam 2 Reference Manual, Prentice Hall, 1988.

[KenSle83] J. R. Kennaway & M. R. Sleep: Syntax and Informal Semantics of
DyNe, a Parallel language, Proceedings of workshop on The analysis
of Concurrent Systems 1983, Lecture Notes in Computer Science
207, pp. 222-230, Springer-Verlag, 1985.

[KenSle88] J. R. Kennaway & M. R. Sleep; A Denotational Semantics for First
Class Processes, Draft, School of Information Systems, University
of East Anglia, Norwich, 1988.

[Lar 86] K. G. Larsen: Context Dependent Bisimulation Between Processes,

Ph. D. Thesis, Edinburgh University 1986.

[Lar87] K. G. Larsen: From Modal Logic to Process Algebra, Draft , Univer-
sity of Aalborg, 1987.

[LarTho88] K. G. Larsen & B. T h o m s e n : Compositional Proofs by Partial Spec-

ifications of Processes, Proceedings of MFCS 88, Lecture Notes in
Computer Science 324, pp. 414-423, Springer-Verlag, 1988.

[LarTho88b] K. G. Larsen & B. Thomsen: A Modal Process Logic, Proceedings
of L i e s 88, pp. 203-210, Computer Society Press, 1988.

[LecMadVer88] V. Lecompte, E. Madelaine & D. Vergamini: Auto: a verification
system for parallel and communicating processes, I N R I A Sophia An-

tipolis, 1988.

[Let91] L. Leth : Functional Programs as Reconfigurable Networks of Com-

municating Processes, Forth coming Ph. D. Thesis, Department of
Computing, Imperial College, University of London, 1991.

[Maz77] A. Mazurkiewicz: Concurrent Program Schemes and Their Interpre-

tation, Proceedings of Aarhus Workshop on Verification of Parallel
Processes, Aarhus University, 1977.

[Mil80] R. Milner: A Calculus of Communicating Systems, Lecture Notes
in Computer Science 92, Springer-Verlag, 1980.

[Mil81] R . Milner: A Complete Inference System for a Class of Regular

Behaviours, University of Edinburgh, 1981.

BIBLIOGRAPHY 207

[Mils lb] R. Milner: Modal characterisation of observable machine behaviour,

Proceedings of GAAP 81, Lecture Notes in Gomputer Science 112,
pp. 25-34, Springer-Verlag, 1981.

[Mil83] R. Milner; Calculi for Synchrony and Asynchrony, Theoretical
Gomputer Science 25, pp. 267-310, North Holland, 1983.

[Mils6] R. Milner: Process Constructors and Interpretations, in H. J . Ku-

gler (ed.). Information Processing 86, pp. 507-518, Elsevier Science
Publishers B. V. (North-Holland), IFIP, 1986.

[Mil89] R. Milner: Communication and Concurrency, Prentice Hall, 1989.

[Mil90] R. Milner: Functions as Processes, Proceedings of IGALP 90, pp.
167-180, Lecture Notes in Computer Science 443, Springer-Verlag,
1990.

[MilParWal89] R. Milner, J. Parrow & D. Walker: A Calculus of Mobile Processes,
Part I, report EGS-LFGS-89-85, University of Edinburgh, 1989.

[MilParWal89b] R. Milner, J. P arrow h D. Walker: A Calculus of Mobile Processes,
Part II, report ECS-LFGS-89-86, University of Edinburgh, 1989.

[Nie84] F. Nielson: Abstract Interpretation using Domain Theory, P h . D.

Thesis, Edinburgh University, 1986.

[Nie89] F . Nielson; The Typed \-Calculus with First-Class Processes, Pro-

ceedings of PARLE 89, Lecture Notes in Gomputer Science 366,
Springer-Verlag, 1989. Preliminary version; Technical Report ID-
TR: 1988-43 ISSN 0902-2821, Department of Gomputer Science,
Technical University of Denmark, August 1988.

[Ong88] G-H. L. Ong; The Lazy Lambda Calculus: An Investigation into the
Foundations of Functional Programming, P h . D. Thesis , Depar t -

ment of Computing, Imperial College, London University, 1988.

[Par81] D. P a r k : Concurrency and Automata on Infinite Sequences, Theo-

retical Computer Science VII, Lecture Notes in Gomputer Science
104, Springer-Verlag, 1981.

[Plo76] G. Plotkin: A Powerdomain Construction, SIAM Journal on Com-
puting, 5 (1976), pp. 452-487, 1976.

BIBLIOGRAPHY 208

[PI08I] G. P lo tk in : A Structural Approach to Operational Semantics, Tech-

nical report DAIMI FN-19, Computer Science Department, Aarhus
University, 1981.

[Plo81b] G. P lo tk in ; Post-graduate notes in advanced domain theory (in-

corporating the "Pisa Notes"), Department of Computer Science,
University of Edinburgh, 1981.

[Plo82] G. P lo tk in : A Powerdomain for Countable Non-determinism, P ro-

ceedings of Automata, Language and Programmming, Lecture
Notes in Computer Science 140, pp. 360-372, Springer-Verlag, 1982.

[Pra88] K. V. S. P r a s a d : Combinators and Bisimulation Proofs for

Restartable Systems, Ph. D Thesis, Edinburgh University, 1988.

[Rei85] M. Reisig: Petri Nets, EATCS Monographs on Theoretical Com-
puter Science 4, Springer-Verlag, 1985.

[Sch86] D. A. Schmid t : Denotational Semantics: A Methodology for Lan-

guage Development, Allyn and Bacon, Inc., 1986.

[Sim85] R- de Simone: Higher-level Synchronising Devices in MEIJE-

SCCS, Theoretical Computer Science 37, pp. 245-267, North-
Holland, 1985.

[Sti87] C . S t i rhng : Modal logics for communicating systems, Theo re t i ca l

Computer Science 49, pp. 311-347, North-Holland, 1987.

[Tar 5 5] A. T a r ski: A Lattice-Theoretical Fixpoint Theorem and Its Applica-

tions, Pacific Journal of Math. 5, 1955.

[Tho87] B. T h o m s e n : An Extended Bisimulation Induced by a Preorder on

Actions, M. Sc. Thesis, University of Aalborg, 1987.

[Tho89] B. T h o m s e n : A Calculus of Higher Order Communicating Systems,

Proceedings of POPL 89, pp. 143-154, The Association for Com-
puting Machinery, 1989.

[Tho89b] B. Thomsen: Plain CHOCS, Technical report 89/4, Department of
Computing, Imperial College, London University, 1989.

[Wal88] D. Walker: Bisimulation and Divergence, Proceedings of LICS 88,
pp. 186-192, Computer Society Press, 1988.

BIBLIOGRAPHY 209

[WinSO] G. Winskel, Events in Computation, Ph. D. Thesis, University of
Edinburgh, Scotland, 1980.

[Win85] G. Winskel , A complete proof system for SCCS with modal asser-

tions, Proceedings of Foundations of Software Technology and The-
oretical Computer Science, Lecture Notes in Computer Science 206,
Springer-Verlag, pp. 392-410, 1985.

Index

{{Dn}m 109 S = a b, 141
+-contexts, 59 r 2 (y) , 75

AU-.T^^A, 118 W,[], 64
C [] , 5 9 y , 63, 83
C[p], 59 %,[], 64, 167
Chan, 48 ACK, 153
Cl{X), 111 ACR*, 153

111 Ev, 113
£ > 0 , 1 1 8 CFPr, 75

Dl 1 : CHOCS ^ D, 129 CPr, 23, 144
120 CPrU [CPr-^

D X D\ 110 CPr-, 55
Dom{S), 141 CR, 30
F y (M) , 82 CR*, 30
FV{p), 23, 142 FPr, 75
7 , 8 3 IWCR, 61

Im{S), 141 IWCR*, 61
j f , 8 3 Id, 28
K{D), 115 A, 81
LEVk, 114 A°, 82
Levn, 79 Names, 21
M[y := M'], 82 73, 83
M N, 83 Pr, 23

83 {| • I l l
91 Pr~, 55

0 , 1 8 9 { U M S , 112
P[D], 111 i J \ 151
P°[D], 112 ~ j R ~ , 65
Pad, 48 E-algebra, 75
P f , 111 ^i€lPii 78

28 WCR-, 57
E\~, 161 WCR-*, 57

210

INDEX 211

187
x ^ l 4 9
~ , 199
alx-Pi 96, 189

54

%+, 59, 198
psC, 198
s ^ \ 5 9

60

/^-conversion, 84
£ , 196
AB, 149

56
CP, 25

CP-, 55
77

:?P, 77
W , 27
W3, 71
2VW, 60
7 \ 2 5
V - , 55
L|X, 106
l±), 1 1 2

W B , 54
W W , 74

109
H-, 104
0 , 46
7-Calculus, 90
A-terms, 81
<:«, 91

^ % 4 1
{6/c}p, 142
± , 106

TTfc, 113
Ew, 71

M P , 175
Names* —>• MP,

recx.p, 63

p : V —>• D, 128
p h p : 3,46
—>, 26

0 : PlainCHOCS

0 : Plain CHOCS

184
I I : A ^ CHOCS, 84

I I I : M P Plain CHOCS, 186

I I 2 : M P ^ Plain CHOCS, 186

| 1 „ : A CHOCS, 92

~ , 20, 27
~ on open terms, 35

71
-w, 20, 71

172
83
91

lOmatch, 48

C, 106

110

r-substitution, 176
T.p, 22, 141
~ r , 176
[/]r, 176
p —^ p', 146
p p", 146
p ^ p', 145
a 19

b p, 172
T, 70
W, 111

74

sr, 74
p p", 53
p p", 53

{4}n , 107
alsp'.p, 159

INDEX 212

alp'.p, 22, 141

a?^pi.p2, 75
a?x.p, 21 , 141

a Lib, 106

an{p)p , 131

curry, 129

dynamicsort, 4 2

/ t , 112

fn{p), 141

123

nil, 21 , 141

P + P', 22 , 141

P :: L, 4 1

p [5] , 22 , 141

P M , 24
p[g/a;], 24 , 143

p\a, 22
P ~A 9, 86
P 9, 9 4

P I P', 22 , 141

P 9, 71

b], 141

p \ B , 144

p \ a , 1 4 1

; / \ 7 9
5 19

s -f^, 19

staticsort, 43

X, 22 , 141

fr, 74

X>-indexed family of actions, 95, 189
FIX F, 109

c, 85
f i x F, 107
or, 4 6

p,85
t r o u b l e s , 94
(Nondeterministic) choice, 22

applicative higher order bisimulation,
149

appHcative higher order bisimulation
up to restriction, 150

apphcative higher order bisimulation
up to 160

applicative higher order bisimulation
up to ~ and restriction, 161

applicative higher order simulation, 148
applicative higher order simulation up

to ~ , 1 6 0
applicative higher order simulation up

to ~ and restriction, 161
applicative higher order simulation up

to restriction, 150
C P O , 106, 107
S F P , 106, 109
A-Calculus, 81
TT-Calculus, 169
Occam, 201

ACP, 10
Alice machine, 201
alternative rules for the restriction op-

erator, 147
alternative weak higher order bisimu-

lation, 56
always divergent process, 73
ambiguous use of 28
anticontinuous, 72
applicative simulation, 83
AUTO, 12

Bohm trees, 91
basic divergence predicate, 70
bisimulation, 20
Bisimulation equivalence, 11
black boxes, 27

call-by-name, 83

INDEX 213

call-by-name parameter mechanism, 100
call-by-reference mechanism, 99
call-by-value parameter mechanism, 98
call-by-value reduction, 91
Cartesian product, 110
CCS, 10
CCS with value passing, 25
chain, 106
Chemical Abstract Machine, 200
class, 188
command editor, 101
communication trees, 25
compact elements, 115
compatible vectors, 152
complete partially ordered set, 107
Composition of relations, 28
compositional nature, 105
computer virus, 65
Concurrent Workbench, 12
congruence relation, 29
context, 59
continuous S-algebra, 120
continuous function, 107
convergence to principal weak head nor-

mal form, 83
cpo,107
cpo-category, 108
CSP, 10
Curry paradoxical combinator, 63

denotational approximations, 131
denotational semantics, 12, 105
derived divergence predicate, 73
directed sequence, 109
displace operator, 104
divergence predicate, 70
domain logic, 197
domain of higher order communication

trees, 113

Dragoon, 189
dynamic binding of port names, 137
dynamically changing interconnection

structure, 169

ECCS, 13
embedding, 108
emitted process, 146
emitting process, 146
equational properties of ~ , 36
Event Structures, 10
everything is an object, 193
executor, 175
expansion theorem, 40

FACILE, 14
Failure equivalence, 11
finite input prefix, 75
fixed point, 107
fixed point for a continuous functor,

108
free names of processes, 141
free variables, 142
functor, 108

generalized choice operator, 78

height function, 123
Hennessy-Milner Logic, 12
higher order bisimulation, 27
higher order bisimulation up to 65
higher order communication trees, 25
higher order prebisimulation, 70
HML relevant for CHOCS, 196

image finite, 21, 72
Inaction, 21
inheritance, 193
initial fixed point of a continuous func-

tor, 108
Input action, 145

INDEX 214

Input prefix, 21
internal colimit, 113
irreflexive weak higher order bisimula-

tion, 60

join, 106

Kleene-star operator, 175

label substitution, 142
labelled transition systems, 19
language P, 95
lazy parameter mechanism, 100
lazy reduction strategy, 83
Lazy-A-Calcuius 85
least element, 106
least fixed point, 107
least upper bound, 106
lexicographic order, 58
limiting cone, 109
locally continuous, 108
log system, 101
LOTOS, 10

Mazurkiewicz Traces, 10
MEIJE, 10
method, 189
minimal sort, 42
Mobile Processes, 13, 169
Modal Process Logic, 12
monotone function, 107
multi-paradigm programming languages,

200

multi-purpose plug, 185

object, 188
object oriented programming, 188
observable actions, 53
observational equivalence, 53
operational semantics, 19

Output actions (with scope extrusion),
146

Output prefix, 22

Parallel composition, 22
partial ordering, 106
Petri Nets, 10
Plain CHOCS, 138
Plotkin Power Domain, 111
Plotkin Power Domain with the empty

set adjoined, 112
POOL, 189
ports, 41
Process variables, 22

recursion operator, 63
reduction strategies, 81
Renaming, 22
restricted renaming construct, 141
Restriction, 22

s e e s , 10
scope extrusion, 138
scope intrusion, 138
separated sum, 110
Silent actions, 146
SMoLCS, 14
solution to recursive domain equation,

109
sort, 41
sort declaration, 45
sort environment, 46
Sorted CHOCS, 45
standard theory for the A-Calculus 91
stepwise refinement, 11
Stone Duality, 197
strict function, 107
strong ground bisimulation, 171
strong ground simulation, 171
substitution, 143

I N D E X 215

substitution in A-Calculus, 82
Synchronization Tree Logic, 12

Tau prefix, 22
TAV, 12
T C C S , 64

TPL, 15, 45
Trace equivalence, 11
Transputer, 201
Turing definable functions, 81
Turing machines, 81

unobservable internal actions, 53
user/resource system, 138

variant applicative higher order bisim-
ulation, 199

variant applicative higher order simu-
lation, 199

weak higher order bisimulation, 53
weak higher order bisimulation restricted

to Au-observations, 94
weak higher order bisimulation restricted

to A-observations, 86
weak higher order context bisimulation,

197
weak higher order plus bisimulation,

198
weak higher order prebisimulation, 74
wire, 185

