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Unsteady combustion in modern gas turbines generates large entropy waves,
also known as hot spots. When these are accelerated through the stator vanes,
they generate acoustic waves via a mechanism known as indirect combustion noise
[1]. The upstream-propagating acoustic waves interact with the the flame and
can contribute to the thermoacoustic feedback loop [2], while the downstream-
propagating waves contribute to the global noise [3]. The strength of each acoustic
wave is directly proportional to the amplitude of the entropy wave reaching the
inlet of the first stator blade.

Low-order models can be used to predict the noise generated by an entropy
wave with reasonable accuracy, and at a fraction of the cost of numerical methods
[4, 5]. These analytical models neglect the advection of the entropy wave through
the turbulent combustion chamber, assuming the entropy wave arrives at the tur-
bine inlet in the same form as that in which it was generated by the flame. The
first computational analysis of the advection of entropy waves through a turbulent
flow was performed by Morgans et al. [6]. For a fully resolved turbulent channel
flow, they found that the entropy wave was strongly deformed by the shear dis-
persion of the flow, but all of the entropy was eventually convected downstream
of the flow without loss in time-integrated amplitude.

The aim of this work is to extend the study of entropy wave advection to
the case of a real gas turbine combustor geometry, whose flow includes far more
complex features, such as recirculation zones and swirl. The particular combus-
tor considered is the SGT-100 combustor [8, 9] shown in Fig. 1. Simulations are
performed using the ReactingFOAM solver of OpenFOAM [7]. For entropy wave
advection, a similar approach to that in [6] is used; the entropy wave is assumed to
originate in the areas where mean heat release occurs. It is then advected as a pas-
sive scalar with the flow, using either the mean flow velocity or the instantaneous
velocity at each point.

Example results, showing the effect of advection by the mean flow, are shown in
figure 2. The outlet entropy wave strength indicates that a large amount of entropy
is still able to reach the outlet. The flow features typical of industrial combustion
chambers do have a significant effect on the entropy waves; in particular the
recirculation zone results in an effective loss of entropy wave amplitude. This
study will prove useful in deriving entropy wave advection models that pertain to
real combustor flows.
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Figure 1: The SGT-100 combustor
simulated for the study [8, 9].
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Figure 2: Source term of entropy
(black) and entropy at the outlet of the
combustor chamber (red).
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