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ABSTRACT

An initial ground validation of the Integrated Multisatellite Retrievals for GPM (IMERG) Day-1 product

from March 2014 to August 2015 is presented for the tropical Andes. IMERG was evaluated along with the

Tropical Rainfall Measuring Mission (TRMM) Multisatellite Precipitation Analysis (TMPA) against 302

quality-controlled rain gauges across Ecuador and Peru. Detection, quantitative estimation statistics, and

probability distribution functions are calculated at different spatial (0.18, 0.258) and temporal (1 h, 3 h, daily)

scales. Precipitation products are analyzed for hydrometeorologically distinct subregions. Results show that

IMERG has a superior detection and quantitative rainfall intensity estimation ability than TMPA, particu-

larly in the high Andes. Despite slightly weaker agreement of mean rainfall fields, IMERG shows better

characterization of gauge observations when separating rainfall detection and rainfall rate estimation. At

corresponding space–time scales, IMERG shows better estimation of gauge rainfall probability distributions

than TMPA. However, IMERG shows no improvement in both rainfall detection and rainfall rate estimation

along the dry Peruvian coastline, where major random and systematic errors persist. Further research is

required to identify which rainfall intensities aremissed or falsely detected and how errors can be attributed to

specific satellite sensor retrievals. The satellite–gauge differencewas associated with the point-area difference

in spatial support between gauges and satellite precipitation products, particularly in areas with low and

irregular gauge network coverage. Future satellite–gauge evaluations need to identify such locations and

investigatemore closely interpixel point-area differences before attributing uncertainties to satellite products.

1. Introduction

The lack of reliable observations of hydrological

variables in the tropics leads to a poor understanding of

the hydrological cycle in those regions (Wohl et al.

2012). Especially in mountain regions, such as the

tropical Andes, the complex topography results in

highly variable spatiotemporal precipitation patterns

that are not fully captured by the existing gauge moni-

toring networks (Ochoa-Tocachi et al. 2016; Rollenbeck

and Bendix 2011; Buytaert et al. 2006). In the last
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decades satellite-based precipitation products (SPPs)

have become an alternative source of precipitation es-

timation with widespread applications such as (distrib-

uted) hydrological modeling (Falck et al. 2015; Zulkafli

et al. 2014; Jiang et al. 2012; Li et al. 2009), geomor-

phology and landscape evolution (Nesbitt and Anders

2009; Bookhagen and Strecker 2008), streamflow fore-

casting (Nikolopoulos et al. 2013; Li et al. 2009), and

early warning systems (Tian et al. 2010), as well as in-

vestigations into atmospheric processes and storm

structures (Boers et al. 2015; Mohr et al. 2014; Boers et al.

2013; Rasmussen et al. 2013; Demaria et al. 2011).

Assessments of SPPs against rain gauge networks

in the tropical Andes of Ecuador and Peru have

shown a general dependence of SPP performance on

rainfall intensity (Mantas et al. 2015), in addition to

underestimation of the amplitude of the seasonal cycle

as well as underestimation of extreme rainfall intensities

(Derin et al. 2016). SPPs have also been shown to sys-

tematically overestimate low rainfall intensities (under

5mmh21), which occur frequently above 2000m MSL

(Derin et al. 2016) and locally represent an important

contribution to the total rainfall volume (Padrón et al.

2015). Furthermore, there are regional differences in

SPP performance depending on the principal sensor

technology and the local rainfall properties as a result of

interaction of the synoptic-scale climate processes with

the complex topography (Derin et al. 2016; Satgé et al.

2016; Dinku et al. 2010). The Precipitation Estimation

from Remotely Sensed Information Using Artificial

Neural Networks (PERSIANN;Hsu et al. 1999) product

showed large biases and low correlation with rain gauges

(Ward et al. 2011; Derin et al. 2016) and was particularly

deficient in regions with a significant contribution by

deep convective systems to the total rainfall volume

(Derin et al. 2016). Comparative studies have shown

that the Tropical Rainfall Measuring Mission (TRMM)

Multisatellite Precipitation Analysis (TMPA) out-

performed other SPPs, including PERSIANN, the Cli-

mate Prediction Center (CPC) morphing technique

(CMORPH; Joyce et al. 2004), and the Global Satellite

Mapping of Precipitation (GSMaP; Kubota et al. 2007),

among others, in terms of correlation, rainfall intensity

distribution, and bias (Satgé et al. 2016; Derin et al. 2016).

The Global Precipitation Measurement (GPM) Core

Observatory, launched on 28 February 2014, has been

designed to address critical limitations of TRMM and to

further improve the scientific contribution of its pre-

decessor in understanding the global water and energy

cycle (Hou et al. 2014). The TRMMPrecipitation Radar

(PR) detection limit of 17 dBZ (;0.7mmh21) and the

resulting large fraction of missed rainfall was addressed

using a dual-frequency radar (DPR). The PR Ku-band

frequency of 13.6GHz is supplemented by a Ka-band

frequency at 35.5GHz for better identification of dif-

ferent phases of precipitation particles and detection of

light rainfall to a resolution of 0.2mmh21. The conical-

scanning GPM Microwave Imager (GMI) consists of

more frequency channels (10–183GHz) than the

TRMM Microwave Imager (TMI) for light-intensity

rainfall and snow detection (Hou et al. 2014). Further-

more, satellite revisit time has been reduced from

11–12h (TRMM satellite) to less than 3h (GPM), and

spatial coverage of the Core Observatory has increased

from latitudes 358S–358N to 658S–658N, respectively

(Hou et al. 2014). In addition to the Core Observatory,

the increasing number of passive microwave sensors

within the GPM constellation allows for more frequent

sampling and cross calibration of sensors, thus in-

creasing the spatial and temporal resolution of the

gridded Integrated Multisatellite Retrievals for GPM

(IMERG) precipitation product to 0.18 and 30min

compared with 0.258 and 3h in TMPA (Huffman et al.

2015a), respectively.

Initial comparative evaluations of IMERGDay-1 and

TMPA against rainfall gauges under different climatic

and topographic conditions have confirmed the ex-

pected improvements of GPM. Prakash et al. (2016)

have demonstrated higher estimation accuracy of IM-

ERG over TMPA for heavy monsoon-type rainfall at a

daily scale, although agreement with gauges was found

to be lowest in orography-dominated regions (Prakash

et al. 2017). Across China and the Tibetan Plateau,

IMERG yields better statistical and hydrological per-

formance than TMPA at (sub) daily scales and exhibits

better detection of rainfall intensities than its pre-

decessor, although overestimation of rainfall in dry re-

gions persists (Guo et al. 2016; Ma et al. 2016; Tang et al.

2016; Li et al. 2016; Chen and Li 2016). Sharifi et al.

(2016) found IMERG to perform better statistically

than TMPA across a range of topographic and climatic

conditions, with rainfall detection being improved in

areas with orographic precipitation. Last, IMERG was

found to overestimate (underestimate) drizzle (heavy

rainfall frequency) compared to radar quantitative

precipitation estimation (QPE) over the United States

(Tan et al. 2016).

Early experiences indicate the potential improvements

of IMERG compared to TMPA; however, performances

vary substantially across different topographic and cli-

matic conditions, especially in orography-dominated re-

gions. Furthermore, there is to date a lack of IMERG

evaluations in tropical mountain regions that are char-

acterized by complex and variable precipitation patterns

with strong orographic effects. Therefore, the objective of

this study is to evaluate the performance of IMERG in
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comparison with TMPA against rain gauges during the

first 17months ofGPMobservations (fromMarch 2014 to

August 2015) to characterize the impact of rainfall re-

gimes, as well as climatic and topographic conditions on

IMERG estimates at different spatiotemporal scales.

Following a description of the hydrometeorology of the

study area, the satellite and rain gauge datasets are out-

lined (section 2). Section 3 introduces the evaluation

methodology with a focus on rainfall detection, QPE,

rainfall probability distribution, and spatial correlation.

Results are presented for climatically homogeneous re-

gions in section 4 and discussed in section 5. Last, critical

findings are summarized in section 6.

2. Data

a. Study area: Precipitation patterns of the tropical
Andes

The study area (Fig. 1) extends from 28N to 18.58S
and from 68.58 to 828W (approximately 1 500 000 km2),

covering a climatically diverse region, from northern

Ecuador to the central Andean plateau (Altiplano), that

is dominated by the tropical Andes, which results in

extreme east–west precipitation gradients. Spatiotem-

poral precipitation patterns are controlled by the bi-

annual migration of the intertropical convergence zone

(ITCZ), El Niño–Southern Oscillation (ENSO), and the

cold von Humboldt current in the Pacific Ocean, as well

as the Andes mountains and the Amazon basin (Boers

et al. 2013; Lavado-Casimiro et al. 2012; Vuille et al.

2000). Easterly trade winds resulting from the southerly

position of the ITCZ during the monsoon season

transport moist air from the tropical Atlantic over the

Amazon basin (Boers et al. 2013) and are blocked by the

topographic barrier of the tropical Andes (Romatschke

and Houze 2010). The deflection of air moisture to the

southeast gives rise to the South American low-level jet

(SALLJ) that transports air moisture along the eastern

Andes into the La Plata basin (Boers et al. 2013). The

strong topographic gradients and easterly trade winds

along the eastern flanks of the Andes also result in

pronounced orographic effects (Espinoza et al. 2015;

Espinoza Villar et al. 2009; Bookhagen and Strecker

2008). These, in turn, result in deep convection

(Romatschke and Houze 2010) and thereby highly in-

termittent spatiotemporal precipitation patterns with

steep precipitation gradients of up to 190mmkm21

(Espinoza et al. 2015).

Given its hydrometeorological complexity, the region

was divided into six subregions using the classification of

Zulkafli et al. (2014), which identifies areas with distinct

precipitation regimes based on topography and climate

(Fig. 2). In the current study, the Amazon sub-Andes have

been defined as 500–1500m MSL in order to permit for

adequate number of gauges (minimum 10) in each sub-

region. As shown in Table 1, the subregions differ in their

climatic controls, resulting in a range of distinct pre-

cipitation regimes. Over the period 1998–2014, the mean

annual precipitation varies considerably from the Pacific

coast north of 4.58S (PCN; approximately 1450mmyr21),

over the Pacific coast south of 4.58S (PCS; 300mmyr21),

the western Andean slopes (AW, 575mmyr21), the east-

ern Andean slopes (AE, 1150mmyr21), the sub-Andes of

the upper Amazon basin (ASA; 3500mmyr21), and at the

Amazon lowlands (AL; 2375mmyr21) (Manz et al. 2016).

b. Rain gauge data

Subhourly precipitation records were obtained from

302 rainfall gauges (Fig. 1) from the Instituto Nacional

de Meteorología e Hidrología (INAMHI; 55 gauges),

Empresa Pública Metropolitana de Agua Potable y

Saneamiento de Quito (EPMAPS; 22 gauges), Servicio

Nacional de Meteorología e Hidrología del Perú
(SENAMHI; 186 gauges), and Iniciativa Regional

de Monitoreo Hidrológico de Ecosistemas Andinos

(iMHEA; 41 gauges). All gauges are tipping-bucket rain

gauges and adhere to World Meteorological Organiza-

tion (WMO) instrumentation standards (WMO 2014).

While minor differences between the providers in terms

of preprocessing and temporal interpolation may occur,

these are thought to be negligible for the purposes of this

evaluation study as the original datasets were aggre-

gated to hourly rainfall accumulations for the assess-

ment period from 1 April 2015 to 31 August 2015.

Hourly rain gauge data were quality-controlled using

the protocol defined by Shen et al. (2010), consisting of a

check for unsupported extremes as well as internal and

spatial consistency checks. This resulted in 0.64% of

hourly measurements being removed as a result of the

extremes check and a further 0.01% as a result of the

consistency checks. Finally, 3-hourly and daily average

rainfall rates (mmh21) were computed in order to

evaluate the satellite precipitation data at different

temporal scales.

c. Satellite data: TMPA V7

TMPA version 7 (V7), also known as TRMM 3B42

based on its algorithm names (hereafter TMPA), is a

precipitation dataset derived from multiple microwave

(MW) and infrared (IR) sensors placed on low-Earth-

orbit (LEO) satellites. Observations from MW and IR

sensors are converted to precipitation estimates and

intercalibrated and combined producing real-time (RT)

estimates; finally, resulting estimates are adjusted with

rain gauge data generating the TMPA ‘‘Research’’
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version (Huffman et al. 2010, 2007). The TRMM satel-

lite started its terminal phase in October 2014 with both

the TRMM PR and the TMI having shut down on

8 April 2015; however, the demise of the TRMM satel-

lite itself does not substantially affect the production the

TMPAResearch version over land (Huffman et al. 2015a).

TMPA will be produced until approximately mid-2017

(Huffman et al. 2015a). Hence, TMPA was considered

a suitable benchmark for comparative evaluation of

IMERG. TMPA at its native resolution of 0.258/3h was

resampled to closed 3-h periods (e.g., 0000–0300 UTC)

and for comparison to IMERG.

d. Satellite data: IMERG Day-1

The IMERG product provides high-resolution pre-

cipitation estimates by combining various passive mi-

crowave (PMW) and IR sensor measurements. This

process is described in detail in Huffman et al. (2015b)

and is briefly summarized as follows.

Analogous to the TMPA algorithm, the GMI is cali-

brated to the DPR and the resulting combined instrument

(GCI) is used as a calibration standard for other PMW

sensors in the GPM constellation. Precipitation estimates

are derived from the PMW sensors using the 2014 God-

dard Profiling Algorithm (GPROF2014). GPROF2014

relies on external radar and PMW observations for

calibrating PMW measurements and is set to be replaced

by GPROF2015 in due course, which uses GCI instead. In

contrast to TRMM, both DPR and GCI are available in

real time, allowing for the same calibrating sensors across

all IMERG runs.

All calibrated PMW estimates within the GPM

constellation are gridded to 0.18/30min, prioritizing

canonical-scan radiometers over cross-track scanners.

Geosynchronous IR (geo-IR) measurements are con-

verted to precipitation estimates using the PERSIANN–

Cloud Classification System (CCS) recalibration scheme.

Herein regional cloud patch groups are defined and

precipitation is assigned to each of these based on an

LEO PMW precipitation training set. Next, PMW and

IR estimates are combined to create half-hour pre-

cipitation estimates using the CMORPH Kalman

filter (KF) Lagrangian time interpolation scheme.

In this approach, PMW estimates of instantaneous

precipitation are propagated from observation to

analysis time using cloud motion vectors, which were

derived by correlation of spatially lagged consecutive

geo-IR images.

Finally, a monthly satellite–gauge combination is

performed akin to the approach adopted in TMPA,

wheremultisatellite and gauge fields are combined using

inverse error variance weighting. These bias-adjusted

FIG. 1. Topographical map of the study area showing elevation and rain gauges as black dots.
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estimates are redistributed at the half-hourly scale for

the ‘‘Final’’ product, which is distributed 2–4 months

after measurement (Huffman et al. 2015a). In this

evaluation study, the IMERG Day-1 Final run dataset

(hereafter referred to as IMERG) is aggregated for the

assessment period from its native resolution 0.18/30min

to 0.258/3 h and 0.258/day for evaluation against TMPA.

3. Methods

a. Rainfall estimation: A problem of spatiotemporal
scales

The selection of the spatiotemporal scale when eval-

uating precipitation products is of high importance given

the nonlinear structure of precipitation in space and

time. The spatiotemporal resolution of rain gauges

(point-scale, short-term accumulation) profoundly differs

from that of SPPs (gridcell average, temporal average

of instantaneous measurements), which in turn vary

internally (e.g., TMPA: 0.258/3h, IMERG: 0.18/1h), a
problem that has received extensive attention (e.g.,Wang

andWolff 2010; Villarini et al. 2008; Ciach and Krajewski

1999). Often all gauges within a satellite pixel are aver-

aged and the gauge average is compared to the SPP pixel.

With increasing spatial and temporal aggregation these

differences become less relevant; however, spatiotem-

poral aggregation implies the averaging of zero rainfall

areas or periods with variable positive rainfall in-

tensities. While rainfall occurrence is often represented

FIG. 2. (left) Mean annual rainfall climatology (1998–2014) derived from the TRMM PR (Manz et al. 2016).

(right) Spatial definition of the climatic subregions. The rectangle in northern Ecuador outlines the location of pixel

1167, analyzed in detail in Fig. 11.

TABLE 1. Criteria used to define subregions. Parameterm represents the mean annual precipitation as estimated frommerged TRMMPR

and gauge measurements (Manz et al. 2016), and N indicates the number of rain gauges inside each subregion.

No. Subregion Elevation (m MSL) Climate driver Rainfall regime m N

PCN Pacific Coast (N) 0–1500 ITCZ Wet (Dec–May,) dry (Jun–Nov) 1450 34

PCS Pacific Coast (S) 0–1500 Von Humboldt, ITCZ Wet (Dec–May), dry (Jun–Nov) 300 40

AW Andes (W) .1500 Elevation, ITCZ Wet (Dec–May), dry (Jun–Nov) 575 123

AE Andes (E) .1500 Elevation, ITCZ, orography Weak seasonality (drier JJA) 1150 77

ASA Amazon sub-Andes 500–1500 Orography, ITCZ, SAMS, SALLJ Weak seasonality (drier JJA) 3500 13

AL Amazon lowlands 0–500 ITCZ, SAMS, trade winds Weak seasonality (drier JJA) 2375 15
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by a binary (Bernoulli) distribution, positively skewed

rainfall intensities are frequently modeled as a Gamma

distribution, despite being subject to ‘‘heavy tails’’

(Tarnavsky et al. 2012; Wilson and Toumi 2005).

Averaging zeros and nonzeros combines these into a

single statistical distribution with much less variation

than the intensity alone. Given these statistical prop-

erties, the performance of satellite rainfall products

can be expected to improve with increasing spatio-

temporal aggregation without any improvements in

estimation skill. By corollary, it is important to un-

derstand how precipitation estimation deteriorates

with increasing resolution. However, this general be-

havior is further complicated in regions where low and

irregular gauge network density is combined with high

precipitation variability at the subgrid scale, such as

tropical mountain regions. For instance, in the current

study, the number of gauges varies substantially across

the region (Fig. 3) with only 9.6% and 24% of all sat-

ellite pixels containing more than one gauge at 0.18 and
0.258, respectively. Hence, in order to comprehensively

evaluate TMPA and IMERG against rain gauge

observations despite the differences in spatiotempo-

ral scale (resolution), three separate spatiotemporal

scales were selected for the assessment and higher-

resolution products were aggregated to the respective

scales:

1) 0.18/1 h: This is the highest available spatiotempo-

ral resolution given the IMERG spatial resolu-

tion (0.18) and the gauge time step (1 h). IMERG

and spatial gauge averages were compared at

this scale.

2) 0.258/3 h: This is the TMPA V7 native resolution.

Gauges and IMERG were aggregated and all three

products were compared at this resolution.

3) 0.258/1 day: This is a common resolution used of

hydrological simulation based on SPPs. All three

products were space–time averaged to this scale.

At all scales rainfall products were evaluated as rainfall

rates (mmh21). Furthermore, especially at finer spatial

scales, there are insufficient gauges available to over-

come the statistical impacts of the point-area difference.

Therefore, this study further investigates the impact of

scale in relation to the number of rain gauges available

(section 3c).

b. Evaluation metrics

In the main ground validation, all gauges within the

respective satellite pixel are averaged to evaluate the

IMERG and TMPA pixels with ground observations of

the same spatial support. The evaluation is split into four

categories:

1) rainfall detection—empirical rainfall occurrence fre-

quency and detection indicator scores,

2) quantitative errors in the estimation of rainfall

intensities,

3) comparison of the cumulative probability distribu-

tions of the rainfall intensities, and

4) comparison of spatially averaged subregion time

series across the assessment period.

In order to perform ground validation of satellite

precipitation data, it is necessary to assume a minimum

threshold in the intensities recorded by the rain gauges

(Wang et al. 2008). Because of the high frequency of low

rainfall intensities in some parts of the tropical Andes

(e.g., Padrón et al. 2015), a threshold corresponding to

one single record of the highest-resolution gauges

available in the network (0.1mmh21) has been found to

be suitable to assess the entire range of rainfall in-

tensities without eliminating the lowest intensities or

introducing assumptions as to their distribution. The

empirical rainfall occurrence frequency (ROF) is ex-

pressed as

ROF5
�
ntot

i51

( p
r,i
$ 0:1)

N
tot

, (1)

where i5 1, . . . , ntot is the number of time steps (total of

Ntot time steps), p is the precipitation intensity at a

particular grid cell, and r is the aggregated spatial res-

olution (0.18 or 0.258).
Rainfall detection is assessed by three categorical er-

ror scores: the accuracy index (ACC; Duan et al. 2015),

the probability of detection (POD), and the false alarm

ratio (FAR):

ACC5
H1C

N
sync

, (2)

POD5
H

H1M
, (3)

FAR5
F

F1H
, (4)

where H is the number of rainfall time steps correctly

detected (hits), C is the number of time steps correctly

identified as nonraining (correct zeros),M is the number

of raining time steps missed by the SPP (misses), F is the

number of time steps falsely identified as raining (false

alarms), and Nsync is the total number of synchronous

measurements. ACC represents the fraction of time

steps correctly classified (score ranges 0–1, perfect score

of 1), POD represents the fraction of rain occurrences

correctly detected (score ranges 0–1, perfect score of 1),

2474 JOURNAL OF HYDROMETEOROLOGY VOLUME 18



and FAR represents the fraction of detected rainfall

occurrences that were false alarms (score ranges 0–1,

perfect score of 0). To evaluate the impact on the

rainfall detection scores introduced by the limited

satellite rainfall detection ability as well as due to av-

eraging of zero and nonzero rainfall intensities across

the spatial support of the SPPs, detection statistics

where computed for precipitation thresholds from 0 to

10mmh21. Hereby, rainfall rates of both the SPP and

the gauge average ground reference rainfall below the

threshold are treated as zero rain. The threshold is then

iteratively raised for both the SPP and the ground

reference rainfall and the detection scores are re-

computed accordingly.

In order not to double count rainfall detection er-

rors, quantitative rainfall rate estimation errors are

only computed for time steps where rainfall is accu-

rately detected, as previously proposed by Tang et al.

(2015) and Tan et al. (2016). Time steps where rainfall

is falsely detected or missed are omitted prior to

computing the following statistical metrics: Pearson

correlation coefficient (CC), root-mean-square error

(RMSE), relative RMSE (rRMSE), and percentage

bias (PBIAS):

CC5
�
n

i51

(S
i
2 S)(G

i
2G)ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�
n

i51

(S
i
2 S)2

s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�
n

i51

(G
i
2G)2

s , (5)

RMSE5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n
�
n

i51

(S
i
2G

i
)2

s
, (6)

rRMSE5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n
�
n

i51

(S
i
2G

i
)2

s

G
, (7)

PBIAS5
�
n

i51

(S
i
2G

i
)

�
n

i51

G
i

3 100%, (8)

where Si andGi are, respectively, the satellite and gauge

rainfall intensity at time step i; S and G are their

FIG. 3. Number of gauges by satellite pixel at 0.18 and 0.258, expressed as the empirical probability density

function f(x). The histogramonly shows pixels with at least one gauge, which are used throughout the analysis of this

study. Ungauged pixels are not considered here.
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corresponding arithmetic means over the assessment

period; and n is the total number of time steps. While

RMSE expresses random error in absolute terms

(i.e., mmh21) and, therefore, will likely result in el-

evated errors in wet regions, rRMSE expresses ran-

dom error relative to the mean precipitation rate.

Detection and quantitative estimation errors evaluate

whether SPPs and gauges agree at the same time step.

While SPP estimation accuracy for individual time steps

might be low, SPPs may still be able to characterize the

rainfall intensity distribution over the assessment pe-

riod. For this purpose, the empirical cumulative distri-

bution function [CDF; F(x)] is determined for each SPP

and compared to the respective gauge CDF. The CDF

can be represented as discrete percentiles, and the ratio

of the percentiles across the entire CDF shows how well

the SPPs estimate the gauge rainfall distribution:

CDF ratio5
p
S,j

p
G,j

, (9)

where p is the rainfall intensity corresponding to the

percentile j.

c. Impact of spatial scale

A fundamental difference between IMERG and

TMPA is the improved native resolution (0.18/30min

compared to 0.258/3 h), resulting from an increased

number of available satellites, especially PMW sensors,

in the GPM Constellation and the approach used for

combining them.While the higher-resolution results in a

finer definition of precipitation fields and intensity

gradients, a high density of rain gauges is required to

provide areal mean ground observations to evaluate

individual grid cells. As shown in Fig. 3, the gauge net-

work in Ecuador and Peru does not provide high-density

coverage: over 90% of gauged IMERG pixels only

contain a single reference gauge. This implies that the

majority of IMERG pixels that are evaluated in this

studymay be subject to substantial point-area difference

effects (Ciach and Krajewski 1999). The impact of the

scale difference between SPPs and corresponding

ground-based estimates was investigated using the fol-

lowing analysis: 1) changes in systematic error (PBIAS)

using a spatial bootstrap subsampling approach and

2) evaluation of the subgrid scale variability of a single

satellite pixel as well as 3) spatial correlation structure of

the different rainfall products across the study domain.

In the bootstrap analysis, pixels containing more than

one gauge are subsampled by removing a single gauge

at a time and spatially averaging the remaining n2 1

gauges across the pixel. PBIAS is then computed for the

pixel using Eq. (8) based on the gauge average and the

SPP estimates. The removed gauge is then replaced and

the process is repeated n times, resulting in a PBIAS

score associated with each removed gauge. The mean of

the n PBIAS scores is then computed to obtain a pixel-

wide gauge average for each pixel. Comparing the

PBIAS scores of the bootstrap approach against those of

the gauge-averaging approach allows for interpreting

the impact of removing individual gauges on the pixel-

wide gauge average. This offers insight into the de-

pendence of systematic errors in the SG evaluation on

the gauge density.

The impact of spatial scale was further analyzed by

focusing specifically on the individual 0.258 pixel with
the highest number of gauges, hereafter referred to as

pixel 1167 (see Fig. 2 for location). This pixel covers

the mid-Andean water divide and includes both the

west and east Andean slopes. For pixel 1167, scatter-

plots of synchronous measurements of 1) individual

gauges within that pixel, 2) the spatial gauge average

across the pixel, and 3) the SPP estimate (IMERG or

TMPA) are presented for the different space–time

scales to demonstrate how the internal variability at

the subgrid scale affects the match of SPP and gauge

observations.

Last, the ability of SPPs to capture the geographical

structure of precipitation fields is evaluated by com-

paring the spatial correlation structure between satellite

and pixel-average gauge rainfall. The CC is calculated for

any pixel pairs across the entire assessment period. The

CC results are categorized by the distance between the

pixel pairs, averaged across bins of 27km (which ap-

proximately corresponds to 0.258 across the study region)
and presented as a spatial correlogram.

4. Results

a. Mean rainfall fields

The spatial mean precipitation across the assessment

period (Fig. 4) shows that IMERGcontains an improved

definition of the orographically enhanced precipitation

hot spots along the eastern Andean flanks and Amazo-

nian sub-Andes in Peru between 78 and 148S compared

to TMPA. Furthermore, because of the improved spatial

resolution of IMERG (0.18), the steep precipitation

gradient from the drier Andean highlands to the oro-

graphically enhanced sub-Andes is better defined, while

it was previously ‘‘smoothed out’’ over a larger spatial

distance by TMPA. Isolated intra-Andean valleys, for

instance, those between 98 and 128S with elevated pre-

cipitation levels, are represented with a far smaller

spatial footprint by IMERG than TMPA. In terms of the

mean satellite–gauge (S-G) difference at the aggregated
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0.258/daily scale (Fig. 4), IMERG and TMPA show a

very similar pattern with good S-G agreement (within

2.5mmday21) at most locations. Both SPPs show a cluster

of pixels where the gauge mean is underestimated in the

Piura region (northern Peru/southern Ecuador), while

for IMERG a smaller cluster of pixels overestimate

gauges in theAltiplano region (southeastern Peru). As a

result, across the study region TMPA correlates better

with mean pixel gauge averages (rTMPA 5 0:80) than

IMERG (rIMERG 5 0:76).

b. Subregional temporal patterns

As a second step, the spatial mean precipitation time

series of gauge observations, IMERG, and TMPA (at

10-day accumulations) are compared for each subregion

(Fig. 5). The results show substantial regional variations.

Subregions PCN, AW, AE, and AL show good agree-

ment between gauge observations and IMERG and

TMPA. Overestimation of individual rainfall peaks by

TMPA, especially in the AE slopes, is notably reduced

by IMERG. Underestimation of individual rainfall

peaks by both SPPs is observed particularly during the

austral winter season (June–August). In the dry PCS

region, both IMERG and TMPA systematically over-

estimate themean as well as rainfall peaks proportionally

to the rainfall magnitude, although overestimation of

peaks is stronger by IMERG than TMPA. Subregion

ASA differs in that the mean is underestimated sub-

stantially by both SPPs. Here rainfall peaks are gener-

ally underestimated, although IMERG returns higher

estimates than TMPA with occasional overestimation

by IMERG. However, this observation should be

considered in the context of the low and irregular (and

thereby potentially unrepresentative) gauge coverage

in ASA.

c. Rainfall detection and occurrence frequency

As shown in Fig. 6, at its native resolution IMERG

underestimates both the median and the variability

of the ROF observed by the gauges in all climatic sub-

regions except for PCS and AL. With increasing spatio-

temporal aggregation, IMERG estimates are elevated,

thus leading to better estimation of subregions previously

underestimated (PCN, AW and AE), but extensive

overestimation in PCS and AL. In contrast to IMERG,

TMPA shows systematically lower ROF, resulting in

substantial underestimation in most regions, but better

estimation of gauge ROF in PCS and AL. At the daily

time step, IMERG and TMPA return comparable ROF

results, although gauge ROFs are still overestimated

FIG. 4. Mean precipitation rate (mmday21) of (left) IMERG and (right) TMPA across the assessment period

(from April 2014 to August 2015). S-G differences between the SPPs and gauge averages are superimposed at

the aggregated 0.258/daily scale.
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for PCS, while the median and variability are under-

estimated in ASA by both products.

Detection scores (Fig. 7) show superior performance

of IMERG compared to TMPA in terms of higher POD

and ACC and lower FAR for all scales and subregions.

At 0.258/3 h IMERG performs substantially better than

TMPA, while performance improves with increasing

levels of spatiotemporal aggregation for both SPPs

thereafter. In general, the detection ability of both SPPs

weakens when the rainfall detection threshold is in-

creased, resulting in decreasing POD and increasing

FAR. This behavior can be explained in part by the

reduction in sample size with increasing rainfall de-

tection threshold: as all rainfall intensities below the

threshold are set to zero, the total number of time steps

with nonzero rainfall intensity is reduced. Hence, the

number of rainfall events at higher thresholds decreases

and failure to detect these is given proportionally higher

weighting as per Eq. (3), resulting in a decreasing POD.

The opposite applies to FAR: with increasing rainfall

detection threshold, cases where both SPP and ground

reference recorded a low rainfall intensity will no longer

be treated as a hit, but as correct zeros, such that with a

constant rate of false alarms, the FAR will increase

because of the reduction in hits. Similarly, with in-

creasing rainfall thresholds, the number of zero rain

events increases, leading to elevated ACC scores, as

correct zeros become proportionally more frequent.

However, this analysis shows a consistent pattern in that

for all three scores and across most regions, IMERG

returns systematically higher POD and ACC, but lower

FAR scores for all thresholds compared to TMPA at the

respective spatiotemporal scale. This suggests an im-

proved rainfall detection ability by IMERG compared

to TMPA.

In terms of regional differences, both products show

weakest performance (low POD, high FAR) in PCS

(Fig. 7). This can be attributed to the infrequent rainfall

in this arid region, combined with, at times, elevated

levels of humidity that do not result in precipitation.

ACC shows very high values in this region, as a result of

being dominated by correct zeros, which does not nec-

essarily represent an improvement in terms of rainfall

detection.

FIG. 5. Comparison of the regional mean precipitation time series at 10-day accumulations over the assessment

period for gauges (black), IMERG (red), and TMPA (blue).
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d. Rainfall intensity errors

As shown in Fig. 8, the Pearson linear correlation co-

efficient increases with increasing spatiotemporal scale.

Subregions experiencing high precipitation levels gen-

erally exhibit highermedian correlation results with little

spread, whereas in the dry PCS region, there is a wide

spread of results. IMERG systematically outperforms

TMPA, with improved satellite–gauge correlation being

most pronounced in regions subject to high precipitation

rates (PCN, ASA, AL) and less so in the arid subregion

(PCS). RMSE scores show consistent reduction in ran-

dom error by IMERG compared to TMPA across all

subregions; however, RMSE scores of both SPPs are

highest for those subregions experiencing highest levels

of precipitation (i.e., ASA and AL). However, in

agreement with the other detection and quantitative er-

ror statistics, rRMSE is most elevated in dry regions,

especially PCS, showing an increase for IMERG over

TMPA under these conditions. In terms of systematic

error, TMPA overestimates gauge rainfall observations

(large positive PBIAS) in the Andean regions (AW and

AE) and the PCN. In all three regions, PBIAS for

IMERG is substantially reduced, suggesting large con-

tributions of systematic error have been eliminated.

Bias is highest in arid conditions with infrequent rain-

fall (PCS) for both SPPs, while it is generally lowest in

the wet Amazonian regions (ASA and AL) where both

return comparable results. In contrast to all other

subregions, in PCS IMERG did not improve on TMPA

with PBIAS for IMERG exceeding that of TMPA

at 0.258/daily, thus implying that in dry conditions

IMERG estimation accuracy has not improved over

TMPA at corresponding space–time scales.

e. Statistical probability distributions of rainfall
intensities

With respect to the cumulative probability distribu-

tion of estimated precipitation intensities (Fig. 9a),

both SPPs overestimate corresponding gauge quantiles

across the entire intensity distribution and at all scales,

FIG. 6. ROF (a) for the entire study region and by subregion and product for three spatiotemporal resolutions:

(b) 0.18/1 h, (c) 0.258/3 h, and (d) 0.258/daily. In the subregional plots,G represents the gauge result, I the IMERG

value, and T the TMPA value. For definition of the subregions, see section 2a.
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except for IMERG at 0.258/3 h between the 40th and

90th percentiles. However, for identical spatiotemporal

scales, IMERG returns a CDF ratio closer to 1.0 than

TMPA. At their native resolution, both SPPs over-

estimate gauge quantiles substantially with a maximum

of factor 2.8 (IMERG) and 2.4 (TMPA) at approxi-

mately the 30th percentile and decreasing thereafter.

Unlike for TMPA, the CDF ratio for IMERG increases

above the 90th percentile. As shown in the subregional

plots (Figs. 9b–d), this increase was found to be isolated

to the PCS subregion. This finding agrees with the

positive bias for IMERG observed in PBIAS (Fig. 8)

and the time series analysis (Fig. 5), which showed

strong overestimation of peak rainfall by IMERG in

PCS. At the daily aggregation, both SPPs show gradu-

ally increasing, positive CDF ratios with a maxima of

approximately 1.7 at the 99th percentile. However, for

the majority of the cumulative probability distribution

and especially below the 40th percentile, the CDF ratio

for IMERG is far lower than that of TMPA, suggesting

superior ability of IMERG in estimating the gauge

rainfall probability distribution. Overestimation of the

FIG. 7. Detection scores (POD, FAR, and ACC) for each spatiotemporal resolution for the (top row) entire study area and across the

different subregions.
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gauge quantiles by TMPA is most evident at the TMPA

native resolution (0.258/3 h) and most pronounced in

ASA, AL, and PCN, that is, under conditions of high

frequency and high total rainfall. At this resolution

IMERG underestimates gauge rainfall in almost all sub-

regions, especially between the 50th and 80th percentiles,

which may be an artifact of spatiotemporal aggregation,

as IMERG estimation accuracy is improved both at finer

and coarser spatiotemporal scales. However, irrespective

of scale, medium to high quantiles are underestimated by

IMERG for the high AL and ASA regions.

f. Impact of spatial scale

When comparing the bootstrapping to the standard

pixel–gauge averaging, reductions in median percentage

bias for IMERG at its native resolution (0.18/1 h) over
the Andean and Amazonian subregions (Fig. 10) are

observed. On the other hand, in the PCS subregion bias

FIG. 8. Precipitation intensity estimation errors where precipitation is correctly detected by subregion and spatiotemporal resolution.

GI represents the gauge 2 IMERG analysis, whereas GT represents the gauge 2 TMPA analysis. For definition of the subregions, see

section 2a.
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increases for both SPPs at all space–time scales. The

variations show the average response in the sensitivity of

the bias calculation to a removal of only a single gauge at

each pixel, highlighting the importance of the coverage

and representativeness of the gauge network for SPP

evaluation. However, the majority of pixels only contain

a single gauge in both the pixel averaging and the boot-

strapping approaches. Hence, the difference between

the two methods is very low when averaged across all

pixels, but will be larger locally, that is, for individual

pixels containing more than a single gauge.

Focusing on the 0.258 pixel with the highest gauge

density, Fig. 11 shows a large variation between the

grid SPP estimates and individual gauge estimates

within the pixel. While both IMERG and TMPA

overestimate the spatial mean gauge rainfall by ap-

proximately factor two (IMERG 0.18/1 h: 2.56, IMERG

0.258/3 h: 2.17, TMPA: 2.78), the relationship between

an individual gauge and the SPP estimates may even be

negative, that is, gauge P46 (from 20.12 to 0.06). This

gauge is located on an east-facing slope in a north–

south–oriented, medium-elevation (2960m MSL) val-

ley discharging to the Amazon, whereas most gauges

(labeled ‘‘JTU’’) are clustered in a high-altitude region

(above 4000m MSL) to the west of the Antisana vol-

cano (southwest of the pixel). For these gauges, the

Antisana volcano acts as a barrier, restricting humidity

transported by easterly trade winds from the Amazon

basin. On the other hand, gauges located at lower ele-

vations farther downstream are directly exposed to the

higher humidity levels.

Finally, evaluation of the spatial correlation structure

across the entire region (Fig. 12) suggests that, irre-

spective of the spatiotemporal scale, IMERG and

TMPA estimate higher spatial correlation distances

than the gauges. This implies the degree of spatial av-

eraging (smoothing) is far higher in the SPPs than the

gauge estimates. However, this behavior may also be

attributed to the majority of ground-based pixels only

containing a single gauge. Thus, these pixels represent

point-scale rainfall, which is by nature more variable

and has shorter spatial correlation distances than grid

FIG. 9. CDF ratio [Eq. (9)] (a) for the entire study region and by subregion and product for three spatiotemporal

resolutions: (b) 0.18/1 h, (c) 0.258/3 h, and (d) 0.258/daily. For definition of the subregions, see section 2a.
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FIG. 10. Percentage bias as identified during (left) the standard pixel average analysis and (right) the bootstrap

sampling analysis. GI represents the gauge 2 IMERG bias, whereas GT represents the gauge 2 TMPA bias. For

definition of the subregions, see section 2a.
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average rainfall as reported by the SPPs. Analysis of the

spatial correlation of pixels containing at least two

gauges as shown in Figs. 12d–f) suggests similar spatial

correlation results as the SPPs, thus supporting the no-

tion that observed differences in spatial correlation can

be predominantly attributed to the point-area difference

in spatial support of the gauges versus the SPPs. Con-

sidering only the spatial correlation results for pixels with

at least two gauges, IMERG and TMPA still over-

estimate spatial correlation with the differences between

the SPPs smaller than satellite–gauge differences in

spatial correlation across all scales.

5. Discussion

Implications derived from the observations of IMERG

performance in this study are summarized and compared

to previous studies in Table 2 and discussed in this sec-

tion. In terms of the comparison of IMERG against

TMPA, no improvements are evident with respect to

FIG. 11. Analysis of the impact of scale on a single satellite pixel (ID 1167): (a) the topography and gauge network

as well as superimposed grids at 0.18 and 0.258 resolution and scatterplots of the individual gauges (and their areal

grid mean) against the corresponding SPP estimate for (b) TMPA at 0.258, (c) IMERG at 0.18, and (d) IMERG

at 0.258 with best-fit lines using linear regression. The gauge M0188 is not included in the scatterplots as no ‘‘hits’’

were observed.
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mean rainfall across the study period, and TMPA even

shows higher S-G correlation. However, separating

rainfall detection and rainfall rate estimation accuracy

reveals that IMERG has superior skill in estimating both

of these precipitation components. The good agreement

between TMPA and gauges in terms of the spatial mean

rainfall field can be attributed to ROF being under-

estimated while rainfall intensities were overestimated.

Furthermore, irrespective of the regionally differing

precipitation regimes, a consistent observation is the re-

duction in false peaks by IMERG compared to TMPA,

suggesting a better estimation accuracy of high rainfall

intensities by IMERG. Overall, improvements are most

pronounced in the high Andes, which experience a large

fraction of low-intensity rainfall (Padrón et al. 2015),

suggesting an improved light rainfall detection ability.

Despite improvements in estimating the majority

of the rainfall intensity distribution compared to

TMPA, IMERG markedly overestimates the high in-

tensities, that is, the highest quantiles of the cumula-

tive probability distribution. This observation has

already been reported elsewhere (Sahlu et al. 2016)

and is of high relevance, in particular, for applications

focused on rainfall or hydrological extremes such as

intensity–duration–frequency curves or hydrological

flood simulation.

Additionally, IMERG continues to overestimate both

the frequency of rainfall as well as rainfall intensities in

extremely dry regions, as in the case of PCS in this study,

confirming previous findings by Tang et al. (2016),

Sharifi et al. (2016), and Guo et al. (2016). In this region,

improvements of IMERG over TMPA are lowest by all

FIG. 12. Spatial correlation for each product at different temporal aggregations. (a)–(c) The spatial correlation considering all pixels

inclusive of thosewith just one gauge per pixel for the hourly, 3-hourly, and daily scale, respectively. (d)–(f) The spatial correlation only for

pixels with at least two gauges for the respective temporal scales.
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considered statistics. In particular, the rainfall detection

analysis showed high frequency of missed rainfall and

falsely detected rainfall. Such false positives can po-

tentially stem from incorrectly transformed infrared

retrievals when high cloud cover is falsely translated to

rainfall. Similarly, high rates of subcloud evaporation

may account for the discrepancy between gauge re-

corded rainfall and SPP estimates. Quantitative errors

were generally highest in the dry PCS region for both

TMPA and IMERG, which agrees with previous find-

ings in arid regions of China by Tang et al. (2016).

For all spatiotemporal scales IMERG shows a lower

CDF ratio than TMPA, suggesting better estimation of

the gauge probability distributions than its predecessor.

However, the IMERG CDF ratio increases at high

quantiles for all scales, implying that IMERG over-

estimates the frequency of heavy rainfall, especially in dry

arid areas (i.e., subregion PCS). However, it should be

noted that direct comparison of quantiles is limited as the

sample size of rainfall events differs between regions

depending on the rainfall controls and also between

gauges and SPPs depending on the SPP estimation accu-

racy and the rain gauge density. For instance, the high

fraction of missed rainfall and false alarms in PCS by

IMERG implies sensor and retrieval algorithm limitations

under these conditions. Overestimation of high percen-

tiles therefore does not necessarily imply that the fre-

quency of heavy rainfall events is overestimated, but could

potentially be a result of proportional underestimation of

the bulk of the rainfall intensities (i.e., low quantiles).

Furthermore, despite improvements over TMPA in

spatially defining high rainfall areas as well as estimating

rainfall rates, IMERG fails to accurately capture the

high precipitation rates in orographically enhanced re-

gions (i.e., ASA), which is also the region with the lowest

coverage of the network. Here, warm clouds that pre-

cipitate at temperatures higher than those expected based

on ice particle distributions assumed in PMW-based

precipitation estimates may result in underestimations

of ground-observed rainfall by the SPPs (Dinku et al.

2010). This highlights the importance of further research

into the estimation of tropical mountain precipitation by

SPPs and the need to increase the number of ground-

based stations in data-scarce regions.

This study has also highlighted the importance of the

gauge network used for validation of SPPs. For instance,

inadequate estimation of precipitation in ASA is likely to

be a combined result of limitations in precipitation esti-

mation ability as well as the low and irregular distribution

of the local gauge network used for evaluation (see Fig. 1).

While random errors may be addressed by statistical

methods such as sampling or random simulations, elimi-

nation of systematic error (i.e., bias) requires reliable

validation data for satellite–gauge adjustment (Tan et al.

2016). The unrepresentative coverage of rain gauge net-

works is a well-established and somewhat fixed boundary

condition of hydrometeorological studies and a principal

motivation for extensive research into SPPs.However, the

impacts of insufficient gauges and the resulting point-area

differences continue to affect satellite–gauge evaluations.

An example of this is illustrated by the analysis of the

individual pixel 1167 (Fig. 11). Here overestimation of

the spatial gauge mean by the SPP may stem from the

gauges preferentially sampling the low rainfall area in

the southwest, leading to an underestimation of the true

spatial mean of the area within the pixel. Similarly, the

negative relationship between gauge P46 and the SPPs

illustrates the impact of the point-area difference: while

subgrid-scale variability in precipitation patterns is not

captured by the SPP, it may strongly impact individual

gauges. Disagreements between SPPs and gauge esti-

mates therefore do not necessarily imply satellite re-

trieval errors but can similarly stem from low density or

nonuniform gauge coverage. While restricting satellite–

gauge comparisons to pixels with at least three gauges

would eliminate vast regions worldwide and hamper

assessment of SPPs specifically in poorly gauged regions,

the representativeness of gauge networks needs to be

considered when S-G agreement is poor.

6. Conclusions

This study performed a comparative ground valida-

tion of IMERG and TMPA against a network of 302

TABLE 2. Summary of IMERG performance observations, implications, and potential causes as well as agreement with previous studies.

Observation Implication/potential cause Previous studies

Overestimation of high rain intensities High relevance for rainfall/ hydrology extremes Sahlu et al. (2016)

Reduced rainfall detection

for high rain rates

Potential limitation in detecting

convective rainfall

Sahlu et al. (2016)

Overestimation of rainfall frequency

in arid regions (frequent false alarms)

Incorrectly transformed IR retrievals;

high rates of subcloud evapotranspiration

Tang et al. (2016); Sharifi et al. (2016);

Guo et al. (2016)

High quantitative errors in rain

intensity (arid regions)

— Tang et al. (2016)
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rain gauges in Ecuador and Peru over a 17-month

period from April 2014 to August 2015. The region is

influenced by a range of climatic drivers, resulting in

substantial differences in spatiotemporal precipitation

patterns from the dry Peruvian coast across the tropical

Andes to the Amazonian lowlands. To comprehensively

evaluate the SPPs, the study area was divided into six

hydrometeorological subregions and rainfall occurrence

frequency, detection, quantitative estimation errors, and

accuracy of empirical cumulative distribution probabil-

ities were assessed. Despite similar precipitation means

over the assessment period, IMERG outperformed

TMPA in most validation statistics, demonstrating lower

errors in detection and quantitative rainfall rate estima-

tion as well as a higher accuracy in estimating occurrence

frequency and rainfall intensity distributions. For both

products, performance increased with increasing spatio-

temporal scale because of the reduction of the space–time

variability of rainfall patterns.

Advances to sensor technology and retrieval algo-

rithms of DPR and GMI have resulted in improved

detection of low rainfall intensities (,0.7mmh21) and

higher accuracy in estimating medium and high rainfall

intensities, with consequential improvements in terms

of defining the statistical probability distribution of

rainfall. Improvements of IMERG over TMPA are

geographically most pronounced in the high Andes

(AW and AE), which confirms the promising results

from previous studies with respect to the potential of

IMERG in high-altitude regions. Substantial errors in

terms of overestimating the frequency of rainfall as well

as positive bias and largest random errors persist along

the dry Peruvian coastline (PCS), where IMERG does

not show improvements over TMPA. Rainfall patterns

characterized by infrequent rainfall events and very low

mean annual precipitation totals in this subregion result

in a high fraction of missed rainfall and falsely estimated

rainfall, especially for high rainfall intensities. On the

other hand, IMERG shows improvement in spatially

defining and quantifying orographically enhanced pre-

cipitation hot spots in the Amazonian sub-Andes, al-

though absolute gauge rainfall totals are underestimated.

The study has also highlighted the importance of

utilizing a well-developed gauge network with spatio-

temporally representative coverage for evaluating SPPs.

While the premise of using SPPs lies in their ability to

provide rainfall estimates in poorly gauged regions,

assessing SPPs in these regions is complicated by the

very fact that the gauge network does not allow for

comparison with equal spatial support, potentially

resulting in substantial point-area differences between

gauge and satellite estimates. Further research should

therefore focus on developing metrics to evaluate the

representativeness of gauge networks as well as un-

derstanding limitations and associated uncertainty in

their estimation accuracy of true rainfall, for example,

employing geostatistics to quantify gauge interpolation

and S-G merging uncertainties (e.g., Delrieu et al. 2014)

as well as S-G error frameworks that account for the

nonlinear structure of rainfall and how this manifests

itself in rainfall detection and rate estimation errors

(Tan et al. 2016; Maggioni et al. 2014).

Further evaluation of IMERG in the tropical Andes

should investigate as to what empirical conditional prob-

ability distribution is associated with each rainfall de-

tection category (hits, misses, false alarms) and how this

varies seasonally and regionally. Investigations of single-

sensor (level 2) products against ground observations may

help identify the performance of individual sensor re-

trievals (DPR,GMI, IR retrievals), and thereby support in

attributing errors in the combined IMERG product (Tan

et al. 2016). While the results presented here suggest

IMERG has already achieved robust improvements in

estimating precipitation in the tropicalAndes, these should

be seen in the context of the short assessment period

(17 months) that overlapped with the onset of an El Niño
event in mid-2015. Interannual rainfall variability in

Ecuador and Peru is strongly affected byENSOvariations.

Therefore, evaluation analysis over longer time periods

(e.g., TRMM era retrospective since 1998) will help as-

certain the influence of interannual precipitation variabil-

ity and the impacts of changes in the IMERG and TMPA

calibration algorithms. For the Ecuador–Peru region,

comparative analysis of IMERG versions 3 and 4 as well

as distributed hydrological model simulations based on

IMERG products are currently being developed.
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