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Abstract--The operation of aggregators of distributed energy 

resources (DER) is highly complex, since it entails the optimal 

coordination of a diverse portfolio of DER under multiple 

sources of uncertainty. The large number of possible stochastic 

realizations that arise, can lead to complex operational models 

that become problematic in real-time market environments. 

Previous stochastic programming approaches resort to two-stage 

uncertainty models and scenario reduction techniques to 

preserve the tractability of the problem. However, two-stage 

models cannot fully capture the evolution of uncertain processes 

and the a priori scenario selection can lead to suboptimal 

decisions. In this context, this paper develops a novel stochastic 

dual dynamic programming (SDDP) approach which does not 

require discretization of either the state space or the uncertain 

variables and can be efficiently applied to a multi-stage 

uncertainty model. Temporal dependencies of the uncertain 

variables as well as dependencies among different uncertain 

variables can be captured through the integration of any linear 

multidimensional stochastic model, and it is showcased for a p-

order vector autoregressive (VAR) model. The proposed 

approach is compared against a traditional scenario-tree-based 

approach through a Monte-Carlo validation process, and is 

demonstrated to achieve a better trade-off between solution 

efficiency and computational effort. 

 
Index Terms-- Aggregator, distributed energy resources, 

multidimensional uncertainty, stochastic dual dynamic 

programming, vector autoregressive modeling. 

I.  NOMENCLATURE 

A.  Indexes 

𝑡 Index of time periods, running from 1 to 𝑇. 

𝑏 Index of energy storage (ES) units, running from 1 

to 𝐵. 

𝑓 Index of flexible loads (FL), running from 1 to 𝐹. 

𝑤 Index of wind turbines (WT), running from 1 to 𝑊. 

𝑚 Index of micro-generators, running from 1 to 𝑀. 

B.  Parameters 

𝐶𝑡
𝑔𝑟𝑖𝑑

 Energy market price at period 𝑡. 

𝐶𝑚
𝑔𝑒𝑛

 Operating cost of micro-generator 𝑚. 

𝐶𝑑𝑒𝑚 Cost of demand shedding. 
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𝐸0,𝑏 Initial energy level of ES unit 𝑏. 

𝜂𝑏 Round-trip efficiency of ES unit 𝑏. 

𝐸𝑏
𝑚𝑎𝑥  Maximum energy level of ES unit 𝑏. 

𝐸𝑏
𝑚𝑖𝑛  Minimum energy level of ES unit 𝑏. 

𝑃𝑏
𝑠 Maximum power rating of ES unit 𝑏. 

𝐷𝑡,𝑓
𝑏𝑎𝑠𝑒  Baseline demand of FL 𝑓 at period 𝑡. 

𝑆𝑓 Load shifting limit of FL 𝑓 at period 𝑡. 

𝑃𝑡
𝑔,𝑠𝑒𝑙𝑙

 Maximum power sold to the market at period 𝑡. 

𝑃𝑡
𝑔,𝑏𝑢𝑦

 Maximum power bought from the market at period 

𝑡. 

𝑃𝑚
𝑔𝑒𝑛

 Maximum power rating of micro-generator 𝑚. 

𝑃𝑡,𝑤
𝑤𝑖𝑛𝑑 Available wind power output of WT 𝑤 at period 𝑡. 

𝑃𝑡−𝑛,𝑤
𝑤𝑖𝑛𝑑  Available wind power output of WT 𝑤, 𝑛 periods 

before 𝑡. 
𝑊𝑤

𝑚𝑎𝑥  Power capacity of WT 𝑤. 

𝜑𝑛,𝑤 𝑛𝑡ℎ autoregressive coefficient associated with 

power output of WT 𝑤. 

𝜀𝑡,𝑤 White noise term associated with power output of 

WT 𝑤 at period 𝑡. 

𝑑𝑡
𝑖𝑛𝑓

 Inflexible demand at period 𝑡. 

𝛥𝑡 Temporal resolution of the market. 

C.  Variables 

𝑝𝑡
𝑔𝑟𝑖𝑑

 Power sold to (positive)/bought from (negative) the 

market at period 𝑡. 

𝑝𝑡,𝑚
𝑔𝑒𝑛

 Power output of micro-generator 𝑚 at period 𝑡. 

𝑝𝑡
𝑑𝑒𝑚 Demand shed at period 𝑡. 

𝑒𝑡,𝑏 Energy level of ES unit 𝑏 at period 𝑡. 

𝑝𝑡,𝑏
𝑠  Power input (positive) / output (negative) of ES unit 

𝑏 at period 𝑡. 

𝑑𝑡,𝑓
𝑠ℎ  Change of demand of FL 𝑓 at period 𝑡 due to load 

shifting. 

𝑑𝑡,𝑓
𝑡𝑜𝑡𝑎𝑙 Demand of FL 𝑓 at period 𝑡 after load shifting. 

𝑝𝑡,𝑤
𝑤𝑖𝑛𝑑  Dispatched wind power output of WT 𝑤 at period 𝑡. 

II.  INTRODUCTION 

A.  Background 

FUNDAMENTAL feature of the emerging Smart Grid 

paradigm involves the integration of a large number of 

distributed energy resources (DER), such as flexible loads, 

renewable and controllable micro-generators and energy 
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storage units, in order to support the economic operation of the 

future low-carbon power system [1]-[2]. However, the large 

number, small individual size and inherent stochasticity 

characterizing these DER have complicated system scheduling 

and market coordination. Furthermore, driven by the wide 

integration of renewable generation in power systems, there is 

a general consensus to move energy trading as close as 

possible to real-time [3]-[4], which intensifies the complexity 

of DER coordination. 

These challenges have triggered the introduction of DER 

aggregators, which group a substantial number of DER (not 

necessarily located in the same local area or connected 

through the same distribution network) and represent them in 

the market, by coordinating their operation according to 

market opportunities and their individual preferences and 

requirements [1], [5]. Nevertheless, the operation of a DER 

aggregator constitutes a challenging high-dimensional 

stochastic problem, since it entails the optimal real-time 

coordination of a large number of diverse DER, subject to 

numerous sources of uncertainty, such as the output of 

renewable micro-generators and consumers’ demand and 

flexibility patterns. 

Existing literature modeling the optimal operation of DER 

aggregators has mainly focused on stochastic programming 

(SP) approaches, employing two-stage uncertainty models [6]-

[14]. A simplified representation of the uncertainty space is 

usually adopted, utilizing various scenario generation and 

reduction techniques. In [6], a risk-constrained two-stage 

stochastic formulation is presented, where stochasticity is 

captured through a Monte-Carlo scenario based approach and 

uncertain parameters are assumed to follow normal zero-mean 

distributions. Ignoring potential dependencies among these 

uncertainties, 5000 scenarios are initially sampled and are then 

reduced to 100 for computational tractability purposes. 

Authors in [7] model uncertainties surrounding load and 

renewable power output using univariate normal distributions, 

fit to historical data. In [8]-[9], a fixed number of scenarios is 

generated via Monte-Carlo simulation to model net wind 

output and day-ahead (DA) price uncertainty. In [10], a 

simplistic uniform distribution is assumed to capture the 

uncertainty associated with the demand of flexible loads. 

Authors in [11]-[12] develop scenarios describing electric 

vehicle (EV) uncertain characteristics. In both cases a very 

limited number of scenarios (100 and 185 respectively) are 

retained for a 24h scheduling horizon. A wide variety of 

uncertain variables, including solar irradiance, wind speed, 

inflexible demand and the availability of distributed 

generation (DG), energy storage units and the main grid are 

explored in [13]-[14]. In both cases, even though a large 

number of scenarios is initially sampled, only a small number 

is preserved after the scenario reduction procedure, resulting 

in a coarse coverage of the uncertainty space. 

B.  Motivation 

These previous SP approaches employ two-stage 

uncertainty models that exhibit fundamental limitations in 

capturing the evolution of stochastic processes in a real-time 

market environment. More specifically, the typical two-stage 

stochastic problem formulation consists of (i) a first-stage 

problem to identify the optimal day-ahead schedule of 

resources, carried out under uncertainty (ii) multiple second-

stage problems, where each problem corresponds to one 

possible uncertainty realization and is tasked with identifying 

the optimal schedule re-adjustment given the first-stage 

commitment and that uncertainty realization; note that the 

second stage assumes perfect information. It is critical to 

highlight that this problem structure uses a very simplistic 

uncertainty description; it is assumed that following the 

submission of the day-ahead schedule, the uncertainty for the 

next 24 hours is automatically revealed and the schedule can 

be fully re-optimized under perfect information. However, in 

practice, uncertainty is revealed only gradually (i.e. only for 

the current hour). This necessitates the movement from a two-

stage scenario fan to a multi-stage scenario tree description 

capable of capturing inter-temporal resolution. As such, 

typical two-stage problem formulations severely 

underestimate the effect of uncertainty. Despite their 

shortcomings, the existing literature has largely focused on 

such two-stage stochastic programming approaches due to 

their simplicity. More sophisticated uncertainty descriptions 

using multi-stage scenario-trees entail a combinatorial 

explosion of the possible realizations, possibly leading to 

intractability.  

For the same reasons, the existing literature also largely 

disregards multivariate dependencies among the uncertain 

variables. However, simplistic descriptions of uncertainty can 

lead to inefficient solutions since they disregard parts of the 

uncertainty structure which can be leveraged to make more 

informed decisions. For example, temporal dependencies may 

exist between the current state and future evolution of an 

uncertain variable. In addition, different uncertainty sources 

may not be independent since relationships exist between 

different uncertain variables, due to confounding factors such 

as weather conditions. In [15] for example, the authors 

demonstrate that ignoring the stochastic dependence 

characterizing the multivariate uncertainty around wind farms’ 

output, can lead to suboptimal planning and operation 

decisions. In a similar vein, authors in [16] present numerous 

composite modeling approaches for capturing complex non-

linear dependency patterns in large power system datasets. 

Finally, in [17] a multivariate conditional parametric model is 

proposed for forecasting power output from multiple wind 

farms, while modeling their spatio-temporal dependence; 

authors show substantial improvement in forecast quality 

when the dependence structure is explicitly modeled. 

These insights reveal fundamental limitations of the 

approaches adopted in [6]-[14], in dealing effectively with the 

high-dimensional stochastic problem faced by the DER 

aggregator. When such approaches consider multivariate 

uncertainty in a multistage context, a combinatorial explosion 

of the possible realizations is expected as the planning horizon 

expands, and the problem soon becomes intractable. 

Consequently, the deployment of scenario reduction 

techniques is unavoidable. In general, such techniques 
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determine the final set of considered scenarios ‘a priori’ (i.e. 

before the actual problem is solved), according to relevant 

distance metrics. Therefore, the impact of the stochastic 

process on the problem is not explicitly evaluated and 

potentially important scenarios may be ignored. All in all, the 

requirement for computational tractability imposes limits on 

the number of scenarios that can be considered, inadvertently 

leading to disregarding temporal and multivariate 

dependencies. 

C.  Contributions 

In order to overcome the computational tractability 

problems associated with the incorporation of multi-stage 

uncertainty and multivariate dependence effects in the DER 

aggregator operation problem, this paper will be based on 

stochastic dual dynamic programming (SDDP). This method 

was firstly introduced in [18]-[19] for the optimal scheduling 

of hydrothermal generation systems, driven by the need to 

model the reservoir interconnections for the future inflow 

sequences. SDDP has been used to model a variety of 

operational problems [20]. The ability of SDDP to refine 

solution quality around areas of the state space most likely to 

occur (‘areas of interest’) instead of searching the entire state 

space, facilitates the solution of high dimensional problems.  

The fundamental contribution of this paper lies on 

developing a novel SDDP approach for the optimal operation 

of a DER aggregator in real-time markets, which can be 

efficiently applied to a multi-stage uncertainty model and can 

handle both time-dependent and multivariate uncertainty, 

through the integration of a vector autoregressive (VAR) 

model of order 𝑝. The traditional SDDP algorithm is extended 

to account for potential temporal and cross-variable 

correlations of the stochastic process. This is the first work 

that employs VAR models for the representation of 

multivariate uncertainty, driven by their ability to associate 

current realizations of each of the uncertain variables with the 

previous 𝑝 instances of the entire set of uncertain variables. In 

this way, both temporal dependencies of uncertain variables 

and dependencies among different uncertain variables are 

captured. The stochastic process is integrated in the SDDP 

algorithm and constitutes an internal part of the solution 

process, explicitly considering stochastic dependencies. 

The proposed SDDP approach is compared against a 

traditional scenario-tree-based approach with varying tree 

complexities, in a case study involving an aggregator with 

diverse generation, demand and storage resources, and facing 

uncertainty regarding the level of demand to be served and the 

available wind power output. In order to meaningfully and 

comprehensively compare the two approaches, Monte-Carlo 

validation for different demand and wind power starting points 

is carried out. The proposed approach is demonstrated to 

achieve a better trade-off between solution efficiency and 

computational performance, since it yields a similar 

aggregator’s expected cost with the one achieved by the most 

complex scenario trees, while it exhibits a similar 

computational performance with the simplest scenario trees. 

The computational superiority of the proposed approach 

becomes more significant when longer operating horizons are 

investigated, further demonstrating the scalability potential of 

the extended SDDP algorithm to large-scale problems. Finally, 

the proposed approach is demonstrated to yield better 

solutions compared to the traditional SDDP framework, which 

does not consider temporal and cross-variable dependencies of 

the stochastic process. The proposed framework is bound to 

increase in importance in the future as the number of 

controllable elements and sources of uncertainties increase, 

rendering operational problems even more computationally 

challenging. 

D.  Paper Structure 

The rest of this paper is organized as follows: Section III 

describes and formulates the DER aggregator’s optimal 

operation problem. The basic principles of the SDDP 

algorithm are outlined in Section IV and its novel extension 

for incorporating a multivariate stochastic model is detailed in 

Section V. The application of the developed model on the 

examined DER aggregator problem and illustrative results are 

presented in Section VI. Finally, Section VII discusses 

conclusions of this work. 

III.  PROBLEM DEFINITION 

In this section, we formulate the multistage SP problem of 

the optimal operation of a DER aggregator participating in a 

real-time market and facing uncertainty regarding the level of 

inflexible demand to be served and the available wind power 

output. We assume that the aggregator portfolio consists of a 

number of WTs with uncertain power output, controllable 

micro-generators, uncertain inflexible demand, a group of 

flexible loads and energy storage units. Therefore, the 

aggregator must schedule the use of the available wind power 

output, the amount of energy that will be bought/sold from/to 

the market, the output of the micro-generators, the flexible 

loads’ consumption levels and the storage units’ 

charging/discharging schedule at each time period 𝑡, in order 

to minimize the overall cost. Wind output and demand can be 

curtailed, if required. Fundamentally, this is a multistage 

stochastic problem with recourse, where the stochastic outputs 

are gradually revealed and decisions are made considering 

both the already observed and the anticipated outputs. 

It is assumed that all the stochastic variables are defined in 

a common and complete probability space (Ω, ℱ, 𝒫). Then, 𝝎𝒕 

corresponds to the random variable at period 𝑡 and 𝜔𝑡 =

(𝑑𝑡
𝑖𝑛𝑓

, 𝑃𝑡,𝑤
𝑤𝑖𝑛𝑑) ∈ 𝛺𝑡 represents the realization of the stochastic 

process 𝝎  at time 𝑡, where 𝑑𝑡
𝑖𝑛𝑓

 and 𝑃𝑡,𝑤
𝑤𝑖𝑛𝑑  correspond to the 

inflexible demand and wind realizations at 𝑡, respectively.  

We first present the mathematical formulation pertaining to 

a single stage 𝑡. Equation (1) is the objective function at 

period 𝑡 and comprises of the cost of the energy transactions 

(buying or selling) with the market, the cost of using the 

micro-generator and the demand shedding cost. In (1), 𝑥𝑡 
corresponds to the decision variables vector and is defined as 

𝑥𝑡 ≜ [𝑝𝑡
𝑔𝑟𝑖𝑑

, 𝑝𝑡,𝑚
𝑔𝑒𝑛

, 𝑝𝑡
𝑑𝑒𝑚 , 𝑝𝑡,𝑏

𝑠 , 𝑑𝑡,𝑓
𝑠ℎ , 𝑝𝑡,𝑤

𝑤𝑖𝑛𝑑] where 𝑥𝑡 ≜ 𝑥𝑡(𝜔𝑡), 

but 𝜔𝑡 has been dropped for notational convenience. 
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Decisions are taken at the beginning of each period 𝑡, where 

the uncertainty for the current period has been resolved. This 

is a fundamental difference compared to scenario tree 

approaches, since decisions are made sequentially, as the 

stochastic process has been realized. 

𝑐𝑡
Τ ∙ 𝑥𝑡 = −𝐶𝑡

𝑔𝑟𝑖𝑑
∙ 𝑝𝑡

𝑔𝑟𝑖𝑑
+∑ 𝐶𝑚

𝑔𝑒𝑛
∙ 𝑝𝑡,𝑚

𝑔𝑒𝑛

𝑚

+ 𝐶𝑑𝑒𝑚 ∙ 𝑝𝑡
𝑑𝑒𝑚 

∀𝑡 (1) 

The operational characteristics of energy storage unit 𝑏 are 

expressed by (2)-(5) [21], [22]. Constraint (2) expresses the 

energy balance in the storage unit. Constraint (3) corresponds 

to its maximum depth of discharge and state of charge ratings. 

Constraint (4) represents its power limits. In order to maintain 

energy neutrality, the storage energy content at the start and 

the end of the operating horizon are assumed equal (5). 

𝑒𝑡,𝑏 = {
𝐸0,𝑏 ∙ 𝜂𝑏 + 𝑝𝑡,𝑏

𝑠 ∙ 𝛥𝑡, 𝑖𝑓 𝑡 = 1 

𝑒𝑡−1,𝑏 ∙ 𝜂𝑏 + 𝑝𝑡,𝑏
𝑠 ∙ 𝛥𝑡, 𝑖𝑓 1 < 𝑡 ≤ 𝑇

 ∀𝑏 (2) 

𝐸𝑏
𝑚𝑖𝑛 ≤ 𝑒𝑡,𝑏 ≤ 𝐸𝑏

𝑚𝑎𝑥  ∀𝑡, 𝑏 (3) 

−𝑃𝑏
𝑠 ≤ 𝑝𝑡,𝑏

𝑠 ≤ 𝑃𝑏
𝑠 ∀𝑡, 𝑏 (4) 

𝑒𝑇,𝑏 = 𝐸0,𝑏 ∀𝑏 (5) 

The flexibility of the demand side is primarily associated 

with the ability to shift the operation of some loads from 

periods of higher prices to periods of lower prices [23]. In 

other words, load reduction during certain periods is 

accompanied by a load recovery effect during preceding or 

succeeding periods. This implies that the representation of 

demand flexibility requires the consideration of time-coupling 

operational characteristics. In this paper, the generic, 

technology-agnostic model of [24] has been employed for the 

representation of this time-shifting flexibility, expressed by 

(6)-(8). The variable 𝑑𝑓,𝑡
𝑠ℎ represents the change of demand 

with respect to the baseline level 𝐷𝑡,𝑓
𝑏𝑎𝑠𝑒  at period 𝑡 due to load 

shifting, taking negative/positive values when demand is 

moved away from/towards 𝑡. Constraint (7) expresses the 

limits of demand change at each period due to load shifting as 

a ratio 𝑆𝑓 (0 ≤ 𝑆𝑓 ≤ 1) of the baseline demand; 𝑆𝑓 = 0 

implies that load 𝑓 does not exhibit any time-shifting 

flexibility, while 𝑆𝑓 = 1  implies that the whole demand can 

be shifted in time. Finally, constraint (8) ensures that load 

shifting is energy neutral within the operation horizon i.e. the 

total size of demand reductions is equal to the total size of 

demand increases (load recovery), assuming without loss of 

generality that load shifting does not involve energy losses. 

𝑑𝑡,𝑓
𝑡𝑜𝑡𝑎𝑙 = 𝐷𝑡,𝑓

𝑏𝑎𝑠𝑒 + 𝑑𝑡,𝑓
𝑠ℎ  ∀𝑡, 𝑓 (6) 

−𝑆𝑓 ∙ 𝐷𝑡,𝑓
𝑏𝑎𝑠𝑒 ≤ 𝑑𝑡,𝑓

𝑠ℎ ≤ 𝑆𝑓 ∙ 𝐷𝑡,𝑓
𝑏𝑎𝑠𝑒  ∀𝑡, 𝑓 (7) 

∑ 𝑑𝑡,𝑓
𝑠ℎ

𝑡
= 0 ∀𝑓 (8) 

Moreover, lower and upper limits of the power associated 

with the wind turbines, the market and the micro-generators 

are expressed in (9)-(11) respectively, and the portfolio power 

balance is ensured by (12). 

𝑝𝑡,𝑤
𝑤𝑖𝑛𝑑 ≤ 𝑃𝑡,𝑤

𝑤𝑖𝑛𝑑 ∀𝑡, 𝑤 (9) 

−𝑃𝑡
𝑔,𝑏𝑢𝑦

≤ 𝑝𝑡
𝑔𝑟𝑖𝑑

≤ 𝑃𝑡
𝑔,𝑠𝑒𝑙𝑙

 ∀𝑡 (10) 

𝑝𝑡,𝑚
𝑔𝑒𝑛

≤ 𝑃𝑚
𝑔𝑒𝑛

 ∀𝑡,𝑚 (11) 

∑ 𝑝𝑡,𝑏
𝑠

𝑏
−∑ 𝑝𝑡,𝑤

𝑤𝑖𝑛𝑑

𝑤
+ 𝑝𝑡

𝑔𝑟𝑖𝑑
 

∀𝑡 (12) 

+∑ 𝑑𝑡,𝑓
𝑡𝑜𝑡𝑎𝑙

𝑓
+ 𝑑𝑡

𝑖𝑛𝑓
− 𝑝𝑡,𝑚

𝑔𝑒𝑛
= 0 

Finally, the multistage SP is formulated as in (13), where 𝒞 

is the total operating cost,  𝝎𝒕|𝝎𝒕−𝟏 corresponds to the 

probability of 𝝎𝒕 conditioned on 𝝎𝒕−𝟏 and 𝔼𝝎[∙] denotes the 

expectation of the terms in the bracket over the stochastic 

process 𝝎. Equation (13) clearly demonstrates the recursive 

nature of the problem, where decisions are made sequentially 

as the stochastic process unfolds and more information 

becomes available to the aggregator. This structure is perfectly 

aligned with the concept of SDDP that follows.  

𝒞 = min
𝑥1

[𝑐1
Τ ∙ 𝑥1 + 𝔼𝝎𝟐

[min
𝑥2

𝑐2
Τ ∙ 𝑥2

+ 𝔼𝝎𝟑|𝝎𝟐
[min

𝑥2
𝑐3
Τ ∙ 𝑥3

+ 𝔼𝝎𝑻|𝝎𝑻−𝟏
[min

𝑥𝑇
𝑐𝑇
Τ ∙ 𝑥𝑇]]]] 

(13) 

        s.t.                        (1) - (12)  

IV.  STOCHASTIC DUAL DYNAMIC PROGRAMMING 

The key principle of SDDP is that the original multistage 

stochastic problem can be decomposed into a series of single-

stage master problems and sub-problems, with appropriate 

dual variables employed for their coordination. At each stage 

𝑡, the corresponding master problem 𝑀𝑡 captures the 

immediate costs (i.e. for the current stage), along with the 

approximation of the costs for the remaining stages of the 

operating horizon, which are incurred as a consequence of the 

current stage decisions. When 𝑀𝑡 is solved, the decisions 

pertaining to stage 𝑡 are optimized. Then, the respective sub-

problem 𝑆𝑡+1 optimizes the future costs incurred by the 

aggregator at the remaining stages of the operating horizon 

(i.e. stages 𝑡 + 1 to 𝑇), for given stage 𝑡 decisions. 

Thus, the problem expressed in (13) is now reformulated as 

in (14), where 𝑀1 represents the first-stage master problem 

and ℳ1 corresponds to the optimal costs for the entire 

operating horizon, which are incurred by the immediate first 

stage decisions. Then, 𝒮2(𝑥1, 𝜔2) represents the respective 

optimal value for the sub-problem 𝑆2 related to 𝑀1, where the 

future cost for horizon 𝑡′ = {2, . . , 𝑇} is minimized, given the 

optimal decisions 𝑥1 of 𝑀1 for realization 𝜔2 ∈ 𝛺2. The 

realizations 𝜔𝑡 are derived either from scenario tree structures, 

in case there is a finite number of scenarios, or by sampling an 

appropriate forecasting model (e.g. ARIMA models), when 

there is a continuous distribution [25]. 

𝑀1: 
𝒞 = ℳ1 = min

𝑥1
[𝑐1

Τ𝑥1 + 𝔼𝝎𝟐
[𝒮2(𝑥1, 𝜔2)]] (14) 

          s.t.                        (1) - (12)  

The same decomposition process is repeated for every stage 

of the operating horizon, until 𝑡 master problems and 𝑡 − 1 

sub-problems (no sub-problem pertains to stage 𝑡) have 
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emerged. The problem formulation for the subsequent stages 

is illustrated in (15), which constitutes a generalization of (14) 

and symbols are used in the same context. It is assumed that 

the terminal cost 𝒮𝑇+1(𝑥𝑇 , 𝜔𝑇+1) = 0, but it could be any 

convex function representing future costs after 𝑇. 

𝑀𝑡: 

ℳ𝑡(𝑥𝑡−1, 𝜔𝑡) = min
𝑥1

[𝑐𝑡
Τ𝑥𝑡

+ 𝔼𝝎𝒕+𝟏|𝝎𝒕
[𝒮𝑡+1(𝑥𝑡 , 𝜔𝑡+1)]] 

(15) 

          s.t.                        (1) - (12)  

In essence, the algorithm determines the optimal decision 

set 𝑥𝑡 for each 𝑡 by building a piece-wise linear outer 

approximation of 𝔼𝝎𝒕+𝟏|𝝎𝒕
[𝒮𝑡+1(𝑥𝑡 , 𝜔𝑡+1)] and identifying an 

approximate future cost function 𝔖𝑡+1(𝑥𝑡 , 𝜔𝑡+1) of 𝒮𝑡+1 at 

each stage 𝑡 [26]. Therefore, a set of linear constraints 

(‘Benders’ cuts’) is gradually built and appended to each 

master problem 𝑀𝑡 and the expectation term in (14) - (15) is 

replaced by the terms 𝑎2 and 𝑎𝑡+1 respectively, which 

represent the future cost for stages 2 to 𝑇 and 𝑡 + 1 to 𝑇, 

respectively. The future cost terms are constrained by the 

inequalities given in (16) for the aggregator problem. Each 

linear constraint in (16) is expressed in terms of the change in 

the sub-problem’s optimal objective function value, with 

respect to the master problem’s state variables, which are 

defined as 𝑠𝑡 ≜ {𝑒𝑡,𝑏 , 𝑑𝑡,𝑓
𝑎𝑔𝑔

}. The state variables 𝑠𝑡 constitute 

the coupling terms between 𝑀𝑡 and 𝑆𝑡, and the impact of 

changes in their values on 𝒮𝑡+1 is captured via the respective 

dual variables, 𝜆 ≜ {𝜆𝑡,𝑏,𝑘,𝑖
𝐸 , 𝜆𝑡,𝑓,𝑘,𝑖

𝐷 } for iteration 𝑖. For the 

DER aggregator problem, the coupling elements comprise of 

the energy level of each energy storage unit 𝑒𝑡,𝑏 and the 

aggregate demand shifting 𝑑𝑡,𝑓
𝑎𝑔𝑔

 at stage 𝑡. 

𝛼𝑡+1 ≥ 𝒮𝑡+1,𝑘
𝑖 (𝑒𝑡,𝑏,𝑘,𝑖 , 𝑑𝑡,𝑓,𝑘,𝑖

𝑎𝑔𝑔
) 

∀𝑘, i (16) 
+∑𝜆𝑡,𝑏,𝑘,𝑖

𝐸 ∙ (𝑒𝑡,𝑏 − 𝑒𝑡,𝑏,𝑘,𝑖)

𝑏

 

+∑𝜆𝑡,𝑓,𝑘,𝑖
𝐷 ∙ (𝑑𝑡,𝑓

𝑎𝑔𝑔
− 𝑑𝑡,𝑓,𝑘,𝑖

𝑎𝑔𝑔
)

𝑓

 

The approximation of the future cost functions 𝔖𝑡+1 is 

obtained through an iterative process which involves the 

successive solution of all 𝑀𝑡 (forward pass) and then all 𝑆𝑡+1 

(backward pass). The basic steps of the solution process of the 

algorithm are illustrated in Fig. 1. The main purpose of the 

forward pass is to drive the solution process towards 

‘interesting’ areas of the state space, which are highly likely to 

occur. Therefore, during the forward pass calculation, at each 

iteration 𝑖, ‘areas’ of the state space that have substantial 

impact on the objective function 𝑠𝑡,𝑘,𝑖 are identified and stored 

for use during the backward pass calculation when the 

approximation of 𝑆𝑡+1 is constructed. By identifying and 

focusing solution search around such areas of interest, naïve 

discretization of the state space (which is common in dynamic 

programming approaches) is avoided and significant 

computational savings are achieved. Each run of the forward 

pass involves the sampling of different values of the stochastic 

variables 𝜔𝑡,𝑘,𝑖 . However, multiple runs of the forward pass 

𝑘 = {1, . . , 𝑁𝐾} pertaining at the same stage 𝑡 can be 

performed simultaneously at each iteration 𝑖. The 

parallelization of the solution process introduces further 

computational benefits. 

 

 

 
Fig. 1. Illustrative flowchart of the solution process of the SDDP algorithm. 
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During the backward pass, the approximation of the future 

cost functions 𝔖𝑡+1 is gradually improved for 𝑡 =
{1, . . , 𝑇 − 1} at each iteration with Bender’s cuts being 

constructed for the areas of the state space 𝑠𝑡,𝑘,𝑖 identified 

during the forward pass. Consequently, optimal decisions for 

𝑀𝑡, corresponding to the values of the state variables 𝑠𝑡,𝑘,𝑖 

obtained during the forward pass run, are applied on 𝑆𝑡+1 with 

their impact on 𝒮𝑡+1 captured through the corresponding dual 

variables. For each point of interest 𝑘 identified at the forward 

pass, the backward pass is solved for all the 𝑠 = {1, . . , 𝑁𝑆} 
different samples of the stochastic variables, leading to 𝑘 ∙ 𝑠 

problems for each period.  

In order to alleviate the computational burden that arises 

due to the large number of problems, the sub-problems 

referring to the same period can be solved in parallel. The sub-

problems 𝑆𝑡+1 consist of all the constraints included in master 

problems 𝑀𝑡, augmented by constraints (17) - (18), which are 

introduced for the dual variable calculation. The auxiliary 

variables �̃�𝑡,𝑏,𝑠 and �̃�𝑡,𝑓,𝑠
𝑎𝑔𝑔

 are deployed to capture the impact of 

the 𝑠𝑡,𝑘,𝑖 , which have been identified during the forward pass, 

on the optimal value of the sub-problems 𝒮𝑡+1. After solving 

all the sub-problems referring to stage 𝑡, a single cut for each 

point of interest 𝑘 is built as per (16) at each iteration 𝑖. The 

required values for the dual variables 𝜆𝑡,𝑏,𝑘,𝑖
𝐸 , 𝜆𝑡,𝑓,𝑘,𝑖

𝐷  and the 

optimal future cost 𝑎𝑡,𝑘,𝑖 per point 𝑘 is calculated from (19)-

(21), as the expected value over the 𝑁𝑆 runs. The derived cuts 

from 𝑆𝑡+1 are appended to the master problem 𝑀𝑡 pertaining 

to period 𝑡. 
�̃�𝑡,𝑏,𝑠 = 𝑒𝑡,𝑏,𝑘,𝑖 : 𝜆𝑡,𝑏,𝑘,𝑠,𝑖

𝐸  ∀𝑡, 𝑏, 𝑘, 𝑠, 𝑖 (17) 

�̃�𝑡,𝑓,𝑠
𝑎𝑔𝑔

= 𝑑𝑡,𝑓,𝑘,𝑖
𝑎𝑔𝑔

 : 𝜆𝑡,𝑓,𝑘,𝑠,𝑖
𝐷  ∀𝑡, 𝑓, 𝑘, 𝑠, 𝑖 (18) 

𝜆𝑡,𝑏,𝑘,𝑖
𝐸 = ∑ 𝜆𝑡,𝑏,𝑘,𝑠,𝑖

𝐸  𝑁𝑆
𝑠

  ∀𝑡, 𝑏, 𝑘, 𝑖 (19) 

𝜆𝑡,𝑓,𝑘,𝑖
𝐷 = ∑ 𝜆𝑡,𝑓,𝑘,𝑠,𝑖

𝐷

𝑠
 𝑁𝑆  ∀𝑡, 𝑓, 𝑘, 𝑖 (20) 

𝑎𝑡,𝑘,𝑖 = ∑ 𝛼𝑡,𝑘,𝑠,𝑖
𝑠

 𝑁𝑆  ∀𝑡, 𝑘, 𝑖 (21) 

Iterations between forward and backward passes continue 

until 𝔖𝑡+1 has reached an acceptable accuracy level and an 

optimal solution of a target quality has been achieved. More 

specifically, upper and lower bounds of the optimal solution 

are defined and calculated at each iteration, and the algorithm 

terminates when the distance between these bounds is within a 

tolerance value. The upper and lower bounds are given by 

(22)-(23), and convergence of the two bounds is checked at 

the end of each forward pass run, according to (25), where 

 𝑚𝑒𝑎𝑛
𝑖

, 𝜎𝑖 represent the mean value and standard deviation of 

the forward pass optimal objective function values at iteration 

𝑖 [26]. 

 𝑖 =  ℳ1 (22) 

 
𝑖
= ∑ 𝑐𝑡,𝑘

Τ 𝑥𝑡,𝑘,𝑖 𝑁𝐾
𝑡,𝑘

 (23) 

𝜎𝑖 = √
1

𝐾 − 1
∑ (𝑐𝑡,𝑘

Τ 𝑥𝑡,𝑘,𝑖 −  𝑚𝑒𝑎𝑛
𝑖

)
2

𝑡,𝑘
 (24) 

 𝑚𝑒𝑎𝑛
𝑖

−
1.  ∙ 𝜎𝑖

√𝑁𝑆
≤  ≤  𝑚𝑒𝑎𝑛

𝑖
+

1.  ∙ 𝜎𝑖

√𝑁𝑆
 (25) 

V.  SDDP EXTENSION FOR CAPTURING MULTIVARIATE 

DEPENDENT UNCERTAINTY 

The SDDP algorithm presented in the previous section 

entails the sampling of realizations {𝜔𝑡}𝑡=1
𝑇 , which can be 

obtained either from a continuous or a discrete stochastic 

process 𝛚. Sampling from a continuous distribution 

exponentially increases the problem complexity, when the 

operating horizon and the dimensionality of the stochastic 

process are enhanced, and may lead to intractability issues. 

This intractability is mainly overcome by assuming that 𝝎 is 

stage-wise independent (i.e. 𝝎 does not exhibit temporal 

correlation), a prevailing assumption in literature (e.g. see 

[18], [19], [25]-[28]). The temporal independence assumption 

implies that the future cost function at each 𝑡 do not depend on 

the evolution of 𝝎, which allows cut-sharing among all 𝑀𝑡/𝑆𝑡 
belonging at the same time-period at the cost of ignoring time-

dependence of 𝝎. 

An alternative approach lies in deriving a discretized 

representation (e.g. scenario tree), where a trade-off between 

representation complexity and accuracy exists [29]. When 

multidimensional uncertainty is considered, in order to avoid a 

combinatorial explosion, this approach ends up with very 

simple tree structures, unable to accurately capture 𝝎. 

Both approaches presented above deal with the issue of 

computational tractability by resorting to simplification. 

However, the proposed algorithm can accommodate the 

incorporation of stochastic models which capture complex 

relationships in 𝝎 (e.g temporal and among the stochastic 

variables), as long as the linearity of the stochastic problem is 

preserved, so that the computation of the required dual 

variables is not inhibited. VAR models constitute suitable 

candidates, since they can articulate complex stochastic 

relationships, while retaining the linearity of the problem. A 

VAR model depicts the evolution of a multivariate stochastic 

process 𝝎, as a linear function of the previous 𝑝 instances of 

the process. Consequently, a 𝑝𝑡ℎ order VAR model has been 

adopted to represent the 𝑦-dimensional stochastic process 𝝎, 

as expressed in (26), where 𝝎𝒕 corresponds to the random 

variables at 𝑡, 𝐴𝑝 correspond to 𝑝 time-invariant 𝑦×𝑦 

matrices, 𝝎𝒕−𝒑 represents the values of 𝝎𝒕 𝑝 time-periods 

before 𝑡 and 𝜺𝒕 is a 𝑦×1 error term matrix. The error matrix 𝜺𝒕 
should contain zero-mean terms (i.e. 𝔼(𝜺𝒕) = 0), while 

𝔼(𝜀𝑡𝜀𝑡
′) = 𝐾 and 𝔼(𝜀𝑡𝜀𝑡−𝑝

′ ) = 0, ∀𝑝 should stand for their 

covariances, denoting that there is no serial correlation in 𝜺𝒕. 

𝝎𝒕 = ∑ 𝐴𝑝 ∙ 𝝎𝒕−𝒑
𝑝

+ 𝜺𝒕 ∀𝑡 (26) 

The consideration of temporal and cross-variable 

correlations of 𝝎 and the explicit integration of the stochastic 

model in the solution process of the algorithm, suggest that 

additional state variables, expressing the evolution of 𝝎 until 

the current stage, should be introduced. Therefore, the new 

state variable vector is expanded to 𝑠𝑡 ≜

{𝑒𝑡,𝑏 , 𝑑𝑡,𝑓
𝑎𝑔𝑔

, 𝜔𝑡−1,⋯ , 𝜔𝑡−𝑝} depending on the order of the 

VAR model and the modified cut is expressed in (27), where 

𝒮𝑡+1,𝑘 has been enhanced with the expanded 𝑠𝑡 and a new term 

representing the impact of the previous 𝑝 instances of 𝝎𝒕 on 
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𝒮𝑡+1 has been  added. The dual variables associated with 

𝜔𝑡−𝑝,𝑘,𝑖 are obtained according to (28) - (29) when problem 𝑆𝑡 

is solved, where �̃�𝑡−𝑝,𝑠 are slack variables introduced for the 

calculation of 𝜆𝑡,𝑘,𝑠,𝑖
𝜔 . We should stress out that a complex 

multidimensional stochastic model, collapses into naïve white 

error sampling, when integrated in the SDDP formulation, 

while only increasing the state space dimensionality. 

However, it is crucial that 𝜔𝑡−𝑝,𝑘,𝑖 refer to deterministic and 

already-resolved quantities, when 𝑀𝑡/𝑆𝑡 are solved, so they 

comprise inputs of the model. Consequently, the state space 

expansion does not entail increased computational burden and 

complexity. 
𝑎𝑡+1 ≥ 

∀𝑘, 𝑖 (27) 

𝒮𝑡+1,𝑘
𝑖−1 (𝑒𝑡,𝑏,𝑘,𝑖 , 𝑑𝑡,𝑓,𝑘,𝑖

𝑎𝑔𝑔
, 𝜔𝑡−1,𝑘,𝑖 , ⋯ , 𝜔𝑡−𝑝,𝑘,𝑖) 

+∑𝜆𝑡,𝑏,𝑘,𝑖
𝐸 ∙ (𝑒𝑡,𝑏 − 𝑒𝑡,𝑏,𝑘,𝑖)

𝑏

 

+∑𝜆𝑡,𝑓,𝑘,𝑖
𝐷 ∙ (𝑑𝑡,𝑓

𝑎𝑔𝑔
− 𝑑𝑡,𝑓,𝑘,𝑖

𝑎𝑔𝑔
)

𝑓

 

+∑𝜆𝑡,𝑘,𝑖
𝜔

𝑝

∙ (𝜔𝑡−𝑝 − 𝜔𝑡−𝑝,𝑘,𝑖) 

�̃�𝑡−𝑝,𝑠 = 𝜔𝑡−𝑝,𝑘,𝑖 :  𝜆𝑡,𝑘,𝑠,𝑖
𝜔  ∀𝑝, 𝑘, 𝑠, 𝑖 (28) 

𝜆𝑡,𝑘,𝑖
𝜔 = ∑ 𝜆𝑡,𝑘,𝑠,𝑖

𝜔

𝑠
 𝑁𝑆  ∀𝑝, 𝑘, 𝑠, 𝑖 (29) 

Another important implication is that when sampling 𝝎 

from a VAR model, output cannot be forced to conform to the 

underlying process bounds (e.g. maximum wind power 

output). Ex-post adjustment of these offending realizations to 

within the acceptable domain (e.g. negative values corrected 

to 0) undermines model convexity [28]. This issue can be 

mitigated by employing penalty variables for each of the terms 

of 𝝎𝒕 with upper and lower limits. For the DER aggregator 

model, this refers to both terms of 𝝎𝒕, which physically cannot 

be negative and cannot exceed their maximum values. Thus, 

variables 𝑦𝑡 = [𝑦𝑡,𝑤
𝑤1 , 𝑦𝑡,𝑤

𝑤2 , 𝑦𝑡
𝑑1, 𝑦𝑡

𝑑2] are introduced and 

penalized with factor 𝑐𝑝𝑒𝑛, which is a vector consisting of 

2(1 + 𝑤) elements; appropriate penalty terms are appended to 

all 𝑀𝑡 and 𝑆𝑡, as in (30). Constraints (31)-(36) are included to 

restrict 𝝎𝒕 and (9) has been omitted, while 𝑃𝑡,𝑤
𝑤𝑖𝑛𝑑 and 𝐷𝑡

𝑖𝑛𝑓
 are 

the values sampled from (26) for the available wind power 

output and demand to be served. 

𝑀𝑡: 

ℳ𝑡(𝑥𝑡−1, 𝜔𝑡) = min
𝑥1

[𝑐𝑡
′𝑥𝑡 + 𝑐𝑝𝑒𝑛′𝑦𝑡

+ 𝔼𝝎𝒕+𝟏|𝝎𝒕
[𝒮𝑡+1(𝑥𝑡 , 𝜔𝑡+1)]] 

(30) 

          s.t.         (1) - (8), (10) - (12), (26)  

𝑝𝑡,𝑤
𝑤𝑖𝑛𝑑 ≤ 𝑃𝑡,𝑤

𝑤𝑖𝑛𝑑 + 𝑦𝑡,𝑤
𝑤1 + 𝑦𝑡,𝑤

𝑤2 (31) 

𝑦𝑡,𝑤
𝑤1 ≤ 𝑊𝑤

𝑚𝑎𝑥 − 𝑃𝑡,𝑤
𝑤𝑖𝑛𝑑 (32) 

𝑦𝑡,𝑤
𝑤1 ≤ 0 (33) 

𝑑𝑡
𝑖𝑛𝑓

= 𝐷𝑡
𝑖𝑛𝑓

+ 𝑦𝑡
𝑑1 + 𝑦𝑡

𝑑2 (34) 

𝑦𝑡
𝑑1 ≤ 𝐷𝑚𝑎𝑥 − 𝐷𝑡

𝑖𝑛𝑓
 (35) 

𝑦𝑡
𝑑1 ≤ 0 (36) 

We should emphasize that, when 𝑆𝑡 is solved for an out-of-

bounds value of 𝝎𝒕, the specific realization of 𝝎𝒕 does not 

constitute a valid point of the state space and the respective 

dual variables do not interpret the real impact of 𝜔𝑡 on 𝒮𝑡. As 

such, the construction of the respective cut is omitted. 

Finally, even though a VAR model has been selected for 

the examined DER aggregator problem, any linear stochastic 

model could be incorporated in the traditional SDDP 

algorithm in a straightforward way, following the process 

outlined in this section. 

VI.  CASE STUDY 

A.  Description, Data and Implementation 

The examined study focuses on a DER aggregator 

participating in a real-time market, operating a portfolio 

consisting of one wind turbine, one controllable micro-

generator, inflexible and flexible demand and one energy 

storage unit, and facing uncertainty regarding the level of 

inflexible demand to be served and the available wind power 

output. The deterministic parameters of the case study are 

presented in Table I. In order to capture these uncertainties, 

historical wind power output and demand data from the 

Northern UK area and for a period of one month (so that 

seasonal effects are avoided) have been employed [30]. A 

market resolution of 𝛥𝑡 = 1ℎ is considered and two different 

operating horizons of 6 and 24 hours are investigated. The 

required models have been implemented in MATLAB R2015a 

[31] and FICO Xpress [32] on a 3.33 GHz Intel Xeon 

computer. 

 
TABLE I  

Case Study Parameters 
Energy Storage Parameters 

𝐸𝑏
𝑚𝑎𝑥/𝐸𝑏

𝑚𝑖𝑛 700 kWh/140 kWh 

𝑃𝑏
𝑠 280 kW 

𝐸0,𝑏 350 kWh 

𝜂𝑏 0.9 

Flexible Demand Parameters 
𝐷𝑡,𝑓

𝑏𝑎𝑠𝑒 200 kW 

𝑆𝑓 0%,10%,20%,30% 

System Parameters 

𝑊1
𝑚𝑎𝑥/𝑃𝑡

𝑔,𝑠𝑒𝑙𝑙
 700 kW/0 kW 

𝑃𝑡
𝑔,𝑏𝑢𝑦

/𝑃𝑔𝑒𝑛 300 kW/300 kW 

𝐶𝑡
𝑔𝑟𝑖𝑑

, 𝐶𝑡
𝑔𝑒𝑛

 0.15 £/kWh/1 £/kWh 

B.  6h Operating Horizon Case Study 

The 6h horizon case study aims at comparing the proposed 

SDDP approach against a traditional stochastic programming 

approach employing scenario trees. Regarding the latter 

approach, a multivariate copula model [16] has been fit to the 

available data, and 5,000 scenarios have been sampled from 

this model. In order to comprehensively investigate the 

performance of this approach, six scenario trees of varying 

complexity have been formed based on the initial set of 5,000 

scenarios (Table II), by employing a standard scenario 

reduction process based on Kantorovich distance [33]. 

Regarding the proposed SDDP approach, the dependencies 

of the multidimensional uncertainty set are captured through a 

VAR(1) model, which has been fit to the same set of 5,000 

scenarios. Autoregressive models require that the fitted data 

are stationary i.e. statistical properties are time-invariant. In 

order to achieve that, time-series differentiation [34] has been 

employed in the case of wind power data, while for inflexible 
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demand data, mean subtraction and division by the standard 

deviation -to remove the diurnal component- has preceded the 

differentiation process. 

 
TABLE II 

Scenario Tree Structure for the 6h Horizon Study 
Complexity 

Level 

Structure 

(nodes per stage) 

Number of 

nodes 

Number of 

scenarios 

C1 1-1-1-1-1-1 6 1 

C2 1-2-2-2-2-2 11 2 

C3 1-2-4-6-8-10 31 10 

C4 1-2-4-8-12-16 43 16 

C5 1-2-4-8-16-32 63 32 

C6 1-3-9-27-81-243 364 243 

 

In order to meaningfully compare the solution efficiency of 

the seven implemented models (six models corresponding to 

the six different scenario trees and one model corresponding to 

the extended SDDP approach, which is denoted SDDPe in the 

remainder), the first-stage decisions taken by each model are 

used for Monte Carlo validation i.e. given the obtained first-

stage decisions, the aggregator’s expected cost over the whole 

set of 5,000 realizations is calculated. In this way, we can 

capture the impact of sub-optimal first-stage decisions on 

subsequent operation. In order to ensure that this comparison 

is not prone to the selection of the starting point, this process 

is repeated for 10 starting points regarding wind power output 

(corresponding to 5% - 95% of the wind turbine’s capacity 

𝑊𝑤
𝑚𝑎𝑥  with a step of 10%) and 24 starting points for inflexible 

demand (representing typical demand levels at different hours 

of the day). Thus, a problem of 1.2 million scenarios has been 

solved. 

For benchmarking purposes, the results of two additional 

models are reported. Firstly, the traditional SDDP algorithm, 

where temporal and cross-variable independence of the 

stochastic process is assumed, is simulated. In this context, a 

lattice approach, where all scenarios are equiprobable and 

stochastic transitions do not consider the previous realizations 

of the stochastic process, is adopted. Secondly, an idealized 

deterministic model is also implemented, where the aggregator 

is assumed to have perfect information regarding the future 

evolution of uncertain variables. In that case, optimal first 

stage decisions are obtained for each scenario separately. 

Fig. 2 compares the expected monthly aggregator cost 

obtained from each of the six scenario tree models, the 

proposed (SDDPe) and traditional SDDP models and the 

model involving perfect information. These costs are derived 

by taking the expectation over all the 1.2 million realizations 

and extrapolating the costs of the examined 6-hour horizon to 

a monthly horizon. The performance of the scenario tree 

approach is improved as the complexity of the employed tree 

is enhanced, given that the representation of the stochastic 

process becomes more accurate and thus better-informed 

decisions are made. The proposed SDDPe model massively 

outperforms the two simpler scenario tree models C1 and C2 

by 10-20%, while showcasing a benefit of approximately 0.5-

3% with respect to models C3-C5. The most complex tree 

model (C6) slightly outperforms the SDDPe approach (by 

0.6%). As expected, the perfect information model yields the 

lowest cost, but the savings it yields compared to SDDPe and 

C6 are relatively small (1-1.5%). Finally, it can be observed 

that the proposed SDDPe approach provides better results than 

the traditional one, exhibiting a benefit of 4.3%. Intuitively, 

disregarding the temporal characteristics of the stochastic 

process by assuming stage-wise independence leads to poorer 

first-stage decisions. 

 
 
Fig. 2. Expected cost overall starting points for SDDP, SDDPe, different 

scenario tree types and under perfect information conditions in the 6h horizon 

case study. 

 

In order to compare the computational performance of the 

different models, Table III presents the number of decision 

variables, total constraints and time-coupling constraints 

corresponding to each of the seven models, while Fig. 3 

showcases the respective computational times. The 

computational complexity of the scenario tree approach is 

exponentially aggravated as the complexity of the employed 

tree is enhanced, as demonstrated in Table III. Regarding the 

traditional and the proposed SDDP models, the respective 

numbers correspond to the total number of variables and 

constraints included in a single-stage problem (𝑀𝑡/𝑆𝑡) -which 

are solved sequentially- multiplied by the number of such 

single-stage problems. These numbers are lower than the 

numbers corresponding to all scenario trees. It should be noted 

that time-coupling constraints which significantly contribute 

to problem complexity are inherently avoided by SDDP and 

SDDPe. 

The proposed SDDPe approach also involves less 

computational time than scenario trees C4-C6, as depicted in 

Fig. 3. The average computation time of the SDDPe approach 

was 1.15s and the algorithm converged after 5-7 iterations. 

These computational advantages are driven by the fact that 

SDDP involves stage-wise decomposition of the optimization 

problem. The computational performance of the traditional 

SDDP algorithm is slightly better than the proposed one due to 

the stage-wise independence assumption. However, the 

computational advantage of SDDP and SDDPe is not 

particularly pronounced due to the small operation horizon of 

the study. 

All in all, the combination of the insights from Fig. 2 and 

Table III demonstrate that SDDPe achieves a better trade-off 

between solution efficiency and computational performance 
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with respect to scenario-tree-based approaches, since it yields 

a similar aggregator’s expected cost with the one achieved by 

the most complex scenario trees, while it exhibits a similar 

computational performance with the simplest scenario trees. 

 
TABLE III 

Number of Decision Variables, Total and Coupling 

Constraints for SDDP, SDDPe and Different Scenario Tree 

Types. 

 
Decision 

Variables 

Total 

Constraints 

Time-coupling 

Constraints 

SDDP 19*11 20*11 0 

SDDPe 19*11 20*11 0 

C1 36 68 7 

C2 66 126 14 

C3 126 258 70 

C4 186 390 112 

C5 378 886 224 

C6 2184 5584 1701 

 

 
Fig. 3. Simulation time for SDDP, SDDPe and different scenario tree types in 

the 6h horizon case study. 

 

Fig. 4 presents the expected cost savings achieved by the 

proposed SDDPe model with respect to the scenario tree 

models C1, C2, C3 and C5 for the different wind power output 

starting points, where positive (negative) values signify that 

SDDPe outperforms (underperforms) the scenario tree 

solution. First of all, SDDPe outperforms the two simpler 

scenario tree models C1 and C2 for all starting points. 

However, this benefit is significantly higher for starting points 

involving lower wind power and diminishes as we move to 

starting points involving higher wind power. This effect 

emerges as low wind power starting points indicate that less 

wind power is likely available in the operating horizon, 

increasing the impact of strategic decisions regarding the use 

of flexible DER in the aggregator’s portfolio. On the other 

hand, high wind power starting points indicate that abundance 

of wind power is likely available in the operating horizon, and 

strategic decisions have minor impacts on the aggregator’s 

expected cost. 

Compared to the scenario tree models C3 and C5, SDDPe 

provides consistently better results for middle and high wind 

power starting points, and slightly worse results for low wind 

power starting points. This effect emerges since low wind 

power output starting points are more likely to yield scenarios 

with negative wind power outputs, in which case the 

construction of meaningful cuts within the SDDPe algorithm 

is inhibited and thus the solution quality deteriorates. These 

results justify the authors’ decision to employ multiple starting 

points in the comparison of the different models. 

 

 
Fig. 4.  Difference in expected cost between SDDPe and C1, C2, C3 and C5 
respectively for different wind power output starting points in the 6h horizon 

case study. 

 

Fig. 5 compares the expected aggregator cost obtained from 

the different models in a similar logic with Fig. 2, but this 

comparison is now made for different cases regarding the 

extent of demand flexibility in the aggregator’s portfolio, as 

expressed by the load shifting limit 𝑆𝑓 . The particularly 

interesting result lies in the fact that the simpler scenario tree 

models C1-C3 exhibit an increase in expected cost with 

increasing demand flexibility. This counter-intuitive result 

emerges because the effect of a strategic decision based on 

less accurate information is intensified when the aggregator 

manages a more flexible portfolio. In other words, the 

aggregator commits more deeply on a poor decision, which 

has an irreversible effect on its strategy. Even though the 

increased demand flexibility levels persist over the entire 

operating horizon, the loss induced by the poor first stage 

strategic decisions is not recovered in the subsequent periods. 

On the other hand, the more complex scenario tree models C4-

C6 as well as the proposed SDDPe model always exploit 

additional demand flexibility in a beneficial way for the 

aggregator, as indicated by the decreasing expected cost in 

Fig. 5. 

 
Fig. 5. Expected cost for 𝑆𝑓 = {0%, 10%, 20%, 30%} for SDDPe, different 

scenario tree types and under perfect information conditions. 

C.  24h Operating Horizon Case Study 

The 24h horizon study aims at highlighting the 

computational benefits of the proposed SDDP approach in 

dealing with large-scale problems. In this context, the 
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operating horizon of the DER aggregator problem is expanded 

to 24h and a population of 200,000 scenarios has been 

sampled from the same multivariate copula model used in 

Section VI-B [16]. In order to examine the impact of the 

scenario tree size on computation time, five scenario trees (i.e. 

D1-D5) of varying complexity (Table IV) have been 

constructed by deploying the same scenario reduction process 

used in Section VI-B. 

 
TABLE IV 

Scenario Tree Structure for the 24h Horizon Study 
Complexity 

Level 

Structure 

(nodes per stage) 

Number 

of nodes 

Number of 

scenarios 

D1 
1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-

1-1-1-1-1-1-1-1 
24 1 

D2 

1-2-4-8-16-32-48-72-108-160-

245-365-455-570-710-890-1110-

1390-1530-1680-1850-2040-
2255-2500 

18,041 2,500 

D3 

1-2-4-8-16-32-64-128-192-288-

432-650-970-1460-2190-3280-
4100-5125-6400-8050-10100-

12600-15850-20000 

91,942 20,000 

D4 

1-2-4-8-16-32-64-128-256-450-
785-1370-2060-3090-4630-6945-

10420-13025-16280-20350-

25435-31795-39745-50000 

226,891 50,000 

D5 

1-2-4-8-16-32-64-128-256-512-
1024-2048-3070-4610-6910-

10370-15550-23300-29160-

36450-45650-57200-71550-90000 

397,915 90,000 

 

Fig. 6 illustrates the simulation time for the SDDP, SDPPe 

and the different scenario tree models. It is evident that the 

computational benefits of the proposed SDDP approach are 

significantly more pronounced, when solving large-scale 

stochastic problems. Fig. 6 demonstrates that the SDDPe 

algorithm massively outperforms every scenario tree model, 

except from D1, which comprises of only one scenario. The 

simulation time of the proposed model is similar to the 

simplest scenario trees (i.e. D1-D2), while the simulation time 

savings reach 98%, when compared to D5. 

 
Fig. 6 Simulation time for SDDP, SDDPe and different 

scenario tree types in the 24h horizon case study. 

 

We should note that the reported times refer solely to the 

solution of the optimization problem, while the requirements 

of the scenario reduction process -which in this case study 

involved several hours- are not included. As discussed in the 

previous case study, the traditional SDDP approach exhibits 

slightly lower computation time than the proposed one due to 

the independence simplifications. 

VII.  CONCLUSIONS 

This paper develops a novel SDDP approach for the 

optimal operation of a DER aggregator in real-time markets 

under multidimensional uncertainty. Temporal dependencies 

of the uncertain variables as well as dependencies among 

different uncertain variables are captured via a 𝑝 order VAR 

model, which is integrated in the SDDP framework. This 

approach can efficiently cope with the combinatorial 

explosion of the problem without resorting to ill-informed 

scenario reduction techniques, since it does not require 

discretization of either the state space or the uncertain 

variables. 

The proposed approach is compared against a traditional 

scenario-tree-based approach with varying tree complexities, 

in a case study involving an aggregator with diverse 

generation, demand and storage resources, and facing 

uncertainty regarding the level of demand to be served and the 

available wind power output. In order to meaningfully and 

comprehensively compare the two approaches, Monte-Carlo 

validation for different demand and wind power starting points 

is carried out. The proposed approach is demonstrated to 

achieve a better trade-off between solution efficiency and 

computational performance, since it yields a similar 

aggregator’s expected cost with the one achieved by the most 

complex scenario trees, while it exhibits a similar 

computational performance with the simplest scenario trees. 

The computational superiority of the proposed approach 

becomes more significant when longer operating horizons are 

investigated, further demonstrating the scalability potential of 

the extended SDDP algorithm to large-scale problems. Finally, 

the proposed approach is demonstrated to yield better 

solutions compared to the traditional SDDP framework, which 

does not consider temporal and cross-variable dependencies of 

the stochastic process. 
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