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FINITE ELEMENT APPROXIMATION FOR
THE DYNAMICS OF FLUIDIC TWO-PHASE BIOMEMBRANES

JOHN W. BARRETT!, HARALD GARCKE? AND ROBERT NURNBERG '

Abstract. Biomembranes and vesicles consisting of multiple phases can attain a multitude of shapes,
undergoing complex shape transitions. We study a Cahn-Hilliard model on an evolving hypersurface
coupled to Navier—Stokes equations on the surface and in the surrounding medium to model these
phenomena. The evolution is driven by a curvature energy, modelling the elasticity of the membrane,
and by a Cahn—Hilliard type energy, modelling line energy effects. A stable semidiscrete finite element
approximation is introduced and, with the help of a fully discrete method, several phenomena occurring
for two-phase membranes are computed.
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1. INTRODUCTION

In lipid bilayer membranes a large variety of different shapes and complex shape transition behaviour can
be observed. Biological membranes are composed of several components, and lateral separation into different
phases or domains have been studied in experiments. Mathematical models for biological membranes treat them
as a deformable inextensible fluidic surface governed by bending energies, which involve the curvature of the
membrane. If different phases occur, these bending energies will depend on the individual phases, and the local
shape of the membrane will depend on the phase present locally. It has also been observed that the interfacial
energy of the phase boundaries on the membrane can have a pronounced effect on the membrane shape, and
might lead to effects like budding and fission. We refer to [11] for experimental studies and to [10,18,31,33,45]
for further information on membranes with different fluid phases.

There has been a huge interest in the modelling of (two-phase) biomembranes. Both equilibrium shapes,
as well as the evolution of membranes, have been studied intensively. However, a model taking the fluidic
behaviour of the membrane, the curvature elasticity, the interfacial line energy and the phase separation in
a time dependent model into account is missing so far. It is the goal of this paper to present such a model
and —which will be the main contribution of this paper— to come up with a stable (semidiscrete) numerical
approximation scheme for the resulting equations. The model will be based on an elastic bending energy of
Canham—-Evans—Helfrich type and a Ginzburg—Landau energy modelling the interfacial energy. Through their
first variation these energy contributions lead to driving forces for the evolution, which is given by a surface
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Navier—Stokes system, coupled to bulk dissipation of an ambient fluid, and a convective Cahn—Hilliard type
equation, which is formulated on the evolving membrane. The fluid part of the model goes back to the work [1],
whereas an evolution based on a Canham—Evans—Helfrich energy coupled to a Ginzburg-Landau energy on the
surface has been studied in the context of gradient flows by [24-26,29, 30,35, 36]. However, a coupling, which
will give the natural dynamics on the interface, is stated here for the first time, and we will show that physically
reasonable energy dissipation inequalities hold. Here the dissipation has contributions stemming from viscous
friction in the bulk and on the surface, and from dissipation due to diffusion on the membrane.
For the elastic energy we consider the classical Canham—-Evans—Helfrich energy

/%a(%7?)2+achdelv (1.1)
r

where T' € R%, d = 2, 3, is a hypersurface without boundary, o > 0 and a© are the bending and Gaussian bending
rigidities, s is the mean curvature, 7z is the spontaneous curvature, which can be caused by local inhomogeneities
within the membrane, K is the Gaussian curvature and H?~! is the (d — 1)-dimensional surface Hausdorff
measure. As discussed in [38], the most general form of a curvature energy density that is at most quadratic in

the principal curvatures and is also symmetric in the principal curvatures has the form % a2 +a% K4y 4o,

which leads to (1.1) by choosing a1 = —a 7 and ay = %a?ﬁ. In the case d = 2 the most general form which

is at most quadratic in the curvature is % a 32 4 oy 2 + ap. Hence throughout this paper we set a® = 0 in the
case d = 2.

We also introduce an order parameter ¢, which takes the values 1 in the two different phases, and this
parameter is related to the composition of the chemical species within the membrane. On the surface we then

use a phase field model to approximate the interfacial energy by the Ginzburg—Landau functional
5 [ 39I%eP o w(o an
r

where 8 > 0 is related to the line tension coefficient and ~ is a multiple of the interfacial thickness of the
diffusional layer separating the two phases. Furthermore, V; is the surface gradient and ¥ is a double well
potential.

In the different phases «, 3 and a© will take different values, and we will interpolate these values obtaining
functions a(c) > 0, 7(c) and a%(c). The total energy will hence have the form

B(T,¢) = /Fb(%, &) + aC () K + Bbar(c) A", (1.22)

where

b(se,¢) = S a(c) (3 —32(c))® and ber(c) =27 [Vee* +77 (). (1.2b)
We recall that we assume a® = 0 in the case d = 2. In the case d = 3, and if o is constant, then the contribution
fr a%(c) K dH? is constant for a fixed topological type, which is a consequence of the Gauss-Bonnet theorem
for closed surfaces,

/IC dH? =27m(T), (1.3)

where m(T") € Z denotes the Euler characteristic of I. However, if a© is inhomogeneous, this term plays a role,
which was discussed for example in [31] in the context of two-phase membranes. Here we also mention that the
contributions % fr a(c) 52 dH? + fr a%(c) K dH? to the energy F(T,¢) are positive semidefinite with respect to
the principal curvatures if a%(s) € [~2a(s),0] for all s € R. On account of the Gauss-Bonnet theorem, (1.3),
we hence obtain that the energy E(I',¢) can be bounded from below if a%(s) > o, — 2a(s) for all s € R,
which will hold whenever

Omin > 3 (%  —af.), (1.4)

max min
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where apin = mingeg a(s), and similarly for %, , oS, . We note that this constraint is likely to have implica-
tions for the existence and regularity theory of gradient and related flows for E(T',¢) in the case d = 3.

The energy (1.2a) represents a phase field approximation of a two-phase membrane curvature energy with
line tension. In the limit v — 0 the diffusive interface disappears and a sharp interface limit is obtained. Sharp
interface limits of phase field approaches to two-phase membranes have been studied with the help of formal
asymptotics in [25] in the case of a Cl'-limiting surface, and rigorously in [29] for axisymmetric two-phase
membranes allowing for tangent discontinuities at interfaces. Later in [30] a rigorous convergence result for the
axisymmetric situation in the C'-case was also shown.

For the fluid part of the model we generalize the model from [1] to the two-phase phase field energy (1.2a).
Here we only outline the main aspects of the model, with the precise details being given in Section 2. In
particular, we consider a closed evolving membrane (I'(Z));c[o,7], With T' > 0 being a fixed time, which separates
a given domain Q into regions Q4 (¢) and Q_(t) := Q\ Q. (t). We will assume that the classical Navier—Stokes
equations, with density p and viscosity p hold in Q_(¢) and Q4 (¢). In the absence of mass transfer to/from
the interface from/to the bulk it is natural to assume that the normal components of the velocity @ in Q4 (¢) is
continuous across the interface, see e.g. [42, p. 675] and [13, p. 137]. Moreover, we assume a no-slip condition
of the velocity 4 at the interface, which means that the tangential components of the bulk velocity are also
continuous across the interface, see e.g. [42, p. 293]. Hence the material on the interface is moved with the
trace of the bulk velocity @ |p«). In addition, and analogously to [1], we require an incompressible surface
Navier—Stokes equation to hold on I'(t), with density pr and surface viscosity ur. Here the main driving force
for the surface Navier—Stokes equation is given by f_’f = —)FE/JT, the first variation of the total energy of I'(t)
with respect to I'.

The overall model is completed by an appropriate evolution law for the species concentration on the mem-
brane. To this end, we consider the following Cahn-Hilliard dynamics on I'(%)

Y05 c=Asm, (1.5a)
m=—ByAsc+ By W (c)+ % b(s,¢) + (%) () K, (1.5b)

where 0} is a material time derivative, m denotes the chemical potential, A; = V. V; is the Laplace-Beltrami
operator and ¥ € Ry is a kinetic coeflicient. We note here that m = §E/dc is the first variation of the total
energy with respect to ¢, see Sections 2, 3 and the Appendix for more details. Equation (1.5a) is a convection-
diffusion equation for the species concentration on an evolving surface driven by the chemical potential m. For
more information on the Cahn—Hilliard equation we refer to [22,39]. We note that the Cahn—Hilliard equation
on an evolving surface was studied in [23], including its finite element approximation.

It turns out that the overall model with suitable boundary conditions, e.g. @ = 0 on 01, fulfils, in the case
where the outer forces are zero, the following dissipation identity

d . . _
N (% / plal* dL? + 3 / pr|@l® dnt +E(F(t),c(t))>
Q T'(t)
+2 / | D(@)* AL + 2 pr / |Ds (@) A + 97! / |Vsm[2 dH =0, (1.6)
Q I'(t) I'(t)

which is consistent with the second law of thermodynamics in its isothermal formulation. Here D() and
D, (i) are rate-of-deformation tensors in the bulk and on the surface, and so the fourth and fifth terms in (1.6)
describe dissipation by viscous friction in the bulk and on the surface. In addition, the last term in (1.6) models
dissipation due to diffusion of molecules on the surface. We also note that the introduced model conserves the
volume of the bulk phases, the surface area and the total species concentration on the surface, i.e.

4
dt

Q- (1) = %Hd’l(l“(t)) _ % /m) ¢(t) A = 0. (1.7)
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FIGURE 1. The domain ) in the case d = 2.

In particular, in contrast to other works, no artificial Lagrange multipliers are needed to conserve the enclosed
volume, the total surface area and the total species concentration.

It is one of the main goals of this contribution to introduce and analyze a numerical method that fulfils
discrete variants of the dissipation identity and of the conservation properties (1.7), see the results in Theorem
4.2 and Theorem 4.3, below.

Let us now discuss related works on two-phase membranes. The interest in two-phase membranes increased
due to the fascinating works [10,11], as experiments seem to validate earlier theories from [31,33] on two-phase
membranes, and showed an amazing multitude of complex shapes and patterns. There have been many studies
on two-phase axisymmetric two-phase membranes, both from an analytical and from a numerical point of view,
see [14,15,28-31], and the references therein. However, only very few works study general shapes of two-phase
membranes from a theoretical or computational point of view. In this context we refer to [16,24-26,34-37,
44,46]. But we note that none of the above mentioned contributions considered a stability analysis for their
numerical approximations. We combine aspects of some of these approaches with the dynamics studied in [1],
and we generalize computational approaches of the present authors for one-phase membranes, see e.g. [6,7], to
numerically compute evolving two-phase membranes.

The outline of the paper is as follows. In the following section we introduce the model with all its details.
In Section 3 we introduce a weak formulation, which is then discretized in space in Section 4. We then also
show that this scheme decreases the total energy and obeys the relevant global conservation properties. In
Section 5 we introduce a fully discrete scheme and show existence and uniqueness of a fully discrete solution
assuming an LBB condition. In Section 6 we comment on the methods used to solve the fully discrete systems.
In Section 7 we present several numerical computations in two and three spatial dimensions, illustrating the
properties of the numerical approach and showing the complex interplay between the curvature functional, the
Ginzburg—Landau energy and the Navier—Stokes dynamics. In the Appendix we finally state the details of the
derivation of the model, and we show that the weak formulation we introduce is consistent with the strong
formulation for smooth solutions.

2. NOTATION AND GOVERNING EQUATIONS

In this section we formulate the model, which was sketched in the Introduction, with all its details. Let Q C R¢
be a given domain, where d = 2 or d = 3. We seek a time dependent interface (I'(t))c[o,77, I'(t) C €, which for
all t € [0,T] separates Q into a domain €2, (¢), occupied by the outer phase, and a domain Q_(t) := Q\ Q. (¢),
which is occupied by the inner phase, see Figure 1 for an illustration. For later use, we assume that (I'(t)).c0,1)
is an evolving hypersurface without boundary that is parameterized by Z(-,¢) : T — R%, where T C R? is a
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given reference manifold, i.e. I'(t) = Z(T,t). Then
VE ) =F(qt) VZ==&qt) el () (2.1)

defines the velocity of T'(¢t), and V := V.7 is the normal velocity of the evolving hypersurface I'(t), where D(t) is
the unit normal on I'(¢) pointing into €1 (¢). Moreover, we define the space-time surface I'r := ;¢ (o 7 I'(£) x {t}

Let p(t) = py Xo, ) + p— Xa_), with pr € Rxg, denote the fluid densities. Here and throughout A4
defines the characteristic function for a set A. Denoting by # : Q x [0,T] — R? the fluid velocity and by
p: Q2 x[0,T] — R the pressure, we define the stress tensor

o=p(Vi+(Va)") - pld=2pD(@) - pld, (2.2)

where Id € R4 denotes the identity matrix, D(@) := 3 (V@ + (V@)7) is the bulk rate-of-deformation tensor,
. - d -
with V4 = (893]. uz)

i,j=1’
the two phases. With f: Q x [0,7] — R? denoting a possible volume force, the incompressible Navier—Stokes
equations in the two phases are given by (2.2) and

and p(t) = py Xo, ¢ + p- Xo_ @), for px € Rsg, denotes the dynamic viscosities in

p(@+ (@.V)@) ~V.a=pf  inQL(t), (2.3a)
V.i=0 in QL (t), (2.3b)

U=gq on 0,9, (2.3c)

cii=0 on 90, (2.3d)

where 00 = 91Q U 3:,Q, with 9;1Q N 3,2 = (0, denotes the boundary of Q with outer unit normal ©. Hence

(2.3¢) prescribes a possibly inhomogeneous Dirichlet condition for the velocity on 9;€2, which collapses to the

standard no-slip condition when § = 6, while (2.3d) prescribes a stress-free condition on 922. Throughout this

paper we assume that H%~1(9,Q) > 0. We will also assume w.l.o.g. that § is extended so that g : Q — R9.
Following [1], on the free surface I'(t) we require the conditions

[@*r =0 on I'(¢), (2.4a)

prof i —Vs.ar =g+ fr  onT(t), (2.4b)
Vs.i=0 onI'(t), (2.4¢)
V.i=a.v on I'(t), (2.4d)

where [i@]" := @, —@_ and [¢¥]T := g, ¥ — o_ ¥ denote the jumps in velocity and normal stress across
the interface I'(t). Here and throughout, we employ the shorthand notation @y = @ loy (v for a function
@:Qx[0,T] = R% and similarly for scalar and matrix-valued functions. Moreover, pr € R>q denotes the
surface material density and the source term fr = —8E /6T is the first variation of the total energy of I'(t) with
respect to T, see (2.9) below. In addition,

O¢=G+u.V¢ (2.5)
denotes the material time derivative of ¢ on I'(t), see e.g. [21, p. 324]. Furthermore, the surface stress tensor is
given by

or =2pur Ds(@) —prPr on I'(t), (2.6)
where ur € R is the interfacial shear viscosity and pr denotes the surface pressure, which acts as a Lagrange
multiplier for the incompressibility condition (2.4¢). Here

Pr=Ild-v®i onl(t), (2.7a)
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and
Dy(@)) = 3 Pr (Vsi+ (Vs@)")Pr onT(t), (2.7b)
with the surface gradient V; = PrV = (0s,,...,0s,) on I'(t), and Vs i = (asj “i)jj:r Finally, V. denotes
the surface divergence on I'(¢). The system (2.3a—d), (2.2), (2.4a—d), (2.6) is closed with the initial conditions
[0)="To, pu(,0)=piy in, pri(,0)=prip onlo, (2.8)
where Ty € Q and iy : Q — R are given initial data satisfying pV .y = 0 in Q, pr Vs .1y = 0 on I'g and
P+ Up = py g on 0182. Of course, in the case p— = p; = pr = 0 the initial data iy is not needed. Similarly, in
the case p— = p4y = 0 and pr > 0 the initial data i is only needed on I'g. However, for ease of exposition, and

in view of the unfitted nature of our numerical method, we will always assume that g, if required, is given on
all of Q.

The source term ff in (2.4b) plays a crucial role, and it is given by minus the first variation of the energy
(1.2a) with respect to T, i.e.

fi= 55 B0
= [—A [alc) (3 — 32(c))] — alc) (3 — 32(c)) | Vs 7] + b(5¢,¢) 3¢ — Vs . ([ 1d + V, 7] Vs a(c))] 7
+ (b.e(5,¢) + (%) (¢) K) Vs ¢ + B [bar(¢) 27 + Vsbar(c) — v Vs . (Vs ©) @ (Vs 0))] (2.9)

where we have defined
be(3,¢) = L b(se,¢) = 20/ (c) (3 — 32(c)? — alc) (5 — 52(c)) 3 (c) . (2.10)

Throughout we assume that «,a® € C*(R), with a(s) > 0 for all s € R. We refer to the Appendix for a
detailed derivation of (2.9). In contrast to situations where the energy density does not depend on a species
concentration, we now have tangential contributions to fr. In particular, the terms (b (3¢, ¢)+ (a%) (¢) K) Vs ¢+
BVsbar(c)—BvVs.((Vs¢)®(Vs¢)) give rise to a tangential flow and hence can induce a Marangoni-type effect.

The overall model we are going to study in this work is the coupled bulk and surface Navier—Stokes equations
(2.3a-d), (2.2), (2.4a—d), (2.6), (2.8) together with the convective Cahn—Hilliard system (1.5a,b) on the evolving
interface, suitably supplemented with initial conditions for ¢. Here the double well potential ¥ in (1.2b) and
(1.5b) may be chosen, for example, as a quartic potential

U(s) = (s* = 1), (2.11a)
or as the obstacle potential
L1 —-s?) if <1
U(s) =142 (=) i sl <1, (2.11b)
00 if |s| > 1,

which restricts ¢ € [~1,1]. For the analysis we will always assume that ¥ € C!(R) for ease of exposition, but
we will use (2.11b) for our fully discrete approximations.

As stated previously, > in (2.9) denotes the so-called mean curvature of I'(¢), i.e. the sum of the principal
curvatures s, i = 1,...,d — 1, of I'(t), where we have adopted the sign convention that s is negative where
Q_(t) is locally convex. In particular, it holds that

Ayid = 0= 7 on I'(t), (2.12)

where id is the identity function on R?. We recall that the second fundamental tensor for I'(¢) is given by V, 7,
and this appears in (2.9). Moreover, we note that —V, 7(2), for any Z € I'(¢), is a symmetric linear map that
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has a zero eigenvalue with eigenvector v, i.e.
(Ve )T =V,7 and (V,0)7=0, (2.13)

and the remaining (d — 1) eigenvalues, s, ..., 34-1, are the principal curvatures of I at Z; see e.g. [17, p. 152].
The mean curvature s and the Gauss curvature K can now be stated as

d—1 d—1
%:—tr(vsﬁ):—vs.ﬁ:Z%i and K:H%i’ (2.14)
i=1 i=1

which in the case d = 3 immediately yields that
K =30~ Vs 7%). (2.15)

Finally, it is not difficult to show that the conditions (2.3b) enforce volume preservation for the phases, while
(2.4c) leads to the conservation of the total surface area H?~1(I'(t)), see (3.7) and (3.8) in Section 3 below for
the relevant proofs. As an immediate consequence we obtain that a sphere I'(¢) remain a sphere, and that a
sphere I'(t) with a zero bulk velocity is a stationary solution.

3. WEAK FORMULATION

We begin by recalling the weak formulation of (2.3a-d), (2.2), (2.4a-d), (2.6) from [6] for the special case
a € Ryo, a% =3 = =0, ie when E(T,c) in (1.2a) is replaced by 1 a [;, 3 dH?~1. To this end, we introduce

the following function spaces for a given @ € [H'(£2)]%:

[HY(Q)]Y: g=a on 5,Q}, V(@) := L*0,T;U(a)) N H*(0,T; [L*(Q)]%),
V(@) : @lrp€ [H' (D7)} (3.1a)

In addition, we let P := L?(Q) and define

P:=

-~ {7] e P . fQ n dﬁd = 0} lf Hd_l(a2ﬂ> = 07 (3 1b)
P if H1(029) > 0. '

Here and throughout, H9~! denotes the (d — 1)-dimensional Hausdorff measure in R?, while £¢ denotes the
Lebesgue measure in R, Moreover, we let (-,-) and (-, -)g,q denote the L?~inner products on € and 95{), and
similarly for (-,-)p@).

Similarly to (2.5) we define the following time derivative that follows the parameterization Z(-,t) of I'(¢),
rather than «. In particular, we let

KC=¢G+V.V( V(e H(Ir); (3.2)

where we stress that this definition is well-defined, even though (; and V ¢ do not make sense separately for a
function ¢ € HY(T'r). For later use we note that

d

E <Xa C>1"(t) = <a§ X5 g)l"(t) + <X’ 61? g)F(t) + <X Ca vs . fj>l"(t) v X C € Hl(FT) ) (33)

see [21, Lem. 5.2].
On recalling (2.5) we obtain from (3.2) that 97 = 97 if

—

V=@ onD(t). (3.4)
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Hence the most natural tangential velocity for the parameterization Z(-,t) : T — T'(¢) is the fluidic tangential
velocity, and so our weak formulation will replace (2.4d) with (3.4). Recall that while the tangential velocity for
the parameterization may be chosen arbitrarily on the continuous level, any particular choice will have important
implications on the mesh quality on the discrete level. For the approximation of fluidic biomembranes, thanks
to the surface incompressibility condition (2.4c), it turns out that the choice (3.4) in general leads to good
meshes. See [6] for more details.

The weak formulation of (2.3a—d), (2.2), (2.4a—d), (2.6), with E(T'(), c(t)) replaced by % a (3, #)p), from [6]
is then given as follows. Find T'(t) = Z(Y,¢) for ¢ € [0, T'] with Ve [LA(Dr)]* and V(-,t) € [H 1( (t)]¢ for almost
all t € (0,T), and functions @ € Vp(F), p € L2(0,T;P), pr € L2(T'y), # € [H* (D7) and fr € [L2(T'p)]¢ such

that the initial conditions (2.8) hold and such that for almost all ¢ € (0,T) it holds that

3 GO0+ 01d - &)+ (o l@ DA€~ (@) D+ oy (a.0.7.6), |

—

+2(p D), DE) =~ 1,V 4 pr (R a8+ 2 (Da@. DE)) (e, Ve E)

=R+ (fr6),,  VETHO), (3.52)
(V.i,0)=0 VeoeP, (3.5b)
(Vs.@m)pqy =0  VneL*I(), (3.5¢)

G o o _ > d
(V-1 X>p<t> —0  Vxel[LArE), (3.5d)
as well as
(e + (Vid Vo) =0 Vel ), (3.62)

<fFa Y>F(t) = (Vs %, Vs X)pge + (Vs 5, Vs . X + 5 (177, Vs - Xy
-2a <(vs #)", Ds(X) (Vs ia)T>F( : VX e HNT®), (3.6b)
= t

where in (3.5d) we have recalled (2.1) and (3.4). We also note that (3.6a) is the weak form of (2.12).

For the case § = 0, it was shown in [6] that choosing £ = @ € Vr(0) in (3.5a), ¢ = p(-,t) € P in (3.5b),
n=pr(-,t) € L*(T(t)), X = fr in (3.5d) and ¥ = V in (3.6b) yields that

3 (102 12 + pr (.8 + (2 gy ) + 2 0t DR+ 2 e (Dal), Do)y + b o (0.5 [)

2 dt 1Y 0 pPr ) I'(t) ’ I'(t) 1% 0 pur ) LS F(t) 2 P+ <y o.

= (p f.1).

22

Moreover, we recall from [6] that it follows from (3.3) and (3.5¢,d) that

%H‘i_l(l“(t)) = % (1, 1)) = <1,vs .17> = (1, Vs . @)pyy =0, (3.7)

I(t)

while [17, Lemma 2.1], (3.5b,d) and (3.1b) imply that

d 4 SR . 1 pd
Z LA ) = — — gdet=0. ,
ZLQ- (1) <LLV>NO (@, P)r o /2@)V 7dLt =0 (3.8)
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We remark that very recently, in [5,7] the present authors have extended the weak formulation (3.6a,b) for

the energy 3 a (5%, 1)1 to energies of the form o ((3c — 3)2,1)r(;), with 32 € R. In the remainder of this

section, we will extend (3.6a,b) to deal with the general two-phase energy F(T',¢) as in (1.2a).

3.1. Reformulation of E(I'(t),¢(t))

We recall that in the case d = 2, we always assume that a® = 0. In the case d = 3, on the other hand, we
have from (2.15) that

(09(0). K)pyy = 5 (®(0): 15 = |wl®)p,y (3.9)
where w € [H*(I'(t))]**¢ is such that for all ¢e [H(T(t))]4xd

<w’ C>1“(t) < ® ’<>r(t) <ﬁ’£}? +Vs '£>F(t) ' (3.10)

Here we have recalled from [21, Theorem 2.10] that
(Ve & lpgey + (6 Voo Mlpey = (Voo (CD)s Dpgy = = (K Py YV CE HY(T(), 7€ [H (T (3.11)

Hence the total energy E(I'(t),c(t)), on recalling (1.2a,b) and (2.12), can be rewritten as
E(L(t),c(t)) = / 5 (0) [ = 52(0) 717 + 5 a(0) (|7? — |wl) + Bbar(c) dH, (3.12)
r

and it is this reformulation on which our weak formulation, and hence our stable semidiscrete finite element
approximation, will be based.

3.2. The first variation of E(T'(t),c(t))

In this section we would like to derive a weak formulation for the first variation of E(T'(t), ¢(t)) with respect
to I'(t) = #(Y,t). To this end, for a given ¥ € [H(T'(¢))]¢ and for e € (0,¢0), where g9 € R0, let ®(-, ) be a
family of transformations such that

-

T.(t) == {B(Z,¢) : 7€ T(H)}, where B(7,0)=7and 28(2,0)= ¢(2) VZeT(t). (3.13)
Then the first variation of H?~1(T(¢)) with respect to I'() in the direction ¥ € [H!(T'(¢))]¢ is given by
2y 06| (0) = L HIUCL(0) |emom tim & [HODL0) - 1N T(0)] = (V23,9
ST de e=0 SEREAVA T
=(1,V;. >Z>r(t) ) (3.14)

see e.g. the proof of Lemma 1 in [20]. For any quantity w, that is naturally defined on I'.(¢), we define

PwE) = Lo @) e VEZET(W), (3.15)

and similarly for 02« and 82 w. A common example is 7, the outer normal on T'.(t). In cases where w €
L (T'(t)) is meaningful only on I'(t), we let w. € L>=°(I'<(¢t)) be such that

we(B(Z,¢)) =w(z) VZel(t), (3.16)
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which immediately implies that for such w it holds that 92 w = 0. Once again, we extend (3.16) also to vector-
and tensor-valued functions. For later use we note that generalized variants of (3.14) also hold. Similarly to
(3.3) it holds that

6 — — &)
[E <w,v>m>] (%) = (00w, vy + (0,00 0) gy + (w0, Ve Kpy ¥ w0 € L¥(D(1)). (3.17)

Similarly, it holds that

o . . . d . . oo A0 . .
[E <’LU, V>F(t):| (X) = d_E <’LU5, VE)FE(t) |E:0: <agwa V>F(t) + <’LU, 5? V>F(t) + <’LU -V, Vs . X>F(t)
V@ e [L=¥(T@)]Y,  (3.18)

where 7.(t) denotes the unit normal on I'.(¢). In this regard, we note the following result concerning the
variation of 7/, with respect to I'(t), in the direction ¥ € [H*(I'(¢))]¢:

NAo=—V.x)]'7 on I(t) = v=-[V,V|'7 on I(t), (3.19)

see [41, Lemma 9]. Next we note that for 77 € [H*(T'(t))]? it holds that

[% <VS id, V. ﬁ>r(t)} 0= d% <VS id, Vs ﬁ8>Fs(t) =0

d
= (Ve i Ve D + D0 (O @ e s Vs D)y = (Fodon (@15 (Voht @b

l,m=1

= (Vo 77, Y Drgy + (Ve 7 Vs Dy — 2 (V)T Do(R) (Ve id)T) (3.20)

NON

where 8977 = 0. We refer to Lemma 2 and the proof of Lemma 3 in [20] for a proof of (3.20). Here we observe
that our notation is such that Vs x = (Vr ¥)T, with V¥ = (05, Xj)?,j:l defined as in [20]. Moreover, it holds,
on noting (2.7a), that

Vs )_('

I

r=%y = Pr(V:0)" =" (3.21a)
and
2(Vai)" s Du(X) (Vo d)" = (Ve : [Va X + (V)] (Ve )T (3:21b)
which yields that the last term on the right hand side in (3.20) can be rewritten as in [20].
As V;id = Pr, one can deduce from (2.7a), (3.20) and (3.17) that for sufficiently smooth 7

—

82 (Vs.i7) = 2 (Vsid : Vo) = V7 : Vs X — 2 (Ve DT Ds(¥) (Vs id)T = [Vs ¥ — 2Ds(X)] : Vs 7 ace. on I(¢),

where 9277 = 0. From (3.22) we can also derive that for sufficiently smooth w 42
02 (Vsw) = [Vs X —2D4(Y)] Vsw ae. onT(t), (3.23)

where Y w = 0. In addition, it follows from (3.23) that
O |Vsw|?* =2Vow. 0P (Vsw) = —2Vsw. (Vs X Vsw) = =2 (Vow @ Vsw) : Vi X a.e. on I'(t), (3.24)

where 92w = 0.
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Remark 3.1. We note from (3.22) that the last term in (3.20) can be simplified to
*2 <Vs 777 QS()_(‘)>F(15) :

However, to be consistent with our approximations in [5], we prefer the form used in (3.20).

It is straightforward to derive results for the time derivative of the considered quantities from the collected
first variations above. For example, it follows from (3.20) that

d <v id, vsn> " <Vs.ﬁ, v5.17>m) + <vs 7.V, 17>

dt —2 <(Vs 7, Ds(V) (Vs ia)T>r<t>

Vije{{e[H ()" 07 =0}. (3.25)

r(t)

On recalling (3.6a), (3.10) and (2.13), we now consider the first variation of (3.12) subject to the side
constraints

(e + (Vsid, Vs ﬁ>m) =0 Vie[HE\T®), (3.268)

(@' 0), P3P IZ AV ) =0 Ve [HEm) (3.26b)

Here we use the symmetric formulation in (3.26b), because its discretized form will then ensure that the discrete
approximations to w* are also symmetric, since

((

On recalling (3.12), we define the Lagrangian

Il

Vo = () =) Vel o). (3.27)

L(L, 72 g.w’, z,¢) = 5 (o) [Z* = 52(e) 7, 1) ) + 5 (a(0), |77 —

_ <Q*,g>r(t) _ <Vs ia, Vs 37>

I'(t) + ﬂ <bGL( ) 1>F(t)

)
*<w*vz>mr%< [é+%] TVl 42Ty, (328)

I'(t) ()’

where § € [H'(I'(t))]¢ and z € [H*(I'(t))]**? are Lagrange multipliers for (3.26a,b). In order to compute the

direction of steepest descent, fr, of E( (t),c(t)), with respect to F( ) and subject to the constraints (3.26a,b),
we set the variations of L(I', 5%, %, w*, z, ¢) with respect to #*, %, w* and z to zero, and we use the variation

with respect to ¢ to define the Cahn-Hilliard dynamics. Moreover we obtain on using the formal calculus of
PDE constrained optimization, see e.g. [43], that

R (0= [0 2 - O 0] = — () (3.292)
[5‘1 L} &) = iiﬂ%é {L(F,;&* +e€ gw*, z,¢) — L(D, 52, §, w*, 2, c)} =0, (3.29D)
[5—5 L} (77) = ;{%% [L(D, %, § + eif,w*, z,¢) — L(T', &, §,w*, z,¢)] =0, (3.29¢)
l(;i* L|(¢) = lim [L(F,ff*,ﬁ, w'teg,z,¢) - LT, 2, §w', 2, c)} =0, (3.29d)

L} (©) = lim : {L(F, 2wt z+e ¢ 0) = LU, 25, g, w”, 2, C)} =0, (3.29)
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[i L} (©) =1lim L [L(D, 7, §,w", z,c + &) — L(T, 3", §,w*, z,0)] = (M, E) ey (3.29f)

where 7%, 4. € [HYT:(t))]?, w?, z. € [HY(T:(¢))]?¢, ¢. € HY(T.(t)) are defined as in (3.16), and where m
defines the chemical potential. We note that (3.29¢,e) immediately yield (3.26a,b), which means that we can
recover * and w* in terms of I'(¢) again. In particular, combining (3.11) and (3.26a) yields, on recalling (2.12)
that 5* = #. In addition, it then follows from (3.26b) and (3.10) that w* = w = Vs 7. On recalling (1.2b),

(3.17)—(3.20), (3.22) and (3.24) this yields that

roo — > — > T v NT
<fF,X>F(t) - <vs yavs X>F(t) - <vs -y,Vs . X>F(t) + 2 <(vs y) aQs(X) (vs 1d) >

+ 2 (ae) |52 —32(c) 7)* — 2. 5%, Vs . )Z)F(t) + (a(e) 32(c) (32 — 32(c) ), [Vs X]” 7). I

+Bb61(€), Vi - Xy~ BV ) @ (Vi €), Va gy + 4 (aC(0) (12 — ), Va- Dy
d

—{w:z,Vs. ;z}r(t) LT (z+2") 2+ Vs [2+27), Vs m) Z v Vs 2, Vs X — 2D (;z)>m)

+3(e+2" 12+ Ve 2+ 2" [V D), =0 VX E [Hl(r(t))]d (3.30a)
(a(0) (=7 7) +aC() 2= L [+ 2T) 7 — 7, Qm) —0  vEeH'(ITM), (3.30b)
z= fozG(c)g, (3.30¢)
(7, Mgy + <vs id, v, 7 =0 vie [HY(T()], (3.30d)
(w :>m) + {7+ 2+, [+ §T1>m) =0 Ve[ D@, (3.30¢)

']

= ’

The above is coupled to (3.5a—d) subject to the initial conditions (2.8). Here we have introduced 7; = % [z+z
i=1—d,as well as v; = V. ¢€;, i =1 — d. Finally, on recalling (1.5a), and on using (3.11), (3.3), (3.2), (2.5)
and (3.5¢,d), a weak form of the Cahn—Hilliard dynamics is given by

ﬂ% (&M@ + (Vsm, Vsn)ppy =0 Vne{ée H(Dr): 97§ =0}, (3.31a)
(M, E)py = B (Vs €, VaE)pay + By (W), E)pyy + 5 (0 (0) 17 = 32() 7 — 23 (¢) a(e) (% = 52(0) D) . 7.€) 1,

+5 (@) (@) (12 = [w®), &)y,  VEEH(TD), (3.31b)
C(',O) = Cp on Fo, (331C>

with ¢y : To — R given initial data, recall (2.8). Here we note that (3.31b) is well-posed for nonconstant a,
a% and 7 only in the case § > 0, which is why we assume that 3 is positive throughout the manuscript. In
addition, we observe that choosing n = 1 in (3.31a) yields that

d
3 (& Dry =0 (3.32)

Remark 3.2. With regards to (3.30b) we note from (3.30c) and (2.13), as w = V, 7 = (V,#)7, it holds that

T

z= —a%(¢) w= —a%(¢) Vs 7, and so pl=z V= 0. For further simplifications we refer to the Appendix.



TITLE WILL BE SET BY THE PUBLISHER 13

We note the following LBB-type condition:

inf _,< S.g> L)

£+
sup
(e €PxL2(C®)) ety @) (Illo + nllo,rey) (1€l + 1B Elrey ll1,0e)

>C >0, (3.33)

which we also refer to as the LBBF condition. Here we have defined the space Up ) (0) := {€ € U(D) : Pr E|F(t)e
[HY(T'(1))]%}, and let ||77]|2 I = (T Mr@y + (Vs Vs M- In the case that the smooth hypersurface I'(t)
is not a sphere, then (3.33) is shown to hold if 3,2 = 99 is a smooth boundary in [32, p. 15]. See also the
discussion around (2.11a,b) in [6].

Overall the weak formulation for the free boundary problem (2.3a-d), (2.2), (2.4a—d), (2.6), (1.5a,b), (2.8),
(3.31c) that we consider in this paper is given by

(P) (3.5a—d), (3.30a—e), (3.31a—c), (2.8). (3.34)

Remark 3.3. We note that in the case d = 2 we do not consider Gaussian curvature terms, i.e. we assume
that a%(c¢) = 0. Then (3.30a) simplifies to

<le:’ %>F(t) - <vs ?ja vs )Z>F(t) - <vs -ga vs . )Z)F(t) +2 <(vs g’)TaQS(Y) (Vé ia)T>
+ 2 {ac) |52 — 32(c) 7* — 2. 3, Vs ')Z>F(t) + {a(e) 32(c) (3% — 72(c) 7), [Vs X] " 17>F(t)
+ 6 <bGL(c)a Vs -)Z>F(t) - 6’7 <(as C)Qa Vs %>F(t) =0 v )? € [Hl(r(t))]d : (335)
Clearly, the last two terms in (3.35) can be absorbed by the surface pressure pr in (3.5a). Hence, for constant
« and constant ¢, the evolution of the interface is totally independent of the Cahn—Hilliard system. Of course,

for d = 3 even for constant o, 3 and a, the line tension term B~ (Vs ¢) ® (Vs ¢), Vs X)r(y) in (3.30a) means
that nonconstant values of ¢ do have an influence on the membrane evolution.

4. SEMIDISCRETE FINITE ELEMENT APPROXIMATION

For simplicity we consider € to be a polyhedral domain. Then let 7" be a regular partitioning of  into
disjoint open simplices o;?, j=1,...,Jq. Associated with 7" are the finite element spaces

Shi={xeC@): x|l Prlo) YoeT"} cH'(Q), keN,

where P (0) denotes the space of polynomials of degree k on 0. We also introduce Séb, the space of piecewise
constant functions on 7". Let {o} J} be the standard basis functions for S, k& > 0. We introduce I_h
[C(Q)]¢ [Sh] k > 1, the standard 1nterpolat1on operators, such that (7' i7) (5" J) = 7(ph ) forj=1,. LK

where {p} j} denotes the coordinates of the degrees of freedom of SP', k > 1. In addition we define the
standard prOJectlon operator I} : LY(Q) — Sk, such that

1
(I(;ln”o: [,d(o) /077(15d VOeTh.

Our approximation to the velocity and pressure on 7" will be based on standard finite element spaces U"(g) C
U(I_h 7), for some k > 2, and P"(t) C P, recall (3.1a,b). Here, for the former we assume from now on that § €
[C(€)]%. We require also the space P"(t) := P"(t)P. Here, in general, we will choose pairs of velocity /pressure
finite element spaces that satisfy the LBB inf-sup condition, see e.g. [27, p. 114]. For example, we may choose
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the lowest order Taylor-Hood element P2-P1 for d = 2 and d = 3, the P2-P0 element or the P2—(P1+P0)
element for d = 2 on setting UM(g) = [SH]4 NU(I} §), and P* = Sk, St or St 4 S!, respectively.

The parametric finite element spaces in order to approximate e.g. i and ¢ are defined as follows. Similarly
to [2], we introduce the following discrete spaces, based on the work of Dziuk, [19]. Let I'*(t) C R be a
(d — 1)-dimensional polyhedral surface, i.e. a union of non-degenerate (d — 1)-simplices with no hanging vertices

(see [17, p. 164] for d = 3), approximating the closed surface I'(t). In particular, let Fh( ) = U}]F1 ol (t), where

{J;? (t) JF1 is a family of mutually disjoint open (d — 1)-simplices with vertices {g'(£)} ;. Then let

=

(T (1)) := {x € C(T"(t)) : X|o.h is linear V j =1,...,Jr},
VIi@e) = {xelc@"®))*: x|, n s linearVj=1,...,Jr},
(T (1)) := {é e [C@h (1)) . X| » is linear V j =1,...,Jr}.

<

Hence W (T"(t)) is the space of scalar continuous piecewise linear functions on (), with {x?(-,#)};", denoting
the standard basis of W (T'"(¢)), i.e.

@ (), 1) = 0w Vkle{l,...,Kr},t€[0,T]. (4.1)

We require that I (t) = Xh(r (0),¢) with X" € V(I' (0)) and that ¢ € [H(0,T)]%, k =1,..., Kr. For later
purposes we also introduce 7(t) : ( h(t)) — ( h(t)), the standard interpolation operator at the nodes
(G ())}E,, and similarly 74(£) : [C(T(£))]7 — V(T (1)),

For scalar and vector functions 1, ¢ on I'*(¢) we introduce the L?-inner product (-, “)rr(¢) over the polyhedral

surface I'(t) as follows
NI ::/ n.CdAHIt.
T (t)

In order to derive a stable (semidiscrete) numerical method, it is crucial to consider numerical integration in
the discrete energy, see (4.11) below. Hence, for piecewise continuous functions v, w, with possible jumps across

the edges of {o (t)}7-,, we introduce the mass lumped inner product (-, >}I£h(t) as

Jj= =y
J d
h
<777¢>rh(t) = Z h(t) Z H™ 1 Z né)(( )7)s (42)
j=1 k=1
where {qjlk (t)}¢_, are the vertices of J;?(t), and where we define n(((j;?k t)") = lim n(p). We naturally

o} ()25}, ()
extend this definition to vector and tensor functions.
Following [21, (5.23)], we define the discrete material velocity for 7 € T'*(t) by

For later use, we also introduce the finite element spaces
Wr(Tp) = {p € C(T) : ¢(t) e WIM(1)) Vte[0,T), o(@(t),t) e H'(0,T) Vhke{l,... K}},

where T4 = Usego I(t) x {t}, as well as the vector- and tensor-valued analogues V. (I'}) and V.r(I'}). In a

h

similar fashion, we introduce Wr (o7 1) via
;

Wr(ohp) = {¢ € C(oly) : ¢(-,t) is linear V¢ €[0,T], (. (1),t) € H'(0,T) k

|
—

o d),
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where {(j;lk (t)}¢_, are the vertices of J;?(t), and where O’ 7= Usep.1) ]( ) x {t}, for j € {1,...,J}.
Then, similarly to (3.2), we define the discrete matenal derivatives on I'*(¢) element-by-element via the
equations

07" D)lor = (S + V" V) |onry  VoeWr(o)r), je{l, .., }.
Moreover, similarly to (3.13), for any given ¥ € V(I'*(¢)) we introduce

T(t) i= {"(Z,e) : 7€ T"(1)}, where &"(%,0)=7 and 22(2,0)= (%) VZeT"(), (4.4)
as well as 90" defined by (3.15) with I'(t) and & replaced by I'"(t) and ®h, respectively. We also introduce
Via(d) = {¢ € H'(0,T;U"(@)) : IV € Vp(T%), s.t. X(,1) = 7" [@]rn] ¥ ¢ € [0, T} (4.5)
On differentiating (4.1) with respect to ¢, it immediately follows that
"M xh=0 Vke{l,...,Kr}, (4.6)

see [21, Lem. 5.5]. It follows directly from (4.6) that
ZXk N Ck t) on Fh(t)

for C(-t) = Sonr, Ce(8) X2 (-, t) € W(T(t)), and hence 85" id = V" on Th(¢).
We recall from [21, Lem. 5.6] that

d

. gde—lz/ O+, VAT Y e Wrlohy) G € {1, I} (4.7)
no ot (1)

Moreover, on recalling (4.2), we have that

d h 9° o,h h .

E<77’C>U§”<t>:< o, C> o) <n,5t’ C>0n( <n§ Vs Vh> o V0, € Wr(olr),je{l,...,Jr}.
(4.8)

Given I'(t), we let Q" (¢) denote the exterior of I'"(¢) and let Q" (¢) denote the interior of I'"(¢), so that

I (t) = 90" (t) = Q" (t) N Q" (t). We then partition the elements of the bulk mesh 7" into interior, exterior
and interfacial elements as follows. Let

Tht):={oeTh:0c Q" (1)}, 7:?(25) ={ocT":0C Q}}r(t)}, Th ) :={oeT":onT(t) #0}.

Clearly T" = T"(t) U T]'(t) U T (?) is a disjoint partition. In addition, we define the piecewise constant unit
normal 7"(t) to I'*(¢) such that 7" (t) points into Q% (¢). Moreover, we introduce the discrete density p"(t) € Sk
and the discrete viscosity p”(t) € St as

P o€ Th¢), /s o€ Th¢),
P () o= 4 Pt o€ TI(), and p"(t)|o= 1 ut o€ Ti(t),
3(p—+ps) 0€Th(D), 3 (n-+pg) o€ TH().

Similarly to (2.7a,b), we introduce

Prn=1d—i"®7" onT"(t), (4.9a)
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and
D7) = 3 Pru (Ve 7+ (Ve i)T) Prn on T(¢), (4.9b)

where here Vs = Pp» V denotes the surface gradient on I'"(t). Moreover, we introduce the vertex normal
function &"(-,t) € V(Fh( )) with

1 1
) 2 O e

jeonr

GG (2), 1) =

where for k =1,..., Kf* we define O} := {j : g}!(t) € o(t)} and set

AR(t) = Ujeepa] (t).

For later use we note that

ok o mh -
<z,wuh>rh(t) = <z,wwh>rh(t) VZeV(Th(t), we W), (4.10)
and so, in particular, (Z, ﬁh>Fh(t) =(Z, 17h>]12h(t) = (z,a" >Fh(t) for all 7€ V(I'"(t)).

In what follows we will introduce a finite element approximation for the weak formulation (P), recall (3.34).
By repeating on the discrete level the steps in §3.2, we will now derive a discrete analogue of (3.30a—e).

Similarly to the continuous setting in (3.12) and (3.26a,b), we consider the first variation of the discrete
energy

. _niovh h h
BN N0, € (1) = 4 (a(€), 7 — (&) 7Y, o + 4 (aC(@), 7 - [ PY, o + 8 (o€, 1
(4.11)
where " € V(I'"(t)) and W" € V(I'"(t)) have to satisfy side constraints
Sh o iy - _ = h
(R My + <vs 1d,Vsn>Fh(t) —0 VeV, (4.122)
(Who) (g (TR VG ) =0 Y eyt (4.12b)
==’ rh(t) 2 T2 = sy = Th(t) = - ’ ’

Similarly to (3.28), we define the Lagrangian

Lh(rh’ ’—{h’ ?halhaéha Q:h)

h h

= % <a(€h)a |’_{h - ?(ch) ﬁh|2>?h(t) + % <O‘G(€h)a |’_{h|2 - |Eh|2>?h(t) + ﬂ <bGL(Q:h)a 1>1"h(t) - <’_{h7}7h>

h
Ok

I (t)

—(Vid Y)W 2y, = B2 (TR V2 4 (2T)

Th(t)

where £ € V.(I'"(t)), W € V(T"(t)), €h € W(T"(t)), with Y e V(I'(t)) and Z" € V(I'"(t)) being Lagrange

multipliers for (4.12a,b), respectively. Similarly to (3.30a—c), on recalling the formal calculus of PDE constrained
)

optimization, we obtain the gradient F* € V(I'"(t)) of E"(I(t), €"(t)) with respect to I(t) subject to the
. h
side constraints (4.12a,b) by setting [s2x L"|(Y) = — <FI}3, )Z> o) for ¥ € V(I'"(t)), where we have recalled the
T (¢

definition (4.4), and by setting the remaining variations with respect to &", Yh, Eh and Z " to zero. On noting
(1.2b), (4.10) and the variation analogue of (4.8), as well as the obvious discrete variants of (3.17)—(3.20), (3.22)
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and (3.24), we then obtain that

<ﬁ#,y>;(t> ~ (V.7 v, >z>rh(t) — (V. ", .>2>Fh( L+ (ale") 7" — (&) ] — 27" ,zhvvs.yxh(t)
2((V Y1, DY) (Veid)T) | o (al€) =€) (8" = 32(e") ), [V 17 7 )
8 (b (€"), Vi Xy = B (Vo €) @ (Vo €), Vi Dy + 5 (@) (R — ), Vo Do
— (W 2 Ve Ry — 3 (P (2" (2R 4 Vs 2+ (27D, Ve R,
Z<v V25X -2D0) L, (2 (ENR (2 (2 9T )
—0 Y Yerr), (4.13a)
(al@) @ =@ ) +aC(@) R ~ § 2"+ (V) -VRE)| =0 vEermte), (113
Z" ="~ (") W, (4.13¢)

as well as (4.12a,b) from the variations with respect to Y" and Z". Here we have introduced Zh = 312" +
(ZM7T)é;,i=1—d, as well as /' = 7" . &, i = 1 — d. Similarly to (3.27) it clearly follows from (4.12b) that
whr=wh = " =2", (4.14)

and so many terms in (4.13a,b) can be simplified. We will perform these simplifications when we introduce
the semidiscrete finite element approximation, see (4.16a—d), (4.17a—d) below. The Cahn—Hilliard dynamics are
defined by

d
T
(I, gy = B (Vo €V )y + B (W€, E) gy + 3 (@) (") (M2 = W), €)1,

+ 5 (/(€") |R" —z2(eh) 7" — 25 (€") a(e") (R" *?(Qh)ﬁh%ﬁh,@?h(t) v Ee W),
(4.15b)

h
(€ Xy + (VM Ve Xk =0 Vhe{l,... Kr}, (4.15a)

where, similarly to the continuous setting (3.31a,b), we have defined 9" € W(I'"(¢)) by (M" §>Fh(t =

[52% LM](€) for all € € W(T(t)).

Overall, we then obtain the following semidiscrete continuous-in-time finite element approximation, which
is the semidiscrete analogue of the weak formulation (P), recall (3.34). Given I'*(0), U"(-,0) € U"(§) and
¢"(-,0) € W(I'0)), find (T"(£))se(o,r) such that id |pn¢y€ Vo (T%), with V' = 97" id |pa¢ye V(D" (2)) for
all t € (0,7], and U" € V2, (7), € € Wp(I'h), and, for all t € (0,7], P'(t) € P'(t), PH(T) € W(T"(1)),
Wh(t) € V(T (t)) and &' (t), Y"(t), FR(t) € V(T"(t)), M" € W(T"(t)) such that (4.15a,b) holds, as well as

: Lcllt (b"T".€) + (o O1.€) = (" T".E) + ps (T 5, Uh.5>62 } +2 (" DO, D(E))
+%(ph,[(ﬁh.V)Uh].§— [(ﬁh.V)E].Uh) _( g) +pr< oph 7h {7h thu)

o (DA N DEE D), - (P = () + ()
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v e HY(0,T;UM0)), (4.16a)

(v.0"¢) =0 VepePw), (4.16b)

—h 17h _ h
<vs.(7r 0] ),n>m> =0 VnewTh(), (4.16¢)
h h
V" X =(U" x ¢ e V(" 4.1
<V ’X>Fh(t) <U ’X>Fh(t) VX e VIT®), (4.16d)
where we recall (4.3), and
S o\ h
( h’77>rh(t) < Vi id Vsn>rh(t = i e V(Ih), (4.17a)
h h
h 1/5h Ty zh T _ h
(w ’§>m<t>+ (7 [C+ TR + Vs [+ ¢ ]>m) 0 V¢eyrw), (4.17D)
I ) =
<a(¢h) (M —32(€M) ) + oG (€M) (52 + W ) — yh,g>rh( =0 VEev (@), (4.17¢)
- t
h
h - _ > h - h - o h\T h(= NT
< F’X>rh<t> = <VSY ,vsx>m)+<vs.y ,vs.x>m) 2<(vsy )7, D'(X) (Vs id) >m>
, Shoa _\P — . T~k
-2 <[ (Q:h) |H - J'f(Qh)l/hF - 2Yh-Hh]avs-X>Fh(t) - <a(€h)%(€h) Hha [Vs X]T Vh>ph(t)

\h =
— B(baL(€"), Vs X)pnyy + B (Vs €) @ (Vs €), Vi D)y
S \h o - \h
= 3 (@) (R + W), Ve - X)pay + (7" (20 R + Ve 2,V X)pa

d
— . . o . ) h o
+y° <u? Ve Z]', Vs X — QQZ(X)>M> (2R N 2 AT ), YR EX(TN(®), (417d)
1=1

where Z" = z"[-a%(¢") W"] and Zh = Z"&, i =1 — d. In addition, we have noted (4.14) and that
a(eh) 32 (eh) ot [Vs YT 7" = 0 on T (t). Here we have defined f"(-,t) := I' (-, t), where here and throughout

we assume that f € L2 (0,7;[C(92)]4). We note that in the special case of uniform a and 7, and if % = 8 = 0,

the scheme (4.16a—d), (4.17a—d) collapses to the semidiscrete approximation (4.15a—g), with § = 0, from [7].

The following lemma is crucial in establishing a direct discrete analogue of (1.6).

Lemma 4.1. Let {(I",U", P", P R" V" Fr W, 2" € 90 (t) }iejo) be a solution to (4.15a,b), (4.16a-d),
(4.17a~d). In addition, we assume that &" € V.p (Th) and W" € V.p(T}). Then

d zn pn\" "
A phphiy ehie)) — _ (Fh h A0k h ) 4.1
= (Th(t), e (¢)) < r,V >Fh(t) + <9ﬁ 0 € >Fh(t) (4.18)

Proof. Taking the time derivatives of (4.12a,b), where we choose discrete test functions 77 and ¢ such that

7" i =0 and 8f’hg = 0, respectively, yields that

h h
oh =h = =h = h Sh - Shoo
<at " ’n>rh(t) + <Fv 7 VsV >rh(t) + <VS V5V 'n>rh(t) + <st ’vsn>rh(t)

—2(DIV) (Vid)T, (Vo)) =0, (4.192)

Th(t)

<a‘?7h Eh’£>l}jh(t) * <Eh PG Vs 9h>h

I (1)
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+

N[ =

S\ h
<ﬁh [+ TR + Ve [+ ¢, Vs -Vh>Fh(t)

+

-

(F9Gw V-2 D) (PG TR, <0, (4.190)

Th(t)

i=1

where (; = $[¢+¢"]é,i=1,...,d. Here we have noted " € V.,.(T%), Wh € V.p(T'h), (4.8) and the discrete
versions of (3.25) and (3.22). Choosing ¥ = V" in (4.13a), 77 = Y" in (4.19a) { = Z" in (4.19b) and combining
yields, on recalling (4.8) and the discrete variants of (3.19) and (3.24), that

h h h
/[ @h Y3k _1 Ry |2k —(ghy 5h|2 h _ Ry =(gh) (2h _ =(gh) 3h\ 5ok Sk
<FF,V >m) 1 <a(¢ )Rh — s2(eh) 2, v, Y >m> <a(€ )52(€h) (R" — 3=(eh) My, 00" >m)

n <aoh ~h Yh> +6<bGL( "), V. Vh> —67<(Vs Mm@ (Vs €M), v, ]_)h>1“h(t)

h
<17h, [éh 4 (éh)T] af,h gh>

o)

I (1)
L\ h
+ 3 (aC(@) (72 = W), VL V)

rr(t)

<ao h Wh §h>rh( ) 4

(SIS

h(t)
. h o h h
! <a(¢h) Rh — 3=2(eh) )2, v, .vh>rh(t) - <a(¢h);(¢h) (Rh — 32(ch) ghy, " yh>

T2 (t)

Ry (7P _ 5 (eh) h o.h h B h h h
+ (@) (& —32(e) ") + 0% () R, 07 > - 87 ((V€") & (V, €"), v, V >mt>
B

== [%(a(e:h),lfzsh 5(eh) |2 >m)+ (aC(eh), |72 — |Wh|> o+ B (bar(e )1>1’1h(t)}

h
-1 <o/(¢h) RM — Z2(eh) 72 — 237 (€h) a(eh) (RN — z(eh) ) . o, 90" ¢h>m>

h h
— 1 ((@Y(e") (A" - |M|2>,af’h¢h>rh<t> -8y (Ve vty | o B (v oter) "
d

= ZEMI(1), € () - <zmh a°h¢h>';h(t) (4.20)

where we have noted (4.13b,c) and (4.15b), as well as €" € Wz (I'2). This yields the desired result (4.18). [

In the following theorem we derive discrete analogues of (1.6), (3.7) and (3.32) for the scheme (4.15a,b),
(4.16a—d), (4.17a—d).

Theorem 4.2. Let the assumptions of Lemma 4.1 hold. Then, in the case § = 6, it holds that

d 1 h1 77h 2 1 _’h_’hh h (ph h h(=h 17h h(=h 17h
= (2|[p UM+ 5 pr (U1, 0%) 4 BT, € (0) ) + 2pr (DL O"), DL OM)

+2([[WE DO+ § s (T8 (T2 07 (Vo V), ) = (0" 1,07 (4.21)

2

T (1)

Moreover, it holds that

d
3 (D, =0 Vke{l... K} (4.22a)

and hence that
d
I HA~L (TR (1) = 0. (4.22b)
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Finally, we have that
d

dt
Proof. Choosing £ = U™ in (4.16a), recall that § = 0, ¢ = P" in (4.16b) and n = PP in (4.16¢) yields that

(€ )y =0. (4.22¢)

d 1 =p 1 - -
1 4 1 h1l h o.h =h fth {7 1 h = 177h(2
b NP OV + 2 DO + e (G5 7 TR0 d e (O IR,

+2pr <Dh( "U"), Db(7

o =

h
h 17h h th 17h h 17h
U = U™+ (Fp,U . 4.2
( )>Fh(t) (p f ’ ) < I >Fh(t) ( 3)

In addition, we note that (4.8), (4.16d) and (4.16¢) with = =" [|U" rn ey [?] imply that

d /=, =\P h SR h
1,9 Uh> _ <8o h =h (1R |2 > 1 <Vs- ho {7t 2>
sor g (0" 0") =% 1T 1) 0 + 300 (Ve V0 10"

Th(t)
_ ot h it Uh> 1 <Vs (7 Ty R T 2> _ <ao h =h [7h Uh> 4.94
= o ( iy P Eor (Vo GO O = e (429
where we have recalled U" € V2, (), see (4.5). Choosing ¥ = F" in (4.16d), and combining with (4.18), yields

that

L _\h . d
Fh O h = ——EMDh ), et h ol gh 4.2
< rU >rh(t) < Y >rh() dt (T, €(8) + <9ﬁ % e >rh(t) (425)
Moreover, similarly to (4.24), it follows from (4.8), (4.6) and (4.16¢,d), on recalling €" € Wr(T'%), that
d h oh oh 3h _ Jaoh gh n\" h [gh b h
dt (e ’X’“>F’1(t) <6 ¢ ’Xk> T (t) < Xk, Vs -V >rh(t) N <at ¢ ’Xk>rh(t) +<7T (€ Xk, VeV >Fh(t)

h
_ [goh gh h> < AR —»hljvh> :<60,h€h h>
< t » Xk Fh(t)+ ™ [ Xk])v (7T ) h(t) t » Xk l—‘h(t),
for k=1,..., Kr. Hence we obtain from (4.15a) that

h
- <zmh,a§vh ¢h> “L(v,m", v, m") (4.26)

IR (t) - rh(t) "

The desired result (4.21) now directly follows from combining (4.23), (4.24), (4.25) and (4.26).
Similarly to (3.7), it immediately follows from (4.7) and (4.6), on choosing n = x} in (4.16¢), and on recalling
from (4.16d) that V" = 7" [U" |pn (4], that

d

h _ h \ 37 —
i (s Dy = (ks ¥V >Fh(t) -

which proves the desired result (4.22a). Summing (4.22a) for all £k = 1,..., K1 then yields the desired result
(4.22b). Similarly, summing (4.15a) for kK =1,..., Kt yields the desired result (4.22c). d

We observe that it does not appear possible to prove a discrete analogue of (3.8) for the scheme (4.15a,b),
(4.16a—d), (4.17a-d), even if the pressure space P"(t) is enriched by the characteristic function of the inner
phase, Xgn (). Following the approach introduced in [6, 7], we enforce

<Uh,wh>};h(t) —0, (4.27)
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which will lead to volume conservation for the two phases on the discrete level. As (4.27) cannot be interpreted
in terms of enriching P"(¢), we enforce it separately with the help of a Lagrange multiplier, which we denote by
P! . We are now in a position to propose the following adaptation of (4.15a,b), (4.16a-d), (4.17a-d)

sing*

Given I'(0), U"(-,0) € U"(g) and €"(-,0) € W(I'"(0)), find (T"(t))¢e(0,7] such that id |prye Vo (Th),
with V! = 07" id |pn(y€ V(D" (¢)) for all t € (0,T), and U" € V%, (g), €" € Wp(I'h), and, for all ¢ € (0,T],
Ph(t) € I@h() Ph(t) € R, PM(T) € W(Th(t)), W'(t) € V(T"(t)) and &"(t), Y"(t), Fr(t) € V(T"(1)),

M € W(T"(t)) such that (4.15a,b) holds, as well as
{ ph U, & q (phﬁf,g)(phﬁh,é)+p+<ﬁh-ﬁ,ﬁh-5>am}
+2 (" DO, DE) + 4 (", (0" 9) T"].§ = (T 9) €. T") - (P, 7€)

smg<*hﬂrh(t < o h h Tt QN( +2MF< Iz "), Dl (7" 5)>m<t>

(@), = (P (RE) v Ee BT, (1.250)
(V.0"¢)=0 VeeP'@) and <ﬁh,ah>};h(t) =0 (4.28b)

and (4.16¢,d), (4.17a—d) hold. We now have the following result.
Theorem 4.3. Let {(Fh,ﬁh,Ph ph Plﬁl,Eh,}_;h,ﬁ#,gh,éh,Qﬁh,fmh)(t)}te[o,T] be a solution to (4.15a,b),

sing?

(4.28a,b), (4.16¢,d), (4.17a~d). In addition, we assume that i" € V.p(Th) and W" € Vp(Th). Then (4.21)

holds if § = 0. In addition, (4.22a—c) and

d

" LYQ" ) =0 (4.29)
hold.

Proof. The proofs for (4.21) and (4.22a—c) are analogous to the proofs in Theorem 4.2. In order to prove (4.29)
we choose ¥ = &" € V(I'"(¢)) in (4.16d) to yield that

d . . h . h . h
el ) = (V) = ()= (Ve = (a0,
dt TR (t) TR (t) Th(t) TR (t)
where we have used [17, Lemma 2.1], (4.10) and (4.28b). O

5. FULLY DISCRETE FINITE ELEMENT APPROXIMATION

We consider the partitioning ¢, = m7, m = 0,..., M, of [0,7] into uniform time steps 7 = T/M. The
time discrete spatial discretizations then directly follow from the finite element spaces introduced in §4, where
in order to allow for adaptivity in space we consider bulk finite element spaces that change in time. For all
m > 0, let 7™ be a regular partitioning of (2 into disjoint open simplices o}", j = 1,..., Jg'. Associated with
7™ are the finite element spaces S7*(Q) for k > 0. We introduce also I : [C(€)]¢ — [S/*(Q)]?, k > 1, the
standard interpolation operators, and the standard projection operator I" : L*(Q) — Si*(Q2). The parametric
finite element spaces are given by

V(I™) = {X € [O(T™)]*: X|op is linear ¥ j = 1,...,Jr} =: [W(I™)]?,

form =0,...,M — 1, and similarly for V(I'"™"). Here I'" = U]JF1 ?, where {am} I, is a family of mutually

disjoint open (d — 1)-simplices with vertices {(j};”}szrl We denote the standard basis of W(I'™) by {x7" (-, ?) k:FI.
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We also introduce 7™ : C(I'"™) — W(I'™), the standard interpolation operator at the nodes {g}*}r",, and
similarly #™ : [C(I™)]¢ — V/(I'™). Throughout this paper, we will parameterize the new closed surface
I +1 over I'™, with the help of a parameterization X1 € V(I'™), i.e. I*1 = X™+1(I™). Moreover, let
Wi (P™) == {x e W(I'™) : x| < 1}.

Given I'™, we let Q" denote the exterior of I'"™ and let Q™ denote the interior of I'", so that I'™ = 9Q™ =
Q" N @ In addition, we define the piecewise constant unit normal 7™ to I'™ such that 7™ points into Q7.
We then partition the elements of the bulk mesh 7™ into interior, exterior and interfacial elements as before,
and we introduce p™, u™ € SF(Q), for m > 0, as

p_ omeTm, e omeTm,
P |om: P+ o™ € 7:|_m ) and p™ |om: H+ o™ e T_:_n’
3(p—+py) o™ eTH, 3 (ne+pg) o™ e T

We also introduce the L?>~inner product (-,-)rm over the current polyhedral surface I'™, as well as the mass
lumped inner product (-, -)%,.. In addition, similarly to (4.9a,b), we define

Prm =Id—-7"®@v™ onI™,

and
Ql"(ﬁ) = % EF’" (Vs 17+ (Vs ﬁ)T) EF’" on I'",
where here Vs = Prm V denotes the surface gradient on I'".

Moreover, we introduce the following pushforward operator for the discrete interfaces I'™ and I'™!, for
m=0,...,M. Weset 171 :=T° Let I™_, : [C(T™~!)]¢ — V(I'™) such that

Mn @) =2@"),  k=1..,Kr, VZelo@™ )", (5.1)
for m = 1,..., M, and set TI°, := 7°. Analogously to (5.1) we also define II"_, : C(I'"~1) — W(I'™) and
am_, : [C(Tm=1)]9xd — V(I'™). For later use, we also introduce the short hand notations

a™ =am[a(e™)], =" =a"[Z=Em)], o™ =a"[a%@Em), (5.2)
for m=0,..., M — 1. We note, similarly to (4.10), that
(Zwd™ ., = (Zwd™k.,  VZeVI™), we W),

where ™ = Zk;K:Fl xp @it € V(I'™), and where for k = 1,...,Kr we let O" := {j : ¢ € o'} and set
— —“m . 1 d—1
AP :=Ujeorm o and &f* 1= AT Zje(_)zn H o) v

For the approximation to the velocity and pressure on 7™ we use the finite element spaces U™(g) and P™,
which are the direct time discrete analogues of U"(g) and P"(t,,), as well as P cP.

Analogously to (3.33), we recall the following discrete LBBr inf-sup assumption from [7]. Let there exist a
Co € R-, independent of 7™ and {a;"}jil, such that

—

h -
0,7+ A (@™ E)  + {0V, 7@ Elrn))
orm) (1€l + | Brm (7™ E|pm)|l1,0m,1)

inf
(e AP xRx W (T™) geum (@) (||@llo + [A + ||7]

> Cy, (5.3)

where |9l pm = (10,0 pm and 7113 pm = (7, Mpm + Zjil fa;n |Vs 7|2 dHIL. See [7, (5.2)] for more details.



TITLE WILL BE SET BY THE PUBLISHER 23

We are now in a position to state our fully discrete approximation of (4.15a,b), (4.28a,b), (4.16¢,d) and (4.17a—
d). Here we stress that it does not appear possible to prove a stability result for a fully discrete approximation.
This is in line with approximations for other evolution problems involving curvature energies, and is mainly
due to the fact that it does not appear possible to mimic the differentiation steps in (4.19a,b). To increase
the practicality of our fully discrete scheme, we will decouple the fully discrete variant of (4.15a,b) from the
remaining equations. For the remaining equations we follow the strategy from [7], which leads to a linear set
of equations that couple the bulk and surface Navier—-Stokes equations to the evolution of the interface. This
fully discrete approximation is given as follows. Let FO an approximation to I'(0), as well as &° € V(T"?),
€0 € W(I°) and U° € U°(§) be given. For m = 0, .. — 1, find U™ € U™(§), P! € P, P4 € R,

sing

PP e w(rm), Xm+l e y(I™), kM e V(I™), gmﬂ € V(I'™) and Y™+, F™H! € V(I'™) such that

(j’erl Im Um

+ (g e

1 <pm U‘erl _ (Ién pmfl)me Ijm
2

,s> 2 (1" DO, D))

T

+ 3 ([ O ) T €~ [ T V) .07 ) = (P, v .€) — Pt (o Qim
- _, R h
+or < e s> s 2 (D2 @ 07 D)) (P E)
( fm“,g) <Fm+1,§‘>};m — Lo, <ﬁm A, Um.§‘>62ﬂ v £ um(0), (5.4a)
(V U™ <p) =0 Y pe pm and <ljm+1,[u’m>};m =0, (5.4b)
<vs (7™ gm+), ”>pm —0  VYpew(Tm), (5.4c)

h
N h
< > _ <Um+1,>z>rm VX ev(Im), (5.4d)
FTYI,

and
m+1 AP vm+1 = m
(B i, + (VXL =0 ¥ eV, (5.5a)
m+1 h 1 /->m —-m-+1 T h
(W g)  +3 (7 I+ TR 4 YL+ T =0 Ve (™) (5.5b)
- h o
<Ym+1,g>rm 7<am(—»m+1 —m —vm),g>rm o Osz(Hm +Hm 1Wm —»m),g>rm =0 V§ Z( )7
(5.5¢)
o h _, o o _, .
(B ) = (VY™ veg) (Ve (s, ¥7),Veox) | = 2(IV (i, ¥)7, D0 () (Veid)T)
N N N N h - h
-1 <o/" iqm_ g =z m)2 - 2fm YL &V, >z>m - <o/" 7 Am_ | &mVs)T ﬁm>m
— B (bGL(E™), Vs - X)Tm + By (Vs €)@ (Vs €7), Ve o
N h - h
-1 <aG,m (mam_, &2 + |ggflgm|2), V. .>?>Fm + <z7’” (Zm Iy KM+ V. ZM), Vs. >?>Fm
d
+ > (v, 2, % - 22;"<>z>>rm (2R V. 2 VKT T, Y X e V(I (5.5d)

i=1



24 TITLE WILL BE SET BY THE PUBLISHER

and set T 1 = X™+1(I'™) Hence X ™! represents the positions of the vertices of the new discrete membrane.
In the above we have defined f™+1 := I f(-, tp4q), Z™ = " [—aC (@) Om_, W™ and Zm = Zme,i=1—
d. We note that (5.5b) decouples from (5.4a-d) and (5.5a,c,d). In addition, we note that in the special case of
uniform « and 7, and if ¥ = § = 0, the scheme (5.4a-d), (5.5a,c,d) collapses to the scheme (5.4a~f) and (5.5)
with 8 = 0, from [7].

For the fully discrete approximation of (4.15a,b) for the case of the obstacle potential (2.11b) we consider
a semi-implicit (surface) finite element approximation in the spirit of [12] in the planar case. Hence, having
computed I 1 we find €™+ € W<y (I'™*1) and 9™+ € W(I'™F!) such that

v m m m m 4
<€ +1 +1>Fm+1 + <V m +1 v& +1>Fm+1 = ; <€ ’Xk >Fm v k € {1’ o "KP} : (563.)

ﬂ’y< v, et v, X ¢m+1]> > <mm+1 Ty Herl ¢y — €m+1>h

I'm+1 Tm+1

N h
_ % <Oél(Hz+1 Q:m) |Hz+1 ,—{m-}-l _ %(H%—i_l Qm) 17m+1|2, X — €m+1>

Fm+1

- h
+ (R ey eIt @) ([t et — szt @) 7ty gt y - et

rm+1

¥V x € W (™). (5.6b)

[N~}

- h
— 3@yt @) (i R < I ) - e

m+1

In the absence of the LBBr condition (5.3) we need to consider the reduced system (5.4a,d), (5.5a—d), where
U™ (0) in (5.4a) is replaced by UZ*(0). Here we define

Un (@) = {ﬁetum(a*): (V.0,0)=0 v@e@m,<vs.(ﬁmﬁ),n>rm =0 Vyew™™m)

for given data @ € [C(Q)]<.
In order to prove the existence of a unique solution to (5.4a—d), (5.5a—d) we make the following very mild
well-posedness assumption.

(A) We assume for m =0,..., M — 1 that Hd_l(a}") >0 forall j=1,...,Jr, and that ' C Q.

Theorem 5.1. Let the assumption (A) hold. If the LBBr condition (5.3) holds, then there exists a unique solu-
tion (Um+1, prtl prtl prdl Xmtd gmtl ymtl pmdl jyml) e g (g 7) x P x R x W (I'™) x [V(I'™)]* x
V(™) to (5.4a-d), (5.5a~ d) In all other cases, on assuming that UJ(§) is nonempty, there exists a unique so-
lution (U1, Xm+1 gl ymtl | fmtl gpmtly ¢ Up(g) x [V(I™)]* x V(I'™) to the reduced system (5.4a,d),
(5.5a-d) with U™(0) replaced by U (0). Moreover, there exists a solution (€™ MMty e Wy (I™+1) x
W(T™H) to (5.6a,b), with €™ T being unique.

Proof. As the system (5.4a—d), (5.5a—d) is linear, existence follows from uniqueness. In order to establish the
latter, we consider the homogeneous system. Find (U, P, Psng, Pr, X, R, Y, Fr, W) € Um(ﬁ) xP™ xR x W(I'™) x
[V(T™)]* x V(I'"™) such that

£ (m+ 1 ) 0.8) +2 (50 D), DE) — (P €) — Pang (7. 8),
4 (o [ O ) 0).€ - (1 07 9) 8. T) + 2 pr (T, Q + 20 (D17 0), DY (77 6))
<Pp, (7 5> <Fp,§ =0 VEeum(d), (5.7a)

Im
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(v .0, 50) =0 VegeP" and <ﬁ,wm>’;m ~0, (5.7b)
<vs (7™ [7)”7>Fm —0  Vpew(Tm), (5.7¢)
L <X>z>’;m - <ﬁ>z>i VX evam), (5.7d)
Fi + (VX Ve =0 ¥ eV, (5.7)
<g, Qim +3 (7" ¢+ (7] r{>];m =0 V{eymm), (5.76)
<?, ﬁ>’;m — (@™ R, i, =0 Vigey@m), (5.7g)
<ﬁp,>z>';m ~(VV.N) =0 vyevam). (5.7h)

Choosing £ = U in (5.7a), ¢ = P in (5.7b), n = Pr in (5.7¢), X = Fp in (5.7d), Y = X in (5.7h), 7= Y in (5.7¢)
and 77 = R in (5.7g) yields that

. - - L o\ h . -
L (G + 1 pm =) 0,0) + 27 (wm (O), DO)) + pr (0,0 2T (D (7" 0), Do (7 U)>Fm
L S\ h o N\ h o o S\ h
-7 <FF, U>1"m - <FF,X>Fm - <v‘S Y’VS X>Fm - <_»’Y>1"m == <am E;, E)?m : (58)

It immediately follows from (5.8), Korn’s inequality and o™ > 0, that U=20¢ U™(0) and # = 0. (For
the apphcatlon of Korn’s 1nequahty we recall that H41(0,Q) > 0.) Hence (5.7d,f,g,h) yield that X =0,
W =0, Y = 0 and Fr = 0, respectively. Finally, if (5.3) holds then (5.7a) with U=20and Fp =0
implies that P = 0 € pm Ping = 0 and Pr = 0 € W(I'™). This shows existence and uniqueness of
(Um+1 prtl prtt prtt Xm+1 Rl Yl Fmdl pymty @ U (g) < P x Rx W (D) x [V (D)4 x V(T™)

to (5.4a—d), (5.5a— d) The proof for the reduced system is very similar. The homogeneous system to consider is
(5.7a,d-h) with Um( 0) replaced by Um( 0). As before, we infer that (5.8) holds, which yields that U = 0 € UZ*(0),
H—O and hence X = FF—Y—O

In order to prove the existence of a unique solution to (5.6a,b), we adapt the argument in [12] for the Cahn—
Hilliard equation with obstacle potential on a bounded fixed domain in R%. We introduce the discrete inverse
surface Laplacian ™+ : W (I 1) — W, (I"™*1) defined by

<vs gm+1 v, vs €>Fm,+1 = <Ua €>?m+1 V 6 € Wf (Fm+1) ) (59)

where W (D) := {¢ € W(I™ ) : (€,1)pm+1 = 0}. Tt immediately follows from (Vs v, Vs v)pmi1 = 0= v =0
for all v € W, (T"™*!) that G™*! is well-posed. Next we rewrite (5.6a,b) as

9 - z
_ m+1 _ gm | m+1 m-+1 m+1
(e E) L (LT g

- =0 Vke{l,...,Kr}. (5.10a)

rm+1

By (Ve @V, [ — @) > (g - @Y Y e Wy (T, (5.10D)

m+1

where €™ € W(I'"™*+1) is such that (€™, NPT = (€™ ik, for k€ {1,..., Kr}. We note that

(@ ) = <@m,1>rm+l = (" Dpm - (5.11)
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It follows from (5.11), (5.10a) and (5.9) that
m—+1 J m+1 m—+1 Fm m+1
m =——g (¢ -+ A , (5.12)
T

where A™*! € R is a Lagrange multiplier associated with the constraint (5.11). Hence €™ € W<y (I'"+1) is
such that (€™ 1) = (€™ 1)pm and

3 ~
ﬁ'y <vs Q:m-i-l’ VS [X _ €m+1]>rm+1 + ; <gm+1 (@m—i—l _ Q:m) )\m—i-l —g,x — €m+1> >0

m+1

¥V x € We (T™F) . (5.13)
Clearly, (5.13) is the Euler-Lagrange variational inequality for the strictly convex minimization problem

. By v +1 +1 v h
ElV v, Vs - V. G™ ¢m Vs, G™ amn — — {9, X)pm
e |G T T £ 5 (VG - TG =€) = e

X1 pma1=(€™,1)rm
(5.14)
Hence there exists a unique €™ € W<y (") with (€™ 1)pmi1 = (€™, 1)pm and solving (5.13). Existence
of the Lagrange multiplier A™*! in (5.12) then follows from a fixed point argument, see [12, p. 151]. O

6. SOLUTION METHODS

In this section we briefly describe possible solution methods for the linear system (5.4a—d), (5.5a—d), where
we note that (5.5b) decouples from the remaining equations, and for the nonlinear system (5.6a,b).

In order to derive the linear system of equations for the coefficient vectors of the finite element functions
(@m1 protl pmtl pmtl g ¥mtl gmil ymil pmtly corresponding to (5.4a-d), (5.5a,¢,d), where § X1 =

sing
Xm+l_id |rm, we begin by introducing the following matrices and vectors, where we closely follow our previous
work in [6]. The new ingredients needed here are the treatment of the terms depending on €™, the terms
involving W™ and Z™, as well as an adapted Schur complement approach due to the presence of the variable
Y™+l For the benefit of the reader, and to aid reproducibility of the numerical results, we present the full
linear system in detail. Let 4, 7 =1,..., K, n,gq=1,...,Kg* and k,l =1,..., Kp. Then

Boliy o= (£ 677 ™) 2 (w0 26" ). 267" 20))

+§(pm,KI;mU*m.vm?“wP“f[u;mU*M-va“M?m)g,
Y e (B 2 ),

)

(Colig =~ (6", (V- (8" én))f:l, (Sl ::—(<x¢,vs-(wm¢;‘-“ é’r>>rm);,

7 " o™ P om m Fm m Pr /=m Fm m\ P Fm =\ 7Im m
b= (L= O o P ol )+ B (T O s @l) = e (O 00007 ) s (61)
' p

where {€,}9_, denotes the standard basis in R%, and where we have used the convention that the subscripts in
the matrix notations refer to the test and trial domains, respectively. A single subscript is used where the two
domains are the same. The entries of Dg, for i =1, ..., K{J', are given by [Dq|;1 := — (V" T™h,,.
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In order to provide a matrix-vector formulation for the full system (5.4a—d), (5.5a,c,d), and in particular in
view of (5.5¢), we recall from [20, p. 64] that

2 (V). Dy (0) (Vid)”)

F'V'VL
d d
- Z: (V) (€ (Wi (0s) . = Z: (@™ (775 9 (€3, 9 (@) +(VEVT)
d d
= 3 (95 @i (V)i (005) .+ D2 (6 = ) (7)) Vs (5 V6 (D)
3,j=1 i,j=1
Moreover, we observe that (V. &, Vs . X)rm = ch'l,jzl ((V4); (€), (Vs ()Z)Z>1"m Hence, in addition to (6.1), we
introduce the following matrices and vectors, where ¢ = 1,..., K{}', and k,l = Kr
2 m m d > m m —m —m
[Brli = (([Vsl; X", [Vsli X >pm)i7j:1 ) [Reli == (Ve X" - Ve xi, ld — 0" @ 0 >Fm )
[Mr,0]q = <xz",¢?j’”>m Id,  [Mrlu = (3" X0 1d,
[J\Zfr,a]kl = (o™ x%xk")’%m Id, [Ar]r = (Ve X" Ve X3 ) pm [Ar]p = [Ar]m 1d,
= — (@™ =" 7" X ) pm +<04 (I R + U W )s Xk >Fm7

N - h
(dali i= (a7, ([, &7 Voxi) o™)
o - . . h
[di]k = % Q™I R — =™ 17’"|2 —20™ Y™ I R™ Vs x?>r ,
[ds]i == B (bar(€™), Ve Xp ) tm — By (Ve €™) @ (Vs €™), & @ Ve X pmn )0,

= ﬂ <bGL(€m)v Vs Xk >Fm - ﬂ’y <Vs UV lea Vs Q:m>1“m y
o . h
(el = & (@ (I _y &2 + [, W) Voxit)

- h h
(o) = (2" Ty B 4+ Ve 27) Vo 7™ ) = (2 T R 4V 27) . 57 Vo)
d d
—Z(< V. 25", l”[ﬁ””®vsx2”]—vsx?®€r>rm) K
i=1 =

Here we have made use of the facts that

—

m - m > d m > m 2y d
[Brlu = ((Vs (X" €), Vs . (X1 ei))rm)” L= (((Vs Xi") - €5, (Ve xi") -ez‘)rm)i,jﬂ
m m d
= (([Vs]j X1 > [VS]i Xk >Fm)i7j:1
and that
L B . d
(v 9. 276 @ Vxi? = Bon 6 @ Vo) = [V 9@ Ren ), )
. d
- (<V;n Ve Z [T @ 0 (8 @ Ve Xi'] = Ve XT @ & + Vo X[ ® & [T @ ﬁm]>m) )

:(< N2 [ ®vsx?]—st;”®€r+ul”[st?®m>pm)j:1
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N d
m m m [;7m m m g
(e sar-sarea), )
‘

for i = 1,...,d, on noting that V, Z_;m Vs xpr @ 7™ = [(Vs Z_;m) ML Ve X = 0.V, X7 = 0. Moreover, it
clearly holds that ([Brlx)T = [Brlw =: [Bf]n.
Denoting the system matrix
B;:sz Co Dq Sra
r o0 0 0
D 0o 0 0
St 0 0 0

as (?.? C>, and letting P+l = (pmtl pmtl PIT | then the linear system (5.4a-d), (5.5a,c,d) can be

0 sing
written as
Boa C 0 0 0 —Mprg\ [ Um+ b
cT 0 0 0 0 0 pm+l 0
(Mra)™ 0 0o -1 My 0 0 F@'TH B 0 6.2)

0 0 My Ar 0 0 SXmHil T | —ApXm™ | '
0 0 —Mr, 0 My 0 ymt o

0 0 0 0 —Ar My Fmt ZrYym—d

where Zp := Br fgl*ﬂ —Rp and d= J;+Ja +J5 +JG+JZ. For the solution of (6.2) a Schur complement approach
similar to [6] can be used. In particular, the Schur approach for eliminating (F™+!, §X™+1 Y+l Fm+l) from
(6.2) can be obtained as follows. Let

0  —imMr 0 0
Mr Ar 0 0
Or = > It
—Mr, 0 My 0
0 0 —Ar  Mr
Then (6.2) can be reduced to
Bo+aTy C\ (U™ _ (b+aj
( cr (;> <§m+1 - 0 (6.3a)
and
R»:n—i—l 7(MF7Q)T Um+1
sXmH - —Ap Xm
ymt+1 | T or' FE» . (6.3b)
Fmtt Zvm_d

In (6.3a) we have used the definitions

— — (MF’Q)T — — — —
To = (000 Mpg)Op! < 0 ) =7 Mpq Myt Ap M !
0

and
0
G=(000 Mrg)Or! —Ar X
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For the linear system (6.3a) well-known solution methods for finite element discretizations for the standard
Navier—Stokes equations may be employed. We refer to [4, §5], where we describe such solution methods in
detail for a very similar situation.

The nonlinear system of algebraic equations arising from the discrete surface Cahn—Hilliard equation (5.6a,b)
can be solved in the same way that such variational inequalities for standard Cahn—Hilliard equations are solved.
In practice we employ the projection Gauss—Seidel method from [9], or the Uzawa-type iteration from [3].

7. NUMERICAL RESULTS

We implemented the scheme (5.4a—d), (5.5a—d), (5.6a,b) with the help of the finite element toolbox AL-
BERTA, see [40]. For the bulk mesh adaptation in our numerical computations we use the strategy from [4],
which results in a fine mesh around I' and a coarse mesh further away from it.

Given the initial triangulation T and €° € W(I'°), with €° € [—1, 1], the initial data Y0 € V(I'°), 20 € V(I'?)
and W° € V(T'?) are always computed as

L \h
(P0.77) = (al@) (& = 2(e") ) = aC(€") (F + W), )y, ¥ 7€ V().
where 70 € V(T'?) is the solution to
S0 P 7 - -
<I€0, 77>1‘0 + <Vs id, V 77>F0 =0 Ve K(I‘O) ’

and where W° € V(I"V) is the solution to

h h
(W) + (e + TR+ 9 [g+TT) =0 v EerT).
Throughout this section we set
a(s) =ar(s) =1 (ap +a)+1(ap —a_)s, (7.1a)
o) = § (2 4 7) + 4 (4~ 7) s, (7.1b)
a%(s) = %(af+a€)+%(af—a€)s. (7.1c)

We recall from the discussion around (1.3) that it follows from (7.1c), (1.2a) and (1.3) that only the difference
(ag — a%) plays a role in the evolutions with Gaussian curvature. Moreover, for the choices (7.1a,c) the
constraint (1.4) reduces to
min{a_,ay} > 1 |oe$ —afl. (7.2)

Unless otherwise stated, we use p+ =0, ur =1, ur =1, pr =0, ax =1, 374 = 0 and ag = 0. Moreover, we
normally use 9 = 5 = 1.

At times we will discuss the discrete energy of the numerical solutions. On recalling Theorem 4.2 and (5.2),
the discrete energy is defined by

gﬁjtal = Elgzn + 6: + EgL s

where

1o . . h
Elin = S p™1F T3 4+ S pr (T, 0741)
h

Er =L (am 7 =7 g P)g + 3 (@S R — (W)

2 rm 2
gk = B (bar(€™), )0, |
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represent the kinetic, curvature and Cahn-Hilliard parts of the discrete energy.
In plots where we show the concentration €™ in grey scales, the shade scales linearly with €™ ranging from
-1 (white) to 1 (black).

7.1. Numerical simulations in 2D

We start with an initial shape in the form of a smooth letter “U”. The curve has length 2.823 and we use
257 elements on it. For our choice of v = 0.02 this yields on average about 6 elements across the interface,
which asymptotically has thickness v 7. The time step size is 7 = 5 x 10~%. For the computational domain we
choose Q = (—1,1)%, and we choose a random distribution for €° with mean value —0.4. An experiment for
_ = f% and 7 = —2 is shown in Figures 2. We observe that due to the choice of 77, the phase +1 occupies
the regions with smaller principal radius, while the phase —1 can be found where the membrane is rather flat.
We show some more detail of the initial spinodal decomposition in Figure 3.

We conducted the following shearing experiments on the domain © = (—2,2)? for an initial interface in the
form of an ellipse, centred at the origin, with axis lengths 1 and 2.5. The length of the polygonal interface is
5.75, and it has 257 elements. For our choice of v = 0.05 this yields on average about 7 elements across the
interface. The time step size is 7 = 5 x 10™%. Once again we choose a random distribution for ¢° with mean
value —0.4. In particular, we prescribe the inhomogeneous Dirichlet boundary condition §(z) = (22,0)7 on
Q2 =[-2,2] x {£2}. The remaining parameters are given by p = pr = 1, a— = 0.05, a4 = 0.2 and either

(@) py=1, p-=1, or (b) py=1, p-=10. (7.3)

The results can be seen in Figures 4 and 5, and they should be compared to the corresponding computations in
the absence of any species effect, i.e. for €Y = —1 constant, which can be seen in Figures 2 and 3 in [6]. As there,
we observe tank treading when there is no viscosity contrast between inner and outer phase, and we observe
tumbling when there is a viscosity contrast. The main difference to the computations in [6], though, is that
here the regions occupied by the +1 phase on the vesicle remain relatively straight throughout. This means
that the tank treading motion in Figure 4 leads to concave shapes at times. Similarly, the phase distributions
on the tumbling vesicle in Figure 5 have a notable effect on the vesicle shape, when compared with Figure 3
in [6].

Next we show a computation that highlights the Marangoni-type effects due to the tangential terms in (2.9).
To this end, we start off with an initial interface that has an elliptic shape, on which the two phases are already
well separated. The values of 7¢1 are then chosen such that a tangential movement of the phases leads to a
decrease in energy. In particular, we let 7_ = 0.5, 7, = 2 and 8 = 10. The length of the polygonal interface
is 5.75, and it has 257 elements. For our choice of v = 0.05 this yields on average about 7 elements across the
interface. The computational domain is 2 = (—2,2)?, and the chosen time step size is 7 = 5 x 10~%. The results
of the simulation are shown in Figure 6. It can be seen that due to the choice of 3r., the +1 phase moves away
from an area of large convex bending to an area that is at first almost flat, and then settles on an area with
a small concave bending. In Figure 7 we visualize the flow field for this computation, and compare it with a
computation when €° = 1 constant, so that there are no tangential forces in (2.9). One clearly sees the effect
of the tangential force which induces flow close to the interface also at later times.

On replacing the definition in (7.1a) with

ap(s) =3 (ar +a)s®+ 3 (ap —a_)s®, (7.4a)

or a(s) = (s +d)ay(s), 0>0, (7.4b)

a(s) =s

we can simulate C%—junctions, see also [29], as long as § — 0 for v — 0. We obtain interesting results starting
from an ellipse, on which the two phases are already well separated, and using 72 = —0.2, 7, = —2 and § = 10.
The length of the polygonal interface is 5.75, and it has 257 elements. For our choice of v = 0.05 this yields
on average about 7 elements across the interface. The computational domain is Q = (—2,2)%, and the chosen
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FIGURE 2. (ax =1,7%_ = f%, %y = —2, § = 1) Flow for a smooth letter “U”. We show €™
on ' at times t = 0, 0.1, 0.2, 1. Below a superimposed plot of the total discrete energy Et}fjml,

the discrete Cahn—Hilliard energy, and the discrete curvature energy over [0, 1].

time step size is 7 = 5 x 10~%. In Figure 8 we show the numerical steady states for the two different evolutions,
where for the C%—case we employ the definition (7.4a). The nature of the C°—junction can clearly be seen,
which allows for tangent discontinuities at the interface. This allows the +1 phase to reduce its contribution
to the overall curvature energy. As a result, the total energy for the C-steady state is 33.52, which is smaller
than the value 33.97 for the C'—case. For the curvature energy contributions the comparison is 2.32 versus 2.83,
again in favour of the C'—junction.
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FIGURE 3. (ax = 1,7 = —
arclength plots of €™ at times

, 7%y = —2, f = 1) Flow for a smooth letter “U”. We show
=0, 0.001, 0.01, 0.1, 0.2, 1.

o=

7.2. Numerical simulations in 3D

As a first example for a three-dimensional simulation, we consider the evolution for an initially flat plate
of total dimension 4 x 4 x 1, similarly to [6, Fig. 8]. The triangulations I'™ satisfy (Kr,Jr) = (1538,3072),
and the polygonal surfaces have a surface area of 35.7. This means that for our chosen value of v = 0.2, there
are on average about 5 elements across the interfacial region on I'. As the computational domain we choose
Q) = (-2.5,2.5)3, and we use the time step size 7 = 1073, First we set ayx = 1, 2+ = 0 and B = 1, so that
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FIGURE 4. (a— = 0.05, ay = 0.2, 3z = 0, 8 = 1) Shear flow with parameters as in (7.3a),
leading to tank treading. The plots show the interface I'"*, together with the concentration €™
at times t = 1, 11, 13, 15 (top left to bottom right).

the only effect of the two phase aspect is given by the line energy contributions in the free energy. The initial
distribution for € is random with mean value —0.4. See Figure 9 for the evolution in this case. Repeating the
same experiment for a_ = %, a4 = 2 gives the results in Figure 10. We note that the final shape is now a bit
flatter, since the 4+1 phase does not allow the inner part of the membrane to become very concave.

In order to investigate budding, we start from a four-armed shape with well-developed interfaces between the
two surface phases. As we use a finer mesh with (K, Jr) = (3074,6144), we now choose v = 0.1. Moreover,
we have set ar =1, %7 = f%, 7%+ = —2 to encourage the forming of the buds. In the first experiment we set
B = 1 and observe the results shown in Figure 11. The same experiment with 8 = 5 is shown in Figure 12,
where we observe budding behaviour now. In particular, the +1 phase would like to pinch off the membrane at
the four corners.

The numerical simulation of a vesicle flowing through a constriction can be seen in Figure 13. This is a
two-phase analogue of the simulation shown in [6, Figure 9]. Here we choose the initial shape of the interface
to be a biconcave surface resembling a human red blood cell. The shape has surface area 2.23, and the
triangulations I'™ satisfy (Kr,Jr) = (3074,6144). This means that for our chosen value of v = 0.05, there
are on average about 6 elements across the interfacial region on I'"*. As the computational domain we choose
Q=(-2,-1)x (-=1,1)2U[-1,1] x (=0.5,0.5)2 U (1,2) x (—1,1)% We define 32 = {2} x (—1,1)? and on &,
we set no-slip conditions, except on the left hand part {—2} x [—1,1]?, where we prescribe the inhomogeneous
boundary conditions §(z) = ([1 — 22 — 22]4,0,0)T in order to model a Poiseuille-type flow. For the remaining
parameters we set a_ = 0.05, ay = 0.1 and ¥ = 100. We notice that during the evolution the membrane in
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FIGURE 5. (a— = 0.05, ay = 0.2, 2zx = 0, 8 = 1) Shear flow with parameters as in (7.3b),
leading to tumbling. The plots show the interface I'*, together with the concentration €™ at
times t = 8, 11, 14, 17 (top left to bottom right).

Figure 13 deforms more than in the corresponding simulation with only a single phase €° = 1, see [6, Figure 9].
In particular, we observe that the +1 phase, which prefers a relatively flat surface, forces the surface to remain
deformed also long after it has left the constriction.

In Figure 14 we show a numerical experiment for spinodal decomposition on a membrane, starting from a
random distribution of phases with mean value —0.4. The shape has surface area 35.7, and the triangulations
'™ satisty (K, Jr) = (6146,12288). This means that for our chosen value of v = 0.1, there are on average
about 6 elements across the interfacial region on I'™. Similarly, in Figure 15 we show the evolution for spinodal
decomposition on a seven-arm surface, where the initial phase variable is ¢° = —0.4 constant. The shape
has surface area 10.5, and the triangulations I'"™ satisfy (Kp,Jr) = (2314,4624). This means that for our
chosen value of v = 0.2, there are on average about 9 elements across the interfacial region on I'™. For the
phase parameters we choose 7 = —0.5 and 3¢, = —2. The spontaneous curvature of the +1 phase leads to
a preference of the +1 phase to be curved away from the outer normal. In accordance with this remark we
observe that the 4+1 phase appears after the phase separation at the more highly curved tips of the fingers.

In the following, we present some computations for ag # 0. When we repeat the experiment in Figure 9 for
the choices o€ = 0.5, aﬁ =0 and a€ =0, aﬁ = 0.5, we obtain the results in Figures 16 and 17, respectively.
We note that for this choice of parameters, the bound (7.2) holds. Comparing the results in Figure 9 with the
ones in Figures 16 and 17 clearly shows the influence of the Gaussian energy terms. In Figure 16 the region
of the largest Gaussian curvature is in the +1 phase and the region of the smallest Gaussian curvature is in
the —1 phase. This is in accordance with the fact that the energy penalizes Gaussian curvature only in the —1
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FIGURE 6. (ax =1, 3%_ = 0.5, 3¢y = 2, § = 10) Flow for an ellipse. We show €™ on I'™ at
times t =0, 1, 2, 3, 4, 10.

FIGURE 7. (ax =1, 7% = 0.5, ¢4 = 2, 8 = 10) Visualization of the flow field U™ at times
t = 1, 2,3 for the computation in Figure 6 (top), compared to the same computation with
€™ =1 constant throughout (bottom).

35
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FIGURE 8. (ax = 1, . = —0.2, 3z, = —2, 8 = 10) Solution at time ¢ = 1 for the C'—case
(left) and the C%case (right). Below a superimposed plot of the total discrete energy &, ;.

the discrete Cahn—Hilliard energy, and the discrete curvature energy over [0, 1].

phase. On the other hand, in Figure 17 the region with the largest Gaussian curvature is the —1 phase and the
+1 phase has a smaller Gaussian curvature when compared to Figure 16.

APPENDIX A. STRONG AND WEAK FORMULATIONS

The goal of this Appendix is to relate the weak formulation, (3.30a—e), (3.31b), of the first variations with
respect to the geometry and ¢ of the energy in (1.2a), to the strong formulations (2.9) and (1.5b), respectively.
As we allow for tangential motion, it is necessary to take into account variations which are not necessarily
normal. This is in contrast to [25], where only normal variations were considered.

We recall that Vs = (0s,,...,0s,)T, and note from [21, Lemma 2.6] that for sufficiently smooth ¢ it holds
that

Osy, Os; ¢ — 05, 05, ¢ = [(Vs V) Vs &) vie — [(Vs V) Vs @i vs Vike{l,...,d} onT(t). (A1)
It follows from (2.13), (A.1) and (2.14) that

AT =V, (Vs.0) = |V #|? T = = |V 0> U — V, 5. (A.2)
Moreover, we have from (2.14), (3.22), (3.19), (2.13), (3.21a) and (A.2) that

e =—-02(Vs.7) = —[Vs X —2D(X)] : Vs 7 — Vs . (02 )
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o 2 4 6 8 10

FIGURE 9. (ax =1, 3¢x = 0, 8 = 1) Plots of €™ on I'™ at times ¢ = 0.5, 1, 2, 10. Below
a superimposed plot of the total discrete energy 5,5}‘ the discrete Cahn—Hilliard energy, and
the discrete curvature energy over [0, 10].

otal’
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curvature
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FIGURE 10. (a- = %, ay =2,%4 =0, 8=1) Plots of € on I'™ at times ¢t = 0.5, 1, 2, 10.
Compared to Figure 9, the final plot is less concave. Below a superimposed plot of the total
discrete energy St’f)t 1> the discrete Cahn-Hilliard energy, and the discrete curvature energy over

[0,10].

7 2 .
= Ay (X.0) + [V 72 (X. 7) + X. Vs 5. (A.3)
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_1E-o 8 _1E-0.8 _17%0 8
FIGURE 11. (ay =1,%%_ = —%, %y =—2, 8=1) Plots of € on I'"™ at times t = 0.5, 1, 5.
17;0.8 17;0.8
%0.4 %0.4
-17§'0.8 -17§'0.8
FIGURE 12. (ay =1,%%_ = —%, %y = —2, 3 =05) Plots of € on I'™ at times t = 0.5, 1, 5.

A.1. Derivation of the strong formulation

We admit general variations ¥ = x 7 + Xtan, where Xtan . ¥ = 0, of (1.2a) with respect to I', whereas in [25]
only normal variations ¥ = x v/ of the geometry are considered.
We consider first the bending energy in (1.2a) and have from (3.17), on recalling (1.2b), that

53 0650 D | (D) = (al6) G = 70,08 ), + (001, W D (A4

We obtain from (A.4) and (A.3), on recalling (3.11), that

5 (00 ey | (0 = (80 0(0) G = ZO + a(6) (65— 7(0) [0 7P — G2 = (0 . 0.7

= (A [a(c) (3 = 72(0))] + a(c) (3 = 52(0)) Vs 717 — 5 (5 = 52(¢))* 5, X 7).

- <b,c(%7 c)ﬂ )Z vs C>F(t) . (A5a)
In addition, it holds that
)
[5_C <b(%a C), 1>F(t) (77) = <b,6(%7 c)aﬁ)r‘(t) . (A5b)

Choosing just a normal variation, ¥ = x 7, means that (A.5a,b) collapses to the result in [25, (4.5)], on noting
(2.10).

Next, we consider the interfacial energy in (1.2a). We have from (3.17), (3.24) and (3.11) that

J . . _ "
57 (bar (o), 1>p(t)] (X) = =7 (Vs ¢, (Vs X) Vi )pay + (57 Ve o + 971 0(0), Vo - Xy
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-17E§:D.8

FIGURE 13. (a— = 0.05, ay = 0.1, 3z = 0, 8 = 1, ¥ = 100) Flow through a constriction.
Plots of €™ on I' at times t = 0, 0.3, 0.5, 1, 1.2, 1.5. Below we show enlarged plots of €™
on I' at times t =1, 1.2, 1.5.

(B IV + T B0 TP — (Ve (390 0 (), D
+ 7 (Vs . [(Vs ) ® (Vs 0], X’>F(t) ) (A.6a)

where we have noted from (3.11) that
(Vs ¢, (Vs X) Vs c>1‘(t) =—(Vs.[(Vs ) ® (Vs o)), >Z>I‘(t) :
In addition, it holds that

gc <bGL(c)7 1>F(t) (77) = <77AS ¢+ 7_1 \Ill(c), T’>I‘(t) . (AGb)

Once again, choosing a normal variation, ¥ = x 7/, means that (A.6a,b) collapses to [25, (4.8)], on noting that
7. (Vs (Vs )@ (Vs0)]) = =Vs 7 : [(Vs0) @ (Vs 0)].

For d = 3 only, we compute the first variation of the Gaussian curvature bending energy in (1.2a). We start
by deriving an expression for 2 K. On recalling (2.15), we first compute

L0 |V o2 = Vi : 00 (Ve 9). (A7)
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FIGURE 14. (ax =1, %+ =0, 8 = 1) Spinodal decomposition on a membrane. Plots of €™ on

I'™ at times ¢ = 0.01, 0.02, 0.05, 0.1, 0.2, 0.3. Below a superimposed plot of the total discrete

energy Et’ﬁ)ml, the discrete Cahn—Hilliard energy, and the discrete curvature energy over [0, 0.3].

From (3.23) we have that
R (Vevi) = [V X —2D(X)] Vevi + Vs (82v3) i€ {1,2,3},
yielding, on noting (2.13) and (3.19), that
92 (Vs 9) = 02 (Vs 7)" = [Vs X=2 D5 ()] (Vs )" +[Vs (92 D))" = [Vs X=2 D (X)) Vs 7+ [V ([Vs X P)]T . (A8)
We deduce from (A.7), (A.8), (2.13), (2.7b) and (3.21a) that
LN = Vo7 (Vo X) Ve = Vs 72 Ve ((VoX]) T 9) = Ty + T (A.9)

Adopting the standard summation convention, we have that

= _(asj Vi) (8Sk Xl) asj Vi = _(asi Vk) (asj Xk) asi Vi = _(ask Vi) (asj Xk) asj Vi (A]-O)
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FIGURE 15. (ay =1, 22 = —0.5, 37 = —2, 8 = 1) Spinodal decomposition on a seven-

arm membrane. Plots of € on I at times ¢ = 0, 0.01, 0.02, 0.03, 0.05, 0.1. Below a
superimposed plot of the total discrete energy &£} the discrete Cahn—Hilliard energy, and
the discrete curvature energy over [0, 0.1].

otal?

and, on noting (2.13), that

Ty = —(0s; vi) Os; ((Os, X)) Vi) = —(0s, vi) Os; (Os, (Xk Vi) — X Os, Vi)
= _asj ((asj Vz) Os; (X vk)) + (asj as] vi) Os; (Xk Vi) + (881- vi) asj (X Osy, Vi)
= —0s, ((0s, i) Os, (X Vi) + (85, Os, vi) Os, (Xi vie) + (05, vi) [(Ds, Osy, vi) X1 + (s, Xi) Os, vi]
= V. (Vs P) Vs (X. D)) + (As 7). Vs (X . D) + (05, vi) [(Ds, Osy, vi) X1 + (05, Xi) Os, vi] - (A.11)

Next, we note from (A.7) and (2.13) that

Xk (D5, v) (Bs, Bs, vi) = Xk (Bs, 13) [0y B, vi — (Vs ) Vi il wie] = 1 1.V |V 72 = (Vs )2 : Vs ) X
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05 1 15 2 25 3

FIGURE 16. (ax = 1, 7+ = 0, a¥ = 0.5, af =0, 8 = 1) Plots of €™ on I'™ at times
t = 0.5, 1, 2, 3. Below a superimposed plot of the total discrete energy 8&ml, the discrete
Cahn—Hilliard energy, and the discrete curvature energy over [0, 3].

S

S’

FIGURE 17. (ax = 1, %4 = 0, a% = 0, af = 0.5, 8 = 1) Plots of €™ on I' at times

t = 0.5, 1, 2, 3. Below a superimposed plot of the total discrete energy £/, ,, the discrete
Cahn—Hilliard energy, and the discrete curvature energy over [0, 3].

Combining (A.9)-(A.12) and noting (2.13) yields that
LNV 0)? = =V . (Vs ) Vs (X. 7)) + (A 7). Vs (X 9) + 3 X. Vs Vs 7 — tr((Vs 9)®) X . 7. (A.13)
As the eigenvalues of —V;i7 are 0, 511 and 52, we have from (2.13) and (2.14) that

(Vs 0)? 1 (Vo ) = tr((Vs 9)3) = — (568 + 363) = — (56} + 23 — 501 30) (361 + 322) = (K — |V D)%) 5¢. (A.14)
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Combining (A.13) and (A.14), on noting (A.2), yields that
302 IV 7P = =V (Vs 7) Vs (X . 7)) = (Vs 20) . Vs (X 9) + 5 (Vs [Vs 71%) . X+ (Vs 7] = K) X 7. (A.15)
On recalling (2.15) and (A.3), and combining with (A.15), we finally have that
NK =100 (5 — |V i) = 200 3¢ — S 2|V, 7
2 [As (X-9) + Vs 7 X7 4 X Vi 5] + Vs (Vs D) Vs (X 9)) + (Vs ) Vs (X 7) = 5 (Vs [V 7). X
— (Vs 71* = K) %X
P

— %A (YD) + 3 (V,
— V. [(s¢1d + V, 7) V (

7
)X = 5 (Ve [Va i) . X+ Ve . (Vs 9) Vi (X 9)) + (Ve 20) . Ve (X 9) + K3 X 7
X. 17)]+V K.X+Kxx.7. (A.16)

On noting (3.17), (3.11) and (A.16), we have that

5% (@), )y | (D) = (@€(€), 02 Ky + (@ (6) K, Vs - Uy

a®(€), 02 K =X . Vs K = KX F)p

€

Jr T
—(K.X.Vs aG(c)>F(t) +{aC(c), Vs . [(»1d + V, 7) V, (X ﬁ)]>m)
(KX -V a®()) ) + (Vs - (¢ 1d + V. ) Vs ozG(c)],)Z.ﬁDF(t) (A.17a)
In addition, it holds that
% <aG(c), IC>F(t) (n) = <(04G)’(c) n,IC>F(t) ) (A.17b)

Once again, (A.17a,b) collapses to [25, (4.6)] if ¥ = x 7. Finally, the Cayley—Hamilton theorem applied to —V, 7
yields, on recalling (2.13), that

(Vs?)? + 5 (Vs )’ +KVs7 =0 = (VeP+x1d)Pr=K(-Vs?) "' Pr,

where we note that (Vs #7)~! is well-defined on the tangent space. With this identity it is possible to show
that V. ([>Id + V, 7] Vs a%(c)) = A, a%(c), where A, is the second surface Laplacian used in the paper [36]
to derive the first variation of the Gaussian curvature bending energy. However, comparing our (2.9) and e.g.

Lemma 5.1 in [36], there appears to be a sign discrepancy in the latter.
It follows from (A.5a,b), (A.6a,b), (A.17a,b) and (1.2a,b) that

s BC@.e| 0= - (7d) (A.182)
and
52 B0 () = (). (A.18D)

where fr and m are defined in (2.9) and (1.5b), respectively.

A.2. Weak formulation equals strong formulation

Here we show that the weak formulation (3.30a—e), (3.31b) equals the strong formulation (2.9), (1.5b).
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Recall from (3.29a) and (3.30a) that minus the first variation of the Lagrangian (3.28) with respect to the
geometry is given by

J“}[%L]@)

= <vs 7, Vs %)F(t) + <Vs Y, Vs -)?>F(t) -2 <(vs g)TaQs(%) (Vs ia)T>F(t)
~ 3 {012~ 7 7P 2(7. 7)) VLRV X), | = {ale) (7= 50 7) 26 1V 7T P,

BBV T B0,V Dy + B (V0 @ (V.0 V. Dy
<aG(c) (17> = |w|?), Vs . )Z>F(t) +{w:zVs. )Z>F(t) + (7. (Vs.2),Vs .)’(’>F(t) + (7. (23),Vs. )Z>F(t)

N [=

)

M=

+ |:<Vi Ve Zi, Vs )Z>F(t) -2 <ui (Vs Z)T,:S(Y) (Vs ia)T>F(t)]

1

AK%QJV;ﬁTﬁ%ﬁ)f<vpéJ ey E:Tk (A.19)

~.
Il

for ¥ € [HY(I'(¢))]¢.
On recalling Remark 3.2 and > = s v, we have that

z=—a%)w=—a%@c)V, Zi=28=—-a%)Vovy = —a%(c) 0, 7, (A.20)

<
!

and so it follows that z 3 = 0. Hence Ty; = Ty3 = 0. Moreover, 7. [V, ¥]T 7 = 0, which implies that 75 = 0. In

addition, we recall from (3.30b) and w” 7 = w7 = 0 that
G=yv with y=alc) (s —7(c)) + a(c) », (A.21)

and so as V.U = — it holds, on recalling (1.2b), (3.9) and (3.11), that

Z To=—(ys,Vs.X)r ()+T4+T8:7<b(%7c>+O‘G(C>K’VS')_(‘>F(15)
£e{2,4,8}

= (Vi [b(5,¢) +a®() K], X) gy + ([0, €) + () K] 56, X . D)y - (A.22)

It also holds, on noting [8, (A.22), (A.19)] and (3.21b), where we stress that the notation D(X) there differs
from D,(X) here by a factor 2 and by the absence of the projections Pr, that

> 1= (% (7). Vs Xy — 2([V 7)), 2u(0) (Vaid) )

0e{1,3} ()
X
Vs (y7), (@ P) Vs \ry — (¥ Vs 7, Vs X
>F(t) — (Vs . [y (Vs D) T ",1>F(t {y (|Vs 7?7 + Vs %), >F(t)
)

= (Vsy, Vs (X.7 )F(t) < (|Vs )2 0+ Vs %), X > (A.23)

NON
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where in the last equality we have noted that I'(¢) is a closed surface. Moreover, we note from (A.21) and (1.2b)

that
Yy Vs 22 = [a(c) (3 — 7(c)) + a(c) 5] Vi, 3

=V, (b(3¢,¢) + 2 a%(c) 5%) — [b,c(3¢,¢) + & (a9) (¢) 5*] Vs c. (A.24)

Combining (A.22), (A.23) and (A.24) yields, on noting (3.11), (A.21) and (3.9), that

Z Ty = — (A [ac) (3 — 52(c)) + a%(c) =], X ﬁ>r(t) + ([b(se,¢) + a% () K] 2, ¥

¢e{1,...4,8}

'17>F(t)

([l 0) + £ (0 () 52] Ve, Dy — (@) (3¢ = () + a(6) ) [Va 2. K- )y

I ACEOIAD R (A.25)

It holds on noting (3.11) that

—

> T= [57Vs el + 77 (O] X,y + B (57 Vs e + 771 ()] 52, X 7).,
Le{6,7}
=B (Vs (Vs 0) ® (Vs 0)), )?>F(t) : (A.26)
In addition, we have from (A.20) that

> Ti=(w:z+ (Vs.é),vs.)z>r(t):—<aG(c)|Vsz7|2_|_17.[Vs.(aG(c)Vsﬁ)],Vs.)Z>F(t):0,

£e{9,10}
where we have observed from (A.2) that
7.[Vs. (@%() VD) = 7.[a%(¢) As 7+ (Vs D) Vs a9 ()] = % () 7. A, 7
Q% () 7. [~|Vs D)2 7 — Vs 3 = —aC(c) |V, 7%

It follows from (3.21b) and Pr = V. id that

d d
T12 = Z |:<Vl vs Zi; vs )Z)F(t) -2 <Vi (Vs Z)Tags(%) (Vé 1d)T>F(t):| = - Z <Vi (Vs %)Ta vs >Z>F(t) ) (A27)
=1 i=1
provided that we can show that
d
> [ Ve 2 Ve Dy — (4 (T 207 (Ve 0T Br)pyy | = 0- (A.28)

=1
In order to establish (A.28), we note, on recalling (A.20) and (A.1), that

ViV Zy Vs X — v (Vs 20)T 2 (Ve )T Pr] = vi (Vs Z)kj [0, X0 — (05, x1) (O — v v
= v; (Vs Zi)rj (Os; x1) vive = —v; [Os; (aG(c) 05, 1)) (0s; x1) Vi i
=~ Y U aG( ) (8Sj Os, Vi) Os; X1 = Vi V[ U, aG( ) [(Vs 7) Vs vi] v Os; xa

=y aG(c) (Vs V) Vsvi]j 05, xi = vivi ( ) (05, v5) (0, vi) Os; X1 = 0,
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since v; O, v; = % 05, [7]? = 0.

Returning to (A.27), we have on noting (A.20), (3.11), (A.1) and (A.2) that

M&

T12 = Vz V Zza s X) > I'(t) <Vi asz (aG(c) ask Vi)’ ask Xl>F(t)

<aG(c) Vi D, sy, iy s xl>m) = —(a%(e) (B, i) By, vis 05, Xt)py
= ((¢) [(9s,, s, 13) Bsy, Vi + (s, 1) Bs, D, vi] + (B, @ (€)) (Bsy 1) Doy Vi Xy
= () D, 1 (05, 05, vi = [(Vs 7) Vi il i) s X)) — (@ (€) (05, 1) s, 52, X0 oy
+ <(65k o (C)) (05, Vi) By, Vi Xt )
=5 (@) Vs [Vs 712, X)) — (a€(0) (Ve )2, Vs 7 (X 7))y,
—{(a(€) (Vs 7) Vi 52, X)) + { (Vs 7)* Vs @), Xy - (A.29)

The remaining term from (A.19) can be rewritten, on noting (A.20), (3.11), (A.2) and (2.13), as

d

Ty = — Z <(851 7?1) ® Ija (VS )Z)T>F(t) = <851 (QG(C) 851' Vk)ﬂ 4 ask Xl>p(t)

= (8, @9(¢)) Bs, vk + aC(¢) Dy, Bs, Vi, v1 Oy, X1)
(05, @%(c)) s, vk — a(c) Dy, 36,110, Xl>r(t)
= — (9, [(Bs; a(0)) D5, vi]) 1 + (95, @€ (€)) (D5, Vi) Dy, v, X)) — (B @©(0)) (B, vi) 2 vy xa V1)
+ (05, [09(¢) s, 5d]) w1 + @ (c) (05, ) Ds, 11, Xl>F(t)
= — (Vs . [(Vs 7) Vs a¥(0)], X - D)y — (Vs 9)* Vs @(€), X)
+ (Vs (a(€) Vi 52), X D)y + (@(0) (Ve ) Vi 32, V) - (A.30)

r(t)

Hence we have from (A.29) and (A.30), on noting (A.14) for d = 3 and on recalling that a“ = 0 for d = 2, that

Y Ti=5a%O Ve Vs 72, X)py + (@) [IVs 77 = K52, X - P)p
¢e{12,14}

— (Vs . [(Vs ) Vs a%(0)], X - z7>m) + (V. [a%(c) Vs 5, ¥ z7>m) : (A.31)

Combining (A.31) with (A.25) yields, on recalling (3.9), that

Yo Te=—(Asale) (e = 5(e))] + ale) (3 = 52(c)) [Vsil® = b(5¢,€) 56, X - F)pyy

re{1,...4,8,12,14}

— (Vo (e Ld + V, 7] Vs 0% (€)), - B)y + ([bc5,€) + (@) (€) K] Vs € Xy - (A32)

Summing (A.32) and (A.26) yields the strong form (2.9).
Finally, (3.31b), (2.10), (A.20), (2.15) and (3.11) immediately yield (1.5b).
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