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We derive a Cahn–Hilliard–Darcy model to describe multiphase tumour growth taking
interactions with multiple chemical species into account as well as the simultaneous
occurrence of proliferating, quiescent and necrotic regions. A multitude of phenomena
such as nutrient diffusion and consumption, angiogenesis, hypoxia, blood vessel growth,
and inhibition by toxic agents, which are released for example by the necrotic cells, are
included. A new feature of the modelling approach is that a volume-averaged velocity
is used, which dramatically simplifies the resulting equations. With the help of formally
matched asymptotic analysis we develop new sharp interface models. Finite element
numerical computations are performed and in particular the effects of necrosis on tumour
growth is investigated numerically. In particular, for certain modelling choices we obtain
some form of focal and patchy necrotic growth that have been observed in experiments.
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1. Introduction

The morphological evolution of cancer cells, driven by chemical and biological mech-

anisms, is still poorly understood even in the simplest case of avascular tumour

growth. It is well-known that in the avascular stage, initially homogeneous tumour

cells will eventually develop heterogeneity in their growth behaviour. For example,

quiescent cells appear when the tumour reaches a diffusion-limited size, where levels

of nutrients, such as oxygen, are too low to support cell proliferation, and necrotic

cells develop when the nutrient density drops further. It is expected that angio-

genic factors are secreted by the quiescent tumour cells to induce the development

of a capillary network towards the tumour and deliver much required nutrients for

proliferation62. But it has also been observed (experimentally55 and in numerical

simulations12,14) that the tumour exhibits morphological instabilities, driven by a

combination of chemotactic gradients and inhomogeneous proliferation, which al-

lows the interior tumour cells to access nutrients by increasing the surface area of

the tumour interface.

In this paper, we propose a multi-component diffuse interface model for mod-

elling heterogeneous tumour growth. We consider L types of cells, with M chemical

species. Similar in spirit to Ref. 3 (see also Refs. 5, 22, 61), we model each of the

L different cell types as inertia-less fluids, and each of the M chemical species can

freely diffuse and may be subject to additional mechanisms such as chemotaxis and

active transport. In the diffuse interface methodology, interfaces between different

components are modelled as thin transition layers, in which the macroscopically dis-

tinct components are allowed to mix microscopically. This is in contrast to the sharp

interface approach, where the interfaces are modelled as idealised moving hypersur-

faces. The treatment of cells as viscous inertia-less fluids naturally leads to a notion

of an averaged velocity for the fluid mixture, and we will use a volume-averaged

velocity, which is also considered in Refs. 1, 27.

From basic conservation laws, we will derive the following multi-component

model:

div v⃗ = 1 ⋅U(ϕ,σ), (1.1a)

v⃗ = −K∇p +K(∇ϕ)⊺(µ −N,ϕ(ϕ,σ)), (1.1b)

∂tϕ + div (ϕ⊗ v⃗) = div (C(ϕ,σ)∇µ) +U(ϕ,σ), (1.1c)

µ = −βε∆ϕ + βε−1Ψ,ϕ(ϕ) +N,ϕ(ϕ,σ), (1.1d)

∂tσ + div (σ ⊗ v⃗) = div (D(ϕ,σ)∇N,σ(ϕ,σ)) +S(ϕ,σ), (1.1e)

for a vector ϕ = (ϕ1, . . . , ϕL)⊺ of volume fractions, i.e., ∑L
i=1 ϕi = 1 and ϕi ≥ 0 for 1 ≤

i ≤ L, where ϕi represents the volume fraction of the ith cell type, and for a vector

σ = (σ1, . . . , σM )⊺, with σj representing the density of the jth chemical species. The

velocity v⃗ is the volume-averaged velocity, p is the pressure, µ = (µ1, . . . , µL)⊺ is the
vector of chemical potentials associated to ϕ, and N,ϕ ∈ RL and N,σ ∈ RM denote

the partial derivatives of the chemical free energy density N with respect to ϕ and
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σ, respectively.

The system (1.1) can be seen as the multi-component variant of the Cahn–

Hilliard–Darcy system derived in Ref. 27. Equation (1.1e) can be viewed as a

convection-reaction-diffusion system with a vector of source terms S ∈ RM , where for

vectors a ∈ Rk and b ∈ Rl, the tensor product a⊗b ∈ Rk×l is defined as (a⊗b)ij = aibj
for 1 ≤ i ≤ k and 1 ≤ j ≤ l. The positive semi-definite mobility tensor D(ϕ,σ) can
be taken as a second order tensor in R

M×M , or even as a fourth order tensor in

R
M×d×M×d, where d is the spatial dimension.

Equations (1.1c) and (1.1d) constitute a multi-component convective Cahn–

Hilliard system with a vector of source terms U ∈ RL and a mobility tensor C(ϕ,σ),
which we take to be either a second order tensor in R

L×L or a fourth order tensor in

R
L×d×L×d. Furthermore, we ask that∑L

i=1 Cij = 0 in the former case and∑L
i=1Cimjl =

0 in the latter case for any 1 ≤ j ≤ L and 1 ≤m, l ≤ d. These conditions ensure that

∑L
i=1 ϕi(t) = 1 for t > 0 if ∑L

i=1 ϕi(0) = 1. One example of such a second order

mobility tensor is Cij(ϕ,σ) = mi(ϕi)(δij −mj(ϕj)/∑L
k=1mk(ϕk)) for 1 ≤ i, j ≤ L

and so-called bare mobilities mi(ϕi), see Ref. 19. The vector Ψ,ϕ is the vector of

partial derivatives of a multi-well potential Ψ with L equal minima at the points

el, l = 1, . . . , L, where el is the lth unit vector in R
L.

Equation (1.1b) is a generalised Darcy’s law (with permeability K > 0) relating
the volume-averaged velocity v⃗ and the pressure p, while in equation (1.1a), 1 =
(1, . . . ,1)⊺ ∈ RL and 1 ⋅ U is the sum of the components of the vector of source

terms U in (1.1c), and (1.1a) relates the gain or loss of volume from the vector of

source terms U to the changes of mass balance.

Lastly, β > 0 and ε > 0 are parameters related to the surface tension and the

interfacial thickness, respectively. In fact, associated with (1.1) is the free energy

E(ϕ,σ) = ∫
Ω

βε

2

L

∑
i=1

∣∇ϕi∣
2
+
β

ε
Ψ(ϕ) +N(ϕ,σ)dLd, (1.2)

where dLd denotes integration with respect to the d dimensional Lebesgue measure.

The first two terms in the integral account for the interfacial energy (and by exten-

sion the adhesive properties of the different cell types), and the last term accounts

for the free energy of the chemical species and their interaction with the cells.

We focus on a special case with L = 3 and M = 1, so that we have three cell

types; host cells (ϕ1), proliferating tumour cells (ϕ2) and necrotic tumour cells

(ϕ3), along with one chemical species (σ) acting as nutrient, for example oxygen.

Then, (1.1e) becomes a scalar equation, with a scalar mobility function D(ϕ, σ),

and a scalar source function S(ϕ, σ). In this setting, one can consider a chemical

free energy density of the form

N(ϕ, σ) = χσ

2
∣σ∣

2
− χϕσϕ2 − χnf(σ)ϕ3, (1.3)

where χσ > 0, χϕ, χn ≥ 0 are constants and f ∶ [0,∞) → [0,∞) is a monotonically

decreasing function such that f(s) = 0 for s ≥ c∗ > 0. The first term of (1.3)

will lead to diffusion of the nutrient, and the second term models the chemotaxis
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mechanism that drives the proliferating tumour cells to regions of high nutrient,

which was similarly considered in Refs. 12, 13, 27, 36. The third term shows that

it is energetically favourable to be in the necrotic phase when the nutrient density

is below c∗. Indeed, when σ < c∗, f(σ) is positive, and so the term −χnf(σ)ϕ3 is

negative when ϕ3 = 1. Overall we obtain from (1.1) the three-component model

div v⃗ = 1 ⋅U(ϕ, σ), v⃗ = −K∇p +K(∇ϕ)⊺(µ −N,ϕ(ϕ, σ)), (1.4a)

∂tϕ + div (ϕ⊗ v⃗) = div (C(ϕ, σ)∇µ) +U(ϕ, σ), (1.4b)

µ = −βε∆ϕ + βε−1Ψ,ϕ(ϕ) +N,ϕ(ϕ, σ), (1.4c)

∂tσ + div (σv⃗) = div (D(ϕ, σ)∇(χσσ − χϕϕ2 − χnf
′(σ)ϕ3)) + S(ϕ, σ), (1.4d)

N,ϕ(ϕ, σ) = (0, −χϕσ, −χnf(σ))⊺. (1.4e)

Similar to Ref. 27, we define

λ = χϕ

χσ

, θ = χn

χσ

, d(ϕ, σ) =D(ϕ, σ)χσ, (1.5)

so that (1.4d) becomes

∂tσ + div (σv⃗) = div (d(ϕ, σ)∇(σ − λϕ2 − θf
′(σ)ϕ3)) + S(ϕ, σ), (1.6)

which allows us to decouple the chemotaxis mechanism that was appearing in (1.4c)

and (1.4d). We point out that it is possible to neglect the effects of fluid flow by

sending K → 0 in the case 1 ⋅U = 0. By Darcy’s law and div v⃗ = 0, we obtain v⃗ → 0⃗

as K → 0, and the above system (1.4) with source terms satisfying 1 ⋅U(ϕ, σ) = 0
transforms into

∂tϕ = div (C(ϕ, σ)∇µ) +U(ϕ, σ),
µ = −βε∆ϕ + βε−1Ψ,ϕ(ϕ) +N,ϕ(ϕ, σ),

∂tσ = div (D(ϕ, σ)∇(χσσ − χϕϕ2 − χnf
′(σ)ϕ3)) + S(ϕ, σ).

It is noteworthy to point out that the condition 1 ⋅U(ϕ, σ) = 0 for the above

reduced model is rather restrictive. Although our diffuse interface model is derived

from balance laws and is thermodynamically consistent, the choices of source terms

U(ϕ, σ), S(ϕ, σ), as well as the chemical free energy N(ϕ, σ) in the later sections

are phenomenological rather than derived from a macroscopic limit of cellular dy-

namics. Thus, when one considers using the reduced model with no velocity, the

modification of the vector U(ϕ, σ) so that 1 ⋅U(ϕ, σ) = 0 introduces artificial terms

which may not have biological relevance. In Sec. 4 below we detail a comparison

between the case K > 0 (Darcy flow) and K = 0 (velocity is neglected) for a specific

setting involving necrotic cells, and the simulations demonstrate that the full Darcy

model yields more realistic results than the reduced model.

In our choice of the adhesion energy in (1.2), the presence of a multi-well po-

tential Ψ(ϕ) leads to the development of large regions of individual cell-phases

separated by thin interfacial layers. Biologically, this means that the interfaces be-

tween the heterogeneous growth regions within the tumour are energetic, and one



October 18, 2017 10:41 WSPC/INSTRUCTION FILE GLNS˙Tumour

Multiphase Cahn–Hilliard–Darcy model for necrotic tumour growth 5

may view the tumour as a cluster consisting of L−1 distinct types of cells each with

their own interfacial energy. This is in contrast to the usual intuition where the tu-

mour contains the same type of cells exhibiting heterogeneity in growth behaviour

due to environmental influences. The latter can also be treated within a multiphase

framework by choosing a different interfacial energy, which we will briefly outline

below. For general L ≥ 2 and M ≥ 1, let ϕ1 denote the volume fraction of the host

cells, and ϕT = 1 − ϕ1 = ∑L
i=2 ϕi is the total volume fraction of the tumour cells

exhibiting (L−1)−types of growth behaviour. Then, consider the interfacial energy:

E(ϕ) = ∫
Ω

βε

2
∣ L∑
i=2

∇ϕi∣
2

+
β

ε
W ( L

∑
i=2

ϕi) dLd, (1.7)

where W is a scalar potential with equal minima at 0 and 1. Note that (1.7) can

be viewed as a function of ϕT , i.e., E(ϕ) = Ê(ϕT ) = ∫Ω βε

2
∣∇ϕT ∣2 + β

ε
W (ϕT )dLd,

and it is energetically favourable to have ϕT = 0 (representing the host tissues) or

ϕT = 1 (representing the tumour as a whole). It holds that the first variation of E

with respect to ϕi, 2 ≤ i ≤ L, satisfies
δE

δϕi

= δÊ

δϕT

= −βε∆ϕT + βε
−1W ′(ϕT ) =∶ µT ,

and so, if the chemical free energy density N is independent of ϕ, the corresponding

equations for the chemical potentials for the tumour phases now read as

µ1 = 0, µi = −βε∆ϕT + βε
−1W ′(ϕT ) = µT for 2 ≤ i ≤ L.

Then, choosing a second order mobility tensor C(ϕ,σ) such that ∑L
j=2Cij(ϕ,σ) =

M(ϕi), for 2 ≤ i ≤ L, and ∑L
j=2C1j(ϕ,σ) = −∑L

j=2M(ϕj) for a non-negative mobil-

ity function M(⋅), the equations for ϕi take the form

∂tϕi + div (ϕiv⃗) = div (M(ϕi)∇µT ) +Ui(ϕ,σ), 2 ≤ i ≤ L,
which resemble the system of equations studied in Refs. 10, 11, 23, 65, 67. Note in

particular that only µT is needed to drive the evolution of ϕi, 2 ≤ i ≤ L. However,
the mathematical treatment of these types of models is difficult due to the fact

that the equation for ϕi is now a transport equation with a high order source term

div (M(ϕi)∇µT ), and the natural energy identity of the model does not appear

to yield useful a priori estimates for ϕi. In the case that the mobility M is a

constant (which considerably simplifies some of the equations), the existence of a

weak solution for the model of Ref. 11 has been studied by Dai et al. in Ref. 17.

Hence, we argue that the consideration of a multi-well potential as in (1.2), although

it leads to a vectorial Cahn–Hilliard system, may yield a mathematical model that is

further amenable to analytical and numerical investigations, see for example Ref. 24.

The specific forms of the source terms U(ϕ,σ) and S(ϕ,σ) will depend on the

specific situation we want to model. In our numerical investigations, we will pri-

marily focus on a three-component model consisting of host cells (ϕ1), proliferating
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tumour cells (ϕ2) and necrotic cells (ϕ3) in the presence of a quasi-static nutrient(σ), i.e., L = 3 and M = 1. Of biological relevance are the following choices:

S(ϕ, σ) = −Cϕ2σ, (1.8a)

UA(ϕ, σ) = (0, ϕ2(Pσ −A), Aϕ2 −DNϕ3)⊺, (1.8b)

UB(ϕ, σ) = (−ϕ2Pσ, ϕ2(Pσ −A), Aϕ2 −DNϕ3)⊺, (1.8c)

UC(ϕ, σ) = (0, 1
ε
ϕ2
2(1 −ϕ2)2(Pσ −A), 1

ε
ϕ2
3(1 −ϕ3)2(A −DN))⊺. (1.8d)

The source term (1.8a) models the consumption of nutrients by the proliferating

cells at a constant rate C > 0. The choice (1.8b) models the proliferation of tumour

cells at a constant rate P > 0 by consuming the nutrient, the apoptosis of the

tumour cells at a constant rate A ≥ 0, which can be considered as a source term for

the necrotic cells, and we assume that the necrotic cells degrade at constant rate

DN ≥ 0. Meanwhile, in (1.8c), any mass gain for the proliferating tumour equals the

mass loss by the host cells, and vice versa for the necrotic and proliferating cells. In

(1.8d), the functions ϕ2
2(1 − ϕ2)2 and ϕ2

3(1 −ϕ3)2 are zero except near the vicinity

of the interfacial layers. The scaling with ε−1 is chosen similarly as in Ref. 37, which

allows the source terms to influence the evolution of the interfaces, see Sec. 3.4

below for more details.

In (1.1), the parameter ε is related to the thickness of the interfacial layers, and

hence it is natural to ask if a sharp interface model will emerge in the limit ε → 0.

Due to the multi-component nature of (1.1), the sharp interface model consists of

equations posed on time-dependent regions Ωi = {ϕi = 1} for 1 ≤ i ≤ L and on the

free boundaries Γij = ∂Ωi ∩ ∂Ωj for 1 ≤ i < j ≤ L. We refer the reader to Sec. 3

below for the multi-component sharp interface limit of (1.1), which is too complex

to state here.

Instead, we consider the system (1.4) with a quasi-static nutrient (neglecting

the left-hand side of (1.4d)), χϕ = χn = 0 (so that N,ϕ(ϕ, σ) = 0), D(ϕ, σ) = 1,

a mobility tensor C(ϕ, σ) = (δij − 1
3
)3i,j=1, and the source term S(ϕ, σ) = −Cϕ2σ.

Then, (1.4) simplifies to

div v⃗ = 1 ⋅U(ϕ, σ), v⃗ = −K∇p +K(∇ϕ)⊺µ, (1.9a)

∂tϕ1 + div (ϕ1v⃗) =∆y +U1(ϕ, σ), (1.9b)

∂tϕ2 + div (ϕ2v⃗) =∆z +U2(ϕ, σ), (1.9c)

∂tϕ3 + div (ϕ3v⃗) = −∆(y + z) +U3(ϕ, σ), (1.9d)

µk = −βε∆ϕk + βε
−1Ψ,ϕk

(ϕ), k = 1,2,3, (1.9e)

0 =∆σ − Cϕ2σ, (1.9f)

where U = (U1, U2, U3)⊺,
3y = (µ1 − µ2) + (µ1 − µ3), 3z = −(µ1 − µ2) + (µ2 − µ3).

Note that 3(y + z) = (µ1 − µ3) + (µ2 − µ3), and hence diffusion is governed by the

difference of chemical potentials, see also Ref. 7. Let us denote ΩH = {ϕ1 = 1, ϕ2 =
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ϕ3 = 0}, ΩP = {ϕ2 = 1, ϕ1 = ϕ3 = 0}, ΩN = {ϕ3 = 1, ϕ1 = ϕ2 = 0} as the regions of

host cells, proliferating tumour and necrotic cells, respectively, along with interfaces

ΓPN = ∂ΩP ∩ ∂ΩN and ΓHP = ∂ΩH ∩ ∂ΩP . We also consider the setting where the

host cells do not share a boundary with the necrotic cells, i.e., ΓHN = ∅. This makes

sense biologically as the tumour cells display necrotic growth only when the level

of nutrient in the surrounding drops below a critical threshold. As the host cells

consume considerably less nutrient than the tumour cells, the nutrient level in the

vicinity of the host cells is plentiful and we expect that necrotic cells do not develop

there. Then, the sharp interface limit of (1.9) reads as (see Sec. 3.4 for a derivation)

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
−∆y = U1(ϕ, σ) − (1 ⋅U(ϕ, σ))ϕ1,

−∆z = U2(ϕ, σ) − (1 ⋅U(ϕ, σ))ϕ2,

−K∆p = 1 ⋅U(ϕ, σ),
in ΩH ∪ΩP ∪ΩN , (1.10a)

∆σ =
⎧⎪⎪⎨⎪⎪⎩
0 in ΩH ∪ΩN ,Cσ in ΩP ,

(1.10b)

[y] = [z] = [σ] = [∇σ] ⋅ ν⃗ = [∇p] ⋅ ν⃗ = 0 on ΓPN ∪ ΓHP , (1.10c)⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
[p]PN = βγPNκ = 2y − z,
−V +K∇p ⋅ ν⃗ = [∇z]PN ⋅ ν⃗,
0 = [∇y]PN ⋅ ν⃗,

on ΓPN , (1.10d)

⎧⎪⎪⎨⎪⎪⎩
[p]HP = βγHP κ = y − z,
−V +K∇p ⋅ ν⃗ = [∇y]HP ⋅ ν⃗ = − [∇z]HP ⋅ ν⃗, on ΓHP . (1.10e)

In the above ν⃗ denotes the unit normal on ΓPN pointing into ΩP or the unit normal

on ΓHP pointing into ΩH , κ is the mean curvature, γPN and γHP are positive

constants related the potential Ψ, V denotes the normal velocity of ΓPN or ΓHP ,

and [⋅] denotes the jump across the interfaces. Let us point out that for the choice

(1.8b) of U(ϕ, σ), equation (1.10a) becomes

−∆y = 0 in ΩH ∪ΩP ∪ΩN , −∆z =
⎧⎪⎪⎨⎪⎪⎩
0 in ΩH ∪ΩN ,

−A in ΩP ,
−K∆p =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
0 in ΩH ,Pσ in ΩP ,

−DN in ΩN ,

and for the choice (1.8c) of U(ϕ, σ), equation (1.10a) becomes

−∆y =
⎧⎪⎪⎨⎪⎪⎩
−Pσ in ΩP ,

0 in ΩH ∪ΩN ,
−∆z =

⎧⎪⎪⎨⎪⎪⎩
Pσ −A in ΩP ,

0 in ΩH ∪ΩH ,
−K∆p =

⎧⎪⎪⎨⎪⎪⎩
0 in ΩH ∪ΩP ,

−DN in ΩN .

Note that the overall gain or loss in mass is reflected in the equation for p, compare

for instance with Sec. 4.6 of Ref. 13.

In contrast, multi-component models obtained from a degenerate interfacial en-

ergy such as (1.7) have simpler sharp interface limits. Due to the fact that (1.7) is a



October 18, 2017 10:41 WSPC/INSTRUCTION FILE GLNS˙Tumour

8 H. Garcke, K.F. Lam, R. Nürnberg & E. Sitka

function only of ϕT , the asymptotic analysis leads to a sharp interface limit which

is defined on two time-dependent regions ΩT = {ϕT = 1} (tumour) and ΩH = Ω∖ΩT

(host), and one free boundary Γ = ∂ΩT . In particular, differentiation between the

different types of tumour cells is based on the local density of nutrients48,49,50,68,

unlike in (1.10) where an evolution law for the interface ΓPN between the prolifer-

ating and necrotic cells is stated. We refer the reader also to Sec. 3.5 below for the

sharp interface limit of a model with degenerate interfacial energy.

Let us now give a non-exhaustive comparison between the multi-component

diffuse interface models in the literature and the model (1.1) we propose in this

work.

Interfacial energy/cellular adhesion. In Refs. 10, 11, 23, 45, 46, 65, 67, it is

assumed that the different types of tumour cells prefer to adhere to one another

instead of the host cells, and thus the degenerate interfacial energy density (1.7) is

considered. This is in contrast to Ref. 54 and our present work, where the adhesive

properties of cells with different growth behaviour are distinct and the total energy

(1.2) is considered. Furthermore, we point out that the model of Ref. 66 can be

seen as a two-phase model (tumour and host cells), which uses an interfacial energy

similar to (1.7). But they use a non-conserved phase field equation of Allen–Cahn

type, rather than a Cahn–Hilliard equation, to describe the tumour evolution.

Mixture velocity. In Refs. 10, 11, 23, 54, 65, 67 a mass-averaged velocity is used

instead of the volume-averaged velocity considered in our present approach and

also in Ref. 60. Meanwhile, in Refs. 45, 46 the velocities of the cell components are

assumed to be negligible.

Source terms. Aside from mitosis proportional to the local density of nutrients,

and constant apoptosis for the tumour cells, certain sink terms for one cell type be-

come source terms for another, for example the term Aϕ2 in (1.8b). It is commonly

assumed that the host cells are homeostatic10,11,23,67,65, and so the source term

for the host cells is zero. In Refs. 45, 46, where quiescent cells are also considered,

a two-sided exchange between the proliferating cells and the quiescent cells, and

a one-sided exchange from quiescent cells to necrotic cells based on local nutrient

concentration are included. However, to the best of our knowledge, source terms of

the form (1.8d) have not yet been considered in the multi-component setting.

Sharp interface limit. Out of the aforementioned references, it appears that only

Ref. 65 state a sharp interface limit for a multi-component diffuse interface model

with degenerate interfacial energy (1.7). For a two-phase setting we refer the reader

to Refs. 12, 27.

The remainder of this paper is organised as follows: In Sec. 2 we derive the

diffuse interface model (1.1) from thermodynamic principles. In Sec. 3 we perform
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a formal asymptotic analysis to derive the sharp interface limit. In Sec. 4 we present

some numerical simulations for the three-component tumour model derived in this

paper.

2. Model derivation

In this section, we derive (1.1) from balance laws and ensure thermodynamic consis-

tency by choosing appropriate constitutive assumptions. Since a similar procedure

is used for the two-phase setting and is presented in great detail in Ref. 27, we only

briefly outline the procedure. In an open, bounded domain Ω ⊂ Rd, d = 1,2,3, we
consider a mixture that consists of L ≥ 2 cell components. Denoting the actual mass

of matter per volume in the mixture of the ith component as ρi, and the constant

mass density of a pure component i as ρi, we define the volume fraction of the ith

component as the ratio ϕi ∶= ρi/ρi for 1 ≤ i ≤ L. The vector of volume fractions

ϕ = (ϕ1, . . . , ϕL)⊺ ∈ RL plays a crucial role in our model (1.1) where it identifies

which cell-phases we are at a particular point in the domain Ω.

Physically, we expect ρi ∈ [0, ρi] and so ϕi ∈ [0,1]. Assuming no external volume

compartment exists besides the aforementioned L components, we necessarily have

that ϕ1 + ⋅ ⋅ ⋅ + ϕL = ∑L
i=1 ϕi = 1. Each of the cell component is transported by its

individual velocity, which we denote by v⃗ϕi
for the ith component, and we define

the mixture velocity as the volume-averaged velocity

v⃗ =
L

∑
i=1

ϕiv⃗ϕi
. (2.1)

Lastly, in addition to the cells, we allow for the presence of M ≥ 1 chemical species

in Ω, whose densities we summarise as a vector σ = (σ1, . . . , σM)⊺ ∈ RM .

2.1. Balance laws

The mass balances for the ith cell component and the jth chemical species read as

∂tρi + div (ρiv⃗ϕi
) = Ui, i = 1, . . . , L, (2.2a)

∂tσj + div (σj v⃗) + div J⃗σj
= Sj, j = 1, . . . ,M, (2.2b)

where Ui denotes a source/sink term for the ith component, Sj denotes a source/sink

term for the jth chemical species, σj v⃗ models the transport by the volume-averaged

velocity and J⃗σj
accounts for other transport mechanisms.

Dividing (2.2a) by ρ̄i and using the relation ϕi = ρi/ρ̄i leads to an equation for

ϕi involving the individual velocities v⃗ϕi
. Upon summing and using ∑L

i=1 ϕi = 1 and

(2.1) leads to the mass balance

div v⃗ =
L

∑
i=1

div (ϕiv⃗ϕi
) = L

∑
i=1

Ui
ρi
. (2.3)
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It is however more convenient to have an equation for ϕi in terms of the volume-

averaged velocity v⃗, thus, introducing the fluxes

J⃗ϕi
= ρi(v⃗ϕi

− v⃗), i = 1, . . . , L, (2.4)

leads to

∂tϕi +
1

ρi
div J⃗ϕi

+ div (ϕiv⃗) = Ui
ρi
, i = 1, . . . , L. (2.5)

As a further consequence of the condition ∑L
i=1 ϕi = 1, after dividing (2.4) by ρi,

summing and using (2.1) we find that necessarily

L

∑
i=1

1

ρi
J⃗ϕi
=

L

∑
i=1

ϕi(v⃗ϕi
− v⃗) = v⃗ − v⃗ = 0⃗ (2.6)

has to hold. For a more compact presentation, we introduce

U = (ρ−11 U1, . . . , ρ−1L UL)⊺ ∈ RL, S = (S1, . . . , SM)⊺ ∈ RM ,

K⊺ϕ = (ρ−11 J⃗ϕ1
, . . . , ρ−1L J⃗ϕL

) ∈ Rd×L, K⊺σ = (J⃗σ1
, . . . , J⃗σM

) ∈ Rd×M ,
(2.7)

i.e., the lth row of Kϕ is the flux ρ−1l J⃗ϕl
∈ Rd and the lth row of Kσ is the flux

J⃗σl
∈ Rd. We recall that the divergence applied to a second order tensor A ∈ Rk×l

results in a vector in R
k whose ith component is the divergence of (Aij)lj=1, that is,(divA)i = ∑l

j=1 ∂xj
Aij . Then, (2.3), (2.5), and (2.2b) can be compactly summarised

as

div v⃗ = 1 ⋅U , (2.8a)

∂tϕ + div (ϕ⊗ v⃗) + divKϕ =U , (2.8b)

∂tσ + div (σ ⊗ v⃗) + divKσ = S, (2.8c)

respectively, where 1 = (1, . . . ,1)⊺ ∈ RL.

2.2. Energy inequality

To derive the appropriate constitutive assumptions for the fluxes Kϕ, Kσ so that

the model is thermodynamically consistent, we employ an energetic approach. To

account for the condition ∑L
i=1 ϕi = 1, we introduce for L ∈ N, L ≥ 2,

HG = {φ = (φ1, . . . , φL)⊺ ∈ RL ∶
L

∑
i=1

φi = 1} , G = {φ ∈ HG ∶ φi ≥ 0 ∀i} . (2.9)

The latter is also known as the Gibbs simplex. The corresponding tangent space

TpHG can be identified as the space

TpHG ≅ TG = {ψ ∈ RL ∶
L

∑
i=1

ψi = 0} . (2.10)
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We postulate a general free energy of Ginzburg–Landau form, i.e.,

E(ϕ,σ) = ∫
Ω
e(ϕ,∇ϕ,σ)dLd = ∫

Ω
AΨ(ϕ) +Ba(ϕ,∇ϕ) +N(ϕ,σ)dLd, (2.11)

where ϕ = (ϕ1, . . . , ϕL)⊺ ∈ G, σ = (σ1, . . . , σM )⊺ and ∇ϕ = (∂xk
ϕi)1≤i≤N,1≤k≤d. Here

A,B > 0 are constants, a ∶ G × (TG)d → R is a smooth gradient energy density and

Ψ ∶ G → R≥0 is a smooth multi-well potential with exactly L equal minima at the

points el, l = 1, . . . , L, where el = (δlm)Lm=1 is the lth unit vector in R
L. In particular,

the minima of Ψ are the corners of the Gibbs simplex G. The first two terms in

the integral in (2.11) account for interfacial energy and unmixing tendencies, and

the term N(ϕ,σ) accounts for the chemical energy of the species and any energy

contributions resulting from the interactions between the cells and the chemical

species.

Recalling the vector 1 = (1, . . . ,1)⊺ ∈ RL, we now introduce the projection oper-

ator P to the tangent space TG as follows:

Pf = f − 1

L
(1 ⋅ f)1 (2.12)

for a vector f ∈ RL. For a second order tensor A ∈ RL×d we define the (i, j)th
component of its projection to be

(PA)ij = Aij −
1

L

L

∑
k=1

Akj .

We now derive a diffuse interface model based on a dissipation inequality for the

balance laws in (2.8). We point out that balance laws with source terms have been

used similarly by Gurtin in Refs. 33, 34 and Podio-Guidugli in Ref. 58 to derive

phase field and Cahn–Hilliard type equations. These authors used the second law

of thermodynamics which in an isothermal situation is formulated as a free energy

inequality.

The second law of thermodynamics in the isothermal situation requires that for

all volumes V (t) ⊂ Ω, which are transported with the fluid velocity, the following

inequality has to hold (see Refs. 33, 34, 58 and Chap. 62 of Ref. 35)

d

dt
∫
V (t)

e(ϕ,∇ϕ,σ)dLd ≤ −∫
∂V (t)

J⃗e ⋅ ν⃗ dHd−1 + ∫
V (t)
(cϕ + cv1) ⋅U + cσ ⋅S dLd,

where dHd−1 denotes integration with respect to the d − 1 dimensional Hausdorff

measure, ν⃗ is the outer unit normal to ∂V (t), J⃗e is an energy flux yet to be specified,

and we have postulated that the source terms U and S carry with them a supply

of energy described by

∫
V (t)
(cϕ + cv1) ⋅U + cσ ⋅S dLd, (2.13)

for some cϕ ∈ TG, cv ∈ R and cσ ∈ RM yet to be determined.
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Applying the transport theorem and the divergence theorem, we obtain the

following local form

∂te + div (ev⃗) + div J⃗e − (cϕ + cv1) ⋅U − cσ ⋅S ≤ 0. (2.14)

We now use the Lagrange multiplier method of Liu and Müller (see Sec. 2.2 of

Ref. 1 and Chap. 7 of Ref. 47). Let λϕ ∈ TG, λσ ∈ RM and λv ∈ R denote the

Lagrange multipliers for the equations in (2.8b), (2.8c) and (2.8a), respectively.

Then, we require that the following inequality holds for arbitrary ϕ ∈ G, ∂tϕ ∈ TG,

∇ϕ ∈ (TG)d, σ, ∂tσ ∈ RM , ∇σ ∈ RM×d, v⃗ ∈ Rd, U ∈ RL, and S ∈ RM :

−D = ∂te + v⃗ ⋅ ∇e + ediv v⃗ + div J⃗e − (cϕ + cv1) ⋅U − cσ ⋅S
−λϕ ⋅ (∂tϕ + (∇ϕ)v⃗ + (div v⃗)ϕ + divKϕ −U)
−λσ ⋅ (∂tσ + (∇σ)v⃗ + (div v⃗)σ + divKσ −S)
− λv (div v⃗ − 1 ⋅U) ≤ 0.

(2.15)

Using the identities

[(∇ϕ)v⃗]i = d

∑
k=1

∂xk
ϕivk, ∂●tϕ = ∂tϕ + (∇ϕ)v⃗, ∂●t f = ∂tf + v⃗ ⋅ ∇f,

λ ⋅ div (ϕ⊗ v⃗) = λ ⋅ (∇ϕ)v⃗ + (λ ⋅ϕ)div v⃗, div (K⊺λ) =K ∶ ∇λ + (divK) ⋅λ,
where for two tensors A and B, the product A ∶ B is defined as A ∶ B = tr (A⊺B),
we arrive at

−D = div (J⃗e −K⊺ϕλϕ −K
⊺
σλσ) + (Ba,ϕ +AΨ,ϕ +N,ϕ −λϕ) ⋅ ∂●tϕ

+ (N,σ −λσ) ⋅ ∂●tσ +U ⋅ (λϕ − cϕ + (λv − cv)1) +S ⋅ (λσ − cσ)
+B

L

∑
i=1

d

∑
k=1

(a,∂kϕi
)[∂●t ∂xk

ϕi] + (div v⃗)(e −λϕ ⋅ϕ − λσ ⋅σ − λv)
+Kϕ ∶ ∇λϕ +Kσ ∶ ∇λσ,

(2.16)

where a,∂kϕi
∶= ∂a

∂(∂kϕi)
= (a,∇ϕ)ik,

N,ϕ = ( ∂N
∂ϕ1

, . . . ,
∂N

∂ϕL

)⊺ ∈ RL, N,σ = ( ∂N
∂σ1

, . . . ,
∂N

∂σM
)⊺ ∈ RM .

A short calculation with the product rule shows that

L

∑
i=1

d

∑
k=1

(a,∂kϕi
) [∂●t ∂xk

ϕi]
= div ((a,∇ϕ)⊺∂tϕ) − div (a,∇ϕ) ⋅ ∂●tϕ + v⃗ ⋅ div ((∇ϕ)⊺(a,∇ϕ)).

Applying the product rule on the term involving div v⃗ we get

(div v⃗)(e −λϕ ⋅ϕ −λσ ⋅σ − λv) = div ((e −λϕ ⋅ϕ − λσ ⋅σ − λv)v⃗)
− v⃗ ⋅ ∇(e −λϕ ⋅ϕ −λσ ⋅σ − λv).
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Thus, substituting the above into the expression (2.16) we obtain

−D = div (J⃗e −K⊺ϕλϕ −K
⊺
σλσ +B(a,∇ϕ)⊺∂tϕ + (e −λϕ ⋅ϕ −λσ ⋅σ − λv)v⃗)

− v⃗ ⋅ [∇(e − λϕ ⋅ϕ −λσ ⋅σ − λv) −Bdiv ((∇ϕ)⊺(a,∇ϕ))]
+ (Ba,ϕ −Bdiv (a,∇ϕ) +AΨ,ϕ +N,ϕ −λϕ) ⋅ ∂●tϕ + (N,σ −λσ) ⋅ ∂●tσ
+U ⋅ (λϕ − cϕ + (λv − cv)1) +S ⋅ (λσ − cσ) +Kϕ ∶ ∇λϕ +Kσ ∶ ∇λσ.

(2.17)

2.3. Constitutive assumptions and the general model

We define the vector of chemical potentials µ to be

µ = Ba,ϕ(ϕ,∇ϕ) −Bdiv (a,∇ϕ(ϕ,∇ϕ)) +AΨ,ϕ(ϕ) +N,ϕ(ϕ,σ), (2.18)

and by the definition (2.12) of the projection operator P, we have

(µ −λϕ) ⋅ ∂●tϕ = P(µ − λϕ) ⋅ ∂●tϕ + 1

L
((µ −λϕ) ⋅ 1)1 ⋅ ∂●tϕ = P(µ −λϕ) ⋅ ∂●tϕ

as ∂●tϕ ∈ TG and ∂●tϕ ⋅1 = 0. Furthermore, from (2.6) we find that Kϕ ∶ ∇λϕ =Kϕ ∶

∇(Pλϕ), and so (2.17) can be simplified to

−D = div (J⃗e −K⊺ϕλϕ −K
⊺
σλσ +B(a,∇ϕ)⊺∂tϕ + (e −λϕ ⋅ϕ −λσ ⋅σ − λv)v⃗)

+Kϕ ∶ ∇(Pλϕ) +Kσ ∶ ∇λσ + P(µ − λϕ) ⋅ ∂●tϕ
+ (N,σ − λσ) ⋅ ∂●tσ +U ⋅ (λϕ − cϕ + (λv − cv)1) +S ⋅ (λσ − cσ)
− v⃗ ⋅ [∇(e − λϕ ⋅ϕ −λσ ⋅σ − λv) −Bdiv ((∇ϕ)⊺(a,∇ϕ))] .

(2.19)

Based on (2.19) we make the following constitutive assumptions,

J⃗e =K⊺ϕλϕ +K
⊺
σλσ −B(a,∇ϕ(ϕ,∇ϕ))⊺∂tϕ (2.20a)

− (e(ϕ,∇ϕ,σ) −λϕ ⋅ϕ − λσ ⋅σ − λv)v⃗,
cσ = λσ =N,σ(ϕ,σ), cϕ = λϕ, λϕ = Pµ, cv = λv, (2.20b)

Kσ = −D(ϕ,σ)∇N,σ(ϕ,σ), Kϕ = −C(ϕ,σ)∇(Pµ), (2.20c)

where C(ϕ,σ) ∈ RL×L andD(ϕ,σ) ∈ RM×M are non-negative second order mobility

tensors such that
L

∑
i=1

Cik(ϕ,σ) = 0 for all ϕ ∈ G, σ ∈ RM , and 1 ≤ k ≤ L. (2.21)

Here, by a non-negative second order tensor A ∈ RL×L, we mean that for all b ∈ RL,

b ⋅Ab ≥ 0 and b ⋅Ab = 0 if and only if b = 0. Recalling the definition of Kϕ and Kσ

from (2.7), we see that for 1 ≤m ≤ d, the mth component of the fluxes J⃗ϕi
and J⃗σj

are given as

1

ρi
(J⃗ϕi
)m = − L

∑
k=1

Cik(ϕ,σ)∂xm
(Pµ)k,

(J⃗σj
)m = − M

∑
k=1

Djk(ϕ,σ)∂xm
( ∂N
∂σk
) .
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Then, the constraint (2.6) requires

L

∑
i=1

L

∑
k=1

Cik(ϕ,σ)∂xm
(Pµ)k = 0 ∀1 ≤m ≤ d, (2.22)

which is satisfied when the constitutive assumption (2.21) is considered. We point

out that one may take D(ϕ,σ) ∈ RM×d×M×d as a non-negative fourth order mobility

tensor, that is, DA ∶ A ≥ 0 and DA ∶ A = 0 if and only if A = 0 for any second order

tensors A ∈ RM×d. If we also consider C(ϕ,σ) ∈ RL×d×L×d as a fourth order tensor,

then (2.21) becomes

L

∑
i=1

Cimkl(ϕ,σ) = 0 for all ϕ ∈ G, σ ∈ RM , and 1 ≤m, l ≤ d,1 ≤ k ≤ L, (2.23)

and for 1 ≤m ≤ d, the mth component of the fluxes J⃗ϕi
and J⃗σj

are given as

1

ρi
(J⃗ϕi
)m = − L

∑
k=1

d

∑
l=1

Cimkl(ϕ,σ)∂xl
(Pµ)k,

(J⃗σj
)m = − M

∑
k=1

d

∑
l=1

Djmkl(ϕ,σ)∂xl
( ∂N
∂σk
) .

Note that, from (2.19) and the arbitrariness of U , we require the prefactor λϕ −

cϕ + (λv − cv)1 to vanish. Since λϕ,cϕ ∈ TG and the vector (λv − cv)1 is orthogonal

to TG this leads to the consideration λϕ = cϕ and λv = cv in (2.20b). We introduce

a pressure-like function p and choose

λv = p −Ba(ϕ,∇ϕ) −AΨ(ϕ) + e(ϕ,∇ϕ,σ) − Pµ ⋅ϕ −N,σ(ϕ,σ) ⋅σ
= p +N(ϕ,σ) − Pµ ⋅ϕ −N,σ(ϕ,σ) ⋅σ. (2.24)

and, for a positive constant K,

v⃗ =K (∇(e(ϕ,∇ϕ,σ) − Pµ ⋅ϕ −N,σ(ϕ,σ) ⋅σ − λv) −Bdiv ((∇ϕ)⊺a,∇ϕ(ϕ,∇ϕ)))
=K (∇(−p +Ba(ϕ,∇ϕ) +AΨ(ϕ)) −Bdiv ((∇ϕ)⊺a,∇ϕ(ϕ,∇ϕ))) .

(2.25)

We can further simplify (2.25) with the identity (dropping the dependence on(ϕ,∇ϕ) of a,ϕ and a,∇ϕ):

∇(a(ϕ,∇ϕ)) = (∇ϕ)⊺a,ϕ + div ((∇ϕ)⊺a,∇ϕ) − (∇ϕ)⊺div (a,∇ϕ),
and hence, (2.25) becomes

v⃗ = −K∇p +K(∇ϕ)⊺(µ −N,ϕ(ϕ,σ)). (2.26)

Thus, the model equations are

div v⃗ = 1 ⋅U(ϕ,σ), (2.27a)

v⃗ = −K∇p +K(∇ϕ)⊺(µ −N,ϕ(ϕ,σ)), (2.27b)

∂tϕ + div (ϕ⊗ v⃗) = div (C(ϕ,σ)∇(Pµ)) +U(ϕ,σ), (2.27c)

µ −N,ϕ(ϕ,σ) = Ba,ϕ(ϕ,∇ϕ) −Bdiv (a,∇ϕ(ϕ,∇ϕ)) +AΨ,ϕ(ϕ), (2.27d)

∂tσ + div (σ ⊗ v⃗) = div (D(ϕ,σ)∇N,σ(ϕ,σ)) +S(ϕ,σ), (2.27e)
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where

U = (ρ−11 U1, . . . , ρ−1L UL)⊺ ∈ RL, 1 ⋅U =
L

∑
i=1

Ui
ρi
, S = (S1, . . . , SM)⊺ ∈ RM .

In fact, one observes that the constitutive choices above lead to the expression

−D = −C(ϕ,σ)∇(Pµ) ∶ ∇(Pµ) −D(ϕ,σ)∇N,σ(ϕ,σ) ∶ ∇N,σ(ϕ,σ) − ∣v⃗∣2
K
.

Then substituting into (2.15) and integrating over Ω, using (2.8a), (2.8b) and (2.8c)

to simplify then yields the energy identity:

d

dt
∫
Ω
e(ϕ,∇ϕ,σ)dLd +D + ∫

∂Ω
(e(ϕ,∇ϕ,σ)v⃗ + J⃗e) ⋅ ν⃗ dHd−1

= ∫
Ω
(Pµ + λv1) ⋅U(ϕ,σ) +N,σ(ϕ,σ) ⋅S(ϕ,σ)dLd. (2.28)

By substituting the expressions for J⃗e, D, and λv into the above, we can formulate

the above energy identity as follows.

Theorem 2.1. A sufficiently smooth solution to (2.27) fulfills

d

dt
E(ϕ,σ)

= d

dt
∫
Ω
(AΨ(ϕ) +Ba(ϕ,∇ϕ) +N(ϕ,σ)) dLd

= −∫
Ω
C(ϕ,σ)∇(Pµ) ∶ ∇(Pµ) +D(ϕ,σ)∇N,σ(ϕ,σ) ∶ ∇N,σ(ϕ,σ) + ∣v⃗∣2

K
dLd

+∫
Ω
S(ϕ,σ) ⋅N,σ(ϕ,σ) +U(ϕ,σ) ⋅ PµdLd

+∫
Ω
(1 ⋅U(ϕ,σ))(p −ϕ ⋅ Pµ −σ ⋅N,σ(ϕ,σ) +N(ϕ,σ))dLd

+∫
∂Ω
C(ϕ,σ)∇(Pµ) ∶ (Pµ⊗ ν⃗) +BPa,∇ϕ(ϕ,∇ϕ) ∶ (∂tϕ⊗ ν⃗)dHd−1

+∫
∂Ω
D(ϕ,σ)∇N,σ(ϕ,σ) ∶ (N,σ(ϕ,σ)⊗ ν⃗) + (N(ϕ,σ) + p)v⃗ ⋅ ν⃗ dHd−1.

Remark 2.1. It follows from Theorem 2.1 that, under the boundary conditions

(C(ϕ,σ)∇(Pµ)) ν⃗ = 0⃗, (D(ϕ,σ)∇N,σ(ϕ,σ)) ν⃗ = 0⃗,
(Pa,∇ϕ(ϕ,∇ϕ)) ν⃗ = 0⃗, v⃗ ⋅ ν⃗ = 0

on ∂Ω, and in the absence of source terms S(ϕ,σ) = 0⃗ and U(ϕ,σ) = 0⃗, the total

free energy E(ϕ,σ) is non-increasing in time.

2.4. Specific models

2.4.1. Zero velocity and zero excess of total mass

Assuming zero excess of total mass, i.e., 1 ⋅ U = ∑L
i=1 ρ

−1
i Ui = 0, we obtain from

(2.27a) that div v⃗ = 0. Then, sending K → 0 in (2.27b) formally implies that v⃗ → 0⃗,
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see also Sec. 6 of Ref. 26 for a rigorous treatment in the two-component case. Then

(2.27), with source terms satisfying 1 ⋅U = 0, can be reduced to

∂tϕ = div (C(ϕ,σ)∇(Pµ)) +U(ϕ,σ), (2.29a)

µ = Ba,ϕ(ϕ,∇ϕ) −Bdiv (a,∇ϕ(ϕ,∇ϕ)) +AΨ,ϕ(ϕ) +N,ϕ(ϕ,σ), (2.29b)

∂tσ = div (D(ϕ,σ)∇N,σ(ϕ,σ)) +S(ϕ,σ), (2.29c)

which can be seen as the multiphase analogue of the model considered in Sec. 2.4.3

of Ref. 27. Note that due to the condition 1 ⋅U = 0 and (2.21) (for second order

tensors) or (2.23) (for fourth order tensors), we necessarily have that ϕ(t) ∈ G for

all t > 0 if the initial condition ϕ0 for ϕ belongs to G.

2.4.2. Choices for the Ginzburg–Landau energy

Typical choices for the gradient part of the free energy are the following

a(η,∇ϕ) = L

∑
i=1

1

2
∣∇ϕi∣2 , or a(η,∇ϕ) = ∑

1≤i<j≤L

1

2
β2
ij ∣ηi∇ϕj − ηj∇ϕi∣2 ,

where the constants βij , 1 ≤ i < j ≤ L are referred to as the gradient energy coefficient

of phases i and j (see Refs. 25, 30). For the potential part, we may consider the

following

Ψ(ϕ) = kBθ L

∑
i=1

ϕi lnϕi −
1

2
ϕ ⋅Wϕ,

where kB denotes the Boltzmann constant, θ is the absolute temperature, and W =(wij)1≤i,j≤L is a symmetric L × L matrix with zeros on the diagonal and positive

definite on TG. For example, the choiceW = I−1⊗1, where I is the identity matrix,

is used in Refs. 6, 30, 53. One can check that ζ ⋅ (I − 1⊗ 1)ζ = ∣ζ∣2 for any ζ ∈ TG.

We can also consider obstacle potentials that penalise the order parameter ϕ from

straying out of the set G:

Ψ(ϕ) = IG(ϕ) − 1

2
ϕ ⋅Wϕ, IG(y) = ⎧⎪⎪⎨⎪⎪⎩

0 for y ∈ G,
∞ otherwise.

(2.30)

Let us also mention potentials of polynomial type, which generalise the quartic

double-well potential (1−y2)2 commonly used in two-phase diffuse interface models.

One example is

Ψ(ϕ) = ∑
1≤i<j≤L

αijϕ
2
iϕ

2
j ,

where αij are positive constants29.
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2.5. Degenerate Ginzburg–Landau energy

We may consider a Ginzburg–Landau-type energy of the form

E(ϕ,σ) = ∫
Ω

B

2
∣ k∑
i=2

∇ϕi∣
2

+AW ( k

∑
i=2

ϕi) +N(ϕ,σ)dLd,
for some 2 ≤ k ≤ L, i.e., E(ϕ,σ) can be independent of ϕ1 and ϕj for any j > k,
and W is a scalar potential with equal minima at 0 and 1. In the simplest setting

L = 2 and if the chemical free energy density N is independent of ϕ, we obtain from

(2.27d) that

µ1 = 0, µ2 = −B∆ϕ2 +AW
′(ϕ2).

Together with a mobility tensor C(ϕ,σ) ∈ R2×2 such that C22(ϕ,σ) = −C21(ϕ,σ) =
m(ϕ2) for some mobility function m, we obtain from (2.27c)

∂tϕ1 + div (ϕ1v⃗) = −div (m(ϕ2)∇µ2) + ρ−11 U1,
∂tϕ2 + div (ϕ2v⃗) = div (m(ϕ2)∇µ2) + ρ−12 U2.

This yields a Cahn–Hilliard type equation for ϕ2, while for ϕ1 we have a trans-

port equation with source terms ρ−11 U1 and div (m(ϕ2)∇µ2). This is similar to the

situations encountered in Refs. 10, 11, 17, 23, 65, 67.

2.6. Mobility tensor

We consider second order mobility tensors C(ϕ,σ) which fulfill (2.21). For future

analysis and numerical implementations, it is advantageous to consider a mobility

that is symmetric and positive semi-definite on TG, see for instance Refs. 4, 19. In

most cases C(ϕ,σ) is expected to mainly depend on ϕ and our standard choice

will be independent of σ and of the form

Cij(ϕ) =mi(ϕi)⎛⎝δij −mj(ϕj)( L

∑
k=1

mk(ϕk))−1⎞⎠ for 1 ≤ i, j ≤ L, (2.31)

where mi(ϕi) ≥ 0, 1 ≤ i ≤ L, are the so-called bare mobilities. Here, we assume that

the vector (m1(ϕ1), . . . ,mL(ϕL))⊺ is not identically zero on the Gibbs simplex, so

that the reciprocal of the sum ∑L
k=1mk(ϕk) is well-defined. Summing over 1 ≤ i ≤ L

in (2.31) shows that (2.21) is satisfied. Furthermore, for any ζ ∈ RL, we have (for

notational convenience we write mi for mi(ϕi)) the relations

L

∑
i=1

mi ∣ζi∣2 L

∑
j=1

mj =
L

∑
i=1

m2
i ∣ζi∣2 + ∑

1≤i<j≤L

mimj (∣ζi∣2 + ∣ζj ∣2) ,
( L

∑
i=1

miζi)2 = L

∑
i=1

m2
i ∣ζi∣2 + 2 ∑

1≤i<j≤L

mimjζiζj ,
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so that

⎛⎝
L

∑
j=1

mj

⎞⎠(ζ ⋅C(ϕ)ζ) =
L

∑
i=1

mi ∣ζi∣2 L

∑
j=1

mj − ( L

∑
i=1

miζi)
2

= ∑
1≤i<j≤L

mimj (∣ζi∣2 + ∣ζj ∣2 − 2ζiζj)
= ∑

1≤i<j≤L

mimj(ζi − ζj)2 ≥ 0.
In particular, for any ϕ ∈ G, C(ϕ) is positive semi-definite.

2.7. Reduction to a two-component tumour model

We assume that the domain Ω consists of proliferating tumour tissue and host tissue

in the presence of a chemical species acting as a nutrient for the tumour. Let L = 2
and M = 1, and set

ϕ̃ = ϕ2 −ϕ1, Ψ̃(ϕ̃) = Ψ (12(1 − ϕ̃), 12(1 + ϕ̃)) ,
µ̃ = 1

2
(µ2 − µ1), a(η,∇ϕ) = ∣∇ϕ1∣2 + ∣∇ϕ2∣2 ,

Ñ(ϕ̃, σ) = N (1
2
(1 − ϕ̃), 1

2
(1 + ϕ̃), σ) ,

S̃(ϕ̃, σ) = S (1
2
(1 − ϕ̃), 1

2
(1 + ϕ̃), σ) ,

Ũi(ϕ̃, σ) = Ui ( 12(1 − ϕ̃), 12(1 + ϕ̃), σ) for i = 1,2,

(2.32)

together with a scalar mobility

D(( 1
2
(1 − ϕ̃), 1

2
(1 + ϕ̃)), σ) = n(ϕ̃), (2.33)

which we here assume to be independent of σ, for the nutrient equation and a

second order mobility tensor C(ϕ) of the form (2.31) with bare mobilities m1(ϕ1)
and m2(ϕ2). With the help of (2.31) the entries of C(ϕ) can be computed as

C11(ϕ) = C22(ϕ) = −C12(ϕ) = −C21(ϕ) = m1(ϕ1)m2(ϕ2)
m1(ϕ1) +m2(ϕ2) .

Then, upon defining a non-negative scalar mobility m that is a function of ϕ̃ as

m(ϕ̃) = 4m1( 1−ϕ̃2 )m2( 1+ϕ̃2 )
m1( 1−ϕ̃2 ) +m2( 1+ϕ̃2 ) ⇒ C(ϕ) = 1

4
( m(ϕ̃) −m(ϕ̃)
−m(ϕ̃) m(ϕ̃) ) ∈ R2×2, (2.34)

it can be shown that (2.27) becomes

div v⃗ = ρ−11 Ũ1(ϕ̃, σ) + ρ−12 Ũ2(ϕ̃, σ), (2.35a)

v⃗ = −K∇p +K(µ̃ − Ñ,ϕ̃(ϕ̃, σ))∇ϕ̃, (2.35b)

∂tϕ̃ + div (ϕ̃v⃗) = div (m(ϕ̃)∇µ̃) + ρ−12 Ũ2(ϕ̃, σ) − ρ−11 Ũ1(ϕ̃, σ), (2.35c)

µ̃ = AΨ̃′(ϕ̃) −B∆ϕ̃ + Ñ,ϕ̃(ϕ̃, σ), (2.35d)

∂tσ + div (σv⃗) = div (n(ϕ̃)∇Ñ,σ) + S̃(ϕ̃, σ), (2.35e)



October 18, 2017 10:41 WSPC/INSTRUCTION FILE GLNS˙Tumour

Multiphase Cahn–Hilliard–Darcy model for necrotic tumour growth 19

which coincides with Equ. (2.25) of Ref. 27. We refer the reader to Ref. 27 for a

detailed comparison between (2.35) with other two-component phase field models

of tumour growth in the literature.

2.8. Tumour with quiescent and necrotic cells

In this section, we give some examples of source terms for the case where a tu-

mour exhibits a quiescent region and a necrotic region. Let L = 4 and denote

the volume fractions of the host tissue, proliferating tumour cells, quiescent tu-

mour cells and necrotic tumour cells by ϕH , ϕP , ϕQ, and ϕN , respectively, i.e.,

ϕ = (ϕH , ϕP , ϕQ, ϕN)⊺.
We assume matched densities ρH = ρP = ρQ = ρN = 1, and that there are two

chemical species M = 2 present in the domain. The first is a nutrient whose density

is denoted as σnu, and is only consumed by the proliferating and quiescent tumour

cells, and the second is a toxic intracellular agent, whose density is denoted as σtx,

so that σ = (σnu, σtx)⊺. During necrosis, the cell membrane loses its integrity and

toxic agents from the former intracellular compartment flow outwards. We assume

that these toxic agents act as growth inhibitors on the surrounding living cells and

degrade at a constant rate. Furthermore, we denote by σ∗pq, σ
∗
qn, σ

∗
tx > 0 the critical

thresholds such that

● if σ∗qn < σnu < σ∗pq, then the proliferating tumour cells will turn quiescent,

● if σnu < σ∗qn, then the quiescent tumour cells will undergo necrosis,

● if σtx ≥ σ∗tx, then the toxic agents start to inhibit the growth of the living

cells.

For a compact presentation, unless stated explicitly, in the following the con-

sumption rates CP ,CQ, the release rate Rtx, the degradation rates Dtx,DN , the

proliferation rate P , the apoptosis rates AH ,AP ,AQ, the inhibition rate Atx, and

the conversion rates Tpq,Tqp,Tqn are taken to be non-negative constants. For the

source/sink terms Sj(ϕ,σ), j ∈ {nu, tx}, we consider

Snu(ϕ,σ) = − σnuϕP CP´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
consumption by
proliferating cells

− σnuϕQCQ´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
consumption by
quiescent cells

, Stx(ϕ,σ) = ϕNRtx´¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¶
release by

necrotic cells

− Dtxσtx´¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¶
degradation

.

We consider the following free energy density N(ϕ,σ):
N(ϕ,σ) = Dnu

2
∣σnu∣2 + Dtx

2
∣σtx∣2 − χnuσnuϕP , (2.36)

where Dnu,Dtx > 0 denote parameters related to the diffusivity of the nutrient

and of the toxic agent, respectively, and χnu ≥ 0 can be viewed as a parameter for

transport mechanisms such as chemotaxis and active transport. Neglecting the toxic

agent, the above form for the free energy density N is similar to the one chosen in

Refs. 27, 36. In particular, the first two terms of N lead to diffusion of the nutrient

and toxic agent, respectively, while the third term of N will give rise to transport
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mechanisms that drive the proliferating tumour cells to the regions of high nutrient,

and also drive the nutrient to the proliferating tumour cells, see Ref. 27 for more

details regarding the effects of the third term.

Then, computing N,σ(ϕ,σ) and considering D(ϕ,σ) to be the second order

identity tensor I ∈ R2×2, (2.27e) becomes

∂tσnu + div (σnuv⃗) = div (Dnu∇σnu − χnu∇ϕP ) − σnu (ϕP CP + ϕQCQ) , (2.37a)

∂tσtx + div (σtxv⃗) = div (Dtx∇σtx) +ϕNRtx −Dtxσtx. (2.37b)

Denoting by (f)+ =max(0, f) the positive part of a function f , for the source termsUH ,UP ,UQ,UN , we consider

UH(ϕ,σ) = −ϕHAtx(σtx − σ∗tx)+´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
inhibition by toxic agents

− ϕHAH´¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¶
apoptosis of
host tissue

,

UP (ϕ,σ) = ϕPPσnu´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
growth due to

nutrient consumption

−ϕPAtx(σtx − σ∗tx)+´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
inhibition by
toxic agents

− ϕPAP´¹¹¹¹¹¹¹¸¹¹¹¹¹¹¶
apoptosis of

proliferating cells

+ ϕQTqp(σnu − σ∗pq)+´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
transition from quiescent

to proliferating cells

− ϕP Tpq(σ∗pq − σnu)+´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
transition from proliferating

to quiescent cells

,

UQ(ϕ,σ) = −ϕQAtx(σtx − σ∗tx)+´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
inhibition by
toxic agents

− ϕQAQ´¹¹¹¹¹¹¹¸¹¹¹¹¹¹¶
apoptosis of

quiescent cells

− ϕQTqn(σ∗qn − σnu)+´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
transition from quiescent

to necrotic cells

− ϕQTqp(σnu − σ∗pq)+´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
transition from quiescent

to proliferating cells

+ ϕP Tpq(σ∗pq − σnu)+´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
transition from proliferating

to quiescent cells

,

UN(ϕ,σ) = ϕPAP +ϕQAQ´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
apoptosis of proliferating

and quiescent cells

+ ϕQTqn(σ∗qn − σnu)+´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
transition from quiescent

to necrotic cells

− DNϕN´¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¶
degradation

.

In the above choice, we cover apoptosis and inhibition by toxic agents affecting all

living cells, the two-sided transition between proliferating and quiescent cells when

σnu is in the vicinity of the critical threshold σ∗pq and the one-sided transition from

quiescent cells to necrotic cells when σnu falls below σ∗qn.

In practice, on the timescale considered, AH is small and will often be neglected.

A unique feature of the necrotic core is reflected in the second term of UN , which

describes a spontaneous degradation of the necrotic core. Physiologically, one would

expect that the remains of the necrotic cells are slowly processed by specialised cells,

leaving only extracellular liquid behind. Since we do not account for a pure liquid

phase in our systems, we obtain a local mass defect due to the disintegration of the

necrotic core. For the source terms discussed above, the equation (2.3) for equal

densities ρH = ρP = ρQ = ρN = 1 then becomes

div v⃗ = ϕPPσnu −ϕHAH −Atx(1 − ϕN)(σtx − σ∗tx)+ −DNϕN ,
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and the disintegration of the necrotic core leads to a sink term for the divergence

of the volume-averaged velocity field. Hence one could argue that there are two

effects resulting from the existence of a necrotic core which could possibly limit the

uncontrolled growth of the tumour colony. On the one hand we have the obvious

growth inhibition due to the toxic agents, whereas on the other hand the degradation

of the necrotic core draws the growing periphery of the tumour back towards the

tumour centre. We indeed observe this behaviour in our numerical simulations in

Sec. 4.2.4.

2.9. Blood vessels and angiogenic factors

We can introduce angiogenic factors into the system by considering two additional

chemical species: blood vessels whose density is denoted as b and an angiogenic

factor whose concentration is denoted as a. Accounting for the additional chemical

species, we now have σ = (σnu, σtx, a, b)⊺. We assume that

● the blood vessels offer a supply of nutrient σSup ≥ 0 at a constant rateBnu ≥ 0, which leads to the modification

Snu(ϕ,σ) = Bnub (σSup − σnu)´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
nutrient supply

from blood vessels

−σnu (ϕP CP + ϕQCQ) .

The new term Bnub (σSup − σnu) in Snu models the situation where if the

nutrient concentration is below σSup, then additional nutrient is supplied

by the blood vessels at a rate Bnu. However, if σnu ≥ σSup, then the nutrient

diffuses into the blood vessels and is transported away from the cells.

● The blood vessels are capable of removing the toxic agents released by the

necrotic cells at a constant rate Btx ≥ 0, which leads to the modification

Stx(ϕ,σ) = ϕNRtx −Dtxσtx − Btxσtxb´¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¶
removal by
blood vessels

.

● The angiogenic factor is a chemical species that is released by the quiescent

tumour cells at a constant rate Rang ≥ 0 due to the lack of nutrient in their

surroundings, and it degrades at a constant rate Dang ≥ 0. This leads to
Sa(ϕ,σ) = ϕQRang´¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¶

release by
queiscent cells

− Danga´¹¹¹¹¹¸¹¹¹¹¶
degradation

.

In our model, tumour cells become quiescent as a consequence of a lack

of nutrient. Therefore it makes sense to assume that the cells, which are

in most need of a reliable vascularisation, are secreting factors which in-

duce the necessary blood vessel growth. This assumption has already been

suggested in Refs. 8, 16. A very important example for tumour nutrient is
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oxygen. It is well known that a lack of this nutrient, hypoxia, is an impor-

tant stimulus for angiogenesis62.

● Meanwhile, the angiogenic factor induces angiogenesis and consequently the

vessel density around the badly supplied tumour cells increases at a constant

rate Gbv ≥ 0. There are two ways in which the blood vessels can degrade.

The first is a natural process which occurs at a constant rate Dbv ≥ 0,

and the second is through the overexposure of the toxic agent. That is, the

blood vessels degrade at a constant rate Dbv when the concentration of the

toxic agent σtx is higher than the critical value σ∗tx. These considerations

lead to

Sb(ϕ,σ) = Gbvab²
vessel growth due to
angiogenic factors

− Dbvb²
natural

degradation

−Dbv(σtx − σ∗tx)+b´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
degradation due to

toxic agents

.

Similar to Sec. 2.8, for the choice of the free energy density N(ϕ,σ), we consider

N(ϕ,σ) = Dnu

2
∣σnu∣2 + Dbv

2
∣b∣2 + Dang

2
∣a∣2 + Dtx

2
∣σtx∣2 − χnuσnuϕP . (2.38)

The difference between (2.36) and (2.38) is the addition of the terms Dbv

2
∣b∣2 +

Dang

2
∣a∣2 to model the diffusion of the blood vessel density and the angiogenic factor,

respectively. Computing N,σ(ϕ,σ) and taking D(ϕ,σ) as the identity tensor in

R
4×4, we arrive at the following system for the chemical species:

∂tσnu + div (σnuv⃗) = div (Dnu∇σnu − χnu∇ϕP ) + Bnub (σSup − σnu) (2.39a)

− σnu (ϕPCP +ϕQCQ) ,
∂tσtx + div (σtxv⃗) = div (Dtx∇σtx) +ϕNRtx −Dtxσtx − Btxσtxb, (2.39b)

∂tb + div (bv⃗) = div (Dbv∇b) + Gbvab −Dbvb (1 + (σtx − σ∗tx)+) , (2.39c)

∂ta + div (av⃗) = div (Dang∇a) +ϕQRang −Danga. (2.39d)

We expect thatDbv = 0 in practice, however choosingDbv to be positive is beneficial

for the analytical and numerical treatment of the equations.

An alternative way to model angiogenesis is as follows. One could fix the blood

vessel density on the boundary of the domain and assume that blood vessel growth

is governed by chemotaxis towards the angiogenic factor, meaning that blood vessels

are drawn towards regions with a high concentration of angiogenic factors. In this

case, we neglect the first term of Sb, leading to

Sb(ϕ,σ) = −Dbvb −Dbv(σtx − σ∗tx)+b.
If we consider the free energy density N as in (2.38), with its partial derivative with

respect to the vector σ given as

N,σ(ϕ,σ) = (Dnuσnu + χnuϕP , Dbvb, Danga, Dtxσtx)⊺ ∈ R4,
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then we may consider a second order mobility tensor D(ϕ,σ) ∈ R4×4 of the form

[D(ϕ,σ)]ij =
⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
1 if i = j,
−

χang

Dang
b if i = 2, j = 3,

0 otherwise,

where χang ≥ 0 is a chemotactic sensitivity to the angiogenic factor. Then, upon com-

puting D(ϕ,σ)∇N,σ(ϕ,σ), this yields the following convection-reaction-diffusion

system for the blood vessel density and the angiogenic factor:

∂tb + div (bv⃗) = div (Dbv∇b − χangb∇a) −Dbvb −Dbv(σtx − σ∗tx)+b,
∂ta + div (av⃗) = div (Dang∇a) + ϕQRang −Danga.

The term −div (χangb∇a) in the equation for b can also be found in the classical

models for chemotaxis (see for example Refs. 38, 39, 40, 41). We remark that the

above modelling approach is different to that in Ref. 23 (see also Sec. 5.12 of Ref. 13),

which utilises a random walk model for angiogenesis.

2.10. Three phase model with necrotic cells

In Sec. 4, we perform numerical simulations of a three-component model, similar to

(1.4), consisting of host, proliferating and necrotic cells, along with a single nutrient

σ = σnu. Neglecting the quiescent cells (ϕQ) and the toxic intracelluar agent (σtx),
as well as the apoptosis of host cells (AH = 0), the source terms from Sec. 2.8 now

become

UH(ϕ,σ) = 0, UP (ϕ,σ) = ϕP (Pσ −AP ), UN(ϕ,σ) = APϕP −DNϕN ,

where the mass lost by the proliferating cells through apoptosis is equal to the mass

gained by the necrotic cells. In the case of equal densities ρH = ρP = ρN = 1, this
yields the vector UA in (1.8b). Alternatively, we can consider source terms of the

form

UH(ϕ,σ) = 0,UP (ϕ,σ) = ε−1F (ϕP ) (Pσ −A) ,UN(ϕ,σ) = ε−1F (ϕN) (A −DN) ,
(2.40)

where F is a non-negative function satisfying F (0) = F (1) = 0, F ′(0) = F ′(1) = 0,
and ε > 0 is a parameter measuring the thickness of the interfacial layers (recall

(1.2)). One such example is F (s) = s2(1 − s)2, which in the case of equal densities

ρH = ρP = ρN = 1 leads to the vector UC in (1.8d). These source terms are chosen in

the spirit of Ref. 37 (see also Sec. 3.3.2 of Ref. 27), where we note that ϕ2
i (1−ϕi)2

is non-zero only near the vicinity of the interfacial layers, while the scaling with
1
ε
and the specific properties of F ensure that these source terms only appear in

the equation of motion for the interfaces when we consider the sharp interface limit

ε→ 0.
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3. Sharp interface asymptotics

One advantage of the diffuse interface methodology is that certain classical models

using a free boundary description can be recovered in the limit of vanishing inter-

facial thickness ε → 0. This is especially important for our present application to

the study of tumours as many of the earlier works model the growth of a tumour

via a free boundary problem (for example Refs. 15, 20 where a necrotic core is

present). In this section, we perform a formally matched asymptotic analysis in the

small parameter ε for (2.27) to identify new free boundary problems. We stress that

although the method presented below is formal in nature, the formal identification

of sharp interface limits for diffuse interface models in great generality can be ob-

tained rather effortlessly. In contrast, rigorous results so far in the literature for

Cahn–Hilliard(–Darcy) systems2,9,21,51 only deal with the case when source terms

are absent and the generalisation to the case with source terms is still open.

We make the following assumptions for this section:

1. A = β

ε
and B = βε for positive constants β and ε.

2. The mass exchange terms U ∈ RL and S ∈ RM depend only on ϕ ∈ RL and

σ ∈ RM , and not on any derivatives.

3. The mobility tensor D(ϕ,σ) ∈ RM×d×M×d is a strictly positive and smooth

fourth order tensor for all ϕ ∈ G and σ ∈ RM . Here by a strictly positive

fourth order tensor A we mean t ∶ (At) > 0 for all second order tensors

t ∈ RM×d, t ≠ 0, and t ∶ (At) = 0⇔ t = 0.
4. Ψ ∶ G → R≥0 is a smooth multi-well potential with L equal minima at the

points el satisfying Ψ(el) = 0 for 1 ≤ l ≤ L. Furthermore, we assume that

there exist constants c1, c2, c3 and p ≥ 2 such that

c1 ∣ϕ∣p ≤ Ψ(ϕ) ≤ c2 ∣ϕ∣p for ∣ϕ∣ ≥ c3.
5. We choose the gradient energy as

a(η,∇ϕ) = 1

2

L

∑
i=1

∣∇ϕi∣2 = 1

2

L

∑
i=1

d

∑
k=1

∣∂xk
ϕi∣2 = 1

2
(∇ϕ ∶ ∇ϕ).

6. The mobility tensor C(ϕ,σ) ∈ R
L×d×L×d for all ϕ ∈ G and σ ∈ R

M is

a smooth fourth order tensor such that (2.21) is satisfied and also fulfils

C(ϕ,σ)(a⊗ b⃗) ∶ (a⊗ b⃗) > 0 for all 0 ≠ a ∈ {1}⊥ and 0⃗ ≠ b⃗ ∈ Rd.

7. For small ε, we assume that the domain Ω can be divided into L open

subdomains Ωi(ε), 1 ≤ i ≤ L, separated by interfaces Γij(ε), 1 ≤ i < j ≤ L
that do not intersect with each other or with the boundary ∂Ω.

8. We assume that there is a family (v⃗ε, pε,ϕε,σε,µε)ε>0 of solutions to (2.27),
which are sufficiently smooth and have an asymptotic expansion in ε in the

bulk regions away from the interfaces {Γij(ε)}1≤i<j≤L (the outer expansion),

and another expansion in the interfacial regions close to the interfaces (the

inner expansion).
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Remark 3.1. In the above assumption, for a domain Ω ⊂ Rd, d = 2,3, we exclude

the possibility of triple junction points in R
2 and triple junction lines or quadruple

junction points in R
3. Although the method of formally matched asymptotic analy-

sis is able to derive certain boundary/angle conditions for the interfaces Γij at such

a triple junction, as the case of junctions is not so relevant for tumour growth we

will omit the analysis and refer the reader to Refs. 6, 7, 28, 29, 52.

With the above assumptions, (2.27) becomes

div v⃗ = 1 ⋅U(ϕ,σ), (3.1a)

v⃗ = −K∇p +K(∇ϕ)⊺(µ −N,ϕ(ϕ,σ)), (3.1b)

∂tϕ + div (ϕ⊗ v⃗) = div (C(ϕ,σ)∇(Pµ)) +U(ϕ,σ), (3.1c)

Pµ = −βε∆ϕ + βε−1P (Ψ,ϕ(ϕ) +N,ϕ(ϕ,σ)) , (3.1d)

∂tσ + div (σ ⊗ v⃗) = div (D(ϕ,σ)∇N,σ(ϕ,σ)) +S(ϕ,σ). (3.1e)

Heuristically, when ε is small, the potential term 1
ε
Ψ(ϕ) will force ϕ to take values

equal to the minima of Ψ, thereby partitioning the domain Ω into L subdomains

Ωi ∶= {ϕ ≈ ei} for 1 ≤ i ≤ L. The interfacial region where the value of ϕ is away from

the minima of Ψ has a thickness scaling with ε, and thus in the limit ε→ 0 we obtain

moving hypersurfaces Γij , 1 ≤ i < j ≤ L, separating the domains Ωi and Ωj . The idea

of the matched asymptotic analysis is to plug the outer and inner expansions in the

model equations and solve them order by order, and in addition, we have to define

a suitable region where these expansions should match up. It will turn out that the

outer expansions lead to equations satisfied in the bulk domains Ωi, 1 ≤ i ≤ L, and
the inner expansions lead to boundary conditions on Γij , 1 ≤ i < j ≤ L.

We will use the following notation: (3.1a)
α

O and (3.1a)
α

I denote the terms re-

sulting from the order α outer and inner expansions of (3.1a), respectively. For

convenience, we will denote N,σ(ϕ,σ) by the variable θ.

3.1. Outer expansions

We assume that for fε ∈ {v⃗ε,ϕε,σε,µε, pε,θε}, the following outer expansions hold:

fε = f0 + εf1 + ε2f2 + . . . ,
where to ensure that the constraint ϕε ∈ G is satisfied, we additionally assume that

ϕ0 ∈ G, ϕk ∈ TG ∀k ≥ 1.
Note that we can relate the expansions for θε by means of Taylor’s expansion:

θ0 =N,σ(ϕ0,σ0), θ1 =N,σϕ(ϕ0,σ0)ϕ1 +N,σσ(ϕ0,σ0)σ1, . . . . (3.2)

To leading order (3.1d)
−1
O we have

PΨ,ϕ(ϕ0) = Ψ,ϕ(ϕ0) − 1

L

L

∑
i=1

∂Ψ

∂ϕi

(ϕ0)1 = 0⃗. (3.3)
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The stable solutions to (3.3) are the minima of Ψ, that is, ϕ0 = ei, 1 ≤ i ≤ L. Thus,
to leading order the domain Ω is partitioned into L regions corresponding to the

stable minima of Ψ. We define

Ωi = {x⃗ ∈ Ω ∶ ϕ0(x⃗) = ei} for 1 ≤ i ≤ L.
Since ∇ϕ0 = 0 ∈ RL×d is the zero tensor in the bulk regions Ωi, 1 ≤ i ≤ L, we obtain

from (3.1a), (3.1b), (3.1c) and (3.1e) to zeroth order in each bulk region:

div v⃗0 = 1 ⋅U(ϕ0,σ0), (3.4a)

v⃗0 = −K∇p0, (3.4b)

−div (C(ϕ0,σ0)∇(Pµ0)) = U(ϕ0,σ0) − (1 ⋅U(ϕ0,σ0))ϕ0, (3.4c)

∂tσ0 + div (σ0 ⊗ v⃗0) = div (D(ϕ0,σ0)∇N,σ(ϕ0,σ0)) +S(ϕ0,σ0). (3.4d)

At this stage we are missing the boundary conditions for the above partial differ-

ential equations. These boundary conditions will be derived below.

3.2. Inner expansions and matching conditions

In this section we fix 1 ≤ i < j ≤ L and construct a solution that makes a transition

from Ωi to Ωj across a smoothly evolving hypersurface Γ = Γij moving with normal

velocity V . Let d(x⃗) denote the signed distance function to Γ, and set z = d
ε
as

the rescaled distance variable. Here we use the convention that d(x⃗) < 0 in Ωi and

d(x⃗) > 0 in Ωj . Thus the gradient ∇d points from Ωi to Ωj and we may use ∇d on

Γ as a unit normal ν⃗.

Let g(t, s) denote a parameterisation of Γ by arclength s, and in a tubular

neighbourhood of Γ, for smooth functions f(x⃗), we have

f(x⃗) = f(g(t, s)+ εzν⃗(g(t, s))) =∶ F (t, s, z).
In this new (t, s, z)-coordinate system, the following change of variables apply1,31):

∂tf = −1
ε
V∂zF + h.o.t., ∇xf = 1

ε
∂zF ν⃗ +∇ΓF + h.o.t.,

where ∇Γh denotes the surface gradient of h on Γ and h.o.t. denotes higher order

terms with respect to ε. In particular, we have

∆f = div x(∇xf) = 1

ε2
∂zzF +

1

ε
div Γ(∂zF ν⃗)´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
=−κ∂zF

+ h.o.t.,

where κ = −div Γν⃗ is the mean curvature of Γ. Moreover, if f is a vector-valued

function with F (t, s, z) = f(t, x⃗) for x⃗ in a tubular neighbourhood of Γ, then we

obtain

∂tf = −1
ε
V∂zF + h.o.t., ∇xf = 1

ε
∂zF ⊗ ν⃗ + ∇ΓF + h.o.t.,

div xf = 1

ε
∂zF ⋅ ν⃗ + div ΓF + h.o.t.
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We denote the variables ϕε, v⃗ε, pε, µε, σε, θε in the new coordinate system by Φε,

V⃗ε, Pε, Υε, Σε, Θε, respectively. We further assume that they have the following

inner expansions:

Fε(t, s, z) = F0(t, s, z) + εF1(t, s, z) + ε2F2(t, s, z) + . . . ,
for Fε ∈ {Φε, V⃗ε, Pε,Υε,Σε,Θε} such that

Φ0 ∈ G, Φk ∈ TG ∀k ≥ 1.
to ensure that the constraint ϕε ∈ G is satisfied. Analogous to (3.2), by Taylor’s

expansion, we have

Θ0 =N,σ(Φ0,Σ0), Θ1 =N,σϕ(Φ0,Σ0)Φ1 +N,σσ(Φ0,Σ0)Σ1, . . . . (3.5)

In order to match the inner expansions valid in the interfacial region to the outer

expansions of Sec. 3.1, we employ the matching conditions31:

lim
z→±l

F0(t, s, z) = f±0 (t, x⃗), (3.6)

lim
z→±l

∂zF0(t, s, z) = 0, (3.7)

lim
z→±l

∂zF1(t, s, z) = ∇f±0 (t, x⃗) ⋅ ν⃗, (3.8)

where f±0 (t, x⃗) = limδ→0 f0(t, x⃗± δν⃗(x⃗)) for x⃗ ∈ Γ and δ > 0. Here we use the conven-

tion that for a vectorial quantity f0, the right hand side of (3.8) reads as (∇f±0 )ν⃗.
Moreover, we use the following notation: Let δ > 0 and for x⃗ ∈ Γ with x− δν⃗(x⃗) ∈ Ωi

and x + δν⃗(x⃗) ∈ Ωj , we denote the jump of a scalar quantity f across the interface

by

[f]ji = lim
δ→0
(f(t, x⃗ + δν⃗(x⃗)) − f(t, x⃗ − δν⃗(x⃗))) . (3.9)

For a vectorial quantity f ∈ Rk, we define

[f]ji = lim
δ→0
(f(t, x⃗ + δν⃗(x⃗)) − f(t, x⃗ − δν⃗(x⃗))) = ([f1]ji , . . . [fk]ji )⊺.

It will be useful to compute the expansion for the term div (D(ϕ,σ)∇N,σ(ϕ,σ))
as follows: For fixed 1 ≤ l, n ≤ d and 1 ≤ k,m ≤M , we find from the above change of

variables formula

∂xl
((D(ϕ,σ))

klmn
∂xn

θm) = 1

ε
∂z ((D(Φ,Σ))

klmn
(1
ε
∂zΘmνn +DnΘm))νl

+Dl ((D(Φ,Σ))klmn
(1
ε
∂zΘmνn +DlΘm)) + h.o.t.,

where Dn denotes the nth component of the surface gradient, i.e., ∇Γf =(D1f, . . . ,Ddf)⊺. Plugging in the expansion (where we use Θm,q to denote the

qth term of the inner expansion for the mth component of Θ) and using Taylor’s
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theorem we have

∂xl
((D(ϕ,σ))

klmn
∂xn

θm)
= 1

ε2
∂z ((D(Φ0,Σ0))

klmn
∂zΘm,0)νlνn + 1

ε
∂z ((D(Φ0,Σ0))

klmn
∂zΘm,1)νlνn

+
1

ε
[∂z ((D(Φ0,Σ0))

klmn
DnΘm,0νl) +Dl ((D(Φ0,Σ0))

klmn
∂zΘm,0νn)]

+
1

ε
∂z (( L

∑
s=1

∂(D(t,w))klmn

∂ts
Φs,1 +

M

∑
s=1

∂(D(t,w))klmn

∂ws

Σs,1)(∂zΘm,0νn)) νl
+ h.o.t.,

(3.10)

where we evaluate the last term at t =Φ0 and w =Σ0. Using that

div (D(ϕ,σ)∇N,σ(ϕ,σ)) = ⎛⎝
d

∑
l,n=1

M

∑
m=1

∂xl
((D(ϕ,σ))

klmn
∂xn

θm)⎞⎠
1≤k≤L

,

we obtain the expansion for the term div (D(ϕ,σ)∇N,σ(ϕ,σ)). One can also derive

a similar expansion for div (C(ϕ,σ)∇(Pµ)).
3.2.1. Expansions to leading order

To leading order (3.1d)
−1
I we obtain

0 = −∂z(∂zΦ0 ⊗ ν⃗) ⋅ ν⃗ + PΨ,ϕ(Φ0) = −∂zzΦ0 +Ψ,ϕ(Φ0) − 1

L
(Ψ,ϕ(Φ0) ⋅ 1)1. (3.11)

This is a second order differential equation for Φ0(t, s, ⋅), and for each s we solve

the above ordinary differential equation (in z) with the boundary conditions

lim
z→∞

Φ0(t, s, z) = ej , lim
z→−∞

Φ0(t, s, z) = ei, (3.12)

which then yields a vector-valued function that connects ei to ej and hence the

values of the phase fields in Ωi and Ωj . By the assumptions satisfied by Ψ listed

at the start of this section, it is shown by Sternberg in Lemma, p. 801 of Ref. 64

that for any u ∈ G, there exists a curve γu ∶ [−1,1]→ G such that γu(−1) = ei and
γu(1) = u and the Lipschitz continuous function

q(u) = ∫ 1

−1

√
Ψ(γu(t)) ∣γ′u(t)∣ dt satisfies ∣∇q(u)∣ =√Ψ(u) for a.e. u ∈ G.

Let us define β ∶ (−∞,∞) → (−1,1) as the monotone solution of

β′(z) =
√
2Ψ(γej

(β(z)))
∣γ′ej
(β(z))∣ , β(0) = 0

and then set

Φ(z) = γej
(β(z)).
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Then, it holds that ∣Φ′(z)∣ =
√
2Ψ(Φ(z)) and

√
2q(ej) =√2∫

∞

−∞

√
Ψ(γej

(β(z))) ∣γ′ej
(β(z))∣β′(z)dz

= 2∫
∞

−∞
Ψ(Φ(z))dz = ∫

∞

−∞
Ψ(Φ(z)) + 1

2
∣Φ′(z)∣2 dz.

(3.13)

It follows that Φ is a candidate solution to the following problem

inf
ζ∈G,ζ(−∞)=ei,ζ(∞)=ej

∫
∞

−∞
Ψ(ζ(τ)) + 1

2
∣ζ′(τ)∣2 dτ.

Computing its Euler–Lagrange equations (subject to the constraint ζ ∈ G, which

leads to the presence of the projection operator P below) yields that

Φ
′′(z) = PΨ,ϕ(Φ(z)) = Ψ,ϕ(Φ(z)) − 1

L
(Ψ,ϕ(Φ(z)) ⋅ 1)1,

and if we consider

Φ0(t, s, z) =Φ(z),
then Φ0(z) satisfies (3.11) and (3.12). Furthermore, multiplying (3.11) with Φ′0 ∈
TG, integrating with respect to z and applying the matching condition (3.6) to Φ0,

leads to the so-called equipartition of energy:

Ψ(Φ0(z)) = 1

2
∣Φ′0(z)∣2 ∀z ∈ R,

and we define the surface energy γij to be

γij =
√
2q(ej) = ∫

∞

−∞
Ψ(Φ0(z)) + 1

2
∣Φ′0(z)∣2 dz = ∫

∞

−∞
∣Φ′0(z)∣2 dz. (3.14)

Next, (3.1a)
−1
I gives

∂zV⃗0 ⋅ ν⃗ = ∂z(V⃗0 ⋅ ν⃗) = 0. (3.15)

Integrating with respect to z and using the matching condition (3.6) applied to v⃗0
leads to

[v⃗0]ji ⋅ ν⃗ = 0. (3.16)

From (3.1e)
−2
I and (3.10) we have for each k = 1, . . . ,M ,

d

∑
l,n=1

M

∑
m=1

∂z ((D(Φ0,Σ0))klmn∂zΘm,0) νlνn = 0. (3.17)

Multiplying by Θk,0 and summing from k = 1 to M and then integrating with

respect to z, we obtain from integration by parts and the matching condition (3.7)

applied to Θ0 that

0 = −
M

∑
k,m=1

d

∑
l,n=1
∫
∞

−∞
(D(Φ0,Σ0))

klmn
∂zΘm,0νn∂zΘk,0νl dz

= −∫
∞

−∞
(D(Φ0,Σ0)(∂zΘ0 ⊗ ν⃗)) ∶ (∂zΘ0 ⊗ ν⃗)dz.
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The strict positivity of D yields

∂zΘ0(t, s, z) = 0⃗ ∈ RM ∀z ∈ R, (3.18)

i.e., Θ0 is independent of z. Moreover, integrating (3.18) with respect to z and using

the matching condition (3.6) applied to Θ0 gives

[θ0]ji = [N,σ(ϕ0,σ0)]ji = 0⃗ ∈ RM . (3.19)

Meanwhile, from (3.1c)
−2
I , we have for each k = 1, . . . , L,

d

∑
l,n=1

L

∑
m=1

∂z ((C(Φ0,Σ0))
klmn

∂zPΥm,0)νlνm = 0. (3.20)

Multiplying by PΥk,0 ∈ TG and summing from k = 1 to L, an analysis similar to

the above for Θ0 using the assumptions on C yields that

∂zPΥ0(t, s, z) = 0⃗ ∈ RL ∀z ∈ R ⇒ [Pµ0]ji = 0⃗ ∈ RL. (3.21)

Lastly, (3.1b)
−1
I yields

0⃗ = −∂zP0ν⃗ + (Φ′0 ⋅ (Υ0 −N,ϕ(Φ0,Σ0))) ν⃗. (3.22)

Taking the scalar product with ν⃗ and then integrating with respect to z leads to

[p0]ji = ∫ ∞

−∞
Φ′0 ⋅ (Υ0 −N,ϕ(Φ0,Σ0))dz

= ∫
∞

−∞
Φ′0 ⋅ (PΥ0 −N,ϕ(Φ0,Σ0))dz, (3.23)

where we used the matching condition (3.6) applied to P0 and the fact that Φ′0 ∈ TG
and so Φ′0 ⋅Υ0 =Φ′0 ⋅PΥ0. Thanks to the fact that PΥ0 is independent of z, we find

that

∫
∞

−∞
Φ′0 ⋅ PΥ0 dz = ∫

∞

−∞
∂z (PΥ0 ⋅Φ0) dz = [Pµ0 ⋅ϕ0]ji . (3.24)

Recalling Θ0 =N,σ(Φ0,Σ0) from (3.5), we have

∫
∞

−∞
Φ′0 ⋅N,ϕ(Φ0,Σ0)dz = [N(Φ0,Σ0)]ji −∫ ∞

−∞
∂zΣ0 ⋅Θ0 dz

= [N(ϕ0,σ0)]ji − [σ0]ji ⋅N,σ(ϕ0,σ0), (3.25)

and so (3.23) becomes

[p0 − Pµ0 ⋅ϕ0 −N(ϕ0,σ0) +N,σ(ϕ0,σ0) ⋅σ0]ji = 0. (3.26)
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3.2.2. Expansions to first order

To first order, we find from (3.1d)
0

I

PΥ0 = βPΨ,ϕϕ(Φ0)Φ1 + PN,ϕ(Φ0,Σ0) − β∂zzΦ1 − βdiv Γ (Φ′0 ⊗ ν⃗) , (3.27)

where we used that Φ0 is only a function of z and so ∇ΓΦ0 = 0 is the zero tensor.

As Φ′0 ∈ TG, Pf ⋅ Φ′0 = f ⋅ Φ′0, and hence after multiplying (3.27) with Φ′0 and

integrating over z we obtain

∫
∞

−∞

1

β
(PΥ0 −N,ϕ(Φ0,Σ0)) ⋅Φ′0 dz

= ∫
∞

−∞
(Ψ,ϕϕ(Φ0)Φ1) ⋅Φ′0 − ∂zzΦ1 ⋅Φ

′
0 + κ ∣Φ′0∣2 dz,

(3.28)

where κ = −div Γν⃗ is the mean curvature of Γ and we have used that div Γ(Φ′0⊗ ν⃗) =
Φ′0div Γν⃗ = −κΦ′0. Due to the symmetry of the tensor Ψ,ϕϕ it holds that

(Ψ,ϕϕ(Φ0))Φ1 ⋅Φ
′
0 = (Ψ,ϕϕ(Φ0))Φ′0 ⋅Φ1 = ∂z (Ψ,ϕ(Φ0)) ⋅Φ1. (3.29)

Then by integrating by parts we obtain from (3.11) and the matching conditions

(3.6), (3.7) applied to Φ0 that

∫
∞

−∞
∂z(Ψ,ϕ(Φ0)) ⋅Φ1 − ∂zzΦ1 ⋅Φ

′
0 dz = ∫

∞

−∞
(Ψ,ϕ(Φ0) −Φ′′0) ⋅ ∂zΦ1 dz

+ [Ψ,ϕ(Φ0) ⋅Φ1 +Φ
′
0 ⋅ ∂zΦ1]z=∞z=−∞ = 0.

Using (3.14), (3.24), and (3.25), we obtain from (3.28) the following solvability

condition for Φ1:

βγijκ = [Pµ0 ⋅ϕ0]ji − [N(ϕ0,σ0)]ji + [σ0]ji ⋅N,σ(ϕ0,σ0) = [p0]ji . (3.30)

Next, thanks to the fact that ∂zPΥ0 = 0⃗, to first order we obtain from (3.1c)
−1
I

−VΦ′0 + ∂z(Φ0(v⃗0 ⋅ ν⃗)) = ∂z ((C(Φ0,Σ0)) [(∂zPΥ1 ⊗ ν⃗) +∇ΓPΥ0]) ν⃗. (3.31)

We note that by the matching condition (3.8) applied to PΥ1, we have

limz→±∞ ∂zPΥ1 ⊗ ν⃗ = ∇(Pµ±0)ν⃗, and hence

(∂zPΥ1 ⊗ ν⃗) + ∇ΓPΥ0 →
⎧⎪⎪⎨⎪⎪⎩
∇Pµ+0 for z →∞,
∇Pµ−0 for z → −∞.

From (3.15), v⃗0 ⋅ ν⃗ is independent of z, so integrating (3.31) with respect to z and

applying the matching condition (3.6) to Φ0 and (3.8) to ∂zPΥ1 gives

(−V + v⃗0 ⋅ ν⃗) [ϕ0]ji = [(C(ϕ0,σ0))∇ (Pµ0)]j
i
ν⃗. (3.32)

Similar, thanks to the fact that ∂zΘ0 = 0⃗, we obtain from (3.1e)
−1
I

−V∂zΣ0 + ∂z(Σ0(v⃗0 ⋅ ν⃗)) = ∂z ((D(Φ0,Σ0)) [(∂zΘ1 ⊗ ν⃗) +∇ΓΘ0]) ν⃗, (3.33)

and upon integrating with respect to z we obtain

(−V + v⃗0 ⋅ ν⃗) [σ0]ji = [D(ϕ0,σ0)∇N,σ(ϕ0,σ0)]j
i
ν⃗. (3.34)
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In summary, we obtain the following sharp interface model: In the bulk domains

Ωk = {ϕ0 = ek}, 1 ≤ k ≤ L,
div v⃗0 = 1 ⋅U(ϕ0,σ0), (3.35a)

v⃗0 = −K∇p0, (3.35b)

−div (C(ϕ0,σ0)∇(Pµ0)) =U(ϕ0,σ0) − 1 ⋅U(ϕ0,σ0)ϕ0, (3.35c)

∂tσ0 + div (σ0 ⊗ v⃗0) = div (D(ϕ0,σ0)∇N,σ(ϕ0,σ0)) +S(ϕ0,σ0), (3.35d)

and on the free boundaries Γij = ∂Ωi ∩ ∂Ωj, 1 ≤ i < j ≤ L, with unit normal ν⃗

pointing from Ωi to Ωj ,

[v⃗0]ji ⋅ ν⃗ = 0, [p0]ji = βγijκ, (3.36a)

[Pµ0]ji = 0⃗, (3.36b)

[N,σ(ϕ0,σ0)]ji = 0⃗, (3.36c)

βγijκ = [Pµ0 ⋅ϕ0 −N(ϕ0,σ0) +σ0 ⋅N,σ(ϕ0,σ0)]ji , (3.36d)

(−V + v⃗0 ⋅ ν⃗) (ej − ei) = [C(ϕ0,σ0)∇(Pµ0)]j
i
ν⃗, (3.36e)

(−V + v⃗0 ⋅ ν⃗) [σ0]ji = [D(ϕ0,σ0)∇N,σ(ϕ0,σ0)]j
i
ν⃗, (3.36f)

where the surface energy γij is defined in (3.14).

3.3. Sharp interface limit for a two-component tumour model

We now sketch the argument to recover the sharp interface model (3.49) of Ref. 27

from (3.35)-(3.36) for a two-component model of host cells and tumour cells, along

with a single nutrient species, recall also Sec. 2.7. Dropping the subscript 0 from

(3.35)-(3.36), we consider (2.32) with

N(ϕ, σ) = χσ

2
∣σ∣2 + 2χϕσϕ1, Ψ(ϕ) = 4ϕ2

1ϕ
2
2 ⇒ Ψ̃(ϕ̃) = 1

4
(1 − ϕ̃2)2,

along with the scalar mobility (2.33), and the second order mobility tensor defined

in (2.34). Setting ΩH = Ω1 = {ϕ = (1,0)⊺} = {ϕ̃ = −1} and ΩT = Ω2 = {ϕ = (0,1)⊺} ={ϕ̃ = 1}, we obtain

v⃗ = −K∇p, div v⃗ = ρ−11 Ũ1(ϕ̃, σ) + ρ−12 Ũ2(ϕ̃, σ) in ΩH ∪ΩT , (3.37a)

∂tσ + div (σv⃗) = χσ div (n(ϕ̃)∇σ) + S̃(ϕ̃, σ) in ΩH ∪ΩT , (3.37b)

m(+1)∆µ = 2ρ−11 Ũ1(+1, σ) in ΩT , (3.37c)

−m(−1)∆µ = 2ρ−12 Ũ2(−1, σ) in ΩH . (3.37d)

To obtain the free boundary conditions on Γ = Γ12, let Φ(z) denote the solution
to (3.11) that connects (0,1)⊺ to (1,0)⊺, and let φ =Φ2 −Φ1 denote the difference

between the second and first components of Φ. Then, it holds that Φ1 = 1−φ
2

and

Φ2 = 1+φ
2

with limz→−∞ φ(z) = −1 and limz→+∞ φ(z) = 1. We now derive the ODE
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which is satisfied by φ. Taking the difference between the second and first compo-

nents of (3.11) (noting that the last term on the right-hand side of (3.11) will not

contribute to this difference), it holds that φ satisfies

−φ′′(z) + φ3(z)− φ(z) = −φ′′(z)+ Ψ̃′(φ(z)) = 0.
The unique solution φ to the above ODE with the boundary conditions

limz→±∞ φ(z) = ±1 and satisfying φ(0) = 0 is the function φ(z) = tanh(z/√2).
With the help of (3.14), we compute the surface energy γ = γ12 to be

γ = ∫
∞

−∞
2Ψ(Φ(z))dz = ∫ ∞

−∞
2Ψ̃(φ(z))dz = ∫ 1

−1

√
2Ψ̃(s)ds = 2

√
2

3
.

We observe that the jump conditions (3.36c) and (3.36f) become

0 = [N,σ]TH ⇒ [σ]TH = 2χϕ

χσ

, (−V + v⃗ ⋅ ν⃗) [σ]TH = 2χϕ

χσ

(−V + v⃗ ⋅ ν⃗) = χσ [n(ϕ̃)∇σ]TH ⋅ ν⃗,
respectively, and a short computation shows that

[Pµ ⋅ϕ]TH = µ2 − µ1 = 2µ̃, [−N(ϕ, σ) + σN,σ(ϕ, σ)]TH = χσ

2
[∣σ∣2]T

H
,

so that (3.36d) becomes βγκ = 2µ̃ + χσ

2
[∣σ∣2]T

H
. Furthermore, taking the difference

between the second and first components of the free boundary conditions (3.36b)

and (3.36e), the free boundary conditions on Γ = Γ12 translates to

[v⃗]TH ⋅ ν⃗ = 0, [µ̃]TH = 0, [p]TH = βγκ, (3.38a)

[σ]TH = 2χϕ

χσ

, βγκ = 2µ̃ + χσ

2
[∣σ∣2]T

H
, (3.38b)

2(−V + v⃗ ⋅ ν⃗) = [m(ϕ̃)∇µ]TH ⋅ ν⃗, (−V + v⃗ ⋅ ν⃗) [σ]TH = χσ [n(ϕ̃)∇σ]TH ⋅ ν⃗. (3.38c)

The resulting sharp interface model coincides with Equ. (3.49) of Ref. 27.

3.4. Sharp interface limit for (1.9)

In this section, we derive the sharp interface limit of (1.9) from the general sharp

interface model (3.35)-(3.36), where we again drop the subscript 0. Setting L = 3

and M = 1, and choosing (1.3) with χσ = 1, χϕ = χn = 0 and (2.31) with mi(s) = 1,
1 ≤ i ≤ 3, we have

N(ϕ, σ) = 1

2
∣σ∣2 , C(ϕ) = (δij − 1

3
)3
i,j=1

, S(ϕ, σ) = −Cϕ2σ,

so that N,σ(ϕ, σ) = σ and N,ϕ(ϕ, σ) = 0⃗. Moreover, defining ΩH = {ϕ = e1}, ΩP ={ϕ = e2} and ΩN = {ϕ = e3}, with interfaces ΓHP = ∂ΩH ∩∂ΩP , ΓPN = ∂ΩP ∩∂ΩN ,

we assume, for the reason outlined in the introduction, that ∂ΩH ∩ ∂ΩN = ∅. One

can compute that C(ϕ)∇(Pµ) = C(ϕ)∇µ, and thus upon setting

y = 1

3
(2µ1 − µ2 − µ3) , z = 1

3
(−µ1 + 2µ2 − µ3) ,
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from (3.35c) and (3.35d) (recalling that σ evolves quasi-statically) we obtain the

following outer equations:

∆σ =
⎧⎪⎪⎨⎪⎪⎩
0 in ΩH ∪ΩN ,Cσ in ΩP ,⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

−∆y = U1(ϕ, σ) − (1 ⋅U(ϕ, σ))ϕ1,

−∆z = U2(ϕ, σ) − (1 ⋅U(ϕ, σ))ϕ2,

−K∆p = 1 ⋅U(ϕ, σ),
in ΩH ∪ΩP ∪ΩN .

Meanwhile, due to the fact that N,σ(ϕ, σ) = σ and Pµ = (y, z,−(y+ z))⊺, we obtain
from (3.36a), (3.36b), (3.36c) and (3.36f) that

[∇p] ⋅ ν⃗ = [y] = [z] = [σ] = [∇σ] ⋅ ν⃗ = 0 on ΓPN ∪ ΓHP .

Furthermore, (3.36d) and (3.36e) simplify to

[p]PN = βγPNκ = Pµ2 − Pµ3 = 2y − z on ΓPN ,

[p]HP = βγHPκ = Pµ1 − Pµ2 = y − z on ΓHP ,

−V +K∇p ⋅ ν⃗ = [∇z]PN ⋅ ν⃗, 0 = [∇y]PN ⋅ ν⃗ on ΓPN ,

−V +K∇p ⋅ ν⃗ = [∇y]HP ⋅ ν⃗, V −K∇p ⋅ ν⃗ = [∇z]HP ⋅ ν⃗ on ΓHP .

In the case where source terms of the form (1.8d) are considered, the asymptotic

analysis requires a slight modification, which we will briefly sketch below. The multi-

component system we study is given by

div v⃗ = ε−1(1 ⋅U(ϕ, σ)), (3.39a)

v⃗ = −K∇p +K(∇ϕ)⊺µ, (3.39b)

∂tϕ + (∇ϕ)v⃗ = div (C(ϕ, σ)∇(Pµ)) + ε−1 (U(ϕ, σ) − (1 ⋅U(ϕ, σ)ϕ)) , (3.39c)

Pµ = −βε∆ϕ + βε−1PΨ,ϕ(ϕ), (3.39d)

0 =∆σ + S(ϕ, σ), (3.39e)

where we now consider

U(ϕ, σ) = (ρ−11 U1(ϕ1, σ), . . . , ρ−1L UL(ϕL, σ))⊺, Uk(ϕk, σ) = ϕ2
k(1 −ϕk)2Fk(σ)

with scalar functions Fk, 1 ≤ k ≤ L. For example, we may choose L = 3, ρi = 1 for

1 ≤ i ≤ 3, and F1(s) = 0, F2(s) = Ps −A, F3(s) = A −DN in order to match with

(1.8d).

In the outer expansions, we obtain (3.3) from (3.39d)
−1
O , which implies that

ϕ0 = ei, 1 ≤ i ≤ L. Then noting that the source term ε−1 (U(ϕ, σ) − (1 ⋅U(ϕ, σ))ϕ)
will not contribute to leading and first order, we obtain from the zeroth order

expansions of (3.39a)-(3.39c), (3.39e) the outer equations

div v⃗0 = 0, v⃗0 = −K∇p0, div (C(ϕ0, σ0)∇(Pµ0)) = 0⃗, ∆σ0 = −S(ϕ0, σ0).
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For the free boundary conditions on the interface Γij , using the inner expansions,

we recover (3.21) from (3.39c)
−2
I and from (3.39d)

−1
I we have similarly that Φ0 is a

function only in z connecting ei to ej . While the rest of the analysis is analogous,

the only difference lies in (3.39a)
−1
I and (3.39c)

−1
I where now the source term enters.

More precisely, from (3.39a)
−1
I and (3.39c)

−1
I we have

∂zV⃗0 ⋅ ν⃗ = 1 ⋅U(Φ0,Σ0), (3.40a)

(−V + V⃗0 ⋅ ν⃗)Φ′0 = ∂z ((C(Φ0,Σ0)) [(∂zPΥ1 ⊗ ν⃗) +∇ΓPΥ0]) ν⃗ (3.40b)

+U(Φ0,Σ0) − (1 ⋅U(Φ0,Σ0))Φ0.

Using the fact that ∂zΣ0 = 0 (from (3.39e)
−2
I ) and introducing the notation Φ0,k as

the kth component of the vector Φ0, we define

δ = (δ1, . . . , δL)⊺, δk = ∫
R

(Φ0,k(z))2(1 −Φ0,k(z))2 dz,
H(σ) = (δ1F1(σ), . . . , δLFL(σ))⊺.

Then, integrating (3.40a) and (3.40b) in z leads to

[v⃗0]ji ⋅ ν⃗ = 1 ⋅H(σ0), −V(ej − ei) + [(v⃗0 ⋅ ν⃗)ϕ0]ji = [C(ϕ0, σ0)∇(Pµ0)]j
i
ν⃗ +H(σ0),

where we used (3.40a) and integration by parts to deduce that

∫
R

(V⃗0 ⋅ ν⃗)Φ′0 + (1 ⋅U(Φ0,Σ0))Φ0 dz = [(v⃗0 ⋅ ν⃗)ϕ0]ji .
Hence, the sharp interface limit of (3.39) is

−K∆p0 = 0, div (C(ϕ0, σ0)∇(Pµ0)) = 0⃗, −∆σ0 = S(ϕ0, σ0) in Ωk,

[Pµ0]ji = 0, [σ0]ji = 0, [∇σ0]ji ⋅ ν⃗ = 0, βγijκ = [Pµ0 ⋅ϕ0]ji = [p0]ji on Γij ,

−V(ej − ei) + [(v⃗0 ⋅ ν⃗)ϕ0]ji = [C(ϕ0, σ0)∇(Pµ0)]j
i
ν⃗ +H(σ0) on Γij ,

[v⃗0]ji ⋅ ν⃗ = 1 ⋅H(σ0) on Γij ,

for 1 ≤ k ≤ L and 1 ≤ i < j ≤ L. Let us point out that, in comparison to the sharp

interface model (3.35)-(3.36), the source terms now appear in the free boundary

conditions instead of in the bulk equations.

Remark 3.2. In our numerical investigations below, we will use an obstacle po-

tential (2.30), and the asymptotic analysis for the obstacle potential will yield that

the outer expansions ϕi for i ≥ 1 are all zero. Hence, it is sufficient to consider

source terms of the form (1.8d) with the prefactor ϕi(1−ϕi) instead of ϕ2
i (1−ϕi)2,

which will also lead to the same outer equations for the sharp interface limit, but

in general, the prefactors δk will be different.
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3.5. Sharp interface limit of a model with degenerate

Ginzburg–Landau energy

In this section, we study a particular three-component model consisting of host

cells (ϕ1), proliferating cells (ϕ2) and necrotic cells (ϕ3) along with a quasi-static

nutrient (σ), which is derived from a degenerate Ginzburg–Landau energy, similar

to the discussions in Sec. 2.5. In particular, we have L = 3 and M = 1. We consider

a total energy of the form

E(ϕ, σ) = ∫
Ω

βε

2
∣∇ϕ2∣2 + β

ε
W (ϕ2) + χσ

2
∣σ∣2 − χϕσϕ2 dLd, (3.41)

where W ∶ R → R is a potential with minima at 0 and 1. In the context of cellular

adhesion, we assume that the host cells and necrotic cells prefer to adhere to each

other rather than to the proliferating cells. Let us consider the bare mobilities

m1(s) = 1−s, m2(s) = s and m3(s) = 1−s, and the second order tensor C(ϕ) ∈ R3×3

with entries Cij(ϕ) = 3
2
mi(ϕi) (δij −mj(ϕj) (∑3

k=1mk(ϕk))−1), 1 ≤ i, j ≤ 3. Then,
for a vector of source terms U such that 1 ⋅U = 0, the model (2.29) becomes

∂tϕ = div (C(ϕ)∇(Pµ))+U(ϕ, σ), (3.42a)

µ2 = −βε∆ϕ2 + βε
−1W ′(ϕ2) − χϕσ, µ1 = µ3 = 0, (3.42b)

∂tσ = div (n(ϕ, σ)∇(σ − λϕ2)) + S(ϕ, σ), (3.42c)

where n(ϕ, σ) = D(ϕ, σ)χσ , λ = χϕ/χσ, and µ1 = µ3 = 0 precisely due to the fact

that the energy (3.41) does not depend on ϕ1 and ϕ3. Sending λ→ 0, and neglecting

the left-hand side, as the nutrient evolves quasi-statically, and then considering a

constant mobility n(ϕ, σ) = 1, leads to the phase field model

∂tϕ2 = div (C22(ϕ)∇µ2) + ρ−12 U2(ϕ, σ), (3.43a)

∂tϕi = div (Ci2(ϕ)∇µ2) + ρ−1i Ui(ϕ, σ), i = 1,3, (3.43b)

µ2 = −βε∆ϕ2 + βε
−1W ′(ϕ2) − χϕσ, (3.43c)

0 =∆σ + S(ϕ, σ). (3.43d)

Note that by the relations 1 ⋅U = ρ−11 U1 + ρ−12 U2 + ρ−13 U3 = 0, ϕ2 = 1 − ϕ1 − ϕ3, and

C22(ϕ) = −C12(ϕ) −C32(ϕ), equation (3.43a) can be written as

−∂t(ϕ1 +ϕ3) = −div ((C12 +C32)(ϕ)∇µ2) − (ρ−11 U1 + ρ−13 U3)(ϕ, σ),
which is the negative of the sum of (3.43b). As the minima of W are 0 and 1, we

have that the leading order term ϕ2,0 = 0 or 1, which allows us to define the regions

ΩP = {ϕ2,0 = 1} = {ϕ1,0 + ϕ3,0 = 0} and Ωc
P = {ϕ2,0 = 0} = {ϕ1,0 + ϕ1,3 = 1}. Then,

the following outer equations are derived:

0 =∆σ0 + S(ϕ0, σ0) in ΩP ∪Ω
c
P ,

−∆µ2,0 = ρ−12 U2(ϕ0, σ0) = −(ρ−11 U1 + ρ−13 U3)(ϕ0, σ0) in ΩP ,

0 = ρ−12 U2(ϕ0, σ0) = −(ρ−11 U1 + ρ−13 U3)(ϕ0, σ0) in Ωc
P .
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Here we used that C22(ϕ) is 1 in ΩP and 0 in Ωc
P , while C12(ϕ), C32(ϕ) are equal to

− 1
2
in ΩP and 0 in Ωc

P . Let Γ = ∂ΩP denote the interface that is moving with normal

velocity V , and let ν⃗ and κ denote the outward unit normal and mean curvature

of Γ, respectively. Then, we obtain from the inner expansions the following set of

equations

[σ0] = 0, [∇σ0] ⋅ ν⃗ = 0, µ2,0 = βγκ − χϕσ0, −V = ∇µ2,0 ⋅ ν⃗ on Γ,

where γ is a positive constant defined by γ = ∫ 1

0

√
2W (s)ds. In the case of equal

densities ρ1 = ρ2 = ρ3 = 1, we now choose the source terms to be

S(ϕ, σ) = −σ, U2(ϕ, σ) = Pσϕ2, U1(ϕ, σ) = U3(ϕ, σ) = −1
2
Pσϕ2,

for a positive constant P , and define a pressure-like function p = µ2,0+χϕσ0, so that

we have

∆σ0 = σ0, ∆p = (χϕ −P)σ0 in ΩP , ∆σ0 = σ0 in Ωc
P ,[σ0] = 0, [∇σ0] ⋅ ν⃗ = 0, p = βγκ, −V = ∇p ⋅ ν⃗ − χϕ∇σ0 ⋅ ν⃗ on Γ,

which bears some similarities to the free boundary models studied in Refs. 12, 14,

20, 56.

4. Numerical approximation

In this section we propose a finite element approximation for the three-component

model (1.4) with (1.6) and present several numerical simulations for it. In particular,

we have L = 3 andM = 1 and consider the obstacle potential (2.30). For the mobility

tensor C(ϕ) we choose (2.31) with

m1(s) = 1 − s + δC , m2(s) = s + δC , m3(s) = s + δC , (4.1)

where δC = 10−6 is a regularisation parameter. Moreover, we consider (1.3) with

χσ, χϕ > 0 and χn = 0, so that

N,ϕ(σ) = (0,−χϕσ,0)⊺ . (4.2)

Then, choosing a constant mobility d(ϕ, σ) = 1 in (1.6) we arrive at the nutrient

equation

∂tσ + div (σv⃗) =∆σ − λ∆ϕ2 + S(ϕ, σ).
In order to allow for the case K = 0, which means that we set the velocity to

zero, we define

Û(ϕ, σ) = ⎧⎪⎪⎨⎪⎪⎩
U(ϕ, σ) for K > 0,
U(ϕ, σ) − (1 ⋅U(ϕ, σ))ϕ for K = 0. (4.3)
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Recalling (1.8a)-(1.8d), we consider

S(ϕ, σ) = −Cσϕ2, (4.4a)

UA(ϕ, σ) = (0, ϕ2(Pσ −A),Aϕ2 −DNϕ3)⊺, (4.4b)

UB(ϕ, σ) = (−ϕ2Pσ,ϕ2(Pσ −A),Aϕ2 −DNϕ3)⊺, (4.4c)

UC(ϕ, σ) = (0, ε−1ϕ2(1 −ϕ2)(Pσ −A), ε−1ϕ3(1 − ϕ3)(A −DN))⊺. (4.4d)

Here we note that (4.4d) differs from (1.8d). In particular, we observe that for (4.4d)

the function F in (2.40) is chosen as F (s) = s (1− s), rather than F (s) = s2 (1− s)2
as for (1.8d), which clearly does not satisfy the conditions stated below (2.40).

However, we remark that the asymptotic analysis remains valid, see Remark 3.2.

4.1. Finite element approximation

Let Th be a regular triangulation of Ω into disjoint open simplices. Associated withTh is the piecewise linear finite element space

Sh = {χ ∈ C0(Ω)∣χ∣o ∈ P1(o) ∀o ∈ Th} ⊂H1(Ω),

where we denote by P1(o) the set of all affine linear functions on o. Let Sh = [Sh]L =
Sh × ⋅ ⋅ ⋅ × Sh, and define

S+h = {χ ∈ Sh ∶ χ ≥ 0}.
Similar to Refs. 4, 53, we consider the splitting

W ≡W+ +W−,

where W+(−) is symmetric and positive (negative) semi-definite, recall (2.30).

Throughout we chooseW = I−1⊗1, and letW− = − 2
3
1⊗1. We now introduce a finite

element approximation of the model described above, in which we have taken ho-

mogeneous Neumann boundary conditions for ϕ and µ, and the Dirichlet boundary

conditions σ = σB ∈ R and p = 0 on ∂Ω. To this end, let SB
h = {χ ∈ Sh∣ χ = σB on ∂Ω},

as well as S0
h = {χ ∈ Sh∣ χ = 0 on ∂Ω}. The numerical scheme is defined as follows:

Find

(ϕn
h ,µ

n
h, σ

n
h , p

n
h) ∈ S+h ×Sh × S

B
h × S

0
h
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such that

1

τ
(ϕn

h −ϕ
n−1
h ,ηh)h + (C(ϕn−1

h )∇µn
h,∇ηh)h

= (Û(ϕn−1
h , σn−1

h ),ηh)h − ([1 ⋅ Û(ϕn−1
h , σn−1

h )]ϕn−1
h ,ηh)h

+K ((∇ϕn−1
h )(∇pn−1h − (∇ϕn−1

h )⊺(µn−1
h −N,ϕ(σn−1

h ))),ηh)h , (4.5a)

βε(∇ϕn
h ,∇(ζh −ϕn

h)) − (βε−1W−ϕn
h +µ

n
h,ζh −ϕ

n
h)h

≥ βε−1(W+ϕn−1
h ,ζh −ϕ

n
h)h − (N,ϕ(σn−1

h ),ζh −ϕn
h)h,
(4.5b)

1

τ
(σn

h − σ
n−1
h , χh)h −K (∇σn−1

h ⋅ (∇pn−1h − (∇ϕn
h)⊺(µn

h −N,ϕ(σn−1
h ))), χh)h

+ ([1 ⋅ Û(ϕn−1
h , σn−1

h )]σn−1
h , χh)h + (∇σn

h ,∇χh) − λ(∇ϕn
2,h,∇χh)

= −C(σn
hϕ

n
2,h, χh)h (4.5c)

(∇pnh,∇χh) = ((∇ϕn
h)⊺(µn

h −N,ϕ(σn
h)),∇χh)h + 1

K
(1 ⋅ Û(ϕn

h, σ
n
h), χh)h, (4.5d)

holds for all (ζh,ηh, χh) ∈ S+h ×Sh ×S
0
h, where τ denotes the time step size, (⋅, ⋅) de-

notes the L2–inner product on Ω, (⋅, ⋅)h is the usual mass lumped L2–inner product

on Ω, and λ = χϕ

χσ
, recall (1.5). In the case K = 0 we simply neglect (4.5d) and do

not compute for pnh. A quasi-static variant of the discrete nutrient equation (4.5c)

is given by

(∇σn
h ,∇χh) − λ(∇ϕn

2,h,∇χh) = −C(σn
hϕ

n
2,h, χh)h. (4.6)

We implemented the scheme (4.5a)-(4.5d) with the help of the finite element

toolbox ALBERTA63. To increase computational efficiency, we employ adaptive

meshes, which have a finer mesh size hf within the diffuse interfacial regions and a

coarser mesh size hc away from them, see Ref. 53 for a more detailed description.

Clearly, the system (4.5a)-(4.5d) decouples, and so we first solve the variational in-

equality (4.5a)-(4.5b) for (ϕn
h,µ

n
h) with the projected block Gauss–Seidel algorithm

from Ref. 53. Then we compute σn
h from (4.5c), or from (4.6), and finally pnh from

(4.5d), where we employ the direct linear solver UMFPACK18. Finally, to increase

the efficiency of the numerical computations in this paper, we exploit the symmetry

of the problem and performed all computations only on a quarter of the desired

domain Ω.

4.2. Numerical simulations

In the following we present several numerical computations in two spatial dimensions

for the scheme (4.5a)-(4.5b), (4.5d) and (4.6). We will fix the interfacial parameter

to ε = 0.05 throughout, and employ a fine mesh size of hf = 0.02, with hc = 8hf . For
the uniform time step size we choose τ = 10−3. In order to define the initial data,

we introduce the following functions. Given R2,R3 > 0, δ2, δ3 ≥ 0 and m2,m3 ∈ N,
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we define

R̃i(x⃗) = Ri + δi cos(miθ), with θ = tan−1 (x2
x1
) , i = 2,3. (4.7)

Then we set

v1(x⃗) = 1, vi(x⃗) =
⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
1 if r(x⃗) − R̃i(x⃗) ≤ − επ

2
,

1
2
− 1

2
sin( r(x⃗)−R̃i(x⃗)

ε
) if ∣r(x⃗) − R̃i(x⃗)∣ < επ

2
,

0 if r(x⃗) − R̃i(x⃗) ≥ επ
2
,

i = 2,3,

(4.8)

where r(x⃗) = [∑d
j=1 ∣xj ∣2] 12 . In line with the formally matched asymptotic analysis

for phase field models with the double-obstacle potential, the interfacial thicknesses

for v2 and v3 are equal to επ, see for example Equ. (3.24) of Ref. 27. For the initial

data ϕ0
h to (4.5a)-(4.5d) we set

(ϕ0
h)i(x⃗) = vi(x⃗) 3

∏
j=i+1

(1 − vj(x⃗)), i = 1,2,3, (4.9)

see also Equ. (3.5) of Ref. 53. Unless otherwise stated, we use R2 = 2, R3 = 1 in

(4.7) and choose

δ2 = 0.1, m2 = 2, δ3 = 0.05, m3 = 6, (4.10a)

or δ2 = 0.1, m2 = 6, δ3 = 0.05, m3 = 4, (4.10b)

or δ2 = 0.1, m2 = 2, δ3 = 0. (4.10c)

In addition, we set p0h = 0 and σ0
h = σB. For the graphical representation of ϕn

h we

will always plot the scalar quantity (0,1,2)⊺ ⋅ϕn
h, which clearly takes on the values

0, 1, 2 in the host, proliferating and necrotic phases, respectively.

4.2.1. Simulation with the source term (4.4d)

In a first simulation, we investigate the radial growth of the tumour phases for the

source term (4.4d) given sufficient nutrient. To this end, we let Ω = (−5,5)2 and

A = 0.5, β = 0.1, C = 2, P = 0.5, λ = χϕ = 0.1, DN = 0.
For the values σB = 5 and K = 0.01 we start with the perturbed initial profiles

defined by (4.10a) and (4.10b), respectively, and observe that in each case the initial

perturbations get smoothed out, leading to a nearly radial growth. We show the

corresponding simulations in Figs. 1 and 2. The smoothening of the perturbation is

in contrast to the behaviour observed in the two-phase case (consisting of only host

cells and proliferating tumour cells), where small perturbations from an initial radial

setting lead to the development of long and thin protrusions12,27. A linear stability

analysis shows that the mechanism responsible for these morphological instabilities

is the chemotaxis mechanism χϕ > 0. Thus, Figs. 1 and 2 seem to suggest that the

presence of a (large) necrotic core suppresses morphological instabilities caused by

the chemotaxis mechanism, leading to a more radial growth of the tumour.
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Fig. 1. (σB = 5, K = 0.01) The solution ϕ
n

h
at times t = 0, 2, 5 for (4.4d) with initial profile

(4.10a).
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Fig. 2. (σB = 5, K = 0.01) The solution ϕ
n

h
at times t = 0, 2, 5 for (4.4d) with initial profile

(4.10b).

We point out that the tumours in Figs. 1 and 2 continue to grow in a more-or-

less radially symmetric manner until the growing periphery is close to the boundary

of the computational domain. Then, we stop the simulations once the proliferating

tumour touches the external boundary.

In order to investigate the radial growth in more detail, and to study the depen-

dence on the presence of the fluid flow and on the strength of the nutrient source, we

repeat the simulations in Figs. 1 and 2 for circular initial data, and for different val-

ues of σB and K. In particular, we choose δ2 = δ3 = 0 in (4.7) and let σB ∈ {2,5,10},
with K = 0 or K = 0.01. Plots of the radii of the two interfacial layers over time for

the different parameters can be seen in Fig. 3.

Looking at the results for σB = 2 in particular, we also investigate whether

the two radii eventually meet. To this end, we repeat the simulations for a longer

time. As observed in Fig. 4, in the absence of Darcy flow the inner radius indeed

catches up with the outer radius. When Darcy flow is present, however, a constant

minimum distance between the two radii is maintained throughout the evolution,

compare also Figs. 2 and 3 of Ref. 65.

We show some snapshots of the two different evolutions in Fig. 5. In particular,

Fig. 5 shows that the Darcy variant of the model yields what we consider is a more

biologically realistic evolution of tumour growth than the variant without fluid

velocity. We believe that in the absence of fluid flow, and the modification of the

source term U(ϕ, σ) so that 1⋅U(ϕ, σ) = 0, introduce artificial non-biological effects
and thus lead to the appearance of small colonies of proliferating cells between the

host and the necrotic regions.
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Fig. 3. A plot of the two radii over time for (4.4d). The above plots are without fluid flow, i.e.,
K = 0, for σB = 2, 5, 10. Below the same for K = 0.01.
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Fig. 4. A plot of the two radii over time for (4.4d) and σB = 2. The left plot is without fluid flow,
i.e., K = 0, while the right plot is for K = 0.01.

4.2.2. Simulation with the source term (4.4b)

The same simulation as in Fig. 1, but now for the source term (4.4b) can be seen

in Fig. 6. As a comparison we also show the evolution without the fluid flow, see

Fig. 7. In this case we observe quite complex nucleation phenomena of the necrotic

phase within the proliferating phase. We believe that the difference in behaviour can

be attributed to the prefactor ε−1ϕi(1 − ϕi) in UC , and in light of the asymptotic

analysis in Sec. 3.4, any effect of the source term UC is localised to the interfacial

regions. Thus, we do not expect to observe nucleation-type effects in the bulk regions

as the source terms are not active there. In contrast, inspecting the source term UA,

in particular for the necrotic cells, we see that in the proliferating region ΩP = {ϕ2 =
1}, the necrotic cells receive a constant source with magnitude A = 0.5, which may

explain the nucleation of necrotic cells in the proliferating region. Furthermore, a

closer inspection of the corresponding plots for the nutrient in Figs. 6 and 7 shows
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Fig. 5. The solution ϕ
n

h
at times t = 6, 7, 8 for the two evolutions from Figure 4. Above for K = 0,

below for K = 0.01.

that regions of lowest nutrient are those occupied by the necrotic cells.
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Fig. 6. (σB = 5, K = 0.01) The solution ϕ
n

h
at times t = 0.3, 0.5, 1, 2 for (4.4b). Below we show

plots of σn

h
at the same times.
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Fig. 7. (σB = 5, K = 0) The solution ϕ
n

h
at times t = 0.3, 0.5, 1, 2 for (4.4b). Below we show plots

of σn

h
at the same times.
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Finally, we consider a numerical simulation on the larger domain Ω = (−10,10)2
for the source term (4.4b), with the parameters

A = 0, β = 0.1, C = 2, P = 0.1, λ = 0.02,
χϕ = 5, DN = 0, σB = 1, K = 0.01.

The evolution of the three phases is shown in Fig. 8, where we chose the initial

radius R3 = 1. It can be seen that both tumour phases grow, with some instabilities

developing at the tumour/host cell interface. However, if the initial necrotic phase

is smaller, it vanishes and the perturbations become more pronounced, see Fig. 9.

In fact, towards the end the evolution in Fig. 9 becomes similar to Fig. 5 of Ref. 27.

Let us also point out that the numerical simulations with the source term (4.4c)
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2

1

0

2

1

0

2

Fig. 8. The solution ϕ
n

h
at times t = 10, 15, 20, 25 for (4.4b) with the perturbed initial data

(4.10c) and R3 = 1.

are almost identical to Figs. 8 and 9, and so we omit the results.

4.2.3. Effects of necrotic degradation on invasive growth

We also investigate the effects of a larger initial necrotic core on the evolution of

the tumour. To this end, we repeat the computation in Fig. 8 for the initial radius

R3 = 1.5 for DN ∈ {0,1,5}. The three different evolutions can be seen in Fig. 10,

where we observe that for positive values of DN , the necrotic core slowly disappears,

and the subsequent evolution of the tumour is similar to that observed in Fig. 9.

Meanwhile, in the case where the necrotic core does not degrade, upon comparing

to Fig. 8, we can conclude that a large necrotic core seems to suppress or delay the

development of protrusions and leads to a more compact growth.
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Fig. 9. The solution ϕ
n

h
at times t = 10, 15, 20, 25 for (4.4b) with the perturbed initial data

(4.10c) and R3 = 0.5.
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Fig. 10. The solution ϕ
n

h
at times t = 1, 5, 10, 25 for (4.4b) with the perturbed initial data (4.10c)

and R3 = 1.5. The top row is for DN = 0, the middle row is for DN = 1, and the bottom row is for
DN = 5.

4.2.4. Effects of necrotic degradation on the velocity field

We repeat the experiment in Fig. 8, but now for circular initial data, i.e. δ2 = δ3 = 0,
and with χϕ = λ = 0 and DN = 0.5. In this setting, we expect to maintain radial

symmetry as the tumour evolves, and due to the disintegration of the necrotic core,

as mentioned at the end of Sec. 2.8, we expect to see that the growing tumour

periphery is pulled back towards the centre as long as the necrotic core exists, and

once the core has vanished, the growing periphery will move away from the centre.

In Fig. 11 we visualise the discrete velocity profile v⃗nh ∈ [Sh]2, defined by

(v⃗nh , χ⃗h)h = −K(∇pnh − (∇ϕn
h)⊺(µn

h −N,ϕ(σn
h)), χ⃗h)h ∀χ⃗h ∈ [Sh]2,

at different stages of the evolution, and we observe that the velocity points towards

the origin when a necrotic core is present, with the magnitude decreasing as the

core shrinks. When the core has disappeared, the velocity points outwards, but with

a rather small magnitude. In Fig. 12 a plot of the radii of the necrotic core and the

growing periphery over time is displayed, and it can be seen that the outer radius

increases, albeit rather slowly, after the core has vanished. The observed behaviour

of the cell velocity field is consistent with earlier numerical simulations (see Figs. 4b

and 5b(ii) of Ref. 65).

4.2.5. Discussion of the numerical simulations

In the above numerical simulations, we obtained results that seem to be rather

different compared to the literature. We believe that this is due to the nature of

our multiphase model (in which a multi-well potential is used, as opposed to the

degenerate Ginzburg–Landau variant used in Refs. 10, 11, 23, 45, 46, 65, 67) and

the phenomenological modelling of the growth mechanisms.
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Fig. 11. The solution ϕ
n

h
, and a visualisation of v⃗n

h
, at times t = 2 (top left), 5 (top right), 10

(bottom left), 30 (bottom right) for (4.4b) for the circular initial data (4.7) with δ2 = δ3 = 0.
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Fig. 12. A plot of the two radii over time for (4.4b).

While UA and UB are the natural generalisations of the source terms capturing

proliferating and apoptosis from the two-phase setting in Refs. 12, 14, 27, we did not

anticipate the development of necrotic phases in the proliferating region. Remark-

ably, these kinds of growth behaviours of the necrotic cells have in principle been

observed in clinical research: In experimental gliomas in rats, multiple areas of focal

necrosis were found in regions distant to any blood vessels (Figs. 1 and 3 of Ref. 43).

Conventional renal cancer is known to develop focal and patchy necrosis44. These

results are concordant to the simulated tumour morphology in Fig. 6. Furthermore,

in an experimental neurinoma in rats also finger-like growth of the necrotic core has

been observed (Fig. 6b of Ref. 42). Our results seem to suggest that the presence of a

necrotic core can inhibit invasive tumour growth. Despite the nucleation of necrotic

cells within the tumour (Figs. 6 and 7), we point out that the overall tumour remains

roughly spherical, and when the necrotic core is allowed to disintegrate, the loss of

necrotic cells leads to a velocity field pointing towards the centre of the tumour
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(Fig. 11) which has the effect of perturbing the tumour-host cell interface. Coupled

with the chemotaxis mechanism, once the necrotic core has vanished, we expect

that the tumour displays morphological instabilities as observed in the two-phase

setting (Fig. 10). Therefore, based on our simulations, one might conclude that in a

clinical setting, the presence of necrosis might be beneficial since it inhibits further

tumour growth. However, for many common tumour entities, the opposite seems to

be true, as the existence of necrotic components in a tumour are associated with

a worsening of prognosis and reduced long-term survival32,57,59. One explanation

for this fact would be that aggressive, undifferentiated tumours tend to show a less

controlled pattern of growth and therefore more often “outgrow” their own nutrient

supply, consequently developing a necrotic core.

In constrast to the behaviour obtained with the source term UA, we observed

that the tumour withUC as a source term evolves in a more-or-less radially symmet-

ric manner despite initial perturbations of the interfaces, where one would expect

to develop morphological instabilities in the two-phase setting (Figs. 1 and 2). The

idea behind the source term UC is rather recent37 and seems to yield results in line

with the current intuition regarding avascular tumour spheroids (Figs. 4 and 5).

We believe that the idea behind UC warrants further investigation, as it allows for

the modelling assumption where the cells in the interior of the tumour are tightly

packed so that only the cells near the periphery of the tumour region experience

growth.
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