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Abstract. We present an extension of set-valued integration to enable efficient sensitivity anal-
ysis of parameter-dependent ordinary differential equation (ODE) systems, using both the forward
and adjoint methods. The focus is on continuous-time set-valued integration, whereby auxiliary ODE
systems are derived whose solutions describe high-order inclusions of the parametric trajectories in
the form of polynomial models. The forward and adjoint auxiliary ODE systems treat the parame-
terization error of the original differential variables as a time-varying uncertainty, and propagate the
sensitivity bounds forward and backward in time, respectively. This construction enables building on
the sensitivity analysis capabilities of state-of-the-art solvers, such as CVODES in the SUNDIALS
suite. Several numerical case studies are presented to assess the performance and accuracy of these
set-valued sensitivity integrators.
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1. Introduction. Set-valued integration methods for uncertain or parameter-
dependent dynamic systems find applications in many research areas, including reach-
ability and invariance analysis for control systems, robust optimization and control,
set-membership estimation, and global optimization; see, e.g., [5, 9, 18, 19, 22, 26, 36,
48, 50]. One possible classification for such methods distinguishes continuous-time
and discretized approaches. The former derives an auxiliary differential system de-
scribing pointwise-in-time enclosures of the set of trajectories, which can be solved
using a standard numerical ordinary differential equation (ODE) solver; the latter con-
structs parameterized tubes using time-series expansion and determines finite intervals
where these tubes yield a guaranteed enclosure of the set of trajectories, following a
predictor-validation scheme. Both methods can propagate a variety of set param-
eterizations, which describe (i) convex enclosures of the reachable set, in the form
of interval boxes, ellipsoids, zonotopes, or polytopes [2, 10, 16, 19, 21, 33, 43, 45];
(ii) nonconvex enclosures of the reachable set, in the form of Taylor or Chebyshev
models [1, 4, 11, 20, 27, 49]; and (iii) pairs of linear or convex/concave bounds on the
variations of each dynamic state [41, 42, 44, 46, 47].

Methods and software for sensitivity analysis of dynamic models are also well
developed [7, 14, 17, 29]. They have reached a stage of maturity where both forward
and adjoint sensitivities can be computed reliably and efficiently. These methods typ-
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SENSITIVITY ANALYSIS OF UNCERTAIN DYNAMIC SYSTEMS A3015

ically use automatic differentiation [15] and numerical integration techniques tailored
to the special structure of the sensitivity system, such as staggered or simultaneous
corrector methods for forward-in-time sensitivity integration, and state interpolation
and check-pointing for backward-in-time adjoint integration. While forward sensitiv-
ity analysis is best suited to compute the sensitivities of a possibly large number of
functions with respect to a small number of parameters, adjoint sensitivity analysis is
best suited to the complementary situation of finding the sensitivity of a small number
of functions with respect to a large number of parameters. Despite their widespread
use in such areas as uncertainty quantification, experimental design, parameter es-
timation, optimization, and control, very little work has been devoted to set-valued
integration for sensitivity analysis so far. In [39], the parametric ODEs and their
first-order sensitivities are bounded as one combined set of ODEs. But more effi-
cient staggered or simultaneous corrector methods have not been investigated in this
context to date. Regarding adjoint sensitivity analysis, an approach to propagating
bounds on the adjoint trajectories has been considered recently in [37] using interval
analysis. However, more advanced bounding approaches based on ellipsoidal calculus
are yet to be developed and analyzed.

Our main objective in this paper is an extension of set-valued integrators to
enable sensitivity analysis for a class of switched nonlinear dynamic systems, using
both the forward and adjoint methods. The main focus is on continuous-time set-
valued integration, as it enables building on existing numerical solvers to efficiently
propagate the sensitivity bounds, as well as high-order inclusion techniques in the
form of polynomial models, which mitigate the wrapping effect and can stabilize the
reachable set enclosures under certain conditions [20, 49]. Of course, other set-valued
integration approaches could be extended in a similar manner.

The outline of this paper is as follows. Section 2 gives a formal statement of
the problem and reviews the corresponding forward and adjoint sensitivity systems.
Section 3 presents an extension of continuous-time set-valued integration that relies
on polynomial model inclusion techniques in order to handle both parametric and
time-varying uncertainty. Two variants of this approach, one propagating interval
remainders and the other ellipsoidal remainders, are described. Section 4 special-
izes this generic bounding capability to the forward and adjoint sensitivity systems,
whereby the state parameterization error is treated as a time-varying uncertainty. A
numerical implementation of the forward and adjoint sensitivity-bounding systems
is also discussed, which enables building on top of existing numerical solvers. This
implementation comes in the form of a C++ class as part of the library CRONOS,
which relies on the numerical integrator CVODES in the SUNDIALS suite [17] and is
available from https://github.com/omega-icl/cronos. Several numerical case studies
are presented in section 5 to assess the performance and accuracy of the proposed
set-valued sensitivity integrators. Finally, section 6 concludes the paper.

1.1. Notation. The set of compact subsets of Rn is denoted by Kn and the
subset of convex subsets of Kn by Kn

C. The Minkowski sum of two compact sets
W,Z ∈ Kn is given by

W ⊕ Z := {w + z | w ∈W, z ∈ Z} .
The set of n-dimensional interval vectors is denoted by IRn [31]. The midpoint

and radius of an interval vector P := [p, p] ∈ IRn are defined as mid(P ) := 1
2 (p + p)

and rad(P ) := 1
2 (p − p), respectively, and we denote by diag rad(P ) ∈ Rn×n the

diagonal matrix whose elements are the components of rad(P ).
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A set-valued function Ψ : IRn → Km is said to have convergence order k ≥ 1 on
a set Z ∈ Kn if there exists a constant C <∞ such that

(1) rad(Ψ(W )) ≤ C rad(W )k

for all W ∈ IRn with W ⊂ Z and sufficiently small rad(W ).
The set of n-dimensional positive semidefinite symmetric matrices is denoted by

Sn+. An ellipsoid with center c ∈ Rn and shape matrix Q ∈ Sn+ is denoted by

E(c,Q) :=
{
c+Q

1
2 v | v ∈ Rn, vTv ≤ 1

}
or simply E(Q) for those ellipsoids centered at the origin. Given two n-dimensional
symmetric matrices A and B, the property A − B ∈ Sn+ induces a partial order as
A � B. Moreover, trB(A) denotes the trace of A scaled by B, given by

(2) trB(A) :=
n∑
i=1

Aii

Bii/B + RTOL
,

with B := maxi=1...nBii, and some relative tolerance RTOL > 0. Likewise, radB(P )
denotes the scaled radius of an interval vector P ∈ IRn, given componentwise by

(3) radB(P )i :=
rad(P )i√

Bii/B + RTOL
.

A qth-order polynomial model of the function f : Rn → Rm on the set P ∈ IRn
is the pair (Pqf ,R

q
f ), where Pqf : Rn → Rm is a qth-order multivariate polynomial,

∀p ∈ P , Pqf (p) :=
∑
κ∈Nn,
|κ|≤q

ακBκ(p) ,

with ακ ∈ Rm; and Rqf ∈ Km is such that

∀p ∈ P , f(p)− Pqf (p) ∈ Rqf .
Here, Bκ : Rn → Rm is the basis function with multi-index κ ∈ Nn in the selected
polynomial representation. Taylor models [6, 28, 34] are a particular kind of polyno-
mial model where the multivariate polynomial matches the qth-order Taylor expan-
sion of f at some point p̂ ∈ P , provided that f is sufficiently smooth. In Chebyshev
models [11, 38], the multivariate polynomial approximates the qth-order Chebyshev
expansion of f on P .

Ln2 denotes the set of square-integrable vector-valued functions of dimension n,
and Wn

1,2 denotes the set of n-dimensional weakly differentiable functions whose weak
derivative is square-integrable. Unless otherwise stated, the domain of integrability
is taken as R, and integration is understood with respect to the time variable. The
abbreviation a.e. is used to indicate that a property holds almost everywhere.

2. Problem statement and background. We consider parametric dynamic
systems in the form of switched nonlinear ODEs with fixed-time transitions t0 < t1 <
· · · < tN ,

ẋ(t, p) = fk(t, x(t, p), p) , t+k−1 ≤ t ≤ t−k , k = 1 . . . N,(4)

with x(t0, p) = h0(p)(5)

and x(t+k , p) = hk(x(t−k , p), p) , k = 1 . . . N − 1 .(6)

c© 2017 SIAM. Published by SIAM under the terms of the Creative Commons 4.0 license
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SENSITIVITY ANALYSIS OF UNCERTAIN DYNAMIC SYSTEMS A3017

Here, the state trajectory x : R×P → Rnx is regarded as a function of the uncertain
parameter vector p ∈ P ∈ Knp , and the notations t−k and t+k are used to make it clear
when the state—and later other quantities too—is evaluated immediately before or
after a transition time tk.

The problem addressed in this paper is the computation of bounds on the gradient
of state-dependent functions expressed in the Bolza form

(7) F (p) :=
N∑
k=1

[∫ t−k

t+k−1

qk(t, x(t, p), p) dt+mk

(
x(t−k , p), p

)]
∈ RnF .

The focus is on continuous-time set-propagation techniques that construct an auxiliary
ODE bounding system based on both the forward and adjoint sensitivity methods,
which are reviewed in subsections 2.1 and 2.2 below. Note that the quadrature terms
in (7) could be reformulated as extra differential equations by augmenting (4). The
main reason for not applying such a reformulation up front is that many numerical
solvers can handle quadrature variables more efficiently in treating them separately
from the other state variables and thereby reduce the size of the Jacobian matrix.

For simplicity, we assume throughout the paper that the functions mk, qk, fk,
and hk are at least continuously differentiable in all their arguments. Moreover, we
make the assumption that a solution to the parametric initial value problem (4)–(6)
exists for every parameter value p ∈ P .

2.1. Forward sensitivity method. Upon applying a chain rule of differenti-
ation, the following set of expressions is obtained for the derivatives of the state-
dependent function (7) [29]:
(8)
∂F

∂pj
(p) =

N∑
k=1

[∫ t−k

t+k−1

[
∂qk
∂x

(t, x(t, p), p)sj(t, p) +
∂qk
∂pj

(t, x(t, p), p)
]

dt

+
∂mk

∂x

(
x(t−k , p), p

)
sj(t−k , p) +

∂mk

∂pj

(
x(t−k , p), p

)]
, j = 1 . . . np .

A set of differential equations and boundary conditions defining the state-sensitivity
variable sj := ∂x

∂pj
is also obtained by applying a chain rule of differentiation to the

initial value problem (4)–(6),

ṡj(t, p) =
∂fk
∂x

(t, x(t, p), p)sj(t, p) +
∂fk
∂pj

(t, x(t, p), p) ,(9)

t+k−1 ≤ t ≤ t−k , k = 1 . . . N,

with sj(0, p) =
∂h0

∂pj
(p),(10)

and sj(t+k , p) =
∂hk
∂x

(x(t−k , p), p)sj(t
−
k , p) +

∂hk
∂pj

(x(t−k , p), p),(11)

k = 1 . . . N − 1.

Since both the state and sensitivity problems are specified at the initial time t0, solving
the sensitivity ODEs (9) simultaneously with the state ODEs (4), forward in time,
removes the need to store the state trajectories. However, the overall number of ODEs
with this approach scales asO(nxnp), which may be computationally demanding when
np is large. Both staggered and simultaneous corrector methods [14, 25] have been

c© 2017 SIAM. Published by SIAM under the terms of the Creative Commons 4.0 license
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proposed to mitigate the computational burden for large-scale problems. In contrast,
the computational effort remains largely unaffected by the number of state-dependent
functions.

2.2. Adjoint sensitivity method. Following the derivations in [8, 40], an al-
ternative set of expressions for the derivatives (8) is

(12)

∂Fi
∂p

(p) =
N∑
k=1

[∫ t−k

t+k−1

(
∂fk
∂p

(t, x(t, p), p)Tλi(t, p) +
∂qk,i
∂p

(t, x(t, p), p)
)

dt

]

+
N−1∑
k=1

[
∂hk
∂p

(x(t−k , p), p)
Tλi(t+k , p) +

∂mk,i

∂p
(x(t−k , p), p)

]
+
∂h0

∂p
(p)Tλi(t+0 , p) +

∂mN,i

∂p
(x(t−N , p), p) , i = 1 . . . nF .

Here, the adjoint (or costate) variables λi [13] are defined by the following differential
equations and boundary conditions: for each i ∈ {1, . . . , nF },

λ̇i(t, p) = −∂fk
∂x

(t, x(t, p), p)Tλi(t, p)−
∂qk,i
∂x

(t, x(t, p), p),(13)

t+k−1 ≤ t ≤ t−k , k = 1 . . . N,

with λi(t−N , p) =
∂mN,i

∂x
(x(t−N , p), p),(14)

and λi(t−k , p) =
∂hk
∂x

(x(t−k , p), p)
Tλi(t+k , p) +

∂mk,i

∂x
(x(t−k , p), p) ,(15)

k = 1 . . . N − 1.

A complication with the adjoint approach stems from the fact that the boundary
conditions of the state and adjoint systems are specified at different points, with the
former specified at initial time t0 and the latter at terminal time tN . Therefore,
these two systems may no longer be integrated simultaneously, as previously with the
forward sensitivity approach. Nonetheless, since the state equations do not depend on
the adjoint variables, a popular approach that preserves numerical stability proceeds
in two steps: (i) integrate the state system (4)–(6) forward in time until tN , and
store the computed state values obtained at (sufficiently many) grid points; then (ii)
integrate the adjoint problem (13)–(15) backward in time until t0, by interpolating
the state trajectories between grid points as necessary. Efficient implementations of
this approach are available [7, 17], which use accurate interpolation schemes alongside
check-pointing to control the storage space requirement.

Another important observation about the adjoint problem (13)–(15) is that there
is no explicit specification of the parameters p. This implies that the adjoint λi
associated to the function Fi can be used to compute the gradient of that function
with respect to any of the parameters. In other words, the overall number of ODEs
required to compute the derivatives ∂F

∂p with this approach scales as O(nxnF ), making
it more efficient than the forward sensitivity approach whenever np � nF .

3. Continuous-time set-valued integration with both parametric and
time-varying uncertainty. A precursor to this work is the ongoing research into
reachability analysis for uncertain nonlinear ODEs. This section presents an extension
of existing continuous-time techniques based on polynomial model inclusions [9, 49] in
order to encompass time-varying uncertainty in addition to the parametric variations.
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SENSITIVITY ANALYSIS OF UNCERTAIN DYNAMIC SYSTEMS A3019

This extension will prove necessary later in deriving auxiliary bounding systems for the
forward and adjoint sensitivity problems (9)–(11) and (13)–(15), due to the presence
of state parameterization errors that act as a time-varying uncertainty.

We consider the following generic uncertain dynamic system formulation:

ẏ(t, p, w) = ϕk(t, y(t, p, w), p, w(t)) a.e. t ∈ [t+k−1, t
−
k ] , k = 1 . . . N,(16)

with y(t0, p, w) = η0(p)(17)

and y(t+k , p, w) = ηk(y(t−k , p, w), p, w(t−k )) , k = 1 . . . N − 1 ,(18)

where w : R → Rnw denotes the time-varying uncertainty, assumed to be in the
set W := {w ∈ Lnw

2 | ∀t ∈ [t0, tN ], w(t) ∈ W (t)} for a given set-valued function
W : R → Knw . The objective is to describe a time-varying enclosure Y (t) ⊇ Y (t) of
the reachable set of (16)–(18), defined as

(19) Y (t) :=


ξ

∣∣∣∣∣∣∣∣∣∣∣∣

∃ y ∈Wny

1,2, π ∈ P, ω ∈ W :

ẏ(τ) = ϕk(τ, y(τ), π, ω(τ)) a.e. τ ∈ [t+k−1, t
−
k ], k = 1 . . . N

y(t0) = η0(π)

y(t+k ) = ηk(y(t−k ), π, ω(t−k )), k = 1 . . . N − 1
ξ = y(t)


.

For the particular case of qth-order polynomial models, the reachable set enclo-
sures come in the form

(20) Y (t) :=
{
Pqy (t, p)

∣∣p ∈ P}⊕Rqy(t) .

Based on the understanding that the polynomial models all share the same order q, we
shall drop the superscript q in polynomial model notations in the rest of this section
for simplicity.

Following [49], one natural approach to constructing the multivariate polynomial
function Py : R × P → Rny is to propagate the O(ny(np)q) monomial coefficients of
the polynomial approximant through ODEs. After aggregating all these coefficients
back into polynomial form, the following conditions hold:

Ṗy(t, p) = Pϕk
(t,Py(t, p), p, ŵ(t)) a.e. t ∈ [t+k−1, t

−
k ] , k = 1 . . . N,(21)

with Py(t0, p) = Pη0(p)(22)

and Py(t+k , p) = Pηk
(t−k ,Py(t−k , p), p, ŵ(t−k )) , k = 1 . . . N − 1 ,(23)

where ŵ ∈ W is a given uncertainty reference trajectory. The corresponding param-
eterization error ry : R × P ×W → Rny , given by ry(t, p, w) := y(t, p, w) − Py(t, p),
satisfies the initial value problem

ṙy(t, p, w) = ϕk(t,Py(t, p) + ry(t, p, w), p, w(t))− Pϕk
(t,Py(t, p), p, ŵ(t))(24)

=: rϕk
(t, ry(t, p, w), p, w(t)) a.e. t ∈ [t+k−1, t

−
k ] , k = 1 . . . N,

with ry(0, p, w) = η0(p)− Pη0(p)(25)

and ry(t+k , p, w) = ηk(t−k ,Py(t−k , p) + ry(t−k , p, w), p, w(t−k ))(26)

− Pηk
(t−k ,Py(t−k , p) + ry(t−k , p, w), p, ŵ(t−k ))

=: rηk
(t−k , ry(t−k , p, w), p, w(t−k )) , k = 1 . . . N − 1,

c© 2017 SIAM. Published by SIAM under the terms of the Creative Commons 4.0 license
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for every uncertainty scenario (p, w) ∈ P ×W. Therefore, a reachable set enclosure
in the form of (20) calls for an enclosure of the parameterization error,

(27) Ry(t) ⊇


ρ

∣∣∣∣∣∣∣∣∣∣∣∣

∃ r ∈Wny

1,2, π ∈ P, ω ∈ W :

ṙ(τ) = rϕk
(τ, r(τ), p, w(τ)) a.e. τ ∈ [t+k−1, t

−
k ], k = 1 . . . N

r(t0) = η0(p)− Pη0(p)

r(t+k ) = rηk
(t−k , r(t

−
k ), p, w(t−k )), k = 1 . . . N − 1

ρ = r(t)


.

Two methods for computing such enclosures are described next, a simple method
based on the classical theory of differential inequalities (subsection 3.1) and a second-
order method based on ellipsoidal calculus (subsection 3.2). The propagation of
bounds for the quadrature variables is also discussed as a special case (subsection 3.3).

3.1. Interval remainder bounds. We consider the case of a time-varying un-
certainty tube W with interval cross-sections W (t) := [w(t), w(t)], where the vector-
valued functions w,w : R → Rnw are Lipschitz-continuous on each stage [t+k−1, t

−
k ].

It is convenient to rescale this time-varying uncertainty within [−1, 1]nw , by applying
the linear transformation w(t) := cw(t) + ∆w(t)$(t), with cw(t) := mid(W (t)) and
∆w(t) := diag rad(W (t)). Moreover, a natural choice for the uncertainty reference
trajectory ŵ is the midpoint cw. The rescaled problem (24)–(26) reads as

ṙy(t, p,$) = rϕk
(t, ry(t, p,$), p, cw(t) + ∆w(t)$(t))(28)

a.e. t ∈ [t+k−1, t
−
k ], k = 1 . . . N,

with ry(0, p,$) = η0(p)− Pη0(p)(29)

and ry(t+k , p,$) = rηk

(
t−k , ry(t−k , p,$), p, cw(t−k ) + ∆w(t−k )$(t−k )

)
,(30)

k = 1 . . . N − 1.

The classical theory of differential inequalities [24, 51] can be used to construct
an interval enclosure of the parameterization error in the form Ry(t) := [ry(t), ry(t)].
A sufficient condition is the availability of piecewise Lipschitz-continuous sub- and
superfunctions ry(t), ry(t) : R→ Rny satisfying [37]

a.e. t ∈ [t+k−1, t
−
k ], k = 1 . . . N,

ṙyi
(t) ≤ min

ρ,π,ω


ϕk,i(t,Py(t, π) + ρ, π, cw(t) + ∆w(t)ω)
− Pϕk,i

(t,Py(t, π), π, cw(t))

∣∣∣∣∣∣∣∣∣
ρi = ryi

(t),

ρ ∈ Ry(t),
π ∈ P,
ω ∈ [−1, 1]nw

 ,(31)

ṙyi
(t) ≥ max

ρ,π,ω


ϕk,i(t,Py(t, π) + ρ, π, cw(t) + ∆w(t)ω)
− Pϕk,i

(t,Py(t, π), π, cw(t))

∣∣∣∣∣∣∣∣∣
ρi = ryi(t),
ρ ∈ Ry(t),
π ∈ P,
ω ∈ [−1, 1]nw

(32)

for each i = 1 . . . ny, along with the initial conditions

ryi
(0) ≤ min

π
{η0(π)− Pη0(π) | π ∈ P} ,(33)

ryi
(0) ≥ max

π
{η0(π)− Pη0(π) | π ∈ P}(34)
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SENSITIVITY ANALYSIS OF UNCERTAIN DYNAMIC SYSTEMS A3021

and the transition conditions

ryi
(t+k ) ≤ min

ρ,π,ω

ηk,i(t
−
k ,Py(t−k , π) + ρ, π, cw(t−k ) + ∆w(t−k )ω)

− Pηk,i
(t−k ,Py(t−k , π) + ρ, π, cw(t−k ))

∣∣∣∣∣∣∣
ρ ∈ Ry(t−k ),
π ∈ P,
ω ∈ [−1, 1]nw

 ,

(35)

ryi
(t+k ) ≥ max

ρ,π,ω

ηk,i(t
−
k ,Py(t−k , π) + ρ, π, cw(t−k ) + ∆w(t−k )ω)

− Pηk,i
(t−k ,Py(t−k , π) + ρ, π, cw(t−k ))

∣∣∣∣∣∣∣
ρ ∈ Ry(t−k ),
π ∈ P,
ω ∈ [−1, 1]nw

 .

(36)

Overall, this approach entails the solution of O(ny(np)q) auxiliary ODEs to describe
a reachable set enclosure Y (t) for (16)–(18) on P ×W. In particular, an interval box
enclosure is obtained with q = 0.

3.2. Ellipsoidal remainder bounds. The use of axis-aligned interval boxes
for bounding the parameterization error can result in a large overestimation for some
problems—even for asymptotically stable dynamic systems—due to the well-known
wrapping effect [20]. This subsection presents a new approach to enclosing the param-
eterization error within an ellipsoid, as a means to mitigate wrapping. This is essen-
tially a unification between (i) existing algorithms to bound ODEs with time-varying
uncertainty in [19, 23] and (ii) high-order inclusion algorithms based on polynomial
models with ellipsoidal remainders to bound parametric ODEs in [49].

We consider the case of a time-varying uncertainty tubeW with ellipsoidal cross-
sections W (t) := E(cw(t), Qw(t)), where both the vector-valued function cw : R →
Rnw and the matrix-valued function Qw : R→ Snw

+ are Lipschitz-continuous on each
stage [t+k−1, t

−
k ]. Similar to the interval case, it is convenient to rescale this time-

varying uncertainty within the 2-ball Bnw
2 := E(Inw

), by applying the linear trans-

formation w(t) := cw(t) +Q
1
2
w(t)$(t). Moreover, a natural choice for the uncertainty

reference trajectory ŵ is the center path cw here. The rescaled problem (24)–(26)
reads as

ṙy(t, p,$) = rϕk

(
t, ry(t, p,$), p, cw(t) +Q

1
2
w(t)$(t)

)
(37)

a.e. t ∈ [t+k−1, t
−
k ], k = 1 . . . N,

with ry(0, p,$) = η0(p)− Pη0(p)(38)

and ry(t+k , p,$) = rηk

(
t−k , ry(t−k , p,$), p, cw(t−k ) +Q

1
2
w(t−k )$(t−k )

)
,(39)

k = 1 . . . N − 1.

Our approach to propagating ellipsoidal bounds Ry(t) := E(Qy(t)) for the param-
eterization error entails a decomposition of (37) and (39) into linear and nonlinear
parts as

ṙy(t, p,$) = Aϕk
(t)ry(t, p,$) +Bϕk

(t)$(t) +Nϕk
(t, ry(t, p,$), p,$(t)) ,(40)

ry(t+k , p,$) = Aηk
ry(t−k , p,$) +Bηk

$(t−k ) +Nηk
(ry(t−k , p,$), p,$(t−k )) .(41)

Here, the matrices Aϕk
(t), Bϕk

(t), Aηk
, and Bηk

may result from a linearization of the
functions ϕk and ηk, e.g., using Taylor or Chebyshev expansion. The nonlinear term
Nϕk

(resp., Nηk
) is so chosen that (37) and (40) (resp., (39) and (41)) are equivalent.
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A3022 N. D. PERIĆ, M. E. VILLANUEVA, AND B. CHACHUAT

Moreover, we shall assume for now that nonlinearity bounders Ωϕk
(t),Ωη0 ,Ωηk

∈ IRny

can be constructed such that

∀(r, π, ω) ∈ E(Qy(t))× P × Bnw
2 , Nϕk

(t, r, π, ω) ∈ Ωϕk
(t),(42)

∀π ∈ P, η0(π)− Pη0(π) ∈ Ωη0 ,(43)

∀(r, π, ω) ∈ E(Qy(t−k ))× P × Bnw
2 , Nηk

(t−k , r, π, ω) ∈ Ωηk
.(44)

A computational procedure for automating such bounders is outlined in subsection 4.2.
A direct consequence of Proposition 5 in [49] and Theorem 4.1 in [19] is that an

ellipsoidal enclosure E(Qy(t)) of the parameterization error may be obtained for any
piecewise Lipschitz-continuous function Qy : R→ Sny

+ satisfying

a.e. t ∈ [t+k−1, t
−
k ], k = 1 . . . N,

Q̇y(t) � Aϕk
(t)Qy(t) +Qy(t)Aϕk

(t)T +Qy(t)

(
ν(t) +

ny∑
i=1

κi(t)

)
(45)

+ ν(t)−1Bϕk
(t)Bϕk

(t)T + diag(κ(t))−1 diag rad (Ωϕk
(t))2

,

along with the initial conditions

Qy(0) � diag(γ0)−1 diag rad(Ωη0)2(46)

and the transition conditions

Qy(t+k ) � (αk)−1Aηk
Qy(t−k )AT

ηk
+ (βk)−1Bηk

BT
ηk

(47)

+ diag(γk)−1 diag rad (Ωηk
)2
, k = 1 . . . N − 1,

for some functions ν : R → R++ and κ : R → Rny

++, some scalars γ0 ∈ Rny

++ with∑ny

i=1 γ0,i ≤ 1, and some scalars (αk, βk, γk) ∈ Rny+2
++ with αk + βk +

∑ny

i=1 γk,i ≤ 1
for each k = 1 . . . N − 1. Particular choices for all these functions and scalars are
discussed later in subsection 4.2.

Overall, the ellipsoidal bounding approach requires the solution of O(ny(np)q +
(ny)2) auxiliary ODEs to describe a reachable set enclosure for (16)–(18) on P ×W.

3.3. Quadrature bounds. The focus thus far has been on propagating the
reachable set for systems of nonlinear ODEs under uncertainty, without consideration
of quadrature terms. Clearly, any quadrature term of the form

(48) Q(p, w) :=
N∑
k=1

∫ t−k

t+k−1

θk(t, y(t, p, w), p, w(t)) dt

for (p, w) ∈ P ×W can be computed as Q(p, w) = q(tN , p, w), where the new quadra-
ture variable q satisfies the extra ODE

a.e. t ∈ [t+k−1, t
−
k ], k = 1 . . . N, q̇(t, p, w) = θk(t, y(t, p, w), p, w(t)),(49)

with initial condition q(t0, p, w) = 0 and transition conditions q(t+k , p, w) = q(t−k , p, w),
k = 1 . . . N − 1. Hence, a straightforward approach to dealing with such quadratures
proceeds by appending one extra ODE (48) for each quadrature term to the original
problem (16) and then bounding the extended system using a similar method as
previously. In an ellipsoidal remainder bounding approach, handling the quadrature
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SENSITIVITY ANALYSIS OF UNCERTAIN DYNAMIC SYSTEMS A3023

equations (49) in the same way as the other ODEs (16) could artificially inflate the
state parameterization error bound Ry(t) since it does not recognize that the right-
hand side of the extended ODE system (16), (49) is independent of the quadrature
variable q(t) itself. Therefore, this simple approach is not used here.

Instead, each quadrature term can be bounded separately by using the available
polynomial model inclusion (20) of the reachable set and treating the state param-
eterization error in Ry(t) as a time-varying uncertainty. Specifically, a polynomial
model inclusion in the form {Pq(t, p) | p ∈ P}⊕ [rq(t), rq(t)] may be obtained for each
quadrature variable, where the polynomial part relies on the propagation of O((np)q)
extra monomial coefficients through ODEs in order to satisfy

a.e. t ∈ [t+k−1, t
−
k ], k = 1 . . . N, Ṗq(t, p) = Pθk

(t,Py(t, p), p, ŵ(t)) ,(50)

with Pq(t0, p) = 0 and Pq(t+k , p) = Pq(t−k , p), k = 1 . . . N − 1; and the quadra-
ture parameterization error bounds are any pair of Lipschitz-continuous functions
rq(t), rq(t) : R→ R satisfying

a.e. t ∈ [t+k−1, t
−
k ], k = 1 . . . N,

ṙq(t) ≤ min
ρ,π,ω

{
θk(t,Pq(t, π) + ρ, π, ω(t))
− Pθk

(t,Py(t, π), π, ŵ(t))

∣∣∣∣∣ρ ∈ Ry(t),
π ∈ P, ω ∈ W,

}
,(51)

ṙq(t) ≥ max
ρ,π,ω

{
θk(t,Py(t, π) + ρ, π, ω(t))
− Pθk

(t,Py(t, π), π, ŵ(t))

∣∣∣∣∣ρ ∈ Ry(t),
π ∈ P, ω ∈ W

}
,(52)

along with the initial and transition conditions

rq(t0) ≤ 0 ≤ rq(t0),(53)

rq(t
+
k ) ≤ rq(t−k ) ≤ rq(t−k ) ≤ rq(t+k ), k = 1 . . . N − 1.(54)

Interestingly, this approach will also allow exploiting certain features of state-of-the-
art numerical ODE solvers to handle quadrature terms more efficiently.

4. Application to forward and adjoint sensitivity bounding. Enclosures
for the derivatives of the state-dependent function (7), in the form

(55) ∂pF :=
{
P∂pF (p)

∣∣ p ∈ P}⊕ [r∂pF
, r∂pF ] ⊇

{
∂F

∂p
(p)

∣∣∣∣ p ∈ P} ,

can be computed by combining the sensitivity analysis techniques in subsections 2.1
and 2.2 with the generic continuous-time set-propagation techniques in section 3. Ta-
ble 1 summarizes how the variables and functions in the generic uncertain dynamic
system (16)–(18) specialize to the case of the state system (4)–(6), the forward sen-
sitivity system (9)–(11), and the adjoint sensitivity system (13)–(15). Based on this
specialization, the derivative bounds (55) can be obtained by propagating either poly-
nomial models with interval remainders based on the sufficient conditions in (21)–(23)
and (31)–(36), or polynomial models with ellipsoidal remainders based on the suffi-
cient conditions in (21)–(23) and (45)–(47).

At this point, it is worth reiterating that the polynomial approximant Pqx(t, p)
and the corresponding parameterization error Rqx(t) in a reachable set inclusion (20)
act as a parametric uncertainty and a time-varying disturbance, respectively, in both
the forward and adjoint sensitivity bounding systems.
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A3024 N. D. PERIĆ, M. E. VILLANUEVA, AND B. CHACHUAT

Table 1
Correspondence between the variables and functions in the generic uncertain dynamic system

(16)–(18) and those in the state system (4)–(6), the forward sensitivity system (9)–(11), and the
adjoint sensitivity system (13)–(15).

State FSA ASA

System size, ny nx nx × np nx × nF

Differential variables, y x sj , j = 1 . . . np λi, i = 1 . . . nF

Right-hand side functions, ϕk fk
∂fk

∂x
sj +

∂fk

∂pj
−
∂fk

∂x

T
λi −

∂qk,i

∂x

Initial value function, η0 h0
∂h0

∂pj

∂mN,i

∂x

Transition value functions, ηk hk
∂hk

∂x
sj +

∂hk

∂pj

∂hk

∂x

T
λi +

∂mk,i

∂x

Quadrature functions, θk qk
∂qk

∂x
sj +

∂qk

∂pj

∂fk

∂p

T
λi +

∂qk,i

∂p

(i) In the forward sensitivity approach, polynomial models of both the state
variables and their sensitivities may be jointly propagated forward in time since their
respective initial conditions are all specified at t = t0. That is, the required state
polynomial model inclusions (Pqx(t, p),Rqx(t)) are available in order to compute the
sensitivity polynomial model inclusions (Pqsj

(t, p),Rqsj
(t)) at each time t. Algorithmic

advances for reducing the computational burden in classical forward sensitivity anal-
ysis, such as staggered or simultaneous corrector methods [14, 25], could be used in
the scope of set-valued sensitivity integration. In doing so, however, it is important
to define analytical sensitivity right-hand sides, and not let a solver create or evaluate
these equations using finite differences or automatic differentiation which would result
in incorrect sensitivity bounds. Another possible caveat is that the state and forward
sensitivity bounding systems no longer share the same Jacobian matrices, due to dif-
ferent sources of overestimation in the state and forward sensitivity parameterization
error inclusions. Those implementations of the staggered corrector method, whereby
the Jacobian matrix from the state system is reused subsequently for the sensitivity
system for improved efficiency, could therefore result in incorrect sensitivity bounds.
In contrast, simultaneous corrector methods are safe to use even though the Jacobian
matrices of the state and sensitivity systems could be different since the right-hand
side of the sensitivity equations needs reevaluating at each time step.

(ii) In the adjoint sensitivity approach, joint forward propagation in time of
the state and adjoint polynomial models is no longer possible since the adjoint initial
values are specified at t = tN . In order to enable the propagation of adjoint polynomial
model inclusions (Pqλi

(t, p),Rqλi
(t)) backward in time, one may use polynomial model

inclusions (Pqx(t, p),Rqx(t)) interpolated from a number of mesh points stored during a
preliminary state bounding step. This two-step approach is essentially identical to the
one used in classical adjoint sensitivity analysis [8], and it may therefore benefit from
algorithmic advances thereof, such as check-pointing in order to control the forward
storage requirement.

In both approaches, the main practical difficulty in using state-of-the-art numer-
ical solvers for propagating the sensitivity bounds is constructing and evaluating the
right-hand side, initial value, and transition value functions of the auxiliary sensitivity
bounding systems. Subsections 4.1 and 4.2 provide details for such constructions. We
assume that the functions fk, hk, mk, and qk in the problem definition (4)–(7) are
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SENSITIVITY ANALYSIS OF UNCERTAIN DYNAMIC SYSTEMS A3025

factorable—namely defined by a finite number of bivariate sums, products, and uni-
variate compositions [30]—and sufficiently smooth, so that automatic differentiation
and set-valued computer algebra can be applied.

4.1. Computing polynomial models with interval remainder bounds.
A high-order inclusion of the reachable set (19), in the form of a qth-order poly-
nomial model with interval reminder (Pqy (t, ·), [rqy(t), rqy(t)]), can be computed based
on the sufficient conditions in (21)–(23) and (31)–(36), with equality signs in all of
the inequalities. At a given time t ∈ [t+k−1, t

−
k ], k = 1 . . . N , and for each compo-

nent i = 1, . . . , ny, we compute a qth-order polynomial model on P of the composite
function

ϕk,i(t, (Pqy (t, ·),Riy), ·,Rw(t)) =: (Pqϕk,i
,Rqϕk,i

) ,

with Riyj
:=
{

[rqyj
(t), rqyj

(t)] if i 6= j,
{rqyi

(t)} otherwise

and Rw(t) ∈ IRnw an interval enclosure of the time-varying uncertainty W at t. By
construction, the coefficients of the multivariate polynomial Pqϕk,i

provide the time
derivatives of the polynomial coefficients in (21), whereas the lower bound (minRqϕk,i

)
provides the right-hand side of (31). The right-hand side of (32) is constructed like-
wise. At the initial and transition times tk, k = 0 . . . N , the polynomial parts in (22)
and (23) and the interval remainder bounds in (33)–(36) are directly obtained from
polynomial models of the initial and transition value functions ηk on P .

4.2. Computing polynomial models with ellipsoidal remainder bounds.
A high-order inclusion of the reachable set (19), in the form of a qth-order polyno-
mial model with ellipsoidal remainder (Pqy (t, ·), E(Qqy(t))), can be computed based on
the sufficient conditions in (21)–(23) and (45)–(47), with equality signs in all of the
inequalities.

Of the alternatives for constructing the right-hand sides of (21) and (45) at a
given time t ∈ [t+k−1, t

−
k ], k = 1 . . . N , we use the following two-step procedure, based

on a modification of the mean-value approach described in [49]:
(i) Compute a qth-order polynomial model with an interval remainder of the

composite function ϕk(t,Pqy (t, ·), ·, cw(t)) on P , such that

∀p ∈ P , ϕk(t,Pqy (t, p), p, cw(t)) ∈


∑

γ∈Nnp ,
|γ|≤q

αϕk,γ Bγ(ρ)

⊕R0
ϕk
,(56)

with αϕk,γ ∈ Rny and R0
ϕk
∈ IRny .

(ii) Compute q′th-order polynomial models with interval remainders and q′ ≤
q of the Jacobian matrices ∂ϕk

∂y (t,Pq′y (t, ·) + Rq′y (t), ·,Rw(t)) and ∂ϕk

∂w (t,Pq′y (t, ·) +
Rq′y (t), ·,Rw(t)) on P , such that

∀(p, r, w) ∈ P ×Rq′y (t)×Rw(t) ,
∂ϕk
∂y

(t,Pq′y (t, p) + r, p, w) ∈
{
C∂yϕk

}
⊕R∂yϕk

and
∂ϕk
∂w

(t,Pq′y (t, p) + r, p, w) ∈ {C∂wϕk
} ⊕R∂wϕk

,

with C∂yϕk
∈ Rny×ny , C∂wϕk

∈ Rny×nw , R∂yϕk
∈ IRny×ny , and R∂wϕk

∈ IRny×nw .
Here, (Pq′y (t, ·),Rq′y (t)) denotes a q′th-order polynomial model with an interval re-
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A3026 N. D. PERIĆ, M. E. VILLANUEVA, AND B. CHACHUAT

mainder of the reachable set (19), as derived from (Pqy (t, ·), E(Qqy(t))) by append-
ing all the terms of order greater than q′ to the remainder term; and the interval
vector Rw(t) ∈ IRnw associated with the time-varying uncertainty W is such that
Rw(t) ⊇ E(Qw(t)).

By construction, the time derivatives of the polynomial coefficients in (21) can
be taken as the coefficients αϕk,γ in (56); and the matrices Aϕk

(t) and Bϕk
(t) in (40)

and the nonlinearity bounder Ωϕk
(t) in (42) can be taken as

Aϕk
(t) := C∂yϕk

, Bϕk
(t) := C∂wϕk

Qqy(t)
1
2 ,

and Ωϕk
(t) := R0

ϕk
+ [R∂yϕk

− C∂yϕk
]Rq′y (t) + [R∂wϕk

− C∂wϕk
]Rw(t) .

One simple choice for the ellipsoid parameterization trajectories κ(t) and ν(t) in (45)
that minimize tr

(
Q̇qy(t)

)
at every t ∈ [t+k−1, t

−
k ], k = 1 . . . N , is

ν(t) :=

√
tr (Bϕk

(t)Bϕk
(t)T)

tr (Qqy(t)) + ε
, κ(t) :=

rad(Ωϕk
(t))√

tr (Qqy(t)) + ε

for some small regularization ε > 0. Where the magnitude of the parameterization
error term Rqy(t) varies by multiple orders in different directions, it is often advanta-
geous to minimize the scaled trace trQq

y(t)
(
Q̇qy(t)

)
instead, giving

ν(t) :=

√
trQq

y(t) (Bϕk
(t)Bϕk

(t)T)
trQq

y(t) (Qqy(t)) + ε
, κ(t) :=

radQq
y(t)(Ωϕk

(t))√
trQq

y(t) (Qqy(t)) + ε

for some finite tolerance RTOL� 1 in (2) and (3).
The same two-step procedure may be applied for constructing the right-hand sides

of the transition conditions (23) and (47), merely by substituting ϕk for ηk. Here,
one particular choice of the ellipsoid parameterization scalars αk, βk, and γk in (47)
that minimize tr(Qqy(t+k )), for each k = 1 . . . N , is

αk :=

√
tr
(
Aηk

Qy(t−k )AT
ηk

)
Σ + ε

, βk :=
tr
(
Bηk

BT
ηk

)
Σ + ε

, γk :=
rad(Ωηk

)
Σ + ε

,

with Σ :=
√

tr
(
Aηk

Qy(t−k )AT
ηk

)
+
√

tr
(
Bηk

BT
ηk

)
+ tr (diag rad(Ωηk

)) .

Like previously, a scaled version may be used instead, e.g., with the scalars αk, βk,
and γk minimizing trQq

y(t−k )(Q
q
y(t+k )).

Finally, the right-hand sides of the initial conditions (22) and (46) may be readily
obtained from a qth-order polynomial model (Pqη0 ,Rqη0) of η0 on P , by setting Ωη0 :=
Rqη0 and choosing the ellipsoid parameterization scalars γ0 in (46) as

γ0 :=
rad(Ωη0)

tr (diag rad(Ωηk
)) + ε

.

4.3. Convergence and stability properties of the sensitivity bounds.
An important property in comparing the tightness of the derivative enclosures ∂pF in
(55) is how quickly they converge to the actual set of derivatives when the size of the
parameter set P vanishes. This convergence rate is dictated by how quickly the reach-
able set inclusions for the state and forward/adjoint sensitivity systems themselves
converge to the exact reachable sets.
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SENSITIVITY ANALYSIS OF UNCERTAIN DYNAMIC SYSTEMS A3027

We start by recalling that, for any factorable and (q+1)-times continuously differ-
entiable function Ψ : Rn → Rm, the remainder bound RqΨ in a qth-order polynomial
model (PqΨ,RqΨ) of Ψ on Z ∈ IRn has convergence order (at least) q + 1 on Z in
the sense of (1) when it is constructed using either Taylor or Chebyshev model arith-
metic [6, 38]. Moreover, it has been established in [49] that the error parameterization
bounds Rqx(t) in polynomial model inclusions of the state system (4)–(6), as obtained
using the approaches in subsections 4.1 and 4.2 with Taylor or Chebyshev model
arithmetic, have convergence order q+ 1 on P whenever the functions fk, h0, and hk
are (q+ 1)-times continuously differentiable in x and p. We argue here that the error
parameterization bounds Rqsj

(t) (resp., Rqλi
(t)) in polynomial model inclusions of the

forward sensitivity system (9)–(11) (resp., adjoint sensitivity system (13)–(15)) also
have convergence order q+1 on P when the participating functions ϕk, η0, and ηk are
sufficiently smooth. Since the time-varying disturbance thereof is enclosed by Rqx(t),
which is known to have convergence order q + 1, the same method of proof as in [49]
can be used to establish this convergence result.

As far as stability is concerned, it has been established in [20] that stable reach-
able set inclusions on infinite time horizons can be computed for nonlinear dynamic
systems in the vicinity of their locally asymptotically stable equilibrium points, or
their stable periodic orbits insofar as the cycle time is independent of the parameters,
when polynomial models with ellipsoidal remainders are propagated by the set-valued
integrator. The reason behind this stabilization is that the magnification of the param-
eterization error due to the wrapping effect is overpowered by the natural contraction
of the trajectories for such systems. Since both the forward and adjoint sensitivity
systems inherit the asymptotic stability properties of the state system [7], we argue
that forward and adjoint system bound propagation will enjoy stability properties
similar to state bound propagation.

5. Numerical case studies. The main objective of the numerical case studies
below is to illustrate various properties of the proposed set-valued ODE sensitivity
methods and make comparisons between several options or variants. Our implementa-
tion of these methods comes in the form of a C++ class called ODEBNDS as part of the
library CRONOS [9], which is available from https://github.com/omega-icl/cronos.
We make use of the library MC++ (https://github.com/omega-icl/mcpp) for cre-
ating and manipulating expression trees, and for bounding these expressions using
Taylor or Chebyshev models, in combination with verified interval libraries such as
PROFIL (http://www.ti3.tu-harburg.de/). For numerical ODE integration, we use
the code CVODES in SUNDIALS [17] (version 2.7), which comes with both forward
and adjoint sensitivity analysis capabilities.

Unless otherwise noted, the following case studies use the BDF scheme with a
maximum order of 5, the simultaneous corrector method with analytical sensitivity
right-hand sides for forward sensitivity analysis, and a cubic Hermite interpolation
without check-pointing for adjoint sensitivity analysis. The option of an approximate
diagonal Jacobian formed by way of a difference quotient is used for simplicity. The
relative and absolute numerical integration tolerances for the state, sensitivity, and
adjoint systems are set to 10−8 and 10−10, respectively, for all the variables, apart
from the shape matrix entries in the ellipsoidal remainders whose absolute tolerances
are set to 10−20.1 The reported CPU times are for an Intel(R) Core(TM) i7-3770

1Setting a tolerance of 10−20 on the entries of the shape matrix is equivalent to setting a tolerance
of 10−10 on the shape matrix square-root, which is thus identical to the absolute tolerances set for
the other variables.
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Fig. 1. Projections onto x1 (left), s1,2 := ∂x1/∂p2 (middle), and λ1 (right) of the reachable
tube enclosures for the state, sensitivity, and adjoint trajectories. The bounds derived from 3rd-
and 5th-order Chebyshev models with ellipsoidal remainders correspond to the blue and red lines,
respectively. Inner approximations for the actual reachable sets are represented in shaded gray.
Color is available in the online version only.

CPU (8 × 3.40 GHz) computer with 15.6 GiB RAM, running Ubuntu 14.04.2 LTS
(GNU/Linux 3.13.0-54-generic x86 64) and gcc version 4.8.2 (with a -O2 compilation
option).

5.1. Cubic oscillator. Consider the dynamic system

ẋ1(t) = mx1(t) [1− x1(t)x2(t)] + x2(t) [1−mx1(t)x2(t)] ,(57)

ẋ2(t) = mx2(t) [1− x2(t)2]− x1(t) [1 +mx1(t)x2(t)]− 2mx2(t) ,(58)

with uncertain initial conditions x1(0) = p1 ∈ [1.5, 2.5] and x2(0) = p2 ∈ [−0.5, 0.5],
describing an oscillator of mass m = 0.1. Our focus is on the cumulative squared-
deviation of the oscillator with respect to the origin, measured as

(59) F (p) =
∫ T

0
x1(t)2 dt ,

over a time horizon of T = 100.
Bounds derived from 3rd- and 5th-order Chebyshev models with ellipsoidal re-

mainders are shown in Figure 1 for selected state, sensitivity, and adjoint trajectories.
These bounds are found to be tight throughout the oscillations for 5th-order Cheby-
shev models, whereas the sensitivity and adjoint bounds are progressively diverging
in their respective directions of integration with 3rd-order models. At this point,
we would like to recall that the cubic oscillator problem (57), (58) presents a stable
periodic orbit, in the vicinity of which the state bounds can be stabilized [20]. The
results in Figure 1 confirm that the sensitivity and adjoint bounds may enjoy a similar
stability for this problem, but the size of uncertainty or the expansion order for which
such stabilization occurs is different for the state, forward sensitivity, and adjoint
sensitivity problems.

Approximate inner bounds, using Monte Carlo sampling, for the derivatives of
(59) are given by

Sampling: ∂pF ⊇ [2.461, 3.356]× [−0.048, 1.893] .

In the case of 4th-order Chebyshev models, the bounds remain rather inaccurate, with
the remainder bounds having the same magnitude as the polynomial approximant
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Fig. 2. Reachable set enclosures of the sensitivity variables s2 := ∂x/∂p2 (left) and the adjoint
variables λ (right). The enclosures corresponding to 4th-, 5th-, and 8th-order Chebyshev models
with ellipsoidal remainders are represented in shaded green, red, and black, respectively. Color is
available in the online version only.

ranges,

FSA: ∂pF ⊆ [1.454, 4.438]× [−1.553, 3.566],

ASA: ∂pF ⊆ [0.945, 4.947]× [−2.829, 4.841] .

Moving to 5th-order Chebyshev models, the remainder bounds become an order of
magnitude smaller than the polynomial approximant ranges,

FSA: ∂pF ⊆ [2.085, 3.806]× [−0.406, 2.417],

ASA: ∂pF ⊆ [2.015, 3.876]× [−0.604, 2.617] .

In the case of 8th-order Chebyshev models finally, the remainder bounds are in the
order of 10−3, so the polynomial approximant may be assimilated to the actual reach-
able sets,

FSA: ∂pF ⊆ [2.252, 3.639]× [−0.111, 2.123],

ASA: ∂pF ⊆ [2.252, 3.640]× [−0.113, 2.125] .

Notice the residual gap between the derivative enclosures and sampled ranges, despite
the remainder bounds becoming small. This conservatism is due to the bounding of
the multivariate polynomial approximant, which is not exact here [38]. These results
are also confirmed by the plots of various reachable tube enclosures in Figure 2,
both for the sensitivity variables at time t = T and the adjoint variables at t = 0.
Finally, we note that the forward sensitivity bounds are slightly less conservative than
their adjoint counterparts, although the latter are computationally cheaper since the
problem consists of a single function but two parameters.
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Table 2
Measurement times and concentrations in the least-squares function (71).

tk [day] 0.25 0.5 0.75 1 1.25 1.5 1.75 2 2.25 2.5 2.75 3

Sm
1 [g L−1] 0.74 0.63 0.61 0.58 0.59 0.60 0.61 0.63 0.64 0.66 0.67 0.70
Sm

2 [mmol L−1] 2.3 2.2 2.2 2.1 2.2 2.3 2.3 2.3 2.4 2.4 2.4 2.5
Cm [mmol L−1] 51.1 53.4 54.0 54.0 54.0 54.0 53.9 53.9 53.8 53.8 53.8 53.7

5.2. Anaerobic digester. Consider the following dynamic model of an anaer-
obic digester, as first developed in [3]:

Ẋ1(t) = [µ1(t)− αD]X1(t),(60)

Ẋ2(t) = [µ2(t)− αD]X2(t),(61)

Ṡ1(t) = D[Sin
1 − S1(t)]− k1µ1(t)X1(t),(62)

Ṡ2(t) = D[Sin
2 − S2(t)] + k2µ1(t)X1(t)− k3µ2(t)X2(t),(63)

Ż(t) = D[Z in − Z(t)],(64)

Ċ(t) = D[C in − C(t)]− qCO2(t) + k4µ1(t)X1(t) + k5µ2(t)X2(t) ,(65)

with

µ1(t) := µ̄1
S1(t)

S1(t) +KS1

,(66)

µ2(t) := µ̄2
S2(t)

S2(t) +KS2 + S2(t)2/KI2

,(67)

qCO2(t) := kLa[C(t) + S2(t)− Z(t)−KHPCO2(t)],(68)

PCO2(t) :=
φCO2(t)−

√
φCO2(t)2 − 4KHPt[C(t) + S2(t)− Z(t)]

2KH
,(69)

φCO2(t) := C(t) + S2(t)− Z(t) +KHPt +
k6

kLa
µ2(t)X2(t) .(70)

This model describes the two-step conversion of an organic substrate (S1) to volatile
fatty acids (S2) and to methane, as promoted by two bacterial populations (X1,
X2). Liquid-gas transfer and pH self-regulation are accounted for through the con-
servation of both total inorganic carbon (C) and nonreacting cations (Z). Uncer-
tainty is present in the initial conditions X1(0) = p1 ∈ [0.46, 0.54] g L−1, X2(0) =
p2 ∈ [0.92, 1.08] g L−1, and C(0) = p3 ∈ [36.8, 43.2] mmol L−1, whereas the remain-
ing initial conditions are S1(0) = 1 mmol L−1, S2(0) = 5 mmol L−1, and Z(0) =
50 mmol L−1. Values for all the parameters in (60)–(70) can be found in [3, 49].

The problem involves bounding the derivatives of the least-squares function

(71) F (p) =
12∑
k=1

(Sm
1 (tk)− S1(tk))2 + (Sm

2 (tk)− S2(tk))2 + (Cm(tk)− C(tk))2 ,

where the measurements Sm
1 (tk), Sm

2 (tk), and Cm(tk) are every 6 hours over a 3-day
horizon, as given in Table 2.

Bounds derived from 2nd-order Chebyshev models with both interval and ellip-
soidal remainders are shown in Figure 3 for selected state, sensitivity, and adjoint tra-
jectories. For such a low expansion order, the forward and adjoint sensitivity bounds
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Fig. 3. Projections onto S2 (left), ∂S2/∂X2(0) (middle), and λS2 (right) of the reachable tube
enclosures for the state, sensitivity, and adjoint trajectories. The bounds derived from 2nd-order
Chebyshev models with interval and ellipsoidal remainders correspond to the blue and red lines,
respectively. Inner approximations for the actual reachable sets are represented in shaded gray.
Color is available in the online version only.
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Fig. 4. Conservatism of the derivative bounds computed with various sensitivity bounding ap-
proaches for 2nd-order (left), 3rd-order (middle), and 5th-order (right) Chebyshev models. FSA:
adjoint sensitivity analysis. ASA: forward sensitivity analysis. IR: interval remainder. ER: ellip-
soidal remainder.

appear to be diverging when interval remainders are considered, whereas those corre-
sponding to ellipsoidal remainders are significantly less conservative. Notice also the
discontinuous adjoint trajectories at the times tk in (71).

A more systematic comparison of the conservatism associated with Chebyshev
models of 2nd-, 3rd-, and 5th-order is presented in Figure 4 for various sensitivity
bounding approaches. The overapproximation thereof is measured in terms of the
radius of a Chebyshev model’s remainder, the magnitude of which should be compared
with the following approximate inner bounds (using Monte Carlo sampling) for the
derivatives of (71):

Sampling: ∂pF ⊇ [−7.051, 5.956]× [−35.25, 26.15]× [−0.958, 0.887] .

A general trend in Figure 4 is the tighter derivative bounds that are obtained by
propagating (i) higher-order Chebyshev models and (ii) ellipsoidal remainders rather
than interval remainders—two strategies known for mitigating the wrapping effect
and improving the stability of the bounds. Moreover, Chebyshev models of order 5
or higher produce very little conservatism in this problem.

Similar to the previous case study, forward sensitivity analysis appears to provide
more accurate bounds than adjoint sensitivity analysis. However, this is not without
additional computational overhead. The computational comparison in Table 3 shows
a two-fold increase in the CPU time for the forward sensitivity approach compared
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Table 3
Computational comparison of various sensitivity bounding approaches for 2nd-, 3rd- and 5th-

order Chebyshev models of the derivative bounds. FSA: adjoint sensitivity analysis. ASA: forward
sensitivity analysis. IR: interval remainder. ER: ellipsoidal remainder.

FSA ASA

state + sensitivity state adjoint

IR ER IR ER IR ER

Integration steps 1136 1865 612 1067 1957 2108
q = 2 RHS evaluations 2781 4450 1044 1835 3153 3208

CPU time [sec] 3.3 5.5 0.4 0.7 2.0 2.7

Integration steps 1143 2156 748 1147 1822 2369
q = 3 RHS evaluations 2728 5379 1305 2073 2956 3786

CPU time [sec] 7.1 8.9 0.9 1.0 4.0 4.1

Integration steps 1059 2785 712 1320 1648 2501
q = 5 RHS evaluations 2644 7449 1372 2637 2989 4360

CPU time [sec] 44.8 52.7 3.6 5.5 15.6 27.6

with the adjoint sensitivity approach (considering the combined state-adjoint system).
These differences are consistent with the fact that the problem has a single function
and three parameters. Also, the reason for not observing a three-fold improvement
with the adjoint sensitivity approach is linked to the larger number of integration
steps taken by the discontinuous adjoint problems.

5.3. Exothermic batch reactor. We consider the model of a batch reactor
with a cooling jacket, where a first-order exothermic reaction A→ B is taking place.
The ODEs describing the overall conversion X and the temperature T are

Ẋ(t) = k0 exp
( −Ea

RT (t)

)
[1−X(t)],(72)

Ṫ (t) =
UA

CA0V Cp
[Tj(t)− T (t)]− ∆HRk0

Cp
exp

( −Ea

RT (t)

)
[1−X(t)] ,(73)

with initial values X(0) = 0 and T (0) ∈ [350, 370] K. The cooling jacket temperature
profile Tj is discretized as a piecewise constant control over N stages,

Tj(t) = T
(k)
j ∈ [290, 310] K ∀t ∈ [t+k−1, t

−
k ], k = 1 . . . N,

with tk := 900 k
N [s]. Values for all the other parameters are the same as in [12]. The

problem involves bounding the derivatives of the final conversion X(tN ) at tN = 900 s
with respect to the uncertain parameters p = (T (0), T (1)

j , . . . , T
(N)
j ).

Problem (72)–(73) provides a means to investigate how the proposed sensitivity-
bounding approaches scale with respect to an increasing number of parameters. Fig-
ure 5 presents the conservatism associated with 2nd- and 3rd-order Chebyshev mod-
els, with either interval or ellipsoidal remainders. The corresponding computational
statistics are reported in Table 4. The overestimation present in the computed deriva-
tive bounds with the forward and adjoint sensitivity bounding methods described in
section 4 is 1–2 orders of magnitude smaller for 2nd-order Chebyshev models, and 2–3
orders of magnitude smaller with 3rd-order Chebyshev models, than the derivative
ranges represented in shaded gray on Figure 5. A general trend is that interval re-
mainder propagation provides tighter bounds than ellipsoidal remainder propagation,
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Fig. 5. Conservatism of the derivative bounds computed with various sensitivity bounding ap-
proaches for 2nd-order (top row) and 3rd-order (bottom row) Chebyshev models, with either interval
remainders (left column) or ellipsoidal remainders (right column). Approximate inner bounds for
the function derivatives are represented in shaded gray. FSA: adjoint sensitivity analysis. ASA:
forward sensitivity analysis. IR: interval remainder. ER: ellipsoidal remainder.

an indication that the dynamics (72), (73) are not causing too much wrapping here.
Nonetheless, interval remainder propagation typically entails a higher computational
burden than its ellipsoidal counterpart, due to a larger number of integration steps.

Quite expectedly when the number of parameters increases from np = 3 to 9,
adjoint sensitivity bounding becomes much cheaper than forward sensitivity bounding.
A difference with real-valued adjoint integration, however, is that the computational
cost of propagating adjoint bounds increases significantly with more parameters, all
else being the same, due to a larger number of auxiliary bounding ODEs. Another
general observation is that the computed adjoint sensitivity bounds are tighter than
their forward sensitivity counterparts here.

Table 4 and Figure 5 also compare the forward and adjoint sensitivity bounding
methods described in section 4 with alternative forward sensitivity methods that use
existing set-valued integration to bound an extended state-sensitivity system directly;
that is, these methods do not exploit the built-in forward sensitivity capabilities of
CVODES, and in particular the remainder bound equations are different from those
presented in section 4. Two variants thereof are whether one single state-sensitivity
system with nx(np + 1) is considered for all the parameters (all-at-once approach) or
separate state-sensitivity systems with 2nx are considered for each parameter (one-by-
one approach). The results in Table 4 and Figure 5 clearly show that neither of these
variants is competitive with the proposed methods in terms of computational effort.
The corresponding sensitivity bounds are also much weaker when ellipsoidal remain-
ders are used, due to the need for propagating these ellipsoids in higher-dimensional
spaces.
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Table 4
Computational comparison of various sensitivity bounding approaches for 2nd- and 3rd-order

Chebyshev models of the derivative bounds. FSA: forward sensitivity analysis. ASA: adjoint sensi-
tivity analysis. IR: interval remainder. ER: ellipsoidal remainder.

FSA ASA

all-at-once one-by-one simul. corr. state adjoint

IR ER IR ER IR ER IR ER IR ER

q = 2 Steps 2,290 3,907 6,109 8,935 927 1,035 555 577 328 417
N = 2 RHS 3,949 7,212 10,626 15,864 2,422 2,701 983 966 599 762

CPU 1.48 1.87 2.14 2.32 0.91 0.84 0.11 0.10 0.07 0.09

q = 2 Steps 4,572 7,290 44,985 49,714 1,865 1,926 1,195 1,158 621 708
N = 8 RHS 8,287 13,444 82,624 89,572 4,804 4,795 2,313 2,270 1,203 1,336

CPU 52.1 84.1 101 128 32.8 25.9 1.23 0.88 1.10 1.20

q = 3 Steps 2,317 4,703 6,613 12,327 2,268 1,361 2,068 810 2,277 495
N = 2 RHS 4,211 9,345 11,926 23,096 4,145 3,691 3,753 1,530 4,028 972

CPU 2.85 4.44 4.55 5.35 1.90 1.54 1.70 0.18 1.83 0.17

q = 3 Steps 3,689 6,382 37,130 56,250 1,451 1,361 1,257 1,175 413 459
N = 8 RHS 7,400 11,984 68,709 103,057 3,882 3,619 2,433 2,259 822 848

CPU 255 1,194 717 1,692 312 82.4 19.3 5.21 11.0 4.85

5.4. Belousov–Zhabotinskii reaction system. We consider the following
reaction-diffusion system [32], given in dimensionless form by the partial differential
equations (PDEs)

∂u1

∂t
(t, x) =

∂2u1

∂x2 (t, x) + u1(t, x)[1− u1(t, x)− ru2(t, x)],(74)

∂u2

∂t
(t, x) =

∂2u2

∂x2 − bu1(t, x)u2(t, x) ,(75)

with boundary conditions for u1 and u2 as

lim
x→−∞

∂u1

∂x
(t, x) = lim

x→+∞
∂u1

∂x
(t, x) = lim

x→−∞
∂u2

∂x
(t, x) = lim

x→+∞
∂u2

∂x
(t, x) = 0 .(76)

This problem presents two uncertain kinetic parameters r ∈ [9.8, 10.2] and b ∈
[1.225, 1.275], and it involves bounding the derivatives of the average value of u1(T, ·)
with respect to these parameters at a given time T > 0.

Following [32], we discretize this PDE system into an ODE system by applying
the method of lines over the finite spatial domain −30 ≤ x ≤ 20:

u̇
(k)
1 (t) =

1
h2

[
u

(k+1)
1 (t)− 2u(k)

1 (t) + u
(k−1)
1 (t)

]
+ u

(k)
1 (t)

[
1− u(k)

1 (t)− ru(k)
2 (t)

]
,

(77)

u̇
(k)
2 (t) =

1
h2

[
u

(k+1)
2 (t)− 2u(k)

2 (t) + u
(k−1)
2 (t)

]
− bu(k)

1 (t)u(k)
2 (t)

(78)

for every k = 1 . . . N − 1, with h := 50
N . The corresponding discretized boundary

conditions are given by

(79) u
(0)
1 (t) = u

(1)
1 (t), u(N)

1 (t) = u
(N−1)
1 (t), u(0)

2 (t) = u
(1)
2 (t), u(N)

2 (t) = u
(N−1)
2 (t) .
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Fig. 6. Projections onto s(k)
1,1 := ∂u

(k)
1 /∂r (left) and λ(k)

1,1 (right) of the reachable tube enclosures
for the sensitivity and adjoint trajectories with N = 50 and 5th-order Chebyshev models with ellip-
soidal remainders. The lower and upper bounds correspond to the blue and red lines, respectively.
Color is available in the online version only.

Moreover, we simulate a moving front by defining the following initial conditions:

u
(k)
1 (0) =


0 if k < N/2,
0.5 if k = N/2,
1 if k > N/2,

u
(k)
2 (0) =


1 if k < N/2,
0.5 if k = N/2,
0 if k > N/2,

(80)

here assuming N is even. The average value of the concentration u1(T, ·) over the
spatial domain is approximated by the function

(81) F (p) =
1
N

N∑
k=1

u
(k)
1 (T ) ,

with the time horizon set to T = 20, and the uncertain parameter vector p = (r, b).
Approximate inner bounds (using Monte Carlo sampling) for the derivatives of

(81) take values in the order of 10−3 for discretization levels N in the range of 10–50.
For N = 50, the derivative bounds computed with 5th-order Chebyshev models with
ellipsoidal remainders are accurate, having remainders in the order of 10−7 and 10−6

with the forward and adjoint sensitivity bounding approaches, respectively. These
tight derivative bounds are reflected in Figure 6 showing projected enclosures for se-
lected sensitivity and adjoint trajectories, which are indeed tight across the discretized
spatial domain. An interesting observation here is that the tightness of the deriva-
tive bounds increases as the mesh size is refined. For a coarser discretization level
of N = 20, for instance, remainders an order of magnitude larger are obtained with
both the forward and adjoint sensitivity bounding approaches. We also note that the
propagation of interval remainders does not produce meaningful derivative bounds in
this case study.

This discretized ODE system (77)–(78) provides a means to investigate how the
proposed sensitivity-bounding approaches scale with an increasing number of states
by refining the spatial discretization. Figure 7 compares the performance of the
state, forward sensitivity, and adjoint sensitivity set-valued integrators, with either
3rd- or 5th-order Chebyshev models with ellipsoidal remainders, as a function of the
discretization size. Generally, it is the discretization size N , and not the polynomial
expansion order q, that is responsible for increasing the computational burden here.
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Fig. 7. Computational comparison of the state, sensitivity, and adjoint bounding problems with
3rd- and 5th-order Chebyshev models in terms of the overall CPU time (left) and the time per right-
hand side evaluation of the bounding ODEs (right). The red, blue, and green lines correspond to
the state, sensitivity, and adjoint bounding systems, respectively. The solid lines are for 3rd-order
Chebyshev models and the dashed lines for 5th-order Chebyshev models. Color is available in the
online version only.

In fact, 5th-order expansions even turn out to be faster than 3rd-order expansions,
due to their taking significantly fewer integration steps, which balances the larger
computational effort for computing the right-hand side of the auxiliary bounding
ODEs. This is because the size of the auxiliary bounding system in the ellipsoidal
remainder approach is dominated by (nx)2 rather than 2qnx for low expansion orders
q in this two-parameter problem. Finally, Figure 7 reveals that adjoint sensitivity
bounding is consistently faster than forward sensitivity bounding, for the problem
contains two parameters and a single function.

6. Conclusions. The main contribution of this paper is an extension of contin-
uous-time set-valued integration methods to enable sensitivity analysis of parametric
ODEs. An approach to propagating polynomial model inclusions for either of the
forward and adjoint sensitivity systems has been described, which entails a specializa-
tion of generic continuous-time set-valued integration for ODEs with both parametric
and time-varying uncertainties. Similar to classical sensitivity analysis, bounds for
the forward sensitivity systems are propagated forward in time, alongside the state
bounds, whereas bounds for the adjoint sensitivity systems call for a backward pass
and interpolation between grid points of the state bounds computed during a for-
ward pass. Two variants have been described, whereby the remainder terms in the
forward/adjoint sensitivity polynomial model inclusions, which enclose the forward
or adjoint sensitivity parameterization errors, are interval boxes or ellipsoids. A key
aspect of the proposed approach is that the state parameterization error acts as a
time-varying uncertainty in either of the sensitivity bounding approaches. Other set-
valued integration approaches could be extended likewise in order to enable sensitivity
bounding.

The paper has also described an implementation of the set-valued sensitivity
integrators that builds upon, and takes advantage of, state-of-the-art numerical inte-
grators with sensitivity capability. From a practical standpoint, the main task thereby
involves evaluating the right-hand side of the auxiliary dynamic bounding system and
of the corresponding transition conditions. An open source implementation is made
available as a C++ class in the library CRONOS, based on the numerical integrator
CVODES in the SUNDIALS suite. The latter enables the use of simultaneous correc-

c© 2017 SIAM. Published by SIAM under the terms of the Creative Commons 4.0 license

D
ow

nl
oa

de
d 

01
/1

1/
18

 to
 1

55
.1

98
.1

2.
14

7.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

C
C

B
Y

 li
ce

ns
e 



SENSITIVITY ANALYSIS OF UNCERTAIN DYNAMIC SYSTEMS A3037

tor methods—and potentially staggered corrector methods too—in forward sensitivity
analysis and check-pointing techniques in adjoint sensitivity analysis.

Finally, a number of numerical case studies have been presented, which compare
the performance of the forward and adjoint sensitivity bounding variants. For prob-
lems having more than just a few parameters, adjoint sensitivity is computationally
advantageous compared with forward sensitivity in bounding the derivatives of a sin-
gle or a few state-dependent functions, a situation similar to real-valued integration.
The derivative bounds computed by propagating polynomial model inclusions with
ellipsoidal remainders are typically tighter than with interval remainders, due to a
lower prevalence of the wrapping effect, but which of the derivative bonds computed
with forward or adjoint sensitivity analysis are tighter appears to be problem depen-
dent. It is also shown that the forward and adjoint sensitivity bounds may remain
stable when the state bounds are themselves stable—e.g., in the vicinity of asymptot-
ically stable equilibrium points or periodic orbits of the dynamic system at hand—by
propagating polynomial model inclusions with ellipsoidal remainders.

As part of future work, this generic sensitivity bounding capability could be ex-
tended to compute bounds on second-order directional derivatives [35] via the combi-
nation of forward and adjoint sensitivity bounding. One promising application is in
the area of complete-search methods for global optimization and constraint satisfac-
tion with dynamic systems embedded in order to expedite convergence.
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