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A B S T R A C T

Phylogenetic clustering of HIV sequences from a random sample of patients can reveal epidemiological trans-
mission patterns, but interpretation is hampered by limited theoretical support and statistical properties of
clustering analysis remain poorly understood. Alternatively, source attribution methods allow fitting of HIV
transmission models and thereby quantify aspects of disease transmission.

A simulation study was conducted to assess error rates of clustering methods for detecting transmission risk
factors. We modeled HIV epidemics among men having sex with men and generated phylogenies comparable to
those that can be obtained from HIV surveillance data in the UK. Clustering and source attribution approaches
were applied to evaluate their ability to identify patient attributes as transmission risk factors.

We find that commonly used methods show a misleading association between cluster size or odds of clus-
tering and covariates that are correlated with time since infection, regardless of their influence on transmission.
Clustering methods usually have higher error rates and lower sensitivity than source attribution method for
identifying transmission risk factors. But neither methods provide robust estimates of transmission risk ratios.
Source attribution method can alleviate drawbacks from phylogenetic clustering but formal population genetic
modeling may be required to estimate quantitative transmission risk factors.

1. Introduction

Phylogenetic clustering of HIV sequences has been commonly used
to characterise transmission patterns (Lewis et al., 2008; Little et al.,
2014; Poon et al., 2015). In developed countries, routine testing for
drug resistance mutations has led to the development of large HIV se-
quence databases. Numerous previous investigations have leveraged
such databases along with patients’ clinical and demographic covariates
to study clusters of patients with closely related HIV sequences. These
clusters can be defined in numerous ways, such as using genetic, evo-
lutionary (Aldous et al., 2012) or phylogeny-based distance criteria
(Poon et al., 2015), or including measures of phylogenetic credibility
(Hué et al., 2004). The central idea underlying cluster analysis is that
patients with similar viruses are likely to be epidemiologically related,
such as by direct transmission, or by being infected by a common source
or by a short chain of transmissions with potentially unsampled inter-
mediate members (Frost and Pillay, 2015). Consequently, individuals

who are responsible for more transmissions would likely be in a cluster
with more individuals, and patients who transmit at a higher rate would
also more likely be in a cluster as opposed to isolated.

The majority of clustering analyses identify transmission risk factors
by regressing odds of cluster membership (Brenner et al., 2011; Dennis
et al., 2012) or sometimes cluster size or node degree (Little et al.,
2014; Pines et al., 2016; Morgan et al., 2017) on patient covariates,
although particular statistical models vary greatly. Because HIV evolves
rapidly and the rate of mutation has been estimated within hosts, it is
possible to quantify the probability of virus lineages diverging over a
given range of time, such as the time of diagnosis of a putative donor
and recipient of infection (Leitner and Albert, 1999). Using information
about molecular clock rates and diagnosis dates can be used to refine
clustering analyses by excluding pairs which are incompatible with
clinical and behavioural histories (Ratmann et al., 2016).

Clustering analyses are common, because they are easy to imple-
ment and computationally cheap once a phylogeny is estimated.
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Clustering methods can be applied to sequence databases involving tens
of thousands of patients. But despite a long history and numerous
published examples, clustering analysis as a statistical methodology has
several drawbacks. Most methods rely on a tuneable threshold, such as
a cutoff for genetic distance below which samples are considered to be
clustered (Grabowski and Redd, 2014). It is problematic to tune this
threshold and most analyses use an ad-hoc threshold or evaluate sen-
sitivity over a range of thresholds. If a panel of known transmission
pairs is available, the threshold genetic distance used by clustering
methods can be tuned to achieve a desired tradeoff in sensitivity and
specificity in classifying transmission pairs (Rose et al., 2016). Note
however, that a threshold in one setting may not be appropriate in all
settings, since optimality will depend on the background genetic di-
versity of the sample and proportion of hosts sampled (Volz et al.,
2012). Even with carefully calibrated thresholds to identify transmis-
sion pairs, clustering does not exclude the possibility that an unsampled
individual is a common source of infection for closely related patients,
and potentially informative links with distances above threshold are
neglected.

The interpretation of clustering often makes an implicit assumption
that clusters form a simple uniform random sample of transmission
pairs over the recent epidemic history. But numerous factors influence
the probability of a sample appearing in a cluster, foremost the time
since infection at the time of sampling (Volz et al., 2012). Patients who
are early in the course of their infection are likely to be closely related
to their donor, and thus cluster membership is not necessarily related to
the transmission risk of such patients. Any variable correlated with time
since infection is likely to be found associated with clustering. That
includes CD4 count, viral load, diagnosis status, treatment status, age of
the patient and propensity for early testing (Frost and Pillay, 2015;
Poon, 2016).

In this study, we use a recently-developed method which is com-
putationally tractable and based on estimating the probability that a
given sampled case is the source of infection for another case, called the
infector probability (Volz and Frost, 2013). While conceptually similar to
clustering, rather than dichotomising all pairs as ‘clustered’ or ‘not
clustered’, the source attribution (SA) approach weights each pair in the
phylogeny by the estimated probability that the putative donor infected
the recipient. These probabilities account for additional epidemiolo-
gical and clinical data that generic clustering methods neglect. The
method can make use of variables that are informative about time since
infection, such as CD4, viral load, or incidence assays to account for
biased sampling. It also makes use of independent estimates of pre-
valence and incidence, which yield insight into the proportion of the
population sampled and the probability that an unsampled individual is
the source of infection. Additionally, the method obviates the need to
define arbitrary clustering thresholds, so that patients sampled late in
infection and who have correspondingly distant relations in the virus
phylogeny can nevertheless be included in the analysis. Finally, the sum
of infector probabilities for a given potential donor provides an in-
tuitive statistic to examine individual factors influencing transmission
rates.

The aim of our study is to assess how source attribution compares
with generic clustering method in detecting heterogeneous transmis-
sion according to patients characteristics. This assessment was based on
detailed simulations that aim to match on epidemiological and mole-
cular data available in the United Kingdom. We particularly wanted to
illustrate how outcomes from the two methods can be informative
about transmission risk among men who have sex with men.

2. Materials and methods

In this section, we first describe the source attribution and generic
clustering methods used to infer epidemiological quantities from la-
beled viral sequence data. We then present the simulation experiments
used to generate epidemic trajectories and phylogenetic trees taken as

input for the above methods. Finally, we describe the statistical tests
used to evaluate the ability of both approaches to identify transmission
risk factors and to correctly estimate transmission risk ratios assigned in
two counterfactual scenarios in the simulations.

2.1. Source attribution method

We applied a phylogenetic source attribution (SA) method that in-
fers the probability of potential transmission between each pair of in-
dividuals (infector probability) from a time-scaled phylogeny (Volz and
Frost, 2013). The calculation of infector probabilities also uses as inputs
additional epidemiological data such as incidence and prevalence of
infection. These data inform the proportion of the population sampled,
and thus influence the estimated probability that closely related pa-
tients have a common source of infection or an unsampled intermediary
in a transmission chain. The SA method can also account for the time
since infection at the time of sampling, using CD4 counts or incidence
assay test results (i.e. in the form recently infected or not).

The calculation detailed in Volz and Frost (2013) is based on the
following rationale: For a sampled individual i to have infected a
sampled individual j, the lineages ancestral to i and jmust be in patients
i and j around the time of transmission (assuming small within-host
genetic diversity). This probability is modeled with the survivor func-
tion ψi(t). Initially, ψi(ti) = 1 at the time ti that i is sampled. Going
backwards in time denoted s (towards the root of the phylogeny), the
survivor function is modeled as

= −
d ψ s ψ s P i s x F s Y s
ds

( ) ( ) ( infected at | , ( ), ( )),i i i (1)

where xi is a vector of covariates for patient i; Y(s) is a potentially
vector-valued function of time that denotes the total number infected in
the population of different types corresponding to covariates xi
(demes); and F(s) is a matrix-valued function of time that describes the
rate of transmission within and between demes. Note that 1− ψi(s) is
the probability that the lineage ancestral to patient i is in a different
host who may have been unsampled.

Secondly, conditional on both lineages being hosted by i and j be-
tween the time of their most recent common ancestor (MRCA) sij and
time of sampling, a transmission event must have taken place from a
donor characterized by covariates xi and sampling time ti to a recipient
characterized by xj and tj, rather than the opposite. Combining these
conditions gives the model for estimated infector probability Wij that
patient i infected j:

= → → →W ψ s ψ s P i j i j j i x t x t( ) ( ) ( | or , , , , ).i j i i j jij ij ij (2)

The SA method uses a continuous time Markov chain (CTMC) model
to reconstruct the likely state of a lineage at the time of transmission
given observed covariates at time of sampling. Rates of the CTMC are
derived from an epidemic trajectory summarized by three processes: Y
(s), F(s) and G(s) which is a matrix valued function of time that de-
scribes migration between demes, including progression of infected
hosts through different stages of infection. By solving ordinary differ-
ential equations, the model updates the probability ψ(s) as a function of
F(s), G(s) and Y(s) that a lineage corresponds to the same host that was
sampled while traversing the time-scaled phylogeny backwards in time.

This model is conceptually similar to the coalescent approach used
to simulate the trees as described in Section 2.3.3. But to account for
realistic lack of prior knowledge about the epidemic history, we used a
misspecified model for lineage transition rates. The model only ac-
counted for progression between CD4-stages, not on diagnosis, treat-
ment, demographic age or other stages; the generic transmission risk
factor was assumed to be unobserved; and the model deliberately
misspecified transmission rates by stage of infection as constant. Fur-
thermore, infector probabilities were computed under the approxima-
tion that incidence and prevalence were constant over the past 20 years
of the epidemic history. With poor prior information about transmission
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patterns, the analysis procedure offered fewer chances to recover the
simulation inputs. Thus we expected that the outcomes provide a
conservative picture of the performance of the SA method, that could be
improved if more refined surveillance estimates are available.

To estimate relative transmission risk, a summary statistic called
out-degree was computed from infector probabilities and used for sub-
sequent statistical analysis. The out-degree for individual i is defined as
di = ∑j≠iWij, and represents the estimated cumulative number of
transmissions that are included in the sample and originate from patient
i. We used this quantity to provide estimates of relative transmission
risk by stage of infection, accounting for their expected durations. The
transmission rate for a patient sampled at a given stage was derived as
his out-degree normalised by the cumulative duration of all previous
stages. We estimated the difference and ratio in transmission rates be-
tween patients in first and last stage of infection.

To study assortative transmission patterns, we also computed the
total number of transmissions between groups as

= ∑ ∑∈ ∈
A Wi S j Suv iju v

, where Su is the set of sampled hosts in state u
(defined by stage, demographic age, risk factor, and continuum of care).

The algorithm for calculating the matrix of infector probabilities in
this study is implemented in function phylo.source.attribution.hiv.msm of
the R package phydynR (Volz, 2016b).

2.2. Clustering algorithms

We used three hierarchical clustering algorithms. Firstly, we used
the hivclustering software (Weaver and Kosakovsky Pond, 2016;
Wertheim et al., 2014; Little et al., 2014) on pairwise patristic evolu-
tionary distances derived from coalescent trees (described in Section
2.3.3). This approach links individuals within a set such that at least
one other individual within the set has a distance less than a pre-spe-
cified threshold value (single-linkage algorithm) (Jain et al., 1999).
Secondly, we computed neighborhood sizes, which we define as the
number of individuals within a pre-specified threshold evolutionary
distance (complete-linkage algorithm). For these two methods, we
varied the thresholds of genetic distance under which cluster mem-
bership is defined with values 0.5%, 1.5% and 5.0% substitutions per
site. Third clustering method (denoted here tMRCA) is another single-
linkage algorithm but directly uses the branch lengths from time dated
trees. It links two individuals whose nodes have both a time to their
MRCA that is less than some threshold, indicating a limited amount of
divergence between the respective viruses (Leigh Brown et al., 2011).
We tested threshold values of 2, 5 and 10 years.

Networks were characterized by the odds of clustering, the sizes of
clusters or neighborhoods, and assortativity (like-with-like composition
of clusters) (Newman, 2003). Unless otherwise specified (particularly in
Section 3.4), clustering results in Section 3 are those from hivclustering
method. To compare transmission networks as described by the SA
method and hivclustering method, we represented graphically how in-
dividuals from one same cluster selected at threshold 5% are connected
by infector probabilities and genetic distance below 1.5% threshold
using igraph (Csardi and Nepusz, 2006).

2.3. Simulations

Our motivation was to obtain a simple though realistic transmission
history in a population that is comparable to men who have sex with
men (MSM) in London. Simulations were designed to replicate the
sampling proportion, clinical data, and age structure of London MSM in
the UK HIV Drug Resistance database (UK HIV Drug Resistance
Database, 2016). Epidemic simulation was based on a compartmental
model which describe the dynamics of the number of infected hosts in
different categories. Additionally, genealogical trees were simulated
conditioning on the epidemic history, and trees were matched to the
real data from the UK pertaining to the number of sequence samples,

times of sampling and clinical stage of infection.

2.3.1. Compartmental epidemic model
The epidemic history representing London MSM was modeled with

a compartmental model that captures disease progression by a system
of ordinary differential equations determining transmission and tran-
sition through 5 stages of infection, 4 age groups and 3 diagnosis states
(undiagnosed, diagnosed untreated and diagnosed under treatment).
The 5 stages of infection corresponded to early HIV infection (stage 1)
and 4 stages of declining CD4 as detailed in Table 1 (Cori et al., 2015).
Individuals were further stratified in two risk categories influencing
transmission. The population was thus structured in 120 states. Fig. S1
shows a subset of the transition flow between stages of infection and
diagnosis states, omitting the transition between age groups that simi-
larly affects all compartments and risk categories between which there
is no transition. Furthermore, we modeled importation of infections
into the population, which can have a dramatic effect on HIV genetic

Table 1
Initial parameter values for simulated epidemic model.

Notation Parameter Value

Age progression ratea

α1 Group 1 [18–27) 1/9/365 day−1

α2 Group 2 [27–33) 1/6/365 day−1

α3 Group 3 [33–40) 1/7/365 day−1

α4 Group 4 [40–80.5) 1/40.5/365
day−1

Stage progression rateb

γ1 Stage 2 (CD4>500 cells/mm3) 1/3.32/365
day−1

γ2 Stage 3 (350<CD4 ≤ 500 cells/mm3) 1/2.7/365 day−1

γ3 Stage 4 (200<CD4 ≤ 350 cells/mm3) 1/5.5/365 day−1

γ4 Stage 5 (CD4 ≤ 200 cells/mm3) 1/5.06/365
day−1

Fraction of individuals transitioning fromb

π1 Stage 1 to stage 2 0.76
π2 Stage 1 to stage 3 0.19
π3 Stage 1 to stage 4 0.05
π4 Stage 1 to stage 5 0
a Age assortativity factorc 0.5
p Proportion of individuals in low-risk group 0.8
m Per lineage rate of migration to source

compartment
1/50/365 day−1

g Rate of growth of source compartment 1/3/365 day−1

s Initial size of source compartment 1000
i Incidence scaling factor for London MSMd 0.03

Diagnosis rate
d85 Fixed rate prior to 1985 1/10 year−1

μd Maximum value of logistic function after 1985 d 1/3 year−1

kd Steepness of logistic function after 1985d 1/7 year−1

Treatment rate
t95 Fixed rate prior to 1995 0
μt Maximum value of logistic function after 1995 1
kt Steepness of logistic function after 1995 0.5
e Treatment effectiveness 0.95

Transmission weight conferred to individuals in
ws1 Stage 1 1
ws2 to ws4 Stages 2 to 4e 0.1
ws5 Stage 5e 0.3
wa1 to wa4 Age groups 1 to 4 1
wc1 Care status 1 (undiagnosed) 1
wc2 Care status 2 (diagnosed and untreated) 0.5
wc3 Care status 3 (diagnosed and treated) 0.05
wr1 Risk status 1 (low risk) 1
wr2 Risk status 2 (high risk) 10

a From quartiles of age of MSM diagnosed in London reported in UKDRDB.
b From Cori et al. (2015).
c Factor raised to the power of age class difference, in the form aagei−agej.
d Initial value later calibrated to retrieve the observed number of diagnosed cases from

surveillance data.
e Corresponding to baseline scenario where transmission varies by stage. In equal-rates

simulation scenario weights ws1 to ws5 are all equal to 1.
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diversity.

2.3.2. Model parameters
Mean time of progressions to CD4 stages and proportion in each

CD4 category after seroconversion were obtained from Cori et al.
(2015). Transmission was allowed to vary according to weights pro-
vided by risk category, treatment status and according to age assorta-
tivity. A proportion of 20% of the population were deemed to be at high
risk with a ten-fold increase in transmission than low risk counterparts.
Relative to undiagnosed individuals, diagnosed and treated patients
had a reduction in transmission by respectively a factor 2 and 20. An
age assortativity parameter was introduced in the transmission matrix
which caused transmission rates to decrease as a power law function of
the difference in age (cf Table 1). Age groups were based on quantiles of
observed age distribution of MSM diagnosed with HIV in London (HIV,
2014) and transmission rates were independent of age.

Two variations in this simulation were explored in terms of how
transmission rate varies with time since infection in order to evaluate
rates of false-positive identification of transmission risk factors. In a
‘baseline scenario’, we let infection stage influence probability of
transmission in early HIV infection (ten-fold increase) and AIDS stage
(three-fold increase) relative to chronic infection (stages 2–4). In an
‘equal-rates scenario’, transmission was independent of infection stage.
Expressed mathematically, the total transmission rate of a patient with
CD4 stage i, continuum of care status j, and generic risk factor k is
λijk(t) ∝ rirjrk, where r. are risk ratios for each category. Individual
transmission rates are normalised so that total incidence is given by ι(t)
based on a previous study (Phillips et al., 2013) assuming that dynamics
of new infections in MSM was the same at the country level and in
London.

Incidence and diagnosis rates were modeled as logistic functions of
time and jointly calibrated to match the number of MSM living with
diagnosed HIV in London in 2012 (Yin et al., 2014). Rates of treatment
were modelled as zero before 1995 and then increase according to a
logistic function with maximum 1 and steepness 0.5. Parameter values
are summarized in Table 1.

2.3.3. Coalescent tree simulation
We simulated coalescent trees by conditioning on HIV epidemic

histories using the approach described by Volz (2012). This method is
implemented in the phydynR R package (Volz, 2016b). The simulated
tree genealogy assumes that each infected patient corresponds to a
single lineage of virus HIV-1 (Joseph et al., 2015), ignoring super-in-
fection, and that the time at which two lineages coalesce corresponds to
a transmission event. This approximation is reasonable if within-host
evolution generates coalescence time considerably shorter than at the
population epidemic level. Coalescent simulation is based on a CTMC
model with time-dependent rates which describes the time evolution of
the states of lineages. The rate of coalescence for a pair of lineages
depends on reconstructed states and underlying transmission rates in
the epidemic simulations. Further details can be found in Volz (2012)
and Volz and Frost (2013). Coalescent simulations also condition on the
times and states of sample lineages. These were chosen to match the
times of sampling in the UK resistance database and associated ages and
CD4-stages of patients (UK HIV Drug Resistance Database, 2016; Yin
et al., 2014). Trees comprised 12,164 taxa, corresponding to the
number of MSM patients diagnosed with HIV-1 subtype B between
1979 and the end of 2012 in London with at least one partial pol gene
sequence available in the database. One hundred trees were simulated
for both the baseline and equal-rates scenarios.

Branch lengths for coalescent trees are in calendar year. To apply
clustering algorithms based on genetic distance, the number of nu-
cleotide substitutions was simulated with a Langley-Fitch model
(Langley and Fitch, 1974). Branch lengths in substitution per site were
estimated as a Poisson distributed variable centred on branch length
estimates in years multiplied by a substitution rate of 1.8 × 10−3 per

site per year. All code used to simulate epidemic histories and genea-
logical trees is available online (Volz, 2016a).

2.4. Statistical analysis

We used statistical models that have been commonly employed to
study how phylogenetic cluster characteristics depend on one or more
individuals covariates. We considered both univariate models and
multivariate models that adjust for stage of infection at time of sam-
pling using CD4 data. Non-parametric Wilcoxon test was used for uni-
variate comparison of transmission by risk level. Linear regression
models were used to examine the association between cluster size or
out-degree (as dependent variable Y) and patient covariates in the form:
Yi = βXi, with Xi comprising age, risk level, and infection stage as both
an independent variable and interaction term with age. Logistic re-
gression models were used to examine how the probability of being into
a cluster with at least two members vary by patient covariates, in the
form logit(pi) = βXi. In regression models, out-degree and cluster sizes
were standardized into dimensionless quantities by subtracting popu-
lation mean and dividing by standard deviation. For each simulation
scenario, we quantified the number of simulation replicates where the
null hypothesis of no association between covariates and dependent
variables was rejected.

The transmission model comprised 4 categories of age determined
by quartiles of age at diagnosis of MSM in London with at least one
available virus sequence. For each simulation replicate, an age mixing
matrix eij was computed by cumulating the number of common cluster
or neighborhood pairwise memberships for each pair of age categories.
For SA statistics, we calculated the sum of infector probabilities from
donors of each age category to recipients of each category. Assortativity
matrices by age were computed as the difference between these age
matrices and a null expectation under random linking. Age assortativity
was quantified by Newman's assortativity coefficient which summarizes
the extent to which links between age groups differ from random
mixing (Newman, 2003): r = (∑ieii − ∑iaibi)/(1 − ∑iaibi), where
ai = ∑jeij and bj = ∑ieij.

Since age is often found associated with cluster characteristics, we
studied the association between cluster sizes or out-degrees as depen-
dent variable and age categories as independent variable of a linear
regression. We also introduced a variable for stage of infection and its
interaction term with age to test if an independent effect of age re-
mained after adjustment. Note that in our simulation model, there is no
association between age group and transmission rates. All above ana-
lyses were performed using R Statistical Software (R Core Team, 2015).

3. Results

3.1. Detecting the difference in transmission by risk level

We compared the ability of source attribution and clustering
methods to detect the difference in transmission rates by risk level.
Fig. 1a shows that out-degrees (i.e. estimated number of attributable
transmissions) are significantly larger for the high risk category,
whereas cluster size is not associated with level of risk. When testing for
a difference on each baseline simulation replicate, we found that an
univariate analysis would correctly detect significantly larger values of
out-degree in 95% of experiments. Analysis of cluster sizes led to the
corresponding figures of maximum 89% for the lowest 0.5% threshold
and dropping to 17% at 1.5% threshold. These results for respective
methods and distance thresholds are illustrated by the distribution of p-
values for 100 experiments in Fig. 2 and percentage of errors in Table 2.

When controlling for the stage of infection, the proportion of tests
correctly detecting the difference in transmission rates decreased for all
methods. Specifically it was 52% when considering out-degrees and a
maximum of 16% for cluster sizes at the lowest distance threshold.

In multivariate logistic regressions, cluster membership could be
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Fig. 1. Distribution of out-degrees and cluster sizes by (a) risk level: transmission rate was defined in the model as 10 times higher for risk level 2 relative to risk level 1; (b) stage of
infection: relative transmission rates in the model were respectively 10, 1, 1, 1 and 3 for stages 1–5 of infection; (c) age category: transmission rates were equal for all 4 age categories in
the model. Values are aggregated from 100 simulation replicates. Outliers are not shown. Distance threshold for clustering algorithm is 1.5%.

Fig. 2. Distribution of p-values of univariate test of difference in out-de-
gree or cluster size by risk level. Values are aggregated from 100 simu-
lation replicates. Dotted line indicates p-value = 0.05.
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detected as an independent predictor of risk level in respectively 94, 56
and 15% of simulations with threshold 0.5, 1.5 and 5%, with an average
odds-ratio of 1.19, 1.10 and 1.06.

3.2. Inferring difference in transmission rates by stage of infection

Next, we compared the outcomes of the two methods by stage of
infection. For the SA method, Fig. 3 shows the 95% confidence intervals
of relative difference and ratio in transmission rates between early and
late stage of infection in 100 simulations of equal-rate scenario (left)
and baseline scenario (right). We estimate that the SA method would
fail to detect the heterogeneous transmission rates we introduced in the
baseline scenario in 19% of the simulations (type II error) and would
falsely detect a difference in the equal-rate scenario in 17% of the si-
mulations (type I error) when estimating rate ratio and 19% when es-
timating rate difference. However, while SA method generally detected
the difference in baseline scenario, in Fig. 3 (right) we see that it un-
derestimates the actual transmission rate difference and ratio between
early and late stage of infection.

For clustering method, since larger cluster sizes were always found
in individuals at earlier stages of infection (cf. Fig. 1b), substituting out-
degree by cluster size in all previous analyses led to the same associa-
tion between earlier stages and increased transmission. This resulted in
a 100% type I error in the equal rates scenario, and a 0% type II error in
the baseline scenario.

Table 2
Percentage of error of source attribution (SA) and clustering methods at detecting het-
erogeneous transmission rates.

Type of errora SA Clustering

Analysis 0.5% 1.5% 5.0%

Risk levelb

Unadjusted II 5 11 83 98
Adjusted for stage of infection II 48 84 86 81

Stage of infectionc

Equal-rate scenario I 17 100 100 100
Baseline scenario II 19 0 0 0

Age categoryd

Unadjusted I 8 75 86 63
Adjusted for stage of infection I 0 18 25 93

a Type I error corresponds here to falsely associating a variable to an increased
transmission (false positive) and type II error corresponds to not detecting a true differ-
ence in transmission (false negative). Values reported are % of simulations leading to an
erroneous outcome.

b Individuals allocated in high-risk category had a ten-fold increase in transmission
rate. This allocation was completely random and had no dependance on stage of infection
or other clinical variables. Values correspond to the analysis of transmission rate ratio
(see Section 3.2 in the main text).

c In the equal-rate scenario, transmission was independent of infection stage. In the
baseline scenario, transmission rates was increased ten-fold in early HIV infection and
three-fold in AIDS stage.

d There was no association between age category and transmission rates.

Fig. 3. Confidence intervals of difference and ratio of transmission rates between early and late stages of infection estimated by source attribution. The results of 100 simulation replicates
are sorted in increasing order of the median of rate difference or ratio (x-axis). The plain red line corresponds to the null-hypothesis of no difference in transmission rate by stage. First row
presents estimates of rate difference and second row rate ratio. Left column shows results for the ‘equal-rate’ scenario so that confidence intervals crossing the red line indicate true
negative results. Right column shows results for the ‘baseline’ scenario where confidence intervals not crossing the red line correspond to true positive results. In this ‘baseline’ scenario
true values of rate difference (top-right) and rate ratio (bottom-right) are indicated by a black dotted line. (For interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article.)
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3.3. Age assortativity and relation to cluster characteristics and out-degrees

Next, we studied if outcomes of the two methods could reflect the
preferential mixing by age and the independence between age and
transmission rates. Assortativity matrices in Fig. 4 show some level of
age assortativity both for clustering and source attribution methods.
The larger assortativity is seen for the younger category of age. Esti-
mated levels of assortativity are decreasing as increasing distance

thresholds are chosen for the clustering method.
Fig. 5 shows the distribution of estimated age assortativity coeffi-

cient for respective methods and the true level of the Newman's coef-
ficient (r= 0.31) as a result of the parameterization in the transmission
model. At 0.5% threshold, clustering method allows an estimation
slightly closer to the true value and with significantly higher variance
than SA. When testing increasingly lower thresholds, we found that
estimates became largely imprecise and central value plateaued at

Fig. 4. Age assortativity matrices and coefficient
from 100 simulations by method. Panel a: infector
probabilities; panels b to d: cluster size at 0.5%, 1.5%
and 5% thresholds. Labels of x and y axes represent
age categories. r values are Newman assortativity
coefficients.

Fig. 5. Distributions of age assortativity coefficient by method. Values are
aggregated from 100 simulation replicates. Dotted line indicates the true
level of assortativity coefficient (r= 0.31).
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r = 0.12 (not shown). Both methods greatly underestimate the true
value of the assortativity coefficient.

Linear regressions between out-degree and age produced a statisti-
cally significant association (type I error) in 8% of analyses using the
unadjusted model and in 0% when controlling for stage of infection (cf.
Table 2). For a typical threshold of 1.5%, we found that cluster size
decreased significantly with age in respectively 86% of the simulations
for the unadjusted models and 25% for models controlling for the stage
of infection.

3.4. Variation of clustering algorithms

In addition to clustering based on patristic distances (with hivclus-
tering), the two other clustering algorithms (neighborhood and tMRCA)
gave very similar results. The correlation coefficients between cluster
sizes obtained by respective methods were between 77 to 87% but
correlation with out-degrees from source attribution was only 9% (Fig.
S2). As in Fig. 1, Figs. S3 and S4 show that the same associations be-
tween cluster sizes and individuals risk level, stage of infection and age
were found for all clustering methods tested.

3.5. Network representations

Fig. 6 shows the respective transmission networks we obtained in
applying source attribution (left panel) and clustering with a 0.5%
(middle) and 1.5% threshold (right) to the same simulated sample of
patients differentiated by age and stage of infection. This example il-
lustrates the contrasting information provided when considering the
probability of potential transmission to others (proportional to the
width of the directional links) for any patient and the number of links
he has in the cluster, that would correspond to his neighborhood size.
The network from source attribution method is also showing that pa-
tients in later stages of infection have a larger number of attributable
transmissions.

4. Discussion

Our simulation experiments show that detection of heterogeneous
transmission is generally estimated with less precision using clustering
methods than using source attribution. However, both methods un-
derestimate the true level of assortative mixing.

Our clustering algorithms consistently produce a misleading result
in associating younger age categories and cluster sizes when there is no
difference in transmission by age. They also indicate a negative

correlation between stage of infection and cluster sizes, even though
cumulative number of transmissions of a patient is positively related to
both its age and its progression in the course of infection. This is be-
cause these variables are correlated with the time since infection and
clusters are more likely to be observed for recently infected patients.
The results of multivariate analyses suggest that even when adjusting
for a direct correlates of time since infection like CD4 staging, regres-
sion models of phylogenetic cluster characteristics would frequently
lead to a false positive association with age. Nevertheless, including
CD4 in multivariate analyses improved the performance of clustering
analyses. Furthermore, for our purpose of detecting transmission risk
factors, we found that much smaller clustering thresholds than are ty-
pically used (< 1.5%) minimized the type I error and increased de-
tection power. But this could be only applicable when the sampling
fraction of the infected population is sufficiently large to continue to
observe related sequences as thresholds are decreased (Volz et al.,
2012; Hassan et al., 2017).

By studying counterfactual scenarios of transmission variation by
stage of infection, we confirm that inferring early stage infectivity from
the characteristics of phylogenetic clusters is also potentially mis-
leading (Volz et al., 2012). Our results also indicate that source attri-
bution method has a greater power than clustering methods to detect
that a characteristic of infected individuals is truly correlated with the
risk of transmission. However, the stage of infection is confounding this
relation and neither methods are able to capture the magnitude of the
actual difference in transmission rates in the risk level variable. Our
evaluation of clustering performance leads to the recommendation to
always adjust for time since infection when testing for associations with
transmission risk factors.

The clustering methods we used and their interpretation do not
cover all the range of previous applications such as revealing sexual
network structure (Leigh Brown et al., 2011; Grabowski and Redd,
2014) or detection of outbreaks (Poon et al., 2016). In transmission risk
analyses, size of clusters has not been frequently used as a continuous
value, but there are several published examples where a typology of
small, intermediate or large clusters is used to interpret transmission
networks (Brenner et al., 2011; Aldous et al., 2012; Junqueira et al.,
2016). The use of such arbitrary complex cluster definition is ques-
tionable as it can force the interpretation of clustering patterns.

Although we used different clustering algorithms, our results may
not generalize to all clustering methods. Our simulated genealogies
were not obtained by inferring a phylogeny from sequence data,
therefore we did not used bootstrap support as a cluster defining factor,
as is common in the literature (Hassan et al., 2017). However, there is

Fig. 6. Comparison of source attribution (left panel) and threshold distance clustering (middle and right panel) applied to one same cluster from simulated coalescent tree. The initial
sample comprised 62 individuals forming a cluster at threshold 5%. The node positions, colours, and shapes are the same for all networks. For the SA graph, width of links is proportional
to square root of the infector probability. Infector probabilities < 0.1% are not shown. Colour represents age category at time of diagnosis (darker colours represent older patients).
Triangle nodes represent patients in early HIV infection, circles represent chronic stages and square nodes represent AIDS stage at time of diagnosis. Node size is proportional to square
root of out-degree. For the clustering graphs, the single-linkage algorithm was re-applied to the sample with a genetic distance threshold of 0.5% or 1.5%.
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no reason why approaches starting by inferring a true genealogy would
yield to different clustering patterns in relation to transmission. Indeed
the simulation results from Poon (2016) indicate that various clustering
methods generally failed to identify a subgroup with higher transmis-
sion rates. Moreover, methods harnessing bootstrap credibility in tree
topology did not performed better than distance-based methods, in-
cluding the ‘patristic’ method that is closely related to the method
presented here.

Several alternatives to clustering analysis exist which are theoreti-
cally grounded and which have been shown to work well for trans-
mission risk estimation, however their uptake is hampered by their
additional complexity and computational cost. One approach is to make
use of coalescent theory (e.g. Volz et al., 2013). These models provide a
mathematical description of a phylogeny generated by a given epide-
miological process. A related approach is the sampling birth-death
model which can account for additional stochasticity in the epidemic
history if sampling rates are known (Stadler, 2009). Both approaches
can provide conditionally unbiased estimates of transmission rates
given an exact time-scaled pathogen phylogeny and a correctly-speci-
fied epidemiological model. But, such approaches are also more diffi-
cult to implement and require additional effort to develop and compare
epidemiological models.

The SA method presented has a computational burden similar to
that of a tree-based clustering analysis but it accounts for incomplete
sampling of infected cases, even with a weak prior epidemiological
information. While we show that this SA method has acceptable prop-
erties for detecting transmission risk factors, neither clustering nor SA
methods provide unbiased estimates of transmission risk ratios. Formal
population genetic modeling (Volz et al., 2013) should be favoured if
the aim is to estimate unbiased risk ratios for transmission risk factors.

Phylogenetic clustering analyses has served as a staple method for
molecular epidemiological analysis of large pathogen sequence data
due to its ease-of-use and computational tractability, but it has nu-
merous shortcomings: clustering analyses rely on ad-hoc distance
thresholds that must be chosen by the practitioner and are difficult to
calibrate. Because there is no universal standard definition of a cluster,
such analyses are prone to misinterpretation, and there is a danger that
clustering thresholds will be chosen to demonstrate an effect rather
than as a critical test of a hypothesis. Clustering analysis has extremely
high type I error rates for any variable correlated with time since in-
fection. And clustering analyses lose power by giving zero weight to all
observations above the chosen genetic distance threshold. Recent ad-
vances in source attribution methods promise to alleviate these draw-
backs, however further progress in this field is also required. Notably,
within-host evolution is rarely taken into account, assuming coin-
cidence of coalescent and transmission events. Advances in deep se-
quencing technologies promise to increase the fidelity of transmission
pair identification (Romero-Severson et al., 2016) such as by using
minority variants in a putative donor and recipient, but the standard
form of data in resistance databases continues to be a single HIV partial
pol sequence. To obtain robust estimates of transmission rates in the
presence of incomplete sampling, there is currently no shortcut to doing
formal population genetic modeling.
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