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This study presents a new analytical model to predict the response of elastic-plastic, fully 
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1  INTRODUCTION 

The response of structures to dynamic loading has received considerable attention from 

researchers due to its relevance to several industrial applications. The presence of inertia force 

fields, nonlinear material behaviour, large deformations and failure render exact solutions 

inaccessible in most cases [1] and approximate methods are used to accurately predict 

deformation and failure in many cases [2]. 

The early work of Menkes and Opat [3] on fully clamped, impulsively loaded metallic beams 

experimentally identified  three distinct failure modes, namely large inelastic deformation, 

tensile failure at the support, and transverse shear failure at the support. Many authors have 

attempted predictions of the failure loads associated with these mechanisms. The first 

analytical treatment of fully clamped beams subject to transverse pressure loading was given 

by Symonds [4], who simplified the problem by using a rigid perfectly-plastic material model 

and assuming small deflection. Jones [5] employed conservation of energy to develop an 

approximate solution for the deflection history of clamped beams made from rigid perfectly-

plastic materials at large deformations. Subsequently, the same author [2],[6] presented 

accurate predictions of failure. 

Fleck and Deshpande [7] improved the models of Symonds [4] and Jones [5] by including the 

effects of a travelling plastic hinge, for the case of an impulsively loaded beam undergoing 

large deformations. Shen and Jones [8] also modelled the effects of plastic shear deformation 

and employed an interactive yield criterion, successfully predicting the occurrence of different 

failure mechanisms. Yu and Chen [9] subsequently included the softening effect triggered by 

large plastic shear sliding upon the beam response, while Wen [10] investigated the influence 

of work hardening on the failure mechanisms. 

The models presented above are accurate for the case of intense, diffused pressure loading of 

short time duration, typical of explosive blast events and neglect the influence of material 

elasticity on the response, which allows considerable simplification of the problem. Lee and 

Symonds [11] recognised that the ratio    

 
plastic work

elastic energy capacity
R    (1)  

has to take a value much larger than 1 for this assumption to be viable. It was found later that 

this condition is necessary, but not sufficient [12]. For the case of pressure loading of duration 
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comparable to the elastic response time of the structure, neglecting elasticity may lead to large 

errors. For example in combustion events, deflagration can induce on surrounding structures 

pressure loading of relatively low intensity (of order of a few bars) and large duration (of 

order 0.1 s) [13, 14], such that the assumption of rigid-plastic material response leads to 

inaccurate predictions; as a result, elastic-plastic models for dynamically loaded structures 

need to be developed. 

Schleyer and Hsu [15] formulated predictions for beams subject to transverse pressure loading 

which included elastic effects; they assumed a deformation mode given by the superposition 

of two fundamental flexural mode shapes, neglecting transient flexural wave propagation, and 

only considered plasticity via concentrated elastic-plastic springs. More recent models [16] 

also included the influence of plastic shear and travelling plastic hinges, employing an 

interactive yield criterion as well as material softening; the initial elastic response of the 

beam, neglecting transient flexural wave propagation, was used to predict the onset of 

plasticity and the initial locations of plastic hinges; the subsequent motion of such hinges was 

assumed to be identical to that calculated in [8].  

The role of the transient elastic response in dynamic loading of beams was studied in detail 

(e.g. [17]), while Yu et al. [18] showed, for the case of a cantilever, that the role of transient 

flexural waves is fundamental in determining the development of the plastic hinges and their 

location; on the other hand no published studies consider this aspect of the response in detail. 

In this study we present a new analytical model describing the elastic-plastic deformation of 

fully clamped beams; this accounts for an initial transient elastic response which allows 

predictions of the onset of yielding and of the initial location of plastic hinges; the subsequent 

structural response includes both elastic and plastic deformation and the motion of travelling 

plastic hinges is computed from Euler-Lagrange equations. The models account for large 

deformations and for the effects of elastic-plastic stretching and plastic shear upon the 

structural response. Due to its generality, the model is expected to be applicable to beams 

made from a wide range of materials and subject to diffuse pressure loading of arbitrary 

history.  

The outline of the paper is as follows: the model is described in Section 2, while Section 3 

presents details of the Finite Element (FE) simulations conducted. Results are presented and 

discussed in Section 4.  
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2  ANALYTICAL MODEL 

2.1  Overview 

The proposed model aims at capturing the response of a clamped beam from quasi-static to 

intense dynamic loading. The structural response is divided into several different phases and 

equations of motion are derived for each of these phases; these take the form of ordinary 

differential equations (ODEs) with algebraic constraints and are integrated numerically in 

non-dimensional form.  

 

The problem investigated is defined in Fig. 1. A fully clamped beam of length 2L is loaded by 

a uniformly distributed transverse pressure p(t). The beam's cross section is rectangular of 

height H and width B and is made of an isotropic, elastic-perfectly plastic material with 

Young's modulus E, yield stress 
y

  and density  . Only half of the beam is analysed due to 

symmetry, such that 0x    corresponds to a support section (Fig. 1). 

 

Based on FE predictions conducted in this study (and described below) or published by other 

authors [2, 8, 19], the response of the beam is idealised as sketched in Fig. 2; in all phases it is 

assumed that only transverse displacements are present. The elastic longitudinal waves are 

neglected, as they propagate at sonic speed (of order -1
5000 ms  in steel), and consequently the 

axial stress in the beam is taken as uniform over the length. In all phases of the response the 

shape of the deflected profile of the beam is approximated by a polynomial of order four. 

 

In all phases of the response the internal loads are described by the generalised stresses 

 d , d , d ,
x x yz

A A A
M z A N A Q A         (2) 

where A is the beam’s cross section area; these are referred to as bending moment M, 

membrane force N and shear force Q. The transition to plasticity is described by an interactive 

yield criterion (as in e.g. [8]); this has the form 

 

2 2 2

0 0 0 0

1 1
M Q Q N

M Q Q N

     
        
     

  (3) 

 

2

y y

0 0 0 y
, , .

4 3

BH BH
M Q N BH

 
     (4) 
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Subsequent to first yield, an associated flow rule (normality) is assumed to determine the 

plastic strain increments. 

 

If the condition (3) is met at any cross-section, it is assumed that a plastic hinge develops at 

this cross-section. Additional degrees of freedom (dofs) are added to the model to describe 

plastic dissipation at the hinge location; for plastic hinges at the supports, three dofs are 

introduced (namely, plastic hinge rotation 
pl , sup

 , plastic shear displacement 
pl , sup

w  and plastic 

axial stretching 
pl , sup

l ), while for plastic hinges along the beam span two additional dofs are 

included (plastic hinge rotation 
pl , m id

  and plastic axial stretching 
pl , m id

l ). 

 

The response begins with an elastic phase (Phase I) involving the propagation of a flexural 

wave from the support towards mid-span. In this phase the deformation of the beam is 

described by two degrees of freedom, namely the mid-span deflection 
0

w   and the position of 

the flexural wave front  , as in Schiffer et. al [19].  

 

As sketched in Fig. 2, Phase I is followed by either Phase IIa, corresponding to the flexural 

wave reaching mid-span, or Phase IIb, corresponding to yielding at the supports. In Phase IIa 

the propagation of the transient flexural wave is assumed to cease and the response is 

described by a single degree of freedom (the mid-span deflection 
0

w ). With further 

deflection, the generalised stresses at the supports may become sufficiently high to cause 

plasticity; in this case, a plastic hinge is formed at the supports and the corresponding 

response is denoted as Phase IIIa.  

 

In Phase IIb the elastic flexural wave motion continues and a plastic hinge develops at the 

support, inducing energy dissipation. Subsequently, a second plastic hinge may form along 

the beam at the flexural wave front ( x  ), and the corresponding response is denoted as 

Phase IIIb; such second hinge is assumed to travel towards mid-span and its location is taken 

as coincident with the wave front of the elastic flexural wave (  x t ). During Phase IIIb 

the plastic deformation at the support may cease, and the corresponding phase is denoted as 

Phase IIIb2.  
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Phase IV corresponds to formation of stationary hinges at the supports as well as mid-span. 

This phase can be reached in three different ways: (i) after Phase IIIa, when the mid-span 

section yields with continued deformation; (ii) after Phase IIIb, when the travelling plastic 

hinge reaches mid-span ( L  ); (iii) after Phase IIIb2, as the travelling plastic hinge reaches 

mid-span (corresponding to Phase IV2 in Fig. 2) and subsequently plastic deformation 

resumes at the supports. 

 

Phase V denotes elastic rebound. This phase can reached from Phase IIIa, Phase IV or Phase 

IV2 when plastic deformation ceases. If pressure is still applied in the elastic rebound phase, 

the response of the beam can revert to either Phase IIIa or Phase IV2.  

 

 

2.2  Governing equations  

In this section we develop the governing equations for the individual phases of the response. 

In each phase we postulate the deformed shape of the beam, reducing the problem to a finite 

small number of dofs; then, the Euler-Lagrange equations (e.g. [20]) are used to deduce the 

equations of motion. Constraints arising from the yield criterion and the associated flow rule 

are treated via Lagrange’s multiplier method.  

 

2.2.1 Response in presence of elastic flexural wave or travelling plastic hinges 

This first type of response refers to phases I, IIb, IIIb and IIIb2 in Fig. 2, involving 

propagation of an elastic flexural wave or a travelling plastic hinge, at location x  . The 

elastic response of the beam is described by Rayleigh beam theory, accounting for the rotary 

inertia of the beam. The deflected shape of the beam for 0 x    is modelled as a fourth-

order polynomial, whose coefficients are determined by imposing by imposing the boundary 

conditions 

 
pl

3

3

,sup pl,sup 0
, , (( 0) ( 0) )

) 0, )

,

( ( 0,

w x

w w
x x

x x

w
w x w x w

x
 

 






 


 



 

 


 

  (5) 

where 
pl,sup

w  and 
pl,sup

 vanish for the case of a purely elastic response. The portion x L    

is taken as undeformed, as sketched in Fig. 3. The resulting shape function reads 
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2

pl,sup pl,sup pl,sup 0 pl,sup2
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0

(8 ( ) 8 ( ) 5 ( ))
2

2
(2 2 ( )

( )

( ) ( )) for 0 ,
2

( ) ( )

( , )
( )

( ) for .  

x
w w t w t t

x x
w w t t t x

w x L

t x t t

w x t
t

t

  


  
 






  




  
 



    
 

  

  (6) 

 

Neglecting elastic shear deformation, the curvature of the beam can be expressed as 

 
2

2

w

x
 




  (7) 

and the elastic membrane strain is calculated as  

 

2

pl

el pl
0

2

pl,sup pl,m id
0

1
1 d

1 1
d

2

L

L

l l w
x L l

L L x

w
x l l

L x



     
       
  
 

  
         





  (8) 

where the plastic stretching 
pl,sup

l  and 
pl,m id

l  are absent for a perfectly elastic response. The 

generalised stresses can be expressed as 

 e

2

l 2
, ,,

yy

M d w
M EI N EBH Q

t
I

x d x
  

  
      

  
  (9) 

where 
3

/ 12
y

I BH  denotes the second moment of area with respect to the y -axis. The 

kinetic and potential energy follow as 

 

2

2

0 0

2 2

el
0 0

1 1
d d

2 2

1 1
d d .

2 2

L L

y

L L

y

d w
T BH w x I x

dt x

V E I x E BH x

 

 

  
    

  

 

 

 

  (10) 

and the Lagrangian can be calculated L T V  .  We note on passing that the maximum 

elastic strain energy which can be stored in the beam is given by 

 
0

2

y2

m ax y

1
.

2 2

L BH L
V EBH dx

E


    (11) 

 

When the yield criterion is met at a certain cross-section, further plastic straining is computed 

employing the yield condition (3) and the assumption of an associated flow rule [2]. This 

introduce both holonomic and non-holonomic constraints. In the case of a stationary plastic 

hinge at the supports (subscript ‘sup’) the constraints read    
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2 2 2

sup

sup sup sup

0 0 0 0

1 01
M Q Q N

Q
f

M Q N
 

     
       

   









  (12) 

 

sup sup

0 0

sup

0 0

pl,sup pl,sup

sup

0

M Q

M Q

f

M Q
w

f






 




 , (13) 

 

sup

0 0

sup sup

.
0 0

pl,sup pl,sup
0

MN

N M

f f
l

N M


 

 

   .  (14) 

 

If a travelling plastic hinge forms along the beam at x   (subscript ‘mid’), it is assumed 

that localised plastic shear sliding is absent (
pl,m id

0w  ); as shear forces vanish at this 

location, the constraints read 

 mid

mi

2

0 0

d
1 0

M N

M N
f

 
  



  



,  (15) 

 

sup

0 0

m id m id

.
0 0

pl,m id pl,m id
0

MN

N M

f f
l

N M


 

 

   . (16) 

 

The Lagrange multiplier method (e.g [21]) is used to implement the n  holonomic and m non-

holonomic constraints as 

 
dissext, h , nh ,,

1 1

d

d
 

n m
j

i j k ki

ji

i

ki i

fL L
Q A

t q q q
Q  

 

 
  







 
   . (17) 

In eq. (17), q denotes the vector of generalised coordinates 

 
0 pl,sup pl,sup pl,sup pl mid

T

,
, , , ,, ,w lw l   

 
q   (18) 

ext ,i
Q and 

diss ,i
Q describe the non-conservative generalised forces resulting from external load 

and plastic dissipation, respectively. The parameter 
pl,mid

  is computed as  

 
pl,mid

d
(

d
)

w
x

t x
 





  . (19) 

The constraint forces on the right hand side of equation (17) result from the holonomic 

constraints (12) and (15), of form 

 ( ) 0
j i

f q    (20) 
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and use the Lagrange multipliers 
h , j

 . The non-holonomic constraints (13),(14) and (16) can 

be written in the general form 

 ( ) 0
ki i i

A q q    (21) 

and are associated to the Lagrange multipliers 
nh ,k

 . 

 

The virtual work done by the external load ( )p t gives rise to the generalised forces 
ext ,i

Q  

 
ext ext ,

0 0
d d

L L

i i i

i ii

w
W pB w x pB x q Q q

q


   


      . (22) 

The virtual work due to plastic dissipation at the two hinges can be expressed as 

 

diss diss ,

sup pl,sup pl,sup pl,sup pl,sup mid pl,m id pl,m id

pl,m id

sup pl,sup pl,sup pl,sup pl,sup mid pl,m id
,

i

i

i i

i

i

W Q q

M N Q M N

M N Q M q N
q

l w l

l w l

 

    

   










     


    



 

 





  (23) 

providing the definitions of the dissipative forces 
diss ,i

Q used in eq. (17). An example of the 

equations of motion obtained from (17) is given in Appendix A for the case of a purely elastic 

response.  

 

 

2.2.2 Response after wave motion  

We proceed to analyse the response in Phases IIa, IIIa, IV and V, which do not feature 

propagation of elastic flexural waves or travelling plastic hinges (see Fig. 4). Fourth-order 

polynomial shape functions are again assumed and the following boundary conditions are 

imposed 

 
pl,sup pl,sup 0

pl,m 3i

3

d

( 0) (, ,0 ( ,

( (

) )

) , ) 0

w x L
w

w x w x

w w
x L x L

x

w
x

x






    







 
 






  (24) 

giving  

 

            

        

2

pl,sup pl,sup pl,sup 0 pl,mid pl,sup2

3 4

pl,sup pl,mid pl,sup4 03

( , ) = 8 8 3 5
2

2
2 2 .

2

x
w x t w t x t w t w t L t L t

L

x x
w t w t L t L t

L L

  

 

    

 
     
 

  (25) 
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The generalised coordinates in these phases of the response are taken as  

 
0 pl,sup pl,sup pl,sup pl,mid pl, i

T

m d
, , , , ,w w l l    

 
q .  (26) 

Equations of motions are obtained from eq. (17). 

  

2.3  Numerical integration of the equations of motion 

Equations (17) represent a system of differential-algebraic equations of differential index 

three [22],[23] . An index reduction method proposed by Gear [24] is used. This formulation 

reduces the differential index to two. A general second order index three system arising from 

constrained mechanical systems has the form [22] 

 
T

,

( ) ( , ) ( ) ,

( ),



 



q v

M q v f q v G q λ

0 g q

  (27) 

involving the generalised coordinates q , the generalised velocities v , the Lagrange 

multipliers λ , the generalised mass matrix M , the holonomic constraints ( )g q  and  

/  G g q . The non-holonomic constraints are not included here, because no action is 

required on them during index reduction. 

 

Gear [24] proposed to reformulate the system as 

 

T

.
T

( ) ,

( ) ( , ) ( ) ,

( ),

,

 

 





q v G q μ

M q v f q v G q λ

0 g q

0 G v

  (28) 

introducing additional Lagrange multipliers μ . This system (28) is of differential index two 

and can be integrated using the variable-order, variable-step backward difference method 

implemented in the Sundials-IDA solver [25] included in the Python package Assimulo [26]. 

 

Across transitions from one phase of the response to the next it is imposed that the total 

energy in the system is conserved; consistent systems of initial conditions are imposed ensure 

that constraints are satisfied across the transition. 
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3  FINITE ELEMENT MODELLING 

Two-dimensional Finite Element (FE) simulations of the transverse pressure loading of the 

beams were conducted in ABAQUS Explicit [27] to compare with the analytical predictions. 

Following a preliminary mesh convergence study, half of the beam was discretised with 1000 

beam elements of type B21, which model the effects of elastic deflections due to shear and 

rotary inertia. An encastre boundary condition was defined at the support and symmetry in 

direction x  was enforced at mid-span. The load was applied as a transverse, time dependent 

pressure. 

 

The response of the material was taken as isotropic linear elastic ( 200GPaE  , 0.3  ) 

followed by incompressible J2 plasticity (
y

300M Pa  ) with negligible strain hardening. 

The bulk viscosity were left at their default values. The density was taken as 
-3

7850 kgm  , 

representative of steel. We note that the analyses cannot capture plastic shear deformations of 

the beam, while are modelled in the analytical calculation. The cross-section Poisson’s ratio 

was set to 0 for all computations in this study; this excludes the effect of necking due to large 

plastic strains, which is not modelled analytically. 

 

The FE predictions are processed to record the mid-span deflection 
0

w  and the wave front 

position x  ; this is taken, at every time, as the location where the bending moment attains 

a local maximum (the maximum closest to the support is considered).  For the hinge located at 

the support we compare FE predictions of the plastic stretching and plastic rotation to the 

corresponding analytical predictions 
pl,sup pl,sup

,l  . To this effect we consider a portion of the 

length of the beam, 
zone

l , adjacent to the support; for this portion, the normal plastic strains at 

the top and bottom surface of the beam are extracted (
pl ,11, top , pl ,11,bottom ,

and
i i

  , respectively), 

and estimates of the plastic stretching and plastic rotation are obtained as 

 
e

zone

pl,sup,FE 11,pl,top , 11,pl,bott m ,

e 1

o

1
(

2
)

n

i i

i

l
l

n
 



    , (29) 

 
e

zone

pl,sup,FE 11,pl,t

1

op , 11,pl,bottom ,

e

)
1

(
2

n

i

i

i

l

n
  



  ,  (30) 

where 
e

n denotes the number of elements within the length 
zone

l . The total plastic elongation 

of the beam was computed from eq. (29) with the choice 
zone

l L . 
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4  RESULTS AND DISCUSSION 

In this Section we compare theoretical and analytical predictions of the response of a clamped 

beam to transverse pressure loading, to assess the accuracy of the theoretical predictions. 

Then, the theoretical models are used to construct non-dimensional regime maps to aid design 

of beams subject to dynamic loading. 

 

4.1  Pressure history and dimensional analysis 

The proposed model can predict the response of a clamped beam subject to an arbitrary 

pressure history uniformly distributed on the beam’s surface. To limit the parameter space, the 

loading is idealised as a pressure history of triangular shape and total time duration 
i

t , 

comprising a linear rise phase to a pressure 
max

p  in a time 
r i
t , followed by a linear fall phase 

to negligible pressure in a time  r i
1 t , where 

r
[0,1]  . Mathematically 

 

m ax

r i

r i

m ax

i r i i

i r

i

),

, 0 ,

( )
(1

( ,

0, .

)

p
t t t

p
p t t t

t

t

t

t t t

t








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  (31) 

The overall impulse per unit area follows as 

 
p m x i

0
a

1
( )d .

2

t

tI p t t p    (32) 

 

Dimensional analysis dictates that the problem under investigation depends on the following 

set of non-dimensional groups. The solution sought is represented by the set  
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
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  (33) 

The geometry of the beam and constitutive response of the material are represented by the 

parameters  
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y

, .
H E

H E
L 

    (34) 

The loading is described by  

 

y

pmax i

max i r p max i

y y

1
, ,

2
,

Ip t
p I p

LL




  
 

     . (35) 

    

4.2  Model Validation 

In this section we explore the accuracy of the analytical predictions over wide ranges of the 

non-dimensional parameters 
p i r
, , ,I H  . In all FE simulations the half beam length was 

arbitrarily set to 1mL  ; the material properties were such to have 
y

/ 666E E   , 

representative of the case of mild steel. The imposed initial conditions are 

 
8 2

0 0
0) 10 0) 0, ( 0)( , 10 0, .( 0)(w w     

 
           (36) 

Note that the non-zero initial conditions for 
0

w  and   are due to avoid divisions by zero in 

the integration of the equations of motion (see Appendix A). 

 

In Figs. 5-7 we present analytical and FE predictions of the peak beam deflection 
0 ,m ax

w  and 

the corresponding non-dimensional time at which this peak deflection is attained, 
max

 . The 

results are shown for three different aspect ratios, two different applied impulses and two 

different values of 
r

 . Excellent agreement between theoretical and FE predictions is found. 

We note that low values of 
i

  correspond to high pressures applied for short amount of time 

(‘impulsive’ loading); in contrast, large values of 
i

  indicate long time durations with low 

applied pressure (‘quasi-static’ loading). 

 

For all aspect ratios the beams it is clear that in the impulsive regime the response is scarcely 

dependent upon 
i

  and 
r

 . If the load duration 
i

t  is comparable or larger than the 

characteristic response time 
y

/L   , i.e. 
i

  is sufficiently large, the response is sensitive to 

the non-dimensional load duration 
i

 . The predictions are scarcely sensitive to 
r

 , defining 

the shape of the pressure history, in the impulsive regime; in contrast, for large values of 
i

 , 

the response is affected by the value of 
r

 . The model effectively captures the transition from 
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impulsive to quasi-static loading. We note that in the impulsive regime the non-dimensional 

time at peak deflection 
max

  is close to 1, indicating that the response time of the structure 

approaches the characteristic response time 
y

/L   , which is proportional to the period of 

oscillation of an elastic string under tensile stress 
y

 , as remarked by Fleck [7].   

 

4.3  Detailed comparison of analytical and FE predictions 

We proceed to a detailed comparison of analytical and FE predictions. This is done for two 

cases: the first corresponds to a relatively slow loading, representative of deflagration 

incidents [13, 14]  

 
4

i m ax r
0.00 20, 3 10286, 0, 5 ..H p 


     (37) 

The second case corresponds to impulsive loading, with high pressure applied for short time 

duration; the relevant non-dimensional groups are  

 
i m ax r

0.01,0 0.06 0..00444, , .5H p      (38) 

 

The histories of mid-span deflection 
0

w  and wave front position   are analysed in Fig. 8 for 

case 1. The response of the beam is elastic-plastic; the structure reaches a peak deflection 

before undergoing a retardation phase. Elastic vibrations are evident in Fig. 8a; the vertical 

dashed lines in this figure denote phase transitions, as indicated. Figure 8b shows an elastic 

flexural wave rapidly propagating towards mid-span, reaching this point at 3.41  , 

corresponding to transition into Phase IIa. Shortly after, plasticity is attained at the support, 

corresponding to the onset of Phase IIIa. With continued loading, the beam then switches to 

Phase IV (corresponding to yielding at mid-span) and finally undergoes an elastic relaxation 

phase (Phase V). It is observed that the beam can switch between Phases IV and V if the 

applied pressure keeps increasing, as a consequence of the elastic vibrations. We note that the 

predictions of the analytical model are in excellent agreement with those of detailed FE 

simulations. 

 

Next we consider, in Fig. 9a, the predictions of kinetic energy, elastic strain energy and plastic 

work; these energies are presented in non-dimensional form E , normalised by the 

characteristic energy 
max

V  (eq. (11)). First, we note that FE and analytical predictions are in 

good agreement. The response is initially dominated by elasticity (Phase I, IIa) but then 
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plastic dissipation is triggered upon transition into Phase IIIa; such plastic dissipation if 

comparable to the elastic strain energy, such that both elastic and plastic deformation need to 

be modelled. 

 

In Fig. 9b we present predicted histories of the generalised stresses , ,N M Q , normalised by 

their corresponding maximum values 
0 0 0
, ,N M Q , respectively. The two sets of predictions 

are in broad agreement. For this slender beam shear forces are small compared to axial forces 

and bending moments; the response is bending-dominated in the initial phases (I, IIa), but 

they become stretching-dominated in the latest phases (IIIa, IV, V). 

 

Figure 10 presents time histories of the plastic rotation at the support as well as plastic 

stretching. The FE predictions suggest that plasticity occurs earlier than predicted by the 

analytical model; on the other hand, the analytical model assumes that entire cross-sections of 

the beam undergo plastic deformation, while the FE simulations account for progressive 

yielding of the cross-section. The FE and analytical predictions of plastic rotation at the 

support and total plastic stretching are in good agreement; both sets suggest that first the beam 

undergoes substantial plastic rotation at the support, followed by plastic stretching. 

 

We proceed by presenting the results for mid-span deflection and wave front position for 

case 2 (Fig. 11). Good agreement is observed between analytical model and FE predictions. 

The transitions between the response phases are indicated in the figure: yield at the support 

occurs almost instantaneously (onset of Phase IIb), and a travelling plastic hinge develops 

later in time (Phase IIIb). The mid-span deflection increases until the travelling plastic hinge 

reaches the mid-span and a plastic retardation phase occurs (Phase IV). 

 

In Fig. 12a, the normalised energy components are presented for case 2. Excellent agreement 

is observed between FE and analytical predictions. In this case, in the initial phase of the 

response high kinetic energy is imparted to the beam and partly converted into elastic strain 

energy and plastic dissipation; this dissipation is substantially larger than the elastic strain 

energy. The evolution of the normalised generalised stresses at the support is presented in 

Fig. 12b, which shows excellent agreement between FE and theoretical predictions. The very 

early stages of the response are characterised by high values of shear forces and bending 
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moment at the support; with continued deflection, the bending moment decreases while the 

stretching forces increase.  

 

In Fig. 13 we present the time history of plastic rotation at the support and stretching. Good 

agreement between the analytical and numerical predictions is evident. The plastic rotation 

increases earlier than the plastic stretching, in line with the data in Fig. 12b. 

 

4.4  Regime Maps  

The validated analytical model is now used to construct design maps for a clamped beam 

subject to arbitrary transverse pressure histories. Four different regimes of response were 

identified in this study, namely: 

• Regime A: elastic response; 

• Regime B: elastic response followed by plastic hinge formation at the support; 

• Regime C: elastic response followed by formation of stationary plastic hinges at the 

support and mid-span; 

• Regime D: elastic response followed by formation of a stationary plastic hinge at the 

support and a travelling plastic hinge along the beam span. 

The regime maps were constructed to be representative of steel structures, with 666.E   In 

all cases the rise time of the triangular pressure history was taken as 50% of the total loading 

time, i.e. 
r

0.5  . The response of the beam is therefore only affected by the non-

dimensional groups 
p

,H I and 
i

 ; three maps were produced to illustrate the sensitivity of the 

response to these three governing parameters. 

 

Figure 14 presents a map for the choice 
4

p
3 10I


 , illustrating the different regimes of 

response. The dotted lines represent contours of the peak mid-span deflection. Slender beams 

and the short loading time promote a response dominated by plasticity and large deflection. 

The dashed lines indicate simple analytical estimates for the onset of plastic deformation in 

the beam response. The cross denotes the ‘case 2’ problem analysed in detail in Section 4.3.  

 

The curve labelled 
max c

p p  corresponds to the quasi-static plastic collapse load of a rigid-

perfectly plastic fully clamped beam, given by Jones [2] 
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 2c 0

c 2

y y

4 Mp
Hp

BL 
  .  (39) 

For load times 
i

1  , eq. (39) is in broad agreement with the transition between regimes A 

and B predicted by the analytical model (recall that regime A indicates elastic response, while 

regime B includes yield at the support). For short loading time, 
i

1  , the response of the 

beam is impulsive; an estimate of the minimum impulse to cause plastic collapse of a cross-

section is obtained as follows. The initial velocity of the beam can be written 

 
p

0
v

H

I


  , (40) 

Resulting in a kinetic energy 

 

2

2

0 0

1

2 2

p
B vT H

H

BLI
L


 .  (41) 

We assume this kinetic energy is converted to elastic bending strain energy; using the 

deflection profile (25) and (
0

( 0)M x M  ), the strain energy reads  

 

2

y

bend,m ax

3

40

LB

E

H
V


  . (42) 

Equating (41) to (42) and solving for 
p

I  yields 

 

2 2

y

p,min

3

20
I

H

E

 
   (43) 

or in non-dimensional form 

 
p,min

3
0.387

20

H H
I

E E

  .  (44) 

 

It is clear from Fig. 14 that eq. (44) provides a conservative prediction of the minimum 

impulse to attain a fully plastic cross-section. Equations (39) and (44) can be used as quick 

conservative design formulae to guarantee that the beam response is predominantly elastic; 

the map in Fig. 14 allows less conservative and more accurate designs. 

  

In Fig. 15 we examine the effects of load duration and non-dimensional impulse, for the 

choice 0.01H  . The limit cases (39) and (44) are included in the map and again provide a 

conservative estimate of the boundary between regimes A and B. As expected, high applied 
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impulse and short loading time promote inelastic response and the dynamic travelling plastic 

hinge mechanism.   

 

Finally, in Fig. 16, we consider a constant load duration 
i

20   and we explore the effects of 

geometry and applied impulse. The cross denotes the ‘case 1’ problem analysed in detail in 

Section 4.3. Since the chosen loading time 
i

20   is relatively high, the impulsive limit (44) 

is not applicable, while the quasi-static limit (39) is very conservative in this case. On the 

other hand the analytical model predicts accurately the transitions between regimes of 

behaviour and serves an effective design tool. 

 

The detailed predictions of the proposed analytical model allow estimating strain distributions 

in the beam and can be used, in conjunction with a material-specific failure criterion, to 

predict failure of the structure by different mechanisms, including shear-off and tensile 

tearing. A modified version of the proposed calculation could handle the case of a beam with 

elastic axial, transverse or rotational supports. The model should be modified to include in the 

Lagrangian the elastic energy stored in the supporting springs, and boundary conditions 

(eq. (5)) should be adapted to include the additional degrees of freedom. The model would 

then be able to predict the effect of support compliance upon the response of the beam, 

including the emergence and evolution of plastic hinges and plastic stretching. This is left as a 

topic for future studies. These are left as topics for future studies.   

 

 

5  CONCLUSIONS  

An analytical model was formulated to predict the dynamic response of clamped beams made 

from an elastic-plastic material to arbitrary pressure loading histories. The model was 

validated by detailed Finite Element simulations over wide ranges of loading and geometric 

parameters. The non-dimensional governing parameters of the problem and distinct regimes 

of response were identified and the model was used to construct effective design maps. 

 

The main conclusions from the study are as follows: 

• Assuming an elastic-plastic material response allows effective predictions of the 

dynamic response of a clamped beam to arbitrary loading; it allows capturing the 
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transitions between response regimes and an accurate estimate of the stress fields at 

any time. 

• The initial dynamic response of clamped beams is governed by propagation of elastic 

flexural waves and beam stretching; such elastic response may be followed, for ductile 

materials, by an elastic-plastic phase in which plasticity occurs, typically at the 

supports. In case of intense loading, slender beams and short time duration, a 

travelling plastic hinge phase can also be induced. 

• Design maps are provided to allow effective sizing of beams subject to transverse 

pressure loading ranging from quasi-static to impulsive. 
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Appendix A. Equations of motion for Phases I and IIa 

a) Phase I 

First equation of motion 
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 (45) 

Second equation of motion 
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  (46) 

b) Phase IIa 

   

Equation of motion  
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Figures 

 

 

Figure 1. Fully clamped beam subject to uniform pressure loading. 

 

 

Figure 2. Schematics of the possible phases of beam response.  

 



 

Figure 3. Deformation profile and degrees of freedom for wave propagation modes. 

 

 

Figure 4. Deformation profile and degrees of freedom for stationary modes.  

   
Figure 5. Comparison of maximum mid-span deflection (a) and time at maximum deflection (b) obtained 
from FE and the analytical model for ܪഥ ൌ 0.1 , two different impulses and two different loading shape
parameters. 



 

 

 

 

 

Figure 6. Comparison of maximum mid-span deflection (a) and time at maximum deflection (b) obtained 
from FE and the analytical model for ܪഥ ൌ 0.01 , two different impulses and two different loading shape
parameters. 

Figure 7. Comparison of maximum mid-span deflection (a) and time at maximum deflection (b) obtained 
from FE and the analytical model for ܪഥ ൌ 0.001 , two different impulses and two different loading shape
parameters. 



 

 

 

 

 

 

Figure 6. Comparison of mid-span deflection (a) and wave front position (b) obtained from FE analysis and 
the analytical model for case 1. 

Figure 7. Comparison of kinetic and potential energy and plastic dissipation (a) and generalised stresses at 
the support (b) obtained from FE analysis and the analytical model for case 1. 



 

 

 

 

 

 

 

Figure 8. Comparison of plastic angle (a) and plastic elongation (b) at the support obtained from FE analysis 
and the analytical model for case 1. 

Figure 9. Comparison of mid-span deflection (a) and wave front position (b) obtained from FE analysis and 
the analytical model for case 2. 



 

 

 

 

Figure 10. Comparison of kinetic and potential energy and plastic dissipation (a) and generalised stresses at the 
support (b) obtained from FE analysis and the analytical model for case 2. 

Figure 11. Comparison of plastic angle (a) and plastic elongation (b) at the support obtained from FE 
analysis and the analytical model for case 2. 



 

 

 

 

 

 

Figure 12. Regimes of behaviour and contours of maximum
mid-span deflection for ܫ୮̅ ൌ 3 10ିସ, ୰ߙ ൌ 0.5. 

Figure 13. Regimes of behaviour and contours of
maximum mid-span deflection for ܪഥ ൌ 0.01, ୰ߙ ൌ 0.5. 



 

 

 

 

Figure 14. Regimes of behaviour and contours of
maximum mid-span deflection for ߬୧ ൌ 20, ୰ߙ ൌ 0.5. 


