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Abstract Improved understanding of molecular systems

has only emphasised the sophistication of networks within

the cell. Simultaneously, the advance of nucleic acid nan-

otechnology, a platform within which reactions can be

exquisitely controlled, has made the development of arti-

ficial architectures and devices possible. Vital to this pro-

gress has been a solid foundation in the thermodynamics of

molecular systems. In this pedagogical review and per-

spective, we discuss how thermodynamics determines both

the overall potential of molecular networks, and the minute

details of design. We then argue that, in turn, the need to

understand molecular systems is helping to drive the

development of theories of thermodynamics at the micro-

scopic scale.
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1 Introduction

Thermodynamics was originally developed in the 19th

Century, driven by the dawn of the industrial revolution

(Carnot et al. 1960), and a desire to understand and opti-

mise the extraction of useful work from engines. This work

could be harnessed to pump water out of mines, or drive

locomotives, for example. Although these machines were

mechanical devices powered by the flow of heat, the fun-

damental source of the work was the chemical fuel - typ-

ically coal, initially. Chemical processes were incorporated

into the framework of thermodynamics by Gibbs (1906),

leading to an understanding of the spontaneity of, and

energy exchanged during, chemical reactions and phase

changes.

Thermodynamics as originally introduced was a theory

based entirely on the interrelation of macroscopic observ-

ables, such as temperature, pressure, volume and energy. In

the late 19th and early 20th centuries, the development of

statistical mechanics provided a microscopic basis for the

theory, explaining how these bulk properties emerge from

microscopic system properties (Boltzmann 1964). In the

process, the concept of entropy—the mysterious quantity

whose increase is responsible for the thermodynamic arrow

of time—was made far more concrete, as a statistical

measure of the uncertainty of the microscopic state of a

system. The exploration of statistical mechanics led to the

development of theories of critical phenomena; explaining

the exotic yet often universal behaviour of systems as they

approach certain kinds of phase transitions (Yeomans

1992; Cardy 1996); statistical mechanics is also the fun-

damental tool underlying the field of molecular simulation

(Frenkel and Smit 2001; Tuckerman 2010).

Statistical mechanics and thermodynamics are often

introduced as the study of equilibrium states, in which

there is no net tendency for the system to evolve over time

unless driven from the outside. Nonetheless, from the

earliest days, Boltzmann and others proposed theoretical

descriptions for the evolution of non-equilibrium systems

and their subsequent relaxation to equilibrium (Boltzmann

1964). The developing field of stochastic thermodynamics,

in which the probabilistic description underlying statistical
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mechanics is extended to describe trajectories of non-

equilibrium systems through state space, has recently

provided remarkable understanding of systems arbitrarily

far from equilibrium (Crooks 1999; Seifert 2005, 2012;

Esposito and Van den Broeck 2011; Jarzynski 2011).

Over the same period, our understanding of biomolecular

systems has been transformed from complete ignorance to

the ability to rationally design synthetic circuits and self-

assembling architectures in vitro and in vivo. Indeed,

although proteins were identified as far back as the early

19th Century (Mulder 1839; Teich and Needham 1992),

their role as enzymes in living organisms was not demon-

strated until 1926 (Sumner 1926), and protein structures

were first solved in Kendrew et al. (1958) and Muirhead

and Perutz (1963). Similarly, the genetic information-car-

rying role of biological DNA was first demonstrated in 1944

(Avery et al. 1944), the double-helical structure was solved

in 1953 (Watson and Crick 1953) and the central dogma of

molecular biology (that genes encoded in DNA are tran-

scribed into RNA, and then translated into proteins) was

first stated in 1958 (Crick 1958, 1970). Since then, through

advances in crystallography, microscopy and other tech-

nologies, the molecular mechanisms of an enormous bio-

chemical processes have been identified. Additionally,

systems biology has shown how individual component

reactions can combine to provide the complex behaviour

exhibited by cells (Alon 2007)—although we remain far

from a full understanding of such sophisticated systems.

In the process of understanding some of the molecular

complexity of the cell, we have shown that it contains

microscopic analogues of the mechanical engines of the

19th Century. Molecular motors such as myosin consume

chemical fuel to generate locomotive forces (Howard

2001), and enzymatic pumps consume the same fuel to

drive ions across membranes (Nelson 2004). These mem-

branes then act as capacitors that provide an alternative

supply of power, like batteries for electric motors.

A deep appreciation of natural biomolecular systems is

worthwhile in and of itself, and it provides an important

contribution to the advancement of medicine. But equally,

this hard-won understanding has laid the groundwork for

the engineering of artificial systems and devices. In syn-

thetic biology, novel molecular circuitry is often built by

connecting naturally-occuring or slightly mutated proteins

via artificial transcriptional regulation pathways (Baldwin

et al. 2012). At the same time, the molecular nanotech-

nology community has constructed systems based on arti-

ficial components, including non-biological DNA and

RNA sequences (Chen et al. 2015) and even artificial

proteins (Hsia et al. 2016; Bale et al. 2016). At the inter-

face of these communities are those who combine the

functionality of synthetic and natural components, both

in vivo and in vitro (Fujii and Rondelez 2012; Green et al.

2014). In aggregate, this work has produced remarkable

results, including nanoscale self-assembly (Rothemund

2006; Douglas et al. 2009; Ke et al. 2012), implementation

of molecular computation and control architectures (Win-

free et al. 1998; Seelig et al. 2006; Qian and Winfree 2011;

Zechner et al. 2016) and repurposing of microbes for

industry and healthcare (Baldwin et al. 2012; Kitney and

Freemont 2012; Chubukov et al. 2016).

In this pedagogical perspective, we will first discuss the

basics of traditional chemical thermodynamics as it applies

to biomolecular systems (Sects. 2, 3). We subsequently

show how these ideas shape our understanding and design

of functional molecular systems, both at a fundamental and

a practical level, in Sects. 4–7. A particular focus will be

common misconceptions or pitfalls that result from care-

less treatment of the underlying thermodynamics. Finally,

we briefly discuss the emerging field of stochastic ther-

modynamics in Sect. 8. This extension of traditional ther-

modynamics to fluctucating, far-from equilibrium contexts

finds its most natural application in the analysis of

molecular systems. Indeed, we will then argue that the very

process of exploring abstract thermodynamic ideas in

concrete biomolecular systems is in turn providing a deeper

understanding of the fundamental thermodynamics.

2 Fundamentals of classical statistical mechanics

2.1 The partition function and thermodynamic

quantities

We will begin by considering the properties of an arbitrary,

closed, equilibrium system, and then develop those ideas to

arrive at the statistical mechanics of biochemical systems

in particular. A closed system has fixed amounts of energy

and matter. Nonetheless, a large closed system can access

an enormous number of microstates specified by the posi-

tions and momenta ðx; pÞ of all the constituent degrees of

freedom. In classical (as opposed to quantum) physics,

these microstates are assumed to be present with a constant

density q throughout the available phase space defined by

ðx; pÞ Frenkel and Smit (2001).

An experimenter that could perform the (impossible)

task of measuring the precise microstate ðx; pÞ of our

system would not get a predictable value. This uncertainty

can be quantified by Pðx; pÞ, the probability per unit phase

space volume of observing a microstate ðx; pÞ upon mea-

surement. Initially, we are interested in characterising

equilibrium systems, which exhibit no net flows between

any pair of microstates and thus have Pðx; pÞ constant over
time. The fundamental assumption of classical statistical

mechanics is that in thermodynamic equilibrium, there is

the maximal possible uncertainty in the microstate ðx; pÞ
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(Jaynes 1957). In other words, all accessible (equal-energy)

microstates are equally probable in equilibrium (Huang

1987). In the rest of this Section, we further expand on the

the properties of the equilibrium distribution that follow

from this principle of equal a priori probability.

In the molecular context, we are usually interested in a

relatively small system r thermally connected to a much

larger environment R, rather than a system in total isola-

tion. This larger environment might be the lab as a whole,

or perhaps a water bath for elevated temperatures. In any

case, we are typically not concerned with the details of this

environment R, other than in its role as a source and sink of

energy in the form of heat. Generally, we assume that the

coupling is weak so that it is reasonable to separately

consider the energies of R and r (Frenkel and Smit 2001;

Huang 1987).

The combined system of rþ R remains a closed system,

which can in principle reach equilibrium. However, due to

energy exchange between r and R, the energy of each

component fluctuates and microstates of r with different

energies Erðx; pÞ can be accessed. From applying the

principle of equal a priori probability to the combined

system of rþ R, it is possible to show that energy is shared

such that microstates of r are occupied with a probability

density (Frenkel and Smit 2001; Tuckerman 2010; Huang

1987)

Peq
r ðx; pÞ ¼ q

expð�Erðx; pÞ=kBTÞ
Zr

; ð1Þ

where the environmental heat bath sets the temperature T,

and the partition function Zr normalizes the distribution:

Zr ¼ q
Z

dx dp expð�Erðx; pÞ=kBTÞ: ð2Þ

Here, q is the constant density of microstates that cancels

out during calculations, but ensures the correct dimen-

sionality. Eq. 2 is the famous Boltzmann distribution

(Frenkel and Smit 2001; Tuckerman 2010; Huang 1987)

its form arises from sharing energy between r and R in

such a way as to maximise overall uncertainty in the

microstate.

Atomistic models of molecular systems, such as

AMBER and CHARMM (Orozco et al. 2003; Cino et al.

2012), are essentially semi-empirical energy functions

Erðx; pÞ. Coarse-grained models, such as Martini and

oxDNA (Marrink et al. 2007; Doye et al. 2013), are

attempts to capture the behaviour of a reduced set of key

degrees of freedom with a similar energy model. In either

case, the models are typically too complex to be analysed

directly. Instead, simulation is used to sample microstates

of r, allowing the equilibrium properties of the system to

be inferred.

The key thermodynamic quantities follow from the

partition function. Firstly, the internal energy of r is a

straightforward average over microsate energies (Frenkel

and Smit 2001; Tuckerman 2010; Huang 1987)

Ueq
r ¼

Z
x;p

dx; dpErðx; pÞPeq
r ðx; pÞ ¼ kBT

2 o

oT
ln Zr: ð3Þ

The thermodynamic entropy is less obvious—it is inter-

preted as a measure of the statistical uncertainty of the

microstate distribution Peq
r ðx; pÞ Jaynes (1957). This

interpretation is made plausible because the second law

states that the entropy of a closed system cannot decrease

with time as it converges towards equilibrium; and the

principle of equal a priori probability that implies that the

equilibrium distribution maximises uncertainty for a closed

system. Specifically, for an arbitrary discrete distribution

P(y) over the variable y, the uncertainty in y is described by

the statistical entropy (Jaynes 1957; Shannon and Weaver

1949)

H½P� ¼ �
X
y

PðyÞ lnPðyÞ: ð4Þ

Note that H½P� � 0 is minimised when y takes a single

value with probability 1, and maximised if p(y) is uniform

(Shannon and Weaver 1949).

Allowing for continuous variables and introducing the

constant kB to connect to physical quantities, the equilib-

rium thermodynamic entropy of r is given by a similar

expression:

Seqr ¼ �kB

Z
x;p

dx; dpPeq
r ðx; pÞ lnðPeq

r ðx; pÞ=qÞ

¼ kBT
o

oT
ln Zr þ kB ln Zr:

ð5Þ

This definition of entropy in Eq. 5 is essentially the fun-

damental link between equilibrium statistical mechanics

and macroscopic equilibrium thermodynamics. Finally, the

free energy of r follows as (Frenkel and Smit 2001,

Tuckerman 2010, Huang 1987)

Feq
r ¼ Ueq

r � TSeqr ¼ �kBT ln Zr: ð6Þ

The thermodynamic quantities listed above are the natural

quantities of interest when we consider a system being

manipulated from the outside, and thereby transitioning

between two distinct equilibria. However, in molecular

systems, we typically set up the system in a non-equilib-

rium state, and allow it to evolve without further pertur-

bation. We are then generally interested in questions such

as: what are the molecular abundances in the eventual

equilibrium state, and how fast does the system get there (if

at all)? To answer these questions, it is helpful to define

biochemical macrostates.
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2.2 Macrostates

The Boltzmann distribution specifies the relative abun-

dances of microstates in equilibrium, and detailed models

can be simulated to sample from this distribution. How-

ever, microstates are inaccessible in experiment, and

inconvenient for theory. Instead, we typically consider

biochemical macrostates. Rather than keep track of all of

the atoms in a DNA molecule or protein, we might simply

predict theoretically, measure experimentally or infer from

simulation the behaviour of the position of the centre of

mass, or gross conformational features of a molecular

system. In other words, we group sets of microstates

together into a relatively small number of macrostates, as

illustrated schematically in Fig. 1. In this Subsection, we

outline the macrostate-level description of thermodynamics

that will be used throughout the review.

In equilibrium, the occupancy of macrostate i is

obtained by integrating over all microstates within it

Peq
r ðiÞ ¼ ZrðiÞ

Zr
¼
Z
ðx;pÞ2i

dx dpq
expð�Erðx; pÞ=kBTÞ

Zr
;

ð7Þ

where we have defined the partial partition function ZrðiÞ.
This probability Peq

r ðiÞ is related to the macrostate free

energy FrðiÞ via

FrðiÞ � Feq
r ¼ �kBT ln Peq

r ðiÞ
� �

¼ �kBT ln ZrðiÞ=Zrð Þ:
ð8Þ

Note that macrostates with high free energy are improba-

ble, and macrostates with low free energy are probable.

In principle, any division into macrostates is valid,

although only well-chosen macrostates are helpful. Typi-

cally, well-chosen macrostates are either directly identifi-

able in experiment, amenable to theoretical modelling, or

both. Examples might include macrostates labelled by the

number of proteins in dimeric complexes; the end-to-end

extension of a biomolecule under stress; or the number of

base pairs in a DNA hairpin.

There are two conceptually distinct contributions to the

free energy FrðiÞ (Eq 6): the average energy of macrostate

i,

UrðiÞ ¼
Z
x;p2i

dx; dpErðx; pÞPeq
r ðx; pjiÞ; ð9Þ

and the entropy of macrostate i,

SrðiÞ ¼ �kB

Z
x;p2i

dx; dpPeq
r ðx; pjiÞ lnðPeq

r ðx; pjiÞ=qÞ:

ð10Þ

Here Peq
r ðx; pjiÞ ¼ Peq

r ðx; pÞ=Peq
r ðiÞ is the equilibrium

probability density of occupying microstate ðx; pÞ within i,

given that the system is in one of the microstates within

macrostate i. A low average energy implies that a macro-

state i more probable, since individual microstates with

lower energies are more probable. A high entropy SrðiÞ
implies that many microstates ðx; pÞ contribute to i; for a

given average energy, a macrostate with more accessible

microstates is more probable.

3 Free energies of biochemical reactions

We now discuss the standard statistical mechanical

approach to biochemical reactions. Our discussion will

justify the form of chemical potentials in dilute solution,

and illustrate the meaning of free energies and standard

free energies of reaction. In the subsequent sections, this

basic framework will be applied to a range of contexts of

relevance to natural and engineered molecular systems.

Before proceeding, it is worth noting that, as in Sect. 2.1,

we consider a system r that can exchange heat with its

environment R, but which we have implicitly assumed to

occupy a fixed volume Vr. In chemical contexts, it is often

more natural to consider a system maintained at constant

pressure p. In this case, Vr has to shrink or grow in

response to reactions that tend to decrease or increase the

internal pressure, respectively. In this case, the Gibbs free

energy Geq
r ¼ Feq

r þ PVeq
r , which plays a similar role to the

Helmholtz free energy F in a constant pressure setting, is

the key quantity.

Biomolecular processes, however, occur in aqueous

solution, and the enormous numbers of water molecules

present dominate the pressure exerted by the system

(Nelson 2004). Reactions between the relatively small

number of solute molecules therefore have almost no effect

on the pressure and both theoretical work and experimental

analyses usually assume constant volume (which is much

easier to work with). Nonetheless, free energies of solute

states are typically quoted in terms of the Gibbs free

energies G, and the enthalpy H replaces the average

...

...

...
sheet

helix

disordered 
coil

Fig. 1 Schematic illustration of the division of a continuous set of

microstates into a relatively small number of macrostates. In this case

there are three discrete macrostates, distinguished by the conforma-

tion of a small protein-like molecule. Similar confirmations are

grouped together and characteristic examples are shown
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internal energy U. For internal consistency, we will con-

tinue to use F and U, but readers familiar with G and H

should treat them as essentially equivalent. It is also worth

noting that in biochemistry, it is more common to use the

molar gas constant R rather than Boltzmann’s constant kB.

This is simply a question of measurement units; if R is

used, all entropies and energies must be given per mole of

substance, rather than per particle.

The starting point for our analysis is to treat the solvent

implicitly. Formally, this corresponds to integrating over

the solvent degrees of freedom in the partition function

(Eq. 2), leaving only effective interactions between solute

degrees of freedom. In practice, we often just assume that

this can be done, and take the effective solute interactions

as an input. We then assume that all solutes, or complexes

of solutes, can be assigned to a discrete set of molecular

species. These species might include ATP, ADP and

inorganic phosphate, or a set of individual DNA strands

and their complexes: for example, DNA strand A, DNA

strand B and duplex AB. It is helpful to define macrostates

fNg of the entire solution in terms of the abundances of

each of these species, fNg ¼ ðNA;NB:::Þ. A typical mac-

rostate of a small system, at this level of description, is

schematically illustrated in Fig. 2.

For each species j, we can define the single-molecule

partition function in the volume Vr, z
j
r. This quantity is

analogous to the partition function in Eq. 2, but the integral

is performed only over the degrees of freedom of a single

solute molecule of species j in a volume Vr, with the sol-

vent again treated implicitly. It should be noted that zjr is

generally strongly temperature-dependent. In a dilute

solution, the overall partition function of a macrostate fNg
is essentially given by a product of the individual partition

functions, since interactions between molecules that are not

in a complex are weak. Hence the degrees of freedom for

separate complexes are essentially independent and the

partition function factorises. Thus

ZrðfNgÞ ¼
Y
j

ðzjrÞ
Nj

Nj!
; ð11Þ

where the product j runs over all species types, including

complexes. The extra factorial term corrects for over-

counting of states that should actually be viewed as

indistinguishable, because they are related by the exchange

of identical molecules (Frenkel and Smit 2001; Tuckerman

2010; Huang 1987). From this partition function, the free

energies of chemical macrostates follow

FrðfNgÞ ¼ �kBT ln ZrðfNgÞ
¼
X
j

Fj
rðNjÞ

¼ �kBT
X
j

ln
ðzjrÞ

Nj

Nj!

 !

� �kBT
X
j

Nj ln z
j
r � Nj lnNj þ Nj

� �
:

ð12Þ

Here, we have highlighted the fact that the free energy

decomposes into a sum over the contributions from each

species, Fj
rðNjÞ, which is a result of the diluteness

approximation. The final line uses Stirling’s approximation

of lnN! � N lnN � N, which is highly accurate for large

N. We can thus easily calculate the chemical potential ljr,
which is the increase in system free energy due to the

addition of another molecule of species j:

ljr ¼ oFrðfNgÞ
oNj

¼ �kBT lnðzjrÞ þ kBT lnðNjÞ; ð13Þ

in the limit that Nj is large. ljr is simply the difference in

free energy arising from adding one molecule of species

j to the system.

Since each zjr is a partition function for a single mole-

cule of species j in volume Vr, it will grow proportionally

to Vr; doubling the volume doubles the number of acces-

sible positions for the molecule, but changes nothing else.

It is thus convenient to normalise using a standard volume

V0, typically taken as the volume in which a single mole-

cule would constitute a concentration C0 ¼ 1=V0 of 1 mole

per litre. Thus

ljr ¼ �kBT ln z
j
0

� �
þ kBT ln

Cj
C0

; ð14Þ

with a z
j
0 ¼ zjrV0=Vr dependent on the choice of standard

volume V0, rather than system volume Vr. This decompo-

sition separates the chemical potential lj (or free energy per
molecule of species j) into a term that depends only on the

details of the effective interactions within the species, and a

concentration-dependent term (Nelson 2004; Huang 1987).

The chemical potential appearing in Eq. 14 is of enor-

mous use in analysing the thermodynamics of molecular

A

B

C

ABC

BC

AB

Fig. 2 A self-assembling system, in which monomers A, B and C

combine to form a trimer ABC. The macrostate in this snapshot is

NA ¼ 3, NB ¼ 1, NC ¼ 1, NAB ¼ 1, NBC ¼ 1, NAC ¼ 0 and NABC¼1
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systems. In particular, it enables us to calculate the dif-

ference in free energy between initial and final macrostates

after any given molecular reaction, telling us how much

more likely the final state is than the initial state in equi-

librium. To see why, note that every possible reaction k is

associated with a stoichiometric vector mkj, the number of

molecules of species j produced by the reaction k (this

number is negative if species j is consumed by the reac-

tion). For example, if reaction k is Aþ B ! AB, mkA ¼ �1,

mkB ¼ �1 and mkAB ¼ 1. Thus the difference in macrostate

free energy due to reaction k is simply (Nelson 2004)

DkFr �
X
j

mkj
oFrðfNgÞ

oNj

¼
X
j

mkjl
j
r; ð15Þ

where the approximation is highly accurate if Nj is large.

Note that DkFr, like zjr and z
j
0, is generally strongly tem-

perature-dependent. We will continue to specify the reac-

tion in question by a subscript on D, so that Dk indicates the

change due to reaction k.

Equally, DkFr, through ljr, is dependent on the con-

centrations of the reactants and products. It is common to

consider the value of DkFr at the reference concentration

Cj ¼ C0 ¼1 M, DkF
0, as a ‘‘standard’’ free energy of the

reaction. DkF
0 can also be further subdivided into standard

energetic and entropic contributions, DkU
0 and DkS

0. This

is convenient for book-keeping purposes, but it should be

noted that this ‘‘standard’’ value is dependent on the (ar-

bitrary) choice of C0, unless the number of reactants and

products is the same. For example, for the simple

bimolecular binding reaction Aþ B ! AB,

DAþBF
0 ¼ �kBT ln

zAB0
zA0 z

B
0

; ð16Þ

and the term inside the logarithm scales as V0. In such

cases, it is inadvisable to over-interpret the sign and

magnitude of the standard free energy; whether it is posi-

tive or negative depends upon the arbitrary standard con-

centration, which is 1 M in general. This dependence on V0

feeds through to the standard entropy DkS
0, so it is also

unwise to read too much into the sign and magnitude of this

quantity when the numbers of reactants and products differ.

Indeed, for macromolecules such as DNA, RNA and pro-

teins, 1 M corresponds to an incredibly concentrated

solution where the dilute approximations above break

down, and behaviour search as the formation of liquid

crystals is observed (Nakata et al. 2007; De Michele et al.

2012). For processes involving unequal numbers of reac-

tants and products, therefore, the standard free energy and

entropy exist purely as book-keeping devices, and never

describe the actual properties of a reaction. In typical dilute

molecular systems, the concentration of the relevant com-

ponents is orders of magnitude lower. Thus actual values of

DkFr and DkSr are significantly more positive than the

standard values for assembly reactions in which the num-

ber of reactants exceed the number of products.

4 The application of equilibrium thermodynamics
to the design of self-assembling systems

4.1 Self-assembly

Self-assembly occurs when molecules are mixed and

autonomously bind to produce non-trivial structures. It

should be distinguished from step-by-step directed syn-

thesis in which each stage is separately coordinated by an

experimenter through careful manipulation of solution

conditions (Chen and Seeman 1991), although temperature

ramps are often used to optimise results, as analysed in

some detail in Sobczak et al. (2012). In biology, functional

protein complexes (Ahnert et al. 2015) and virus capsids

(Fraenkel-Conrat and Williams 1955; Johnston et al. 2010)

must assemble accurately from their components; the rise

of nucleic acid nanotechnology has facillitated the design

of artificial systems that can mimic this behaviour, allow-

ing precisely-controlled finite-size nanostructures (Rothe-

mund 2006; Ke et al. 2012; Goodman et al. 2005;

Tikhomirov et al. 2017). In this Section, we outline how

the basic thermodynamics introduced in Sects. 2 and 3 both

shape the fundamental behaviour of self-assembling sys-

tems, and guide the details of system design through tools

such as Nupack (Dirks et al. 2007). To provide context, we

will apply the general results to the challenge of assem-

bling three molecular building blocks A, B and C into the

complex ABC, as illustrated in Fig. 2. Molecules A, B and

C could each be DNA strands or proteins, for example.

The simplest design strategy for self-assembly is to

ensure that microstates with many well-assembled struc-

tures are common in equilibrium. The most likely macro-

state fNg is the one that maximises ZrðfNgÞ, or

equivalently minimises FrðfNgÞ, subject to the constraints

of stoichiometry. If a large number of molecules are pre-

sent, as in typical experiments, fluctuations about the most

likely macrostate are relatively small in equilibrium

(Frenkel and Smit 2001; Tuckerman 2010; Huang 1987;

Jaynes 1957), and hence we can infer equilibrium proper-

ties purely by analysing this most likely macrostate.

4.2 Identifying the typical behaviour of a self-

assembling system in equilibrium

In this Subsection, we introduce the basic mass-action

equilibria underlying the equilibrium yield of self-assem-

bling systems, and demonstrate how they arise from
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identifying the microstates with low FrðfNgÞ in dilute

solutions. We then discuss the key properties of the

resultant equilibria. To minimise FrðfNgÞ, we must find

fNg such that no possible change of fNg due to a reaction

could reduce FrðfNgÞ. In the limit of many molecules, this

task is equivalent to identifying the fNg for which

FrðfNgÞ � FrðfN 0gÞ ¼ 0 for every possible reaction

fNg ! fN 0g. From Eq. 15 we therefore require

DkFr ¼
X
j

mkjl
j
r ¼ 0; ð17Þ

for all reactions k. Thus the typical equilibrium state is the

one in which chemical potentials are balanced for all

reactions—a widely exploited result (Nelson 2004; Huang

1987).

Substituting our expression for ljr (Eq. 14) into Eq. 17,

we immediately see that at equilibrium

Y
j

Cj
C0

� �mkj

¼
Y
j

z
j
0

� �mkj
; ð18Þ

for all reactions k. In the case of Aþ B ! AB,

CAB
CACB

¼ 1

C0
zAB0
zA0 z

B
0

¼ K
eq
AþB; ð19Þ

in which we have introduced the equilibrium constant

K
eq
AþB. The quantity K

eq
AþB is known as a constant because it

depends only on the details of the interactions within each

species as represented through z
j
0; it is independent of

system volume of the number of molecules present,

although it will depend on quantities such as the temper-

ature. It is also independent of the arbitrary reference

volume V0, since each z
j
0 scales with this volume. The

result is ubiquitous in physical chemistry, and immediately

generalises for other reactions (Nelson 2004).

If Keq is known from earlier experiments for each

reaction k, or can be predicted from underlying theory, then

variants of Eq. 19 can be constructed for each possible

reaction and the typical concentrations in equilibrium can

be found by solving the resultant simultaneous equations

(when augmented with any conservation laws). Note that a

relation such as Eq. 19 exists for every reaction at equi-

librium, regardless of whether the reactants are involved in

other reactions. Additionally, the same procedure can be

followed for not just a single reaction k, but a series of

reactions. For example, the combined reactions Aþ B !
AB and ABþ C ! ABC imply that the relationship

CABC
CACBCC

¼ 1

C20
zABC0

zA0 z
B
0 z

C
0

¼ K
eq
AþBþC; ð20Þ

is meaningful even if there is no direct Aþ Bþ C ! ABC

reaction (which would be essentially impossible without

the formation of intermediate complexes).

To design a system that can self-assemble efficiently

into ABC, therefore, we should choose molecules that

provide a large K
eq
AþBþC, and also large K

eq
AþBC , K

eq
ABþC and

K
eq
ACþB, since ABC needs to out-compete other potential

species. Similarly, low values of Keq for reactions that

produce off-target species such as AABB are important in

preventing mis-assembly.

An often under-appreciated fact is that reactant con-

centrations are important in determining yields; it is not

uncommon to hear a ‘‘melting temperature’’—approxi-

mately the point at which 50% of the maximum possible

yield has been reached—quoted without reference to

component concentrations. However, the fractional yield in

equilibrium is sensitive to the initial concentrations of

reactants. Lower initial concentrations of A, B and C imply

a larger reduction in the concentration of complexes in

equilibrium, since the numerator in relationships such as

Eq. 20 must change enough to compensate for the reduc-

tion of all of the concentrations in the denominator.

Depending on the context, it may also be advantageous

to use non-stoichiometric mixtures of components to

increase yields—for example, an excess of A and B relative

to C when assembling ABC. Doing so significantly

enhances the fraction of C molecules incorporated into

ABC structures in equilibrium, at the expense of leaving a

pool of A and B which cannot possibly contribute to a

target. To illustrate this effect, we plot the fractional yield

CAB=CtotalB in the reaction Aþ B � AB as a function of

K
eq
AþB in Fig. 3. We consider two cases, one with a stoi-

chiometric mixture CtotalB ¼ CtotalA ¼ 1 mM, and one with an

excess of A: 2CtotalB ¼ CtotalA ¼ 1 mM. It is clear that the

fraction of B molecules incorporated into complexes tends

to unity much more quickly in the presence of an excess of

 0
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 0.6
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total=1mM
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Fig. 3 Non-stoichiometric conditions can increase the fractional of

certain molecules incorporated into target complexes. We plot the

equilibrium fraction of B molecules incorporated into AB (fB) by the

reaction Aþ B � AB, as a function of K
eq
AþB. Yield curves are plotted

for CtotalB ¼ CtotalA ¼ 1 mM, and A: 2CtotalB ¼ CtotalA ¼ 1 mM
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A. This approach is taken in the construction of scaffolded

DNA origami (Rothemund 2006); an excess of staples is

added to enhance the fraction of scaffold strands incorpo-

rated into well-formed structures. Saturating the system

with an excess of one type of strand is a particularly useful

approach if free strands of a complementary sequence are

the main potential cause of leak reactions, especially given

the possibility of pipetting errors. Murugan et al. have

further proposed that concentrations of reactants could be

judiciously chosen to avoid the formation of undesired off-

pathway structures (Murugan et al. 2015).

Finally, it is worth noting that the equilibrium constants

Keq are determined exclusively by the properties of the

reactant and product species, through the ratio of the

appropriate partition functions. Thus relationships such as

Eqs. 19 and 20 cannot be altered by other molecules that

are not produced or consumed by the process, or by the

properties of intermediate complexes. A change in the

equilibrium constant, as measured through the relative

concentrations in equilibrium, can only arise from a change

in the biochemistry of the initial and final species. This fact

will be important when we discuss the role of non-equi-

librium catalysts in Sect. 7.

4.3 The meaning of the equilibrium constant,

and estimating its value

Relationships between concentrations such as Eqs. 19 and

20 can also be derived by assuming that reactions obey

mass-action kinetics: i.e., that rates are proportional to

concentrations of reactants involved. However, the statis-

tical mechanical approach has two important advantages

that are important in the context of self-assembly. We now

proceed to outline these advantages.

Firstly, the fact that relationships such as Eqs. 19 and 20

hold even without a direct one-step reaction linking reac-

tants and products, and regardless of whether the species

are involved in other reactions, is made clear from this

thermodynamic perspective. But perhaps even more

importantly, the derivation presented highlights the physi-

cal meaning of the equilibrium constant Keq; it is deter-

mined by the ratios of partition functions of the molecular

species involved in the reaction. The quantities z
j
0 are

partition functions for complex j in volume V0; species

with favourable (low) internal energies, or many accessible

states, are favoured.

Crucially, these quantities z
j
0 (or at least the relevant

ratios) can often be predicted by simple theoretical models.

For complex models (Orozco et al. 2003; Cino et al. 2012;

Marrink et al. 2007; Doye et al. 2013), ratios of partition

functions are the natural quantities to extract from simu-

lation (Ouldridge et al. 2010; Ouldridge 2012), enabling

direct prediction of equilibrium constants and hence com-

parison to experiment. Simpler approaches such as the

nearest-neighbour models of DNA and RNA thermody-

namics use basic postulates about z
j
0 to make analytic

predictions of the ratios of partition functions, and hence

equilibrium constants, of an enormous number of self-

assembling systems using a small set of parameters (San-

taLucia and Hicks 2004; Turner and Matthews 2010).

These widely-used tools have been a fundamental com-

ponent of the growth of nucleic acid nanotechnology and

have facilitated the analysis of natural RNA circuitry in

cells, for example in Borujeni and Salis (2016).

It is hard to overestimate the usefulness of such a pre-

dictive tool, even given its finite accuracy. Without it, the

systematic design of complex nucleic acid circuits from

scratch would be far more challenging—particularly in

terms of eliminating unintended interactions—and would

require the measurement of many equilibrium constants

Keq for each design.

It is instructive to consider how the nearest-neighbour

model can be used by utilities such as Nupack (Dirks et al.

2007) to predict the concentration of complexes formed in

equilibrium after mixing nucleic acids. Firstly, given a set

of strands, all possible complexes below a certain size can

be identified (Fig. 4). For each of these complexes j, it is

Δ
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F0 =0

Δ
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F0 Δ
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F0 

z0
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Δ
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... ...

z0
AB/(z0

A z0
B ) = Keq   /V0
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B/z0

B unstructured

A B AABB AB

A+B

Fig. 4 A schematic illustration of the calculation of equilibrium

constants by algorithms such as Nupack (Dirks et al. 2007), based on

nearest-neighbour models of nucleic acid thermodynamics (SantaLu-

cia and Hicks 2004; Turner and Matthews 2010). Firstly, all possible

complexes up to a maximum size (in this case 2) are enumerated. For

each of these complexes, and the individual strands, the possible-base

pairing macrostates are identified and assigned a free energy relative

to the unstructured state. Summing over all contributions for one

complex gives the partition function of the complex relative to the

unstructured constituent strands; combining this with similar quan-

tities estimated for the single strands themselves gives K
eq
AþB
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then necessary to estimate the equilibrium constant K
eq
j for

complex formation from the constituent single strands at

the appropriate temperature—with these equilibrium con-

stants, the task reduces to solving a set of simultaneous

equations involving expressions such as Eqs. 19 and 20

and conservation laws.

Equilibrium constants are estimated by working at the

level of macrostates defined by the pattern of base pair-

ing—a finer resolution than simply identifying the com-

plexes present, but still far from a true microscopic

enumeration of microstates. To estimate K
eq
AþB, for exam-

ple, all base-pairing macrostates of both the complex AB

and the individual strands A and B are enumerated (Fig. 4).

For each macrostate i, the nearest-neighbour model pre-

dicts the standard free energy relative to a completely

unstructured (base-pair free) macrostate using a small set

of universal parameters that depend on the sequence of

base-pair steps, and the context at the end of the continuous

base-paired stations. From these free energies, the relative

partition functions of macrostates can be calculated, and by

summing over the partition function contributions from all

macrostates for both the complex and the individual

strands, the ratio zAB0 =ðzA0 zB0 Þ can be estimated. Hence K
eq
AþB

can be predicted through Eq. 19, and used to infer complex

concentrations given the total concentrations of all strands.

5 Thermodynamics as a basis for the design
of kinetic models

5.1 The importance of kinetics

Designing an equilibrium state to be consistent with a high

yield of a self-assembling structure is the typical approach

taken when engineering a self-assembling structure.

Indeed, this is the main strategy employed hitherto in the

field of nucleic acid nanotechnology when designing

structures. However, the existence of a high yield in

equilibrium doesn’t guarantee successful assembly in finite

time—the system might become trapped in

metastable states, and fail to approach the equilibrium yield

over a reasonable timescale. To understand why, it is

important to develop kinetic models that can explore

dynamical trajectories taken by systems. Additionally,

static self-assembled structures are also not the only pos-

sible type of molecular system. There has been recent

interest in non-equilibrium or dissipative self-assembly

(Timonen et al. 2013), in which assembled structures are

maintained in a non-equilibrium rather than an equilibrium

steady state by a continuous input of energy. Indeed, this is

almost a minimal description of a living organism. On a

more detailed level, natural molecular circuits generate

motion (Nelson 2004; Alberts et al. 2002), act as oscilla-

tory clocks (Lubensky et al. 2017), and dynamically sense

their environment (Mehta and Schwab 2012; Mehta et al.

2016; Govern and ten Wolde 2014a, b); researchers are

now designing artificial systems with similar functionality

(Zechner et al. 2016; Stricker et al. 2008; Zhang and Seelig

2011). In these dynamical systems, reaction kinetics is

inherently important.

We now give a detailed discussion of the influence of

thermodynamics on the kinetics of molecular systems. We

start with a discussion of the biochemical master equation

as a fundamental description of biochemical kinetics in

Sect. 5.2, including pitfalls associated with poorly-chosen

macrostates, before moving on to the constraints on the

dynamics imposed by thermodynamic considerations in

Sect. 5.3. Finally, we discuss how to build a dynamical

model taking these constraints into account in Sect. 5.4.

5.2 Molecular systems as stochastic processes

Statistical mechanics is inherently probabilistic; the

Boltzmann distribution (Eq. 1) is, after all, a probability

distribution for finding the system r in a given microstate.

It is therefore natural to describe system dynamics using a

stochastic (or random) process (Van Kampen 2007) over

these microstates. At a given time t, the system occupies a

microstate ðx; pÞ with a probability density Prðx; p; tÞ;
system dynamics lead to an evolution of this distribution

over time. After a long time, t ! 1, and in the absence of

external driving, the system should relax towards a sta-

tionary (time-independent) distribution given by the

Boltzmann distribution Peq
r ðx; pÞ of Eq. 1 (assuming the

state space is ergodic, as is typical).

For an ideal memoryless environment, the stochastic

process should be Markovian (Van Kampen 2007) i.e., the

future evolution of Prðx;p; tÞ only depends on the past via

the current value of Prðx; p; tÞ. Equivalently, the outcome

of leaving a microstate ðx; pÞ is independent of the route by
which the system reached ðx; pÞ. Of course, when analys-

ing molecular systems, we typically work at the level of

chemical macrostates. We describe the system through the

abundances of species, or perhaps the hydrogen-bonding

patterns, rather than individual positions and momenta. In

this case, our state space is discrete and the stochastic

process involves a series of transitions by which the system

undergoes discrete hops between macrostates.

Generally, it is assumed that the stochastic process is

also Markovian at the macrostate level (Seifert 2011, 2012;

Hill 1989). In other words, transitions from macrostate i to

macrostate j occur at a fixed rate kji (frequently zero),

meaning that the time spent in state i prior to a transition is

exponentially distributed; the average lifetime is given by
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si ¼ 1=
P

j kji; and the destination state is independent of

the state from which the system entered i and the length of

time spent within i. Formally, given this assumption, the

probability distribution evolves according to the familiar

Master equation (Van Kampen 2007). This type of model is

so universal that it is often not realised just how big an

assumption it is to treat coarse-grained dynamics as

Markovian.

Consider Fig. 5, in which we have divided a two-di-

mensional microstate space into macrostates in an essen-

tially arbitrary fashion, and plotted a sample trajectory of a

simple process that is Markovian at the microstate level.

Fundamentally, even if the dynamics is Markovian at the

microstate level, coarse-graining introduces memory into

the process. Trajectories that enter macrostate i from

macrostate j are close to the border between the two, and

hence are likely to quickly cross back into j. As a result,

both the transition time and transition destination should, in

general, depend in a complex manner the previous mac-

rostates visited by the system, and the length of time for

which the current macrostate has been occupied.

For a more concrete example, consider the strand

exchange reaction shown in Fig. 6. Strand exchange is a

basic process underlying much of DNA computation (Qian

and Winfree 2011; Zhang and Winfree 2009; Chen et al.

2013). It might be tempting to describe the system using

three macrostates: A bound to B only; an ABC complex;

and A bound to C only. Indeed, such an approach is sen-

sible if one is only interested in the relative abundances of

complexes in equilibrium. However, the system dynamics

cannot be well-described by a Markov process at this level.

The need to initiate and complete branch migration to

exchange base pairs between AB and AC duplexes means

that an ABC complex formed by ABþ C ! ABC is in

reality much more likely to dissociate into ABþ C than a

complex formed by AC þ B ! ABC, violating the

assumptions of a Markov process. Even splitting the ABC

macrostate into two separate macrostates, depending on

whether AB or AC contains the most base pairs (Zhang and

Winfree 2009), does not provide a satisfactory treatment of

the system; it is necessary to resolve macrostates on at least

the base-pair level to provide a predictive Markov model of

system dynamics (Srinivas et al. 2013). A similar example

in cells is the translation of RNA (Reuveni et al. 2011); if

‘‘ribosome bound to RNA’’ is treated as a single macro-

state, rather than modelling codon incorporation as indi-

vidual steps, a highly unrealistic exponential distribution of

times for translation will be obtained.

So when is a Markov assumption reasonable? This is a

subtle problem, but the basic idea is that macrostates must

be carefully chosen so that a transition involves passing

through an unfavourable (high energy or low entropy) set of

microstates around the boundary. In this case, the system

typically spends a long time fully exploring each macrostate

before a sudden hop to a neighbouring one. Transitions,

which are complete when the system has fully crossed the

unfavourable microstates on the boundary, are rare—the

time taken waiting to see a transition is long compared to

the duration of the transition. When these assumptions hold,

any memory of the previous macrostate is lost whilst

exploring the new one, allowing the Markov assumption

(Seifert 2011, 2012; Hill 1989). A more detailed discussion

of when coarse-graining is possible, and how to do it sys-

tematically, is presented in Bo and Celani (2017).

-0.04

-0.03

-0.02

-0.01

 0

 0.01

 0.02

 0.03

 0.04

-0.04 -0.03 -0.02 -0.01  0  0.01  0.02  0.03  0.04

X
1

X2

Fig. 5 Coarse-grained dynamics can be non-Markovian, even if the

underlying dynamics at the microstate level is Markovian. Plotted is

the trajectory of a simple Markov process [a 2D Ornstein Uhlenbeck

process (Van Kampen 2007)] over continuous variables X1 and X2.

Dividing the state space into macrostates according to the sign of X1

and X2 leads to highly non-Markovian dynamics st the macrostate

level; destinations and dwell times do not exhibit the memoryless

property

B,CAC,BA

ABC

Fig. 6 A practically-relevant example of a coarse-graining into

macrostates that is inappropriate for treatment with Markovian

dynamics. Consider a DNA-based toehold-exchange reaction, in

which B and C compete for binding to A via strand displacement. It is

perfectly possible to define three macrostates as shown above, and

indeed doing so would enable the calculation of molecular abun-

dances in equilibrium. However, it is inappropriate to model the

dynamics as Markovian, because the microstates of the ABC complex

are not typically fully-explored before it dissociates
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A simple example is given by comparing the trajectories

of particles in two potential energy wells. In the first case,

the well is quadratic, with a single minimum at x ¼ 0; in

the second, it is quartic, with two minima at x ¼ �1 and

x ¼ þ1 (see Fig. 7a). In both cases it is formally possible

to define macrostates according to whether the particle

occupies x\0 or x[ 0. However, only in the first case, in

which the transition from x\0 to x[ 0 is associated with

climbing over an unfavourable energy barrier, is it rea-

sonable to describe this process using a Markov model at

the macrostate level (compare the two trajectories in

Fig. 7b). Returning to the toehold exchange reaction in

Fig. 6, the three-state Markov model fails because a system

that enters the ABC macrostate isn’t likely to fully explore

that macrostate prior to leaving it. Since branch migration

is slow (Srinivas et al. 2013), the strand that has just bound

will often detach before all branch migration intermediates

have been explored, invalidating the requirements for a

Markov model at the level of these macrostates.

From this point onwards we will assume a biomolecular

system with discrete macrostates that have been well-cho-

sen. Thus the dynamics is Markovian and can be well

described by a master equation with rate parameters kji (Van

Kampen 2007). What we will say will also be applicable to

a full description at the level of microstates ðx; pÞ.

5.3 Detailed balance

The transition rates kji between all pairs of macrostates

fully define system behaviour, given a particular initial

condition. Knowledge of system thermodynamics (i.e., the

free energy of macrostates FrðiÞ) doesn’t specify kinetics,

but it does place strong and important restrictions. Firstly

as noted in Sect. 5.2, the system should eventually relax to

the equilibrium (Boltzmann) distribution over macrostates.

Thus knowledge of the equilibrium distribution constrains

the set of rate parameters fkjig—they must result in the

appropriate steady state.

Thermodynamic systems, however, are constrainedmuch

more tightly than this. A feature of equilibrium is that there

should be no tendency of reactions to flow in one direction

(Van Kampen 2007). This fact was alluded to when the

concept of equilibrium was introduced in Sect. 2; in equi-

librium, there should be no net flux of systems between any

pair of microstates. For example, if a single molecule can

occupy three different conformational macrostates, X, Y and

Z, one could imagine a steady state with a systematic flow

X ! Y ! Z ! X (Fig. 8a). Such a steady state is impossi-

ble in equilibrium. If it existed, it would be possible to use

the systematic flow to power molecular machines (Sect. 7),

which would violate the second law of thermodynamics.

This feat would be analogous to powering a water mill using

a completely flat and undisturbed pond.

Instead, in equilibrium, each individual transition must

be balanced by its microscopic reverse (Fig. 8b); the total

rate at which X ! Y transitions are observed should bal-

ance the total rate of Y ! X. This feature is known as the

principle of detailed balance, and it is a central plank of the

thermodynamics of molecular systems. In terms of the rate

parameters, equating the total number of transitions per

unit time, a, in both directions in equilibrium gives

ai!j ¼ kjiP
eq
r ðiÞ ¼ kijP

eq
r ðjÞ ¼ aj!i; ð21Þ

which clearly holds in Fig. 8b, but not Fig. 8a. Thus

kji

kij
¼ Peq

r ðjÞ
P
eq
r ðiÞ

¼ expð�ðFrðjÞ � FrðiÞÞ=kBTÞ ð22Þ

for a simple chemical system obeying detailed balance.

The ratio of rate parameters kji=kij is then determined
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Fig. 7 Macrostates that are separated by well-defined (free-) energy

barriers lead to rare event kinetics and allow for a Markovian

treatment. a Two potentials: a quadratic well with a single minimum,

and a quartic well with two minima separated by a barrier. b Example

trajectories of (overdamped) Brownian dynamics in these wells. For

the quartic well (trajectory labelled ‘‘quart’’) transitions are rare

events and each well is sampled representatively prior to transitions.

It is therefore reasonable to assume Markovian dynamics between

macrostates defined by x[ 0 and x\0. By contrast, for the quadratic

single well (‘‘quad’’) this is not possible
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exclusively by the difference in free energies between

macrostates i and j. It should be immediately evident that

rate parameters constrained in this way will necessarily

lead to the appropriate equilibrium distribution

Peq
r ðiÞ / expð�FrðiÞ=kBTÞ, since by definition all pairs of

transitions will cancel out if PrðiÞ ¼ Peq
r ðiÞ. Importantly,

since the rate parameters are constant, the relationship

between rate constants in Eq. 22 is a feature of the

dynamics and holds for any PrðiÞ, even when the system is

out of equilibrium and PrðiÞ 6¼ Peq
r ðiÞ.

An important consequence of detailed balance is that we

can now see which transitions will tend to occur sponta-

neously in representative trajectories. If FrðiÞ[FrðjÞ, we
expect to see systems move from i to j more quickly than

they would from j to i. In equilibrium, this tendency is

compensated for by the relative population size, yielding

detailed balance. This is true even if it takes several steps to

reach j from i, since Eq. 22 holds for each of those steps. If

ðFrðiÞ � FrðjÞÞ=kBT � 1, then we expect to see i ! j

occur spontaneously during trajectories, but we will

essentially never observe a system starting in j and tran-

sitioning to i (unless we force it from the outside). In the

context of a chemical reaction, for example Aþ B � AB,

we expect to see systematically more transitions from left

to right whilst DAþBFr ¼ lABr � ðlAr þ lBrÞ\0. On a large

scale with many molecules, we will effectively see the

reaction spontaneously proceed in one direction deter-

mined by the sign of DAþBFr, until equilibrium

(DAþBFr ¼ 0) is reached.

5.4 Parameterising a kinetic model for molecular

systems

The relative rate of forwards and backwards transitions is

thus fixed by the associated change in macrostate free

energy. In this subsection, we discuss how this simple self-

consistency relation places strong constraints on the rate

parameters that can be used to describe a biochemical

system, if it is to be thermodynamically well-defined.

Doing so is particularly important in developing physically

reasonable models of self-assembly, polymerization or

depolymerization (Dannenberg et al. 2015; Nguyen and

Vaikuntanathan 2016; Andrieux and Gaspard 2008; Sartori

and Pigolotti 2015; Gaspard 2016), and also nanotechno-

logically important reactions such as strand exchange

(Zhang and Winfree 2009). Unless this physical constraint

is applied when parameterising such models, unphysical

cyclic flows of reactions will be observed in steady state.

Preserving the relationship between free energy change and

relative reaction rates is also essential if the costs of fuel-

consuming systems (Mehta and Schwab 2012; Lan et al.

2012; Barato and Seifert 2015; Pietzonka et al. 2016;

Ouldridge et al. 2017), which will be discussed in Sect. 7,

are to be understood.

Note that this requirement of thermodynamic self-con-

sistency is not unique to a particular approach to modelling

a biochemical reaction network. We have been considered

a fully-stochastic description at the level of the chemical

master equation, Van Kampen (2007), Gillespie (2009), but

similar reasoning also applies to modelling performed in

the deterministic limit (Gillespie 2009) or using a chemical

Langevin approximation (Van Kampen 2007; Gillespie

2009). All of these approaches are potentially thermody-

namically well-defined, but care must be taken when

parameterising them.

It is sufficient to consider how transition rates defining

the chemical master equation should be chosen, since these

directly determine the deterministic and Langevin

approximations to the system. It is typical to assume that in

dilute solutions, rates per unit volume are proportional to
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Fig. 8 Detailed balance in a discrete state Markov process. a and b
represent Markov processes defined on the discrete state space

X, Y, Z. These processes both have the same stationary distribution

Pstat
r ðiÞ, shown above. However, system a exhibits a tendency to flow

in a clockwise direction X ! Y ! Z even if PrðiÞ ¼ Pstat
r ðiÞ, whereas

system b exhibits detailed balance; the net number of transitions

between each pair of states cancels at PrðiÞ ¼ Pstat
r ðiÞ ¼ Peq

r ðiÞ, as can
be explicitly verified
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concentrations of reactants. For example, in the reaction

Aþ B ! AB, the macrostate-dependent rate for the bind-

ing transition kNABþ1;NAB
NA;NBð Þ is given by

kNABþ1;NAB
NA;NBð Þ ¼ /bind

NA

Vr

NB

Vr
Vr; ð23Þ

where /bind is a bimolecular rate constant, and the reverse

rate is given by

kNAB;NABþ1 NABð Þ ¼ /unbind

NAB

Vr
Vr; ð24Þ

where /unbind is a unimolecular rate constant for unbinding.

Such a choice is potentially thermodynamically consistent,

but Eq. 22 combined with Eqs. 14 and 16 implies a specific

relationship between the two rate constants. The familiar

result is:

/bind

/unbind

¼ V0 expð�DAþBF
0=kBTÞ: ð25Þ

We have thus seen how a constraint on the transition rate

parameters in the chemical master equation translates into

constraints on the familiar first and second order rate

constants of association and dissociation. Similar results

can be obtained for other reactions.

When constructing a kinetic model, it is advisable to

start from a model for the free energies FrðiÞ, and then

impose Eq. 22 or Eq. 25 for each pair of reactions. Indeed,

it is extremely hard to write down directly a set of transi-

tion rates fkg or rate constants f/g that respect a sensible

free energy model for a complex system. Typically, the

free energy difference implied by two distinct pathways

between microstates will be inconsistent, resulting in

unwanted steady-state reaction fluxes etc.

As an example, we might consider a small DNA

nanostructure, whose assembly involves binding and

unbinding of duplex sections. A simple assumption might

be that all binding transitions have the same bimolecular

rate constant (perhaps � 106 M s�1), which sets kij for all

binding transitions. The inverse kji transition rates then

follow from the free energy of binding, FrðiÞ � FrðjÞ,
which might be estimated via the nearest-neighbour model.

In general, both the problem of estimating FrðiÞ and the

absolute rates of one of each pair of transitions can be

subtle (Srinivas et al. 2013; Flamm et al. 2000; Schaeffer

et al. 2015; Dannenberg et al. 2015), and the consequences

for the dynamics can be profound. In particular, it is not

always obvious how a change in DkFr might be manifest in

the rates. For example, consider the association of two

DNA strands A and B that can form hairpins in the single-

stranded state. These hairpins serve to make the standard

free energy of formation of a duplex DAþBF
0 less favour-

able (less negative), and hence reduce the ratio

/bind=/unbind through Eq. 25. It might be natural to assume

that hairpins essentially reduce the rate of binding /bind,

and indeed hairpins are deliberately used for this purpose to

create metastable systems (Turberfield et al. 2003; Yin

et al. 2008; Choi et al. 2014; Meng et al. 2016). However,

experimental evidence suggests that in some cases, /bind is

reduced by much less than expð�DAþBF
0=kBTÞ, implying

that in fact most of the reduction in free energy is manifest

as an increase in the off-rate /unbind Gao et al. (2006). This

observation is supported by detailed simulation (Schreck

et al. 2015), in which it is observed that hairpins form prior

to full dissociation and stabilise the partially-melted state,

accelerating unbinding. Similarly, experimental work sup-

ported by theory shows that the overall forwards rate of

strand displacement and exchange reactions can be adjus-

ted by orders of magnitude at a fixed overall standard free

energy of reaction (Zhang and Winfree 2009; Machinek

et al. 2014).

Despite these subtleties, simple kinetic models of com-

plex molecular systems can provide deep insight into

function. For example, the exquisite data provided by

Zhang and Winfree (2009) on the rates of DNA strand

displacement and toehold exchange reactions allow ther-

modynamically consistent modelling of those key pro-

cesses, underlying the systematic design of complex

molecular circuits using tools such as DSD (Lakin et al.

2011). In turn, the physical basis of these parameters have

been probed by more detailed modelling (Srinivas et al.

2013) at the base-pair level of description. Similarly, it has

long been known that kinetics, rooted in a free-energy

landscape, is fundamental to understanding how proteins

fold (Dill and MacCallum 2012). Recent work has explored

and manipulated the kinetics of assembly DNA origami

and DNA brick assembly in a similar fashion, highlighting

the importance of subtle cooperative effects (Dannenberg

et al. 2015; Dunn et al. 2015; Reinhardt and Frenkel 2014;

Song et al. 2012).

6 The consequences of reversibility in biochemical
reactions, and the relation to thermodynamic
reversibility

Reversibility is an important term in both thermodynamics

(reversible processes generate no entropy) and the litera-

ture on chemical reaction networks (reversible transitions

can occur backwards or forwards). In this section, we first

explain why the microscopic reverse of all observed reac-

tions must be possible, and how reaction networks mod-

elled with one-directional transitions should be understood.

We then demonstrate the consequences of microscopic

reversibility for a particular molecular computation algo-

rithm, highlighting potential issues with neglecting

microscopic reversibility in system design. Finally, we
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contrast the meaning of thermodynamic reversibility with

that of microscopically reversible transitions in an attempt

to clarify a frequently misunderstood dichotomy.

6.1 Including reverse transitions in modelling

One immediate consequence of Eq. 22 is that if a forwards

reaction is possible, so too is its reverse, with relative rates

determined by the initial and final free energies. This

concept is known as the principle of microscopic

reversibility, and has far-reaching consequences. This

principle suggests that both forwards and backwards tran-

sitions should always be explicitly included in any model.

However, successful modelling is often done by treating

certain reactions as totally irreversible. For example,

nobody models transcription of RNA in cells by consid-

ering the reverse process by which RNA returns to the

DNA and is destroyed base by base whilst in contact the

gene that encoded it (Bennett 1982). Similarly, strand

displacement kinetics is often fitted by assuming that the

reaction proceeds to 100% completion (Machinek et al.

2014).

In general, whether it is reasonable to neglect reverse

transitions depends upon the context, and the purpose of

the modelling. Processes such as RNA transcription

involve constant input of chemical fuel (this situation will

be discussed in Sect. 7), and are thus far from equilibrium;

in such cases, backwards transitions can be rendered

irrelevant by the presence of alternative pathways. For

example, RNA is digested by exo- and endonucleases in

the cell, instead of needing to be destroyed by the reverse

of transcription. Unless the modeller is interested in the

actual thermodynamic work being done by the fuel in such

cases, or in the case of relatively weak driving, explicit

modelling of the reverse reactions is unimportant. For

strand displacement, with a sufficiently long toehold, the

equilibrium state is so biased towards the product of dis-

placement that reverse reactions, leading to a residual

concentration of the input, can be neglected. In many other

contexts, however, it is important to include microscopi-

cally reversible transitions, because the free energy of

transitions is relatively weak (as is the case of self-

assembly near the melting temperature); because the

overall thermodynamics is of interest to the modeller; or

because reverse reactions, despite being typically slow,

have a profound impact on system behaviour.

For example, in the field of molecular computation and

algorithms, it is common to assume that reactions can be

made totally irreversible (Zechner et al. 2016; Chen et al.

2012, 2013; Cummings et al. 2015; Briat et al. 2016). An

example is an algorithm for computing the parity (even/odd

nature) of an initial number of molecules of type A, as

discussed by Cummings et al. (2015) and illustrated in

Fig. 9a. The algorithm introduces two other species, B and

C, and the (assumed microscopically irreversible) reactions

Aþ B ! C;

Aþ C ! B:
ð26Þ

If the system is initially prepared with N0
A molecules of

type A, and 1 molecule of type B, it can be seen that the

reactions will interconvert B and C (retaining

NB þ NC ¼ 1) whilst reducing the number of A molecules.

The final state will be a single molecule of type B if N0
A is

even, and a single molecule of type C if N0
A is odd. The

output of the network is thus the state of the B / C molecule

in the limit of long time, which reports on the parity of N0
A.

Note that these reactions can in principle be implemented

with DNA using a large supply of implicit ancillary

molecules (Chen et al. 2013; Qian et al. 2011).

What happens if we consider reverse reactions, so that

C ! Aþ B and B ! Aþ C are also possible, as in Fig. 9b?

Then there is a finite chance that a system observed in the

long-time limit will contain a B / C molecule that does not

reflect the parity of N0
A. Specifically, let us assume that for a

single A and a single B being converted into a single C in the

volume Vr, in the absence of all other molecules of type A,

B and C, the free-energy difference between macrostates is

FrðNA ¼ 0;NB ¼ 0;NC ¼ 1Þ � FrðNA ¼ 1;NB ¼ 1;NC ¼
0Þ ¼ DFparity (Fig. 9b). For simplicity, let us also assume

that the same free-energy difference applies to Aþ C ! B,

FrðNA ¼ 0;NB ¼ 1;NC ¼ 0Þ � FrðNA ¼ 1;NB ¼ 0;NC ¼
1Þ ¼ DFparity. These free energies include the contributions

from any implicit ancillary molecules. Provided the ancil-

lary molecules are in excess (their concentrations are

essentially unaffected by the reactions involving A, B and

C), then the probability of observing NA molecules of type A

in equilibrium is given by

A

B C

(a)

(b) k

k’

k/k’ = exp(-ΔFparity/kBT)

Fig. 9 Schematic illustration of the parity-computing algorithm of

Cummings et al. (2015). a Reactions consume species A, and switch

B into C and vice versa. Thus a system initated with an odd number

N0
A of A and a single B will result in an isolated C (as shown).

Alternatively, a system initiated with an even number N0
A of A

molecules will result in a single isolated B. b The consequence of

microscopic reversibility is a finite backwards rate for all transitions;

we take the overall difference in free energy between NA ¼ 1 and

NA ¼ 0 to be DFparity
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Peq
r ðNA ¼ 1Þ ¼ Peq

r ðNA ¼ 0Þ expð�DFparity=kBTÞ;

Peq
r ðNA ¼ 2Þ ¼ 1

2
Peq
r ðNA ¼ 0Þ expð�2DFparity=kBTÞ;

Peq
r ðNA ¼ 3Þ ¼ 1

6
Peq
r ðNA ¼ 0Þ expð�3DFparity=kBTÞ;

Peq
r ðNAÞ ¼

1

NA!
Peq
r ðNA ¼ 0Þ expð�NADFparity=kBTÞ:

ð27Þ

Each term includes an additional factor, e�DFparity=kBT , to

account for the additional reaction that must take place to

reach NA ¼ 0. The NA! factor accounts for the fact that the

free energy difference between states with NA and NA � 1

depends on the number of A present, as we previously saw

in Sect. 3. One way to confirm the exact dependence is to

note that the rate for C ! Aþ B and B ! Aþ C should be

independent of NA, but Aþ B ! C and Aþ C ! B should

occur with an overall rate proportional to NA. Incorporating

this into the free energy gives the factors in Eq. 27 (a

logarithmic growth in the free energy difference with NA).

When NA is odd, the readout from the reporter molecule

B / C gives an incorrect readout for the parity of N0
A. It can

be seen that the even and odd terms of Eq. 27 correspond

to terms in the expansion of hyperbolic functions of

eð�DFparity=kBTÞ. Thus

Pcorrect

Pincorrect

¼ Peq
r ðNA evenÞ
P
eq
r ðNA oddÞ � coth eð�DFparity=kBTÞ

� �
: ð28Þ

For DFparity large and negative—when the interconversion

of an isolated A and B into an isolated C is favourable—the

algorithm is accurate. For lower values of DFparity, the

accuracy is reduced. Of course, in an abstract design it is

possible to imagine DFparity is as large as possible, but the

need to do this should be noted. It is also worth high-

lighting the fact that DFparity is not the standard free energy

of the reaction; it is the free energy difference between a

macrostate with a single A and a single B and a macrostate

with a single C, in volume Vr. In fact, it can be shown that

(Ouldridge et al. 2010),

DFparity ¼ �kBT ln
K

eq
AþB

Vr

� �

¼ kBT ln
Vr

V0

� �
þ DAþBF

0;

ð29Þ

where DAþBF
0 is the standard free energy of reaction,

calculated in the reference volume V0 ¼ 1=C0. Thus the

larger the system volume Vr, the larger the standard free

energy must be to give the same accuracy. If N0
A is large, Vr

will also have to be large to ensure that the system is dilute

and functions as intended. Therefore the standard free

energy required for accurate computation will be very large

and negative, and will become more negative

logarithmically with system size at fixed initial concen-

tration CA. The robustness of other molecular algorithms to

finite reverse reaction rates, and possible ways to mitigate

these effects, remain important open questions – although it

seems likely that the least robust algorithms will be those

that require a specific macrostate as an output.

6.2 The meaning of thermodynamic reversibility

The microscopic reversibility of individual transitions

should not be conflated with the idea of thermodynamic

reversibility, despite the unfortunate similarity of nomen-

clature. Thermodynamic reversibility is not the property of

an individual transition or even a set of rate parameters

describing a system. Rather, it is a property of an entire

process in which an experimentalist or machine in the

environment manipulates the system from the outside,

applying some protocol (changing the conditions with time,

as shown in Fig. 10a). If the system and environment are

both be restored to their initial conditions by a time-re-

versed protocol (Fig. 10b), then the process and its time-

reversed counterpart are thermodynamically reversible

(Adkins 1987).

Reversible processes are important in thermodynamics

because they do not increase the entropy of the universe,

given by the sum of the entropy of r and its environment R
(Adkins 1987). The entropy of the universe (an isolated

system) cannot decrease, and excess entropy generation

corresponds to wasted effort (or work). Hence reversible

processes are the most efficient way of manipulating a

system between a given start and end point. Historically,

there has been significant interest in the minimal entropic

cost of certain computational procedures, particularly the

∑

σ

Heat Q

protocol: increasing f  as a function of time

(a)

(b)

f f f

fff

Fig. 10 The meaning of a reversible process. A schematic illustration

of a process in which a time-dependent protocol (perhaps a

compressing force) is applied to r, leading to change in r and

exchange of heat with the environment R. The process is reversible if
applying a time-reversed protocol as in b leads to both r and R being

returned to their initial conditions
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manipulation of a single bit, and the possibility of rever-

sible computing (Bennett 1982; Landauer 1961; Sagawa

and Ueda 2009).

It is often proposed that molecular systems might be

candidates for the construction of reversible computers

(Mehta and Schwab 2012; Thachuck and Condon 2012;

Thachuk 2013), and computational architectures with

microscopically reversible dynamics have been analysed

(Thachuck and Condon 2012; Thachuk 2013). Importantly,

however, microscopic reversibility does not imply ther-

modynamic reversibility. In truth, all systems possess

microscopic reversibility—ignoring it is simply a mod-

elling assumption, as discussed in Sect. 6.1. Thermody-

namic reversibility, however, depends on the initial

conditions of the system, and the way in which a protocol

is applied—not the intrinsic properties of a transition.

Consider, for example, a DNA-based toehold-exchange

reaction (Fig. 6). We might be interested in switching the

substrate strand A from a B-bound state to a C-bound state.

If we set up the system to ensure that we start with a single

AB duplex, and a separate C strand, and let it evolve nat-

urally (i.e., implement a trivial protocol of ‘‘do nothing’’)

the system will undergo repeated strand exchange reac-

tions, and the final state will alternate between AB and AC.

This isn’t a full switch from AB to AC, but it is at least a

change in the probability distribution over macrostates

PrðiÞ.
During this process, both forwards and backwards

reactions occur, and continue to occur indefinitely. So is

this a thermodynamically reversible process? It is not. If

we were to reverse our protocol of ‘‘doing nothing’’, the

system would not return to a state in which it was guar-

anteed to have an AB duplex; it would stay in an uncertain

AB/AC state. Indeed, any overall change of a system (i.e., a

change in the probability distribution PrðiÞ) that occurs

during a trivial ‘‘do nothing’’ protocol is necessarily ther-

modynamically irreversible, since the opposite change in

PrðiÞ will not occur under a time-reversed ‘‘do nothing’’

protocol. The actual entropy increase in the process can be

calculated using the methods discussed in Sect. 8.

Note that it is not really meaningful to describe the

individual reactions as reversible or irreversible in the

thermodynamic sense. Once the system has relaxed to a

completely uncertain equilibrium AB/AC state, strand

exchange reactions will still occur from the perspective of

individual trajectories. However, PrðiÞ will not change, and
the subsequent (trivial) evolution of the system is rever-

sible. It is only the initial period of transitioning from a

guaranteed AB state to an uncertain AB / AC state that is

irreversible—despite the fact that it involves the same

microscopic strand exchange reactions. Fundamentally,

thermodynamic reversibility is a property of the overall

change of the system r (through PrðiÞ) and the

environment R, rather than the individual molecular pro-

cesses involved.

Does this observation prohibit reversible operations with

molecular systems? In fact, it is possible to drive a change

in the state of molecular systems reversibly. However, this

must be done by externally changing the solution condi-

tions in a quasistatic (slow) manner. For the above exam-

ple, a reversible switch could be achieved by initially

coupling the A strand to a buffer containing only B strands,

and then replacing this buffer with a series of alternatives

with gradually increasing ratios of CC=CB, as shown in

Fig. 11. Eventually, in the limit CC=CB ! 1, the switch to

AC will be complete. By reversing the protocol, we return

to the initial AB configuration, and restore the buffers to

their original condition—hence the process is reversible.

Similar procedures for reversible copying of a bit and

reversible construction of a polymer copy from a template

are discussed in more detail in Ouldridge et al. (2017) and

Ouldridge and ten Wolde (2017), respectively. Although

perhaps impractical, they highlight the difference between

a thermodynamically reversible operation, and an irre-

versible process in which microscopic reversibility is

relevant.

7 Catalysis and the consumption of molecular fuel

Unlike the systems considered hitherto, living organisms

do not rapidly tend towards equilibrium. Instead, they are

kept out of equilibrium by a continuous supply of chemical

fuel. Conceptually, we might imagine that this fuel is

supplied from an enormous buffer that is not depleted on

the time scale of interest, or perhaps that the fuel levels are

or

AB
A

AC

C

Fig. 11 A reversible switch of toehold-exchange system, achieved by

coupling the volume containing strand A to buffers containing

increasing amounts of strand C, and decreasing amounts of strand

B. If this process is performed gradually enough, it is reversible
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continuously topped up by some process. Staying out of

equilibrium is of course essential for living systems, since

equilibrium systems are passive. In this Section we will

explore some basic functionalities of systems that are

continuously supplied with fuel molecules. We will see that

continuous fuel consumption allows systems to establish

non-equilibrium steady states. These steady-states can, for

example, store the electrochemical free energy needed to

propagate nerve signals, and permit molecular signalling

without consumption of the upstream signalling molecule.

The prototypical example of a chemical fuel molecule is

ATP, and so we will base our discussion around it. ATP

consists of a sugar-base group attached to a chain of three

phosphate groups (Alberts et al. 2002). All of these bonds

are covalent, but phosphate groups can be removed by

hydrolysis. In particular, a key reaction is the removal of

phosphate to give ADP (Fig. 12a),

ATP � ADPþ Pi: ð30Þ

This reaction has an associated equilibrium constant

K
eq
ADPþPi

and a standard free energy of ATP formation

DADPþPiF
0. The cell uses the breakdown of food molecules

to maintain a concentration imbalance of ATP, ADP and

Pi; i.e.,

CATP
CADPCPi

[K
eq
ADPþPi

; ð31Þ

or equivalently

DADPþPiFr ¼ lATPr � ðlADPr þ lPir Þ

¼ DADPþPiF
0 þ kBT ln

C0CATP
CADPCPi

� �

[ 0:

ð32Þ

Left in isolation, a solution of ATP, ADP and Pi prepared

with these concentrations would relax to equilibrium by

converting ATP into ADP and Pi. This process, which

requires the disruption of covalent bonds, has extremely

slow kinetics. Consequently the cell is able to build up and

maintain a large concentration imbalance.

The kinetics of processes such as that in Eq. 30 can be

accelerated by catalysts (Nelson 2004; Alberts et al. 2002).

Catalysts provide an alternative reaction pathway between

the endpoints, which might (for example) lower the barriers

associated with the formation and disruption of covalent

bonds, as in ATP hydrolysis. A schematic illustration of

catalyst operation is given in Fig. 12b, and one might

record the effective reaction as

ATPþ E � E � ADP� Pi � ADP þ Pi þ E ð33Þ

with E being the catalyst molecule. Importantly, the cata-

lyst is released at the end of the process unchanged, and

does not contribute to the free energy of the overall reac-

tion (its stoichiometric coefficient is zero). Therefore the

catalyst does not affect the equilibrium balance between its

substrate molecules, it only accelerates the rate at which

this equilibrium is reached (Nelson 2004). An equivalent

way to view the action of a catalyst is that it accelerates

both forwards and backwards rates equally.

In nature, some catalysts are simply present to accelerate

reaction kinetics. For example, amylase is present to

accelerate the breakdown of starch into sugars. In principle,

it can also accelerate the conversion of sugars into starch,

but this is irrelevant in the high starch conditions in which

it operates. Many catalysts act on the ATP hydrolysis

reaction in Eq. 30, but simply accelerating the equilibration

of this process serves no function. Doing so would merely

reduce the concentration imbalance built up by the cell.

The purpose of these catalysts is to couple ATP hydrolysis

to other reactions through the details of their internal bio-

chemistry, and thereby use the free energy of ATP

hydrolysis to drive those reactions in one way or another.

A clear example is given by ion pumps, molecular

machines that reside in membranes, and transport ions

across these membranes (Fig. 13). Without coupling to

ATP hydrolysis, these ion pumps could only facilitate the

equilibration of ions on either side of the membrane (i.e.,

allow current to flow until the chemical potential of the

ions is equal on both sides; lionin ¼ lionout). If, however, out-

wards ion transport is tightly coupled to ATP breakdown,

then the overall free energy of pumping an ion outward is

DinþATPFr ¼ lionout � lionin � ðlATPr � ðlADPr þ lPir ÞÞ; ð34Þ

which can be negative even if lionin � lionout [ 0, due to the

imbalance of chemical fuel molecules maintained by the

cell. If the non-equilibrium chemical potentials of the ATP,

ADP and Pi are maintained indefinitely, the ions will

eventually reach a non-equilibrium steady state in which

the outwards pumping is balanced by leaks back through

other channels.

The non-equilibrium initial state of the fuel molecules is

effectively a store of useful work. This store can be

ATP ADP Pi

+

ATP E E-ADP-P ADP E
+ +

Pi

+

(a)

(b)

Fig. 12 a The breakdown of ATP into ADP and Pi. b A catalyst

E can enhance the reaction rate by providing an alternative pathway;

the catalyst is not consumed by the overall reaction
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consumed to drive another process—in this case, the

transfer ions against their chemical potential bias. The

maximum chemical potential bias lionin � lionout against which

progress can be made is simply the excess free energy

change associated with breakdown of a single ATP,

lATPr � ðlADPr þ lPir Þ.
Transferring ions across membranes is very much like

charging a capacitor, and cells use these capacitors to drive

other processes, including the firing of nerve cells. There

are numerous other natural processes in which molecular

fuel consumption is used to drive a coupled reaction.

Molecular motors such as myosin, kinesin and dynein

catalyse ATP breakdown to bias the direction in which they

walk along a track (Nelson 2004; Howard 2001; Alberts

et al. 2002). Without coupling the forwards step to ATP

hydrolysis, forwards and backwards steps would be equally

likely, since all walker binding sites on the track have equal

free energy by symmetry.

By coupling continuous fuel consumption to other

molecular reactions via catalysts, it is therefore possible to

drive those other reactions away from their natural equi-

librium (Qian 2007; Beard and Qian 2008). A particularly

important example are push-pull motifs, which are ubiq-

uitous in the signalling mechanisms which pass informa-

tion around the cell and illustrated in Fig. 14. In these small

networks, the presence of active upstream catalysts leads to

activation of downstream substrates, which can in turn

propagate or respond to the signal.

Each push-pull motif consists of a protein that can be

switched between its active (X	) and inactive (X) states by

binding of Pi to one (or more) amino acid residues. If this

‘‘phosphorylation’’ could only occur through binding to

and unbinding from Pi in solution, then the activity level

would swiftly tend towards that determined by the equi-

librium constant of binding and the abundance of Pi,

CeqX	

CeqX
¼ CPiK

eq
XþPi

ð35Þ

Importantly, any upstream catalyst could only enhance this

convergence to equilibrium, it could not change it. As

discussed in Sect. 4.1, relative equilibrium abundances are

determined exclusively by the free energies of reactants

and products—the concentration of a transiently involved

catalyst is irrelevant.

However, if ATP is present, phosphorylation can also

occur via transfer of phosphate from ATP:

X þ ATP � X	 þ ADP: ð36Þ

If the ATP, ADP and Pi concentrations are maintained such

that DADPþPiFr [ 0, it is impossible for the X=X	 subsys-

tem to reach equilibrium. The series of reactions shown in

Fig. 14a

X þ ATP ! X	 þ ADP ! X þ ADPþ Pi; ð37Þ

will necessarily occur much more frequently on sample

trajectories than the counterpart

X þ ADP þ Pi ! X	 þ ADP ! X þ ATP: ð38Þ

The reactions in Eq. 37 will occur more frequently since

the net result of the reactions in Eq. 37 is the breakdown of

ATP, whereas the net result of the reaction in Eq. 38 is the

+

μin
ion

μin
out

ATP
ADP

Pi

ion pumpmembrane

Fig. 13 An illustration of the principle of an ion pump. The pump

systematically drives ions from inside the membrane to outside. By

coupling the ion transition to ATP � ADPþ Pi, ions can be

systematically pumped against a chemical potential bias

lionout � lionin � 0. This pumping is possible due the large and negative

contribution of the breakdown of ATP to the free energy difference

associated with the transition

*XX

Pi

ATP ADP
Y YX-ADP-Pi-Y

X X*

Y

(a) (b)

Fig. 14 A push-pull motif. The downstream molecule X can be

converted between its phosphorylation states by two pathways: by

exchanging phosphate with ADP/ATP or solution. Catalysts can

accelerate one or both of these reactions; in (a), a catalyst Y is shown

accelerating interactions with ATP/ADP. The overall negative free

energy change of ATP breakdown favours the direction of reactions

shown, rather than their reversed counterparts, and so X=X	

effectively undergoes a cycle. As a result, a signal related to the

concentration of Y can be passed onto X	, which then propagates the

signal further. This function of the push-pull motif is illustrated in the

simplified diagram in (b)
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synthesis of ATP from ADP and Pi, and the sign of

DADPþPiFr ¼ lATPr � ðlADPr þ lPir Þ[ 0 favours ATP

breakdown. The protein X systematically tends to be con-

verted into X	 by one pathway, and converted back into X

by a completely different pathway (Fig. 14a). From the

perspective of X=X	, detailed balance appears to be vio-

lated, and therefore the coupling to chemical fuel drives the

X=X	 subsystem out of equilibrium. As a result, when the

hydrolysis-driven cycle of Eq. 37 becomes dominant rel-

ative to Eq. 38, the steady state ratio CX	=CX is determined

purely by the relative rates of the two reactions within that

cycle, X þ ATP ! X	 þ ADP and

X	 þ ADP ! X þ ADPþ Pi.

Since the dominant reactions that interconvert X and X	

are not a microscopic reverse pair, thermodynamics places

no restrictions on their relative rates. In particular, it is

perfectly possible for a catalyst to accelerate the kinetics of

one reaction and not the other. The output ratio CX	=CX can

then be sensitive to the concentration of an upstream cat-

alyst (Y in Fig. 14a) that accelerates the exchange of

phosphate between X and ATP. In this manner, signalling

cascades can pass on information on the concentration of

active upstream catalysts, illustrated schematically in

Fig. 14b, as required. We emphasize that it would be

impossible for Y to influence the X=X	 ratio in this way

without consuming fuel, or binding to the downstream

molecule and remaining bound (i.e., with Y itself being

consumed by the reaction).

We emphasize that the violation of detailed balance for

X/X	 only occurs because the fuel molecules are continu-

ously being consumed, which prevents the X=X	 system

from reaching equilibrium. If the root source of the

chemical fuel was also explicitly modelled as part of an

extended description, we would see the system as a whole

relaxing towards equilibrium through the reactions that

turn over ATP; the apparent non-equilibrium steady state

of X=X	 is just a psuedo-steady state that arises because the

dynamics of X=X	 are much faster than that of the extended

system as a whole. Furthermore, the fundamental rela-

tionship between transition rates derived from detailed

balance, Eq. 22, still holds: the relative rate of each

microscopic reverse pair of forward and backward transi-

tions is still determined by the underlying DF in the usual

way, with the contributions from the fuel molecules to DF
taken into account.

The above catalytic activation motif is extremely pow-

erful. Since the upstream molecule acts catalytically, it is

not consumed in the act of passing on the signal. It is thus

able to interact with other downstream proteins to either

amplify or branch the signal (Mehta et al. 2016). More-

over, the downstream readout’s persistent modification

allows it to keep a long-lived record of the state of the

upstream protein, permitting time-integration of signals

(Govern and ten Wolde 2014a, b). These features are only

possible in a motif that incorporates catalytic signal prop-

agation, which in turn relies on coupling to a non-equi-

librium fuel source.

Driving of reactions by coupling them to a non-equi-

librium fuel supply is a central motif in natural systems

(Nelson 2004; Qian 2007; Beard and Qian 2008); other

examples include enhancement of substrate selectivity

through ‘‘kinetic proofreading’’ (Hopfield 1974; Ninio

1975), important in replication, transcription and transla-

tion of nucleic acids; and maintenance of oscillations

related to cell cycle (Tostevin and Howard 2006) and cir-

cadian clocks (Lubensky et al. 2017). Needless to say,

these fuel-consuming processes are widely exploited in

synthetic biology, and enzyme-driven processes in cell-free

environments (Fujii and Rondelez 2012; Green et al. 2014;

Stricker et al. 2008). There has also been some exploration

of these ideas in nucleic acid nanotechnology, most notably

in the design of autonomous DNA walkers (Bath et al.

2005, 2009; Wickham et al. 2011; Tian et al. 2005; Lund

et al. 2010; Cha et al. 2014; Muscat et al. 2011), some of

which are powered by base pairing alone (Muscat et al.

2011; Green et al. 2008; Omabegho et al. 2009). In par-

ticular, hairpins can be used as metastable non-equilibrium

fuel (Turberfield et al. 2003; Green et al. 2008; Omabegho

et al. 2009); the motion of the walker is coupled to cata-

lysing reactions that are otherwise frustrated by the hairpin

structure.

More generally, recent work has shown how to imple-

ment arbitrary chemical reaction networks (CRNs) as

nucleic acid systems by realising each reaction as a multi-

stage process involving ancillary molecules (Chen et al.

2013; Qian et al. 2011). These ancillary molecules can

function as fuel, in principle allowing catalytic driving out

of equilibrium as discussed above (Chen et al. 2013). Most

impressively, the Khammash group have used a nucleic-

acid-based architecture to implement a CRN-based noise

filter powered by fuel consumption (Zechner et al. 2016).

When considering the capabilities and design possibilities

of CRNs, it is always worth noting whether non-equilib-

rium fuel is required to provide a large thermodynamic bias

for the system to function as intended. Furthermore, when

these implicit fuel molecules are systematically consumed

by the system, detailed balance will in general be violated

for the other species considered explicitly.

Notwithstanding the above examples, the common nat-

ural motif of a network powered by fuel consumption is

relatively rare in non-enzymatic artificial nanotechnology.

Given the uses of fuel-powered systems in nature, pro-

ducing artificial analogues is an obvious goal. One major

advantage would be that, given a constant supply (or suf-

ficiently large buffer) of fuel, such systems could
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potentially operate indefinitely, performing repeated oper-

ations, rather than functioning as single-shot devices.

Continuous operation would be essential for implementing

circuits that perform functions like feedback-control (Briat

et al. 2016).

8 Stochastic thermodynamics and its relevance
to biochemical systems

Most interesting molecular systems are out equilibrium.

However, thus far we have only discussed thermodynamic

quantities Ueq
r , Seqr and Feq

r defined with respect to the

equilibrium distribution. Macrostate free energies, energies

and entropies, whilst useful, do not quantify the thermo-

dynamic properties of a general non-equilibrium distribu-

tion. In this Section, we discuss how these thermodynamic

ideas can be extended to individual stochastic trajectories

and evolving non-equilibrium distributions over macro-

states. In doing so, we will draw heavily upon the

pioneering work of Crooks (1999), Esposito and Van den

Broeck (2011), and Seifert (2005).

Section 6.2 suggests that entropy generation is related to

the relative probability of forward and reverse trajectories.

To proceed with this line of reasoning, we let z(t) be a sample

trajectory generated by the underlying Markovian dynamics

in the space of macrostates of the system, with initial value

z(0) an final value zðsÞ. We then define Prð½zðtÞ�jzð0ÞÞ as the
probability of observing that trajectory given the initial

condition, and Prð½~zðtÞ�jzðsÞÞ as the probability of observing
exactly the time-reversed trajectory given a starting point of

zðsÞ. Note that if a time-dependent external protocol is

applied as in Sect. 6.2, that protocol must be time-reversed

to calculate Prð½~zðtÞ�jzðsÞÞ. We ignore such a possibility for

our simple biochemical systems.

The forthcoming arguments follow from a single

assumption quantifying the relationship between the rela-

tive likelihoods of z(t) and its microscopic reverse ~zðtÞ, and
entropy changes (Crooks 1999; Seifert 2005; Jarzynski

2011; Seifert 2012):

kB ln
Prð½zðtÞ�jzð0ÞÞ
Prð½~zðtÞ�jzðsÞÞ

¼ DSR½zðtÞ� þ ðSrðzðsÞÞ � Srðzð0ÞÞ:

ð39Þ

Here, DSR½zðtÞ� is the change in the entropy of the envi-

ronment due to the trajectory z(t), given by the heat

deposited therein. DSR½zðtÞ� ¼ �DUr½zðtÞ�=T in the

absence of a time-dependent protocol, as we assume

(Seifert 2011) (for these purposes, it is simplest to treat any

fuel as being supplied by a large buffer that is explicitly

modelled part of the system r). Eq. 39 holds very generally

(Crooks 1999; Seifert 2005; Jarzynski 2011; Seifert 2012),

and in particular is necessarily true for the simple molec-

ular systems that we have considered. In fact, Eq. 39 fol-

lows fairly straight-forwardly from applying the

fundamental relation derived from detailed balance,

Eq. 22, at each sub-step of a trajectory.

8.1 Generalising thermodynamic quantities to non-

equilibrium distributions and fluctuating

trajectories

We are now ready to generalise the equilibrium quantities

Ueq
r , Seqr and Feq

r to non-equilibrium distributions over

macrostates, and use Eq. 39 to derive constraints that show

the power of these generalised quantities.

The obvious generalisation of the internal energy to an

arbitrary distribution Prðx; pÞ is

Ur½Prðx; pÞ� ¼
Z
x;p

dx; dpErðx; pÞPrðx; pÞ; ð40Þ

the average of the microstate energy over Prðx; pÞ. If the
Markovian approximation for macrostate dynamics holds,

then by definition the system is well-equilibrated within

macrostates, even if different macrostates have non-equi-

librium probabilities PrðiÞ 6¼ Peq
r ðiÞ. In this case,

Ur½PrðiÞ� ¼
X
i

PrðiÞUrðiÞ: ð41Þ

We also generalise the entropy in the same way, since the

statistical quantity is well-defined for any distribution.

Sr½Prðx; pÞ� ¼ �kB

Z
x;p

dx; dpPrðx; pÞ lnðPrðx; pÞ=qÞ:

ð42Þ

When considering well-defined macrostates, this expres-

sion becomes

Sr½PrðiÞ� ¼ �kB
X
i

PrðiÞ lnPrðiÞ þ
X
i

PrðiÞSrðiÞ:

ð43Þ

The generalisation is slightly more complex than for the

internal energy; we obtain a term corresponding to the

average entropy of the macrostates and a term corre-

sponding to the uncertainty in the macrostate. Similarly, we

can generalise the free energy (Esposito and Van den

Broeck 2011; Parrondo et al. 2015):

F r½PrðiÞ� ¼ Ur½PrðiÞ� � TSr½PrðiÞ�
¼
X
i

PrðiÞFrðiÞ þ kBT
X
i

PrðiÞ lnPrðiÞ:

ð44Þ

Finally, it is useful to define a ‘‘trajectory-dependent’’ entropy

production (Seifert 2005; Jarzynski 2011; Seifert 2012):
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Ds½zðtÞ�

¼ DSR½zðtÞ� þ ðSrðzðsÞÞ � Srðzð0ÞÞ � kB ln
PrðzðsÞÞ
Prðzð0ÞÞ

:

ð45Þ

This exotic quantity, when averaged over all possible tra-

jectories z(t), will give the generalised entropy change of

the entire process—hence its name. To see thatP
zðtÞ Pr½zðtÞ�Ds½zðtÞ� ¼ DSrþR, compare Eq. 45 to 43.

Note that Eq. 45 contains a term for the entropy of the

environment R, a term for the change in macrostate entropy

Sr, and a term related to the distribution of r over its

macrostates, as required.

These generalised quantities are particularly useful due

to the constraints placed on their evolution by Eq. 39. In

particular, arguably the deepest result of stochastic ther-

modynamics is ‘‘deriving’’ the second law of thermody-

namics for generalised entropies using Eq. 39. Moreover,

the second law inequality follows from a fluctuation rela-

tion equality for the trajectory-dependent entropy, high-

lighting the underlying physics. We will now briefly

outline this derivation for the relevant case of a simple

chemical system that can only exchange heat with its

environment. The general case is more complicated, but the

ideas are similar (Crooks 1999; Seifert 2005; Jarzynski

2011; Seifert 2012).

Combining Eq. 39 and 45, we see that

Pr½zðtÞ�
Pr½~zðtÞ�

expð�Ds½zðtÞ�=kBÞ ¼ 1: ð46Þ

Here, Pr½zðtÞ� is the probability of observing the trajectory

z(t), including the initial probability of being at z(0), and

Pr½~zðtÞ� is the probability of observing the reverse trajec-

tory, including a distribution of initial states of the reverse

trajectories given by PrðzðsÞÞ. We can multiply by Pr½~zðtÞ�
and sum over all possible trajectories, yieldingX
zðtÞ

Pr½zðtÞ� expð�Ds½zðtÞ�=kBÞ ¼
X
~zðtÞ

Pr½~zðtÞ� ¼ 1; ð47Þ

in which we have used the fact that a sum over all trajec-

tories z(t) is equivalent to a sum over all reverse trajectories

~zðtÞ. We have arrived at the celebrated fluctuation relation

for entropy (Seifert 2005; Jarzynski 2011), Seifert (2012),

hexpð�Ds½zðtÞ�=kBÞi ¼ 1; ð48Þ

where the average is defined over all possible trajectories

z(t). The conventional second law then follows using Jen-

sen’s inequality lnhexpðf ðvÞÞi
 hf ðvÞi, which implies

hDs½zðtÞ�=kBi ¼ DSR½zðtÞ� þ Sr½PrðsÞ� � Sr½Pð0Þ�
¼ DSrþR½zðtÞ� � 0

ð49Þ

or equivalently that the total entropy of system (calculated

using the generalised entropy) and environment cannot

decrease (Seifert 2005).

The fluctuation relation is a remarkable result, implying

that at the level of individual trajectories, ‘‘negative

entropy’’ paths are possible but statistically unfavoured

(Seifert 2005). The result effectively shows that the

familiar second law follows from a more general statement

about the statistical properties of trajectories, which in turn

follows directly from the relatively simple assumption

related to microscopic reversibility (Eq. 39). As a result,

this fluctuation theorem emphasises the statistical inter-

pretation of entropy and the second law, and their natural

emergence from familiar stochastic dynamics. A host of

alternative fluctuations can also be derived, depending on

the context (Crooks 1999; Jarzynski 2011; Seifert 2012).

Given the definition in Eq. 44, the generalised free

energy of a simple chemical system plays the same central

role as the chemical free energy in equilibrium systems

(Esposito and Van den Broeck 2011; Parrondo et al. 2015).

Again using the fact that a simple chemical system can

only exchange energy in the form of heat with its envi-

ronment, DSR ¼ �ðU½P0ðiÞ� � U½PðiÞ�Þ=T (Seifert 2011).

Thus

TDSrþR ¼ TDSR þ TSr½P0
rðiÞ� � TSr½PrðiÞ�

¼ �ðUr½P0
rðiÞ� � Ur½PrðiÞ�Þ

þ TSr½P0
rðiÞ� � TSr½PrðiÞ�

¼ �ðF r½P0
rðiÞ� � F r½PrðiÞ�Þ:

ð50Þ

In more complex environments, alternative results are

obtained which also included the external work done on the

system (Esposito and Van den Broeck 2011; Parrondo

et al. 2015; Seifert 2011).

Since the total generalised entropy of Eq. 50 is guar-

anteed to be an non-decreasing function of time, we can

rephrase the second law for s non-equilibrium molecular

processes (in the absence of external work) in its most

useful form:

TDSrþR ¼ �ðF r½P0
rðiÞ� � F r½PrðiÞ�Þ� 0: ð51Þ

Eq. 51 is highly significant. Firstly, it emphasizes the

importance of the (generalised) free energy as a thermo-

dynamic resource in simple molecular systems. Since total

F r½PrðiÞ� can only decrease, if a process acts to increase

F r½PrðiÞ� for a subset of species, a compensatory decrease

in F r½PrðiÞ� must occur elsewhere. This observation gen-

eralises the discussion in Sect. 7 on the use of the high free

energy of chemical fuel molecules to drive other compo-

nents of a system out equilibrium.
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8.2 Applications of stochastic thermodynamics

Many of the results of stochastic thermodynamics,

including the fluctuation relation itself, are arguably more

philosophically deep than immediately useful. However,

the fluctuating, far-from-equilibrium nature of many bio-

chemical systems – particularly at the single molecule

level—often lends itself to analysis using these tools. In

this Subsection we discuss some characteristic examples.

Firstly, the generalised free energy and entropy allow us

to meaningfully analyse the entropy generation (and hence

irreversibility) of processes such as that considered in

Sect. 6.1, when a duplex initially prepared in the AB state

relaxes to an equilibrium of equal probability AB / AC, via

repeated rounds of strand exchange. If the equilibrium

distribution has AB and AC duplexes with equal probability

(we assume that the strands are dilute enough that three-

stranded complex is rarely observed), then both macro-

states have equal free energy. Thus
P

i PrðiÞFrðiÞ is equal
in the initial and final states. Any change in generalised

free energy can only arise from the second term in Eq. 44,

the difference in generalised entropy due to the distribution

over macrostates. Indeed, for a system initially guaranteed

to be in macrostate AB,
P

i PrðiÞ lnPrðiÞ ¼ 0; whereas the

uncertainty in the final macrostate gives

�
P

i P
0
rðiÞ lnP0

rðiÞ ¼ ln 2. Consequently

TDSrþR ¼ �ðF r½P0
rðiÞ� � F r½PrðiÞ�Þ ¼ kBT ln 2[ 0

ð52Þ

for the irreversible strand exchange process discussed in

Sect. 6.1. Note that the full definition of the generalised

free energy, including the term arising from the entropy of

the distribution over macrostates, is necessary to obtain this

result.

Perhaps even more interesting is the case when neither

the initial nor the final distribution correspond to equilib-

rium. For example, a self-assembling structure need not

reach the equilibrium distribution after a finite time,

implying F r½P0
rðiÞ�[F r½Peq

r ðiÞ�, since the equilibrium

state minimises the generalised free energy by definition.

But since F r½PrðiÞ� can only decrease with time (Eq. 51),

producing a non-equilibrium distribution necessarily

requires a higher initial generalised free energy than pro-

ducing an equilibrium distribution. In other words, pro-

ducing the non-equilibrium distribution has a greater

minimal resource cost.

Recent work has analysed how higher initial free ener-

gies allow self-assembly of non-equilibrium structures

(Sartori and Pigolotti 2015; Nguyen and Vaikuntanathan

2016). Intriguingly, these non-equilibrium assemblies can

have a lower density of structural defects than in equilib-

rium (Sartori and Pigolotti 2015), suggesting a possible

alternative to optimising assembly by encouraging the

approach to equilibrium. Indeed, it has recently been

shown that a related process, the production of polymer

copies that persist after separation from their templates (as

occurs in replication, transcription and translation in cells)

is inherently an exercise in producing out-of-equilibrium

structures. In this context, an equilibrium output is unre-

lated to its template, and so a high free energy initial state

is required to give any accuracy at all (Ouldridge and ten

Wolde 2017).

The ability to interpret the properties of fluctuating

trajectories on a thermodynamic level has also proven

useful in understanding biochemical systems. Molecular

systems undergoing non-equilibrium stress-induced tran-

sitions in experiment can be understood using extensions

to the above theory incorporating the application of

external work (Collin et al. 2005; Engel et al. 2014). On

a more theoretical level, an extremely common approach

is to use imbalances in probability flows to infer the

entropy generation (or free-energy consumption) of

functional molecular networks (Mehta and Schwab 2012;

Lan et al. 2012; Barato and Seifert 2015; Pietzonka et al.

2016). The entropy cost is paid by the consumption of a

(typically implicit) molecular fuel molecule. Thus the

resource cost of various molecular motifs, performing

sensing, adaptive information-processing, timekeeping

and force-generations, can be estimated and any trade-

offs between performance and cost explored. An addi-

tional tool that has emerged within this field is the

‘‘thermodynamic uncertainty relation’’ (Barato and Seifert

2015; Pietzonka et al. 2016), which imposes free-energy

consumption bounds on the variability of processes that

operate cyclically, as many molecular systems do. Fun-

damentally, this uncertainty relation is based on physical

constraints imposed on system dynamics that are not

captured by the fluctuation relation (Eq. 48) (Pietzonka

et al. 2016).

One important feature of stochastic thermodynamics is

the ability to relate the relative probabilities of entire

trajectories and their microscopic reverses to entropy

generation (Eq. 39). This allows the simultaneous analysis

and comparison of the entropy cost of distinct trajectories

that move between macrostates via different pathways of

different lengths. England has used this formalism to

argue for a minimal bound on the entropy generation of

replicators related to the overall birth and death rates

(England 2013). Similarly, by considering the entropy

generated by simple and more complex activation path-

ways, it was recently demonstrated that single-step acti-

vation is optimally efficient for signal-propagating push-

pull networks of the type shown in Fig. 14b (Ouldridge

et al. 2017).
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9 Conclusions

In this pedagogical perspective, we have attempted to

outline the manner in which molecular thermodynamics

impacts the behaviour of both natural and artificial bio-

chemical systems. Starting from the basic equilibrium

statistical mechanics of dilute molecular systems, we

introduced the concept of biochemical macrostates and the

free energy of a macrostate. We then discussed the

stochastic kinetics of molecular systems, and the con-

straints on kinetics implied by the macrostate free energies

and detailed balance—which are strong, but insufficient to

fully specify dynamics. Finally, we discussed how

stochastic thermodynamics allows for a consistent ther-

modynamic interpretation of the stochastic evolution of a

far-from-equilibrium system, both at the level of individual

trajectories and the probability distribution as a whole.

Simultaneously, we have tried to highlight the relevance

of these concepts to molecular systems that are typically

studied and engineered. Thermodynamic ideas dictate both

fundamental principles and general limits of what is pos-

sible, as well as contributing to detailed mechanistic

understaning and design. In particular, defining biochemi-

cal macrostates allows for modelling of biochemical

equilibria, and the state of a self-assembling system that

would be expected in the limit of infinitely long time. In

finite time, however, a system may not even come close to

equilibrium—it is therefore important to understand

kinetics. Kinetics are also relevant in systems that do not

reach equilibrium because they are coupled to a supply of

molecular fuel. The operation of such systems, which are

widespread in nature but currently less common in artificial

contexts, can be understood from the overriding tendency

of the fuel molecules to relax towards their equilibrium.

Finally, by defining entropies and free energies of trajec-

tories and non-equilibrium distributions, stochastic ther-

modynamics allows for an analysis of the resource cost of

various far-from-equilibrium processes that are important

to both natural and artificial systems.

At the same time, we have emphasised underlying

assumptions that are often given insufficient consideration,

and common misconceptions. For example, species con-

centration is an important component in the stability of

self-assembling structures; a ‘‘melting temperature’’ should

never be defined without reference to concentration, and

standard free energies are not directly meaningful at typical

molecular concentrations. Markov models at the level of

biochemical macrostates are only appropriate if the mac-

rostates are well-defined so that transitions between them

are rare events. Kinetic models of systems that are not

subject to driving should exhibit detailed balance in equi-

librium. This fact is sometimes ignored without careful

consideration of the consequences; the assumption of per-

fect irreversibility can have major effects, depending on the

context. Finally, catalysts can only influence the yield of

downstream substrates if catalysis is coupled to a supply of

non-equilibrium fuel.

The flow of understanding isn’t solely in one direction,

however. Biomolecular systems can also contribute to the

understanding of fundamental thermodynamics. Most

obviously, although stochastic thermodynamics wasn’t

developed solely for molecular systems, it finds perhaps it

most natural application there. Important processes in both

natural and artificial molecular systems involve single

molecules undergoing large fluctuations that are essential

to function. Living systems are, almost by definition, kept

in a far from equilibrium state. Pursuing important ques-

tions in such systems will thus drive understanding of the

underlying thermodynamic principles, and the techniques

used to study them. For example, many authors are cur-

rently probing the deep connections between information

theory and (stochastic) thermodynamics in a quest to

understand the limits and capabilities of cellular sensing,

signalling and adaption networks (Govern and ten Wolde

2014b; Barato et al. 2014; Ouldridge et al. 2017; Ito and

Sagawa 2015).

Much of the difficulty in understanding fundamental

thermodynamics stems from interpreting the results, rather

than from mathematical complexity. This is partly because

many of the concepts, beginning with entropy itself, are

inherently abstract. As a result, debate persists about the

proper interpretation of relatively fundamental systems and

concepts (Maroney 2005; Ladyman et al. 2007; Norton

2011; Dunkel and Hilbert 2014)—debates that we have

ignored in this perspective. Biomolecular systems, how-

ever, are inherently concrete—even when modelled in a

simplistic manner. They can thus serve to demystify the

debate. As an example, there has been much recent interest

in the possibility of designing an engine that exploits 1s

and 0s on a tape to do useful work (such as lifting a weight)

(Mandal and Jarzynski 2012; Mandal et al. 2013). When

the state of the tape is written as abstract 1s and 0s, the

operation of such a device seems almost magical. How-

ever, for the device to run, the 1s and 0s must interact with

a motor in a specific way: they must be physical. And a

physical instantiation of the system can be constructed

from biomolecules—at which point it becomes clear that

the 1s and 0s correspond to two states of a molecular fuel

molecule, and the motor is driven by an imbalance of fuel

input just like any other motor (McGrath et al. 2017). The

operation of the device is consistent with well-established

laws of thermodynamics, rather than being particularly

remarkable.

By constraining ourselves to physically plausible mod-

els of molecular systems, it is also much clearer what is
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possible. It is consequently harder to accidentally invent an

unaccounted-for ‘‘Maxwell Demon’’ that performs an

impossible task, or miss the requirements of a key step.

Moreover, there is at least some sense in which the prac-

tical constraints of thought experiments become evident. A

thermodynamic system can be designed on paper with

arbitrary coupling between degrees of freedom, but when

trying to instantiate it as a molecular system, even theo-

retically, the inherent trade-offs required become more

obvious (McGrath et al. 2017).

In particular, the majority of thermodynamic studies

focus on systems in which changes are driven by inter-

vention from an external experimenter, who does work on

the system (this idea is briefly introduced in Sects. 2, 6.2).

From the perspective of stochastic thermodynamics, doing

work corresponds to adjusting the system to change the

energy of the microstates in a time-dependent manner.

Whilst analysis in terms of external work is not wrong, it is

again hard to understand what is fundamentally possible at

zero cost, particularly for small systems. Generally, the

actual physical mechanism by which work is applied is not

considered; it is therefore unclear which work protocols are

feasible, and whether work can actually be applied,

recovered and stored efficiently (Gopalkrishnan, personal

communication), as is assumed. For example, recent

experiments on the manipulation of single colloids actually

implement ‘‘work’’ protocols through a highly dissipative

mechanism, the cost of which far exceeds any entropy

generated by the motion of the colloid itself (which is

typically the topic of interest) (Bérut et al. 2012; Jun et al.

2014). Similarly, in questions related to the minimal cost of

operations on small systems, such as computing with a

single bit, the cost of an experimenter deciding to imple-

ment each stage of the protocol is not obviously accounted

for (Gopalkrishnan, personal communication).

By contrast, molecular systems are usually thought of as

running autonomously, without external work (although

this is not always the case (Ouldridge et al. 2017; Oul-

dridge and ten Wolde 2017). Due to the ability of mole-

cules to diffuse and interact selectively with multiple

partners, complex behaviour can arise simply from a sys-

tem initiated in some non-equilibrium state and left to

evolve (perhaps with a constant supply of non-equilibrium

fuel). In these autonomous systems, all costs are explicit,

and all behaviours based on plausible chemical reactions. A

major challenge for the future of thermodynamics lies in

understanding the fundamental differences between the

capabilities of such autonomous systems, and those sys-

tems in which outside manipulation is permitted. In turn,

understanding these autonomous systems will potentially

allow us to build microscopic devices of extremely high

efficiency that genuinely approach the fundamental lower

bounds on cost (Ouldridge et al. 2017).
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