
Background
Composition and functions of the gut microbiome are inextricably linked with host health, and
altered in conditions such as obesity, type II diabetes and cardiovascular disease. Evidence is
accumulating to suggest the gut microbiota is also altered in neurodegenerative diseases1,2.
Central to microbe–host crosstalk are microbiome-associated metabolites such as short-chain fatty
acids (SCFAs). SCFAs are produced by the fermentation of carbohydrates and other foodstuffs by
gut bacteria, are potent bioactive molecules and are detectable at micromolar concentrations in
the peripheral blood of healthy individuals. They activate members of the free fatty acid receptor
(FFAR) family of G protein coupled receptors; acetate, propionate and butyrate have affinity in the
low millimolar to high micromolar range for FFAR2; propionate and butyrate have mid to low
micromolar affinity for FFAR33.

Propionate has been shown to stimulate intestinal gluconeogenesis through direct stimulation of
enteric–CNS pathways4, and increased intestinal propionate has been associated with reduced
stress behaviours5 and reward pathway activity6 in mice and humans, respectively. However, its
potential role as an endocrine mediator in the gut–brain axis has not been addressed.

Objectives
To confirm expression of FFAR3 (GPR41) on human brain and hCMEC/D3 cells, and to determine
whether propionate at a physiologically relevant concentration (1 μM) impairs or enhances key
blood–brain barrier (BBB) properties in vitro.

Methods
Immunohistochemistry to detect expression of FFAR3 in the human brain was done with paraffin-
embedded post mortem samples of prefrontal cortex from non-neurological controls. Human
hCMEC/D3 cerebromicrovascular cells were used as an in vitro model of the BBB to investigate
the effects of 24 h treatment with propionate, studying (i) expression of FFAR3 by cell monolayers,
(ii) cell transcriptomes, (iii) functional barrier properties of cell monolayers and (iv) Aβ efflux
transporters. Differentially expressed genes were identified in hCMEC/D3 transcriptomes using
limma7 (significance threshold 0.1 after adjustment of P values for multiple correction testing,
Benjamini–Hochberg). Signaling Pathway Impact Analysis (SPIA)8 and Enrichr9 were used to aid
data interpretation.

Results
1. FFAR3 is expressed in the human brain and on hCMEC/D3 cells

2. Propionate has a significant effect on hCMEC/D3 cell gene expression, and
inhibits pathways (SPIA) associated with non-specific microbial infections
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3. Propionate protects the BBB against exposure to bacterial lipopolysaccharide via 
CD14, and enhances inter-endothelial tight junctions

4. Propionate protects the BBB from oxidative stress via NRF2 (NFE2L2) signalling

5. Exposure of hCMEC/D3 monolayers to propionate for 24 h significantly 
suppressed expression of LRP-1 (not shown) without modulating expression of 
either BCRP or P-glycoprotein 

Summary
In vitro propionate has protective and anti-inflammatory effects on the BBB. There are
currently three mechanisms by which the microbiome influences the gut–brain axis:
modification of autonomic/sensorimotor connections, immune activation, and regulation of
neuroendocrine pathways. We propose a fourth facet of the gut–brain axis: interactions
between microbiome-associated metabolites and the primary defensive structure of the
brain, the blood brain barrier. This warrants further study.
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