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Abstract 

In this study, a Frequency Response Function (FRF) -based model updating method, was 

modified for the purpose of the identification of viscoelastic constitutive models. A steel 

beam, bonded to a heavy rigid steel block by a layer of Sikaflex-252 polyurethane adhesive, 

was employed as the test setup. Using the concept of Optimum Equivalent Linear FRF 

(OELF), accelerance FRFs were measured at different random excitation levels which 

demonstrated the nonlinear behavior of the adhesive. Using a finite element model, the 

sensitivity analysis showed that the selected FRFs are more sensitive to the storage and loss 

moduli of the adhesive near the resonances. Therefore, firstly, both of the storage and loss 

moduli were identified near each resonance separately and the results have been compared 

with the results based on Inverse Eigen-sensitivity Method (IEM). In continuation, five 

viscoelastic constitutive models were utilized and identified to characterize the dynamic 

mechanical properties of the adhesive at different excitation levels. Applying the identified 

models, the correlation between the FRFs of the FE models and the experimental ones were 

tested. The results show that amongst the identified models, The Standard Linear Solid (SLS) 

model in parallel with a viscous or constant structural damper (stiffness proportional) results 

in better correlation with experiments. Increasing the excitation level, the storage modulus of 

the adhesive decreases, whereas the loss modulus increases, especially at high frequencies. 
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1. Introduction
*
 

Nowadays, there are continually growing trends toward application of polyurethane 

adhesives in many different industries such as wind turbines, construction, automotive and 

transportation. This type of adhesives requires fewer curing steps than epoxies, resulting in 

reduced production costs. Some of the other advantages are fatigue resistance, crack 

retardation and good damping characteristics. So, establishing new techniques to build and 

tune the Finite Element (FE) models for simulation of the static and dynamic behavior of 

structures with adhesively bonded joints is an increasing need. He [1] reviewed some of the 

published work until 2010, relating to the FE analysis of the adhesively bonded joints, in 

terms of static loading analysis, environmental behaviors, fatigue loading analysis and 

dynamic characteristics of the adhesively bonded joints. 

In response to dynamic loading, most of adhesives demonstrate viscoelastic behavior that 

may depend on temperature, excitation frequency, excitation amplitude, pre-stress and 

humidity. Therefore, definition of the viscoelastic constitutive model has a crucial effect on 

the accuracy of the FE model of an adhesively bonded joint. The viscoelastic constitutive 

models (viscoelastic characteristics) are not readily available through manufacturers' data 

sheets in which usually static, linear characteristics of the adhesives are provided. 

Consequently, identification of viscoelastic constitutive models for the adhesives is an 

inspiring research topic in dynamic FE modelling of adhesively bonded joints. 

There are extensive studies, with different methods, on the identification of viscoelastic 

constitutive models of the adhesives. Recently, Najib and Nobari [2] classified these methods 

into two categories, namely, direct and inverse identification methods, that is repeated here 

briefly with some instances. 

In the direct methods, for a prepared test specimen, dynamic test data are obtained using a 

selected experimental procedure, for instances, dynamic mechanical thermal analysis 

(DMTA) (Barruetabena et al. [3]) or resonance testing (Maheri and Adams [4]). These 
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dynamic data can be converted directly to the dynamic stress-strain data or equivalently to the 

dynamic modulus at a specific frequency or strain rate. Over a frequency range, the 

parameters of a viscoelastic model can be obtained by means of curve fitting.  

In the category of inverse methods the main point is that the measured dynamic data cannot 

be converted directly to the dynamic stress-strain data in the adhesive region of the specimen. 

So, an inverse problem solving is preferable, even inevitable. The methods based on the FE 

model updating are examples of inverse methods [2],[5],[6],[7]. 

A recent instance of the methods based on the FE mode updating is the work of Najib and 

Nobari [2] in which they modified a model updating method based on Frequency Response 

Function (FRF), referred to as the Response Function Method (RFM), for identification of the 

parameters of the viscoelastic constitutive model. For a steel beam bonded to a heavy rigid 

steel block by a layer of adhesive, they measured the accelerance FRFs at different excitation 

levels, using the concept of Optimum Equivalent Linear FRF (OELF) [14] and identified the 

parameters of the nonlinear viscoelastic constitutive model. They validated the identified 

nonlinear viscoelastic model through correlation tests between the FRFs of the updated FE 

model and the experimental ones. 

In this paper, the method developed in [2] will be implemented on 5 different viscoelastic 

models, in order to identify their parameters and to see which one of the models gives the 

best prediction of the behavior of the adhesive in question. In this respect, for a beam bonded 

to a rigid support via a layer of elastic adhesive, the accelerance FRFs were measured 

experimentally, using the concept of Optimum Equivalent Linear FRF (OELF). These FRFs 

were used to update the FE model of the bonded beam. The results will be compared with the 

ones obtained based on IEM. Also, the nonlinearity effects, attributable to the excitation 

level, will be examined. 

2. Formulation of RFM  

For the first time, the RFM was proposed by Lin and Ewins [8]. The reader is referred to 

Najib and Nobari [2] for a brief introduction and to Imregun et al. [9] and Visser [10] for 

more details and computational aspects. The updating equation that was used in this study 

is [2]: 

 

       
         

      
 

 
            

    (1) 
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where   is the circular frequency in (rad/sec),     
 is the element in i-th row and j-th column 

of the analytical receptance matrix (  ),      
 is the element in i-th row and j-th column of 

the experimental inertance matrix (   ),   
 

  is the transpose of i-th column of the analytical 

receptance matrix and     
    is the j-th column of the experimental inertance matrix.    is 

the dynamic stiffness error matrix,         , where    and    are the dynamic stiffness 

matrices of the analytical and experimental models of structure, respectively. In practice, it is 

impossible to measure complete set of      in (1), so the unmeasured FRFs in      will be 

filled with their analytically-derived counterparts [9]. Since this is an approximation, the 

method will be an iterative scheme and the convergence must be checked at each iteration 

step [9]. 

3. Modification of the RFM for viscoelastic material properties identification 

This procedure was presented in [2] and here is repeated. In the frequency domain, the 

Fourier transforms of stress and strain (   and   ) are related by: 

 

      
     

     
               (2) 

 

where       and   ,    and     are referred to as dynamic (or complex) modulus, storage 

modulus and loss modulus, respectively. 

The FE model, that contains two different materials, namely, adherend and adhesive, is 

considered to modify RFM (Eq. (1)) for identification of unknown viscoelastic properties of 

the adhesive (   and    ). The material properties of the adherend are known, whereas those 

for adhesive are unknown except its density. So, the dynamic stiffness matrix of the FE 

model can be written down as: 

 

                                                    
        

 (3) 

 

where M is the complete mass matrix and K, C and D with the subscript "adherend" are those 

parts of global stiffness, viscous damping and structural damping matrix that are related to 

the elements of adherend portion of the model and are known.    is the complex stiffness 

matrix of the adhesive part of the model, i.e.: 

 

         
        

                        (4) 
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   and     are the only parts of Z that are related to the    and    . So, at a fixed  , one can 

write: 

 
             (5) 

 

For the solid element used in this study, the element stiffness matrix is a linear function of 

Young’smodulus. So, assuminguniformYoung’smodulus for the adhesive layer, Eq. (5) 

becomes: 

 

   
   

   
     

    

    
     (6) 

 

Defining S as the sensitivity of stiffness matrix, 

 
   

   
 

    

    
            (7) 

 

Eq. (6) becomes, 

 
                      (8) 

 

and by the definition of 

 

       
       

         
   

  
 

 
        

   
 (9) 

 

Eq. (1) reduces to 

 
              (10) 

 

The Eq. (10) is the modified version of RFM (Eq. (1)) for identification of viscoelastic 

properties and it is a complex equation, so: 

 

 
      

       
   

          

          
  (11) 

 

The Eq. (11) can be used to update    and     at each frequency point. Also, one can write 

down these equations for a range of frequency points and use least square solution to identify 
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constant values of the    and     over a frequency range. This will be discussed more in the 

Section 5. 

4. Formulation of IEM  

After the original work of Fox and Kapoor [11], the formulation of the IEM has been 

presented by many researchers for instance by Naraghi and Nobari [7] and here is repeated in 

brief to be compatible with the present paper notation. Using the same notation as in 

Section 3, the complex eigen-value problem for the FE model can be written as: 

 

             
             

                    (12) 

 

where    and      are the r-th eigen-value and eigen-vector of the model and      is 

normalized such that 

 

    
         (13) 

 

Differentiating Eq. (12) with respect to the updating variable    gives 

 

 
   

   
 

   

   
                              

     

   
   (14) 

 

Pre-multiplying Eq. (14) by     
 , rearranging the terms and using Eq. (7) leads to 

 

   

   
     

 
   

   
         

       (15) 

 

where          is the sensitivity of the r-th eigen-value with respect to the updating 

parameter   . Using the same procedure the sensitivity of    with respect to     is obtained as 

 

   

    
     

  
    

    
         

        (16) 

 

Using the first order approximation, one can write: 
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     (17) 

 

Putting Eq. (15)-(16) into Eq.(17) yields  

 

        
                      

          (18) 

 

Considering 

 

      
    

  (19) 

 

where   
  is the r-th eigen-value of the FE model and   

  is its experimental counterpart, the 

updating equation for IEM is obtained as 

 

    
  

    
 

    
      

 (20) 

 

Eq. (20) is a complex equation and can be used to update    iteratively, at each measured 

eigen-value separately.  

5. Constitutive model in the frequency domain 

Five models are selected in this study to represent the viscoelastic behavior in the frequency 

range of interest (Fig. 1). 

 

Fig. 1. Examined viscoelastic models. (a)- (e) Model 1-5. 

 

Model 1 (Fig. 1a) is a model with two parameters (E0 and h) and consists of a Hookean 

spring in parallel with a structural damping unit. So, 

 
            (21) 
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Comparing Eq. (21) with Eq. (2) the following relations are obtained for storage and loss 

moduli in term of parameters of Model 1: 

 
         

         
(22) 

 

and 

 

 
      

       
   

   

  
  (23) 

 

Inserting Eq. (23) into Eq. (11) it is obtained that 

 

 
   

  
   

          

          
  (24) 

 

Model 2 is the Kelvin–Voigt model, also known as the Voigt model. It consists of a 

Newtonian damper and Hookean elastic spring connected in parallel, as shown in (Fig. 1b) 

and has two parameters (E0 and   ). So, 

 
              (25) 

 

and Eq. (11) becomes  

 

 
  
  

  
   

   
   

          

          
  (26) 

Model 3 (Fig. 1c) is the SLS model which has three parameters (E0, E1 and η1) and consists of 

a classical Maxwell model in parallel with a Hookean spring unit. After some mathematical 

manipulation one can obtain the dynamic modulus for the SLS model, as follows: 

 

         
      

       
 (27) 

 

Comparing Eq. (27) with Eq. (2) the following relations are obtained for storage and loss 

moduli in term of parameters of SLS model: 

 

         
      

 

  
      

  

       
   

   

  
      

  

(28) 
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Using the first order approximation, one can write: 

 

    
   

   
    

   

   
    

   

   
    (29) 

 

     
    

   
    

    

   
    

    

   
    (30) 

 

Inserting Eq. (29) and (30) into Eq. (11) it is obtained that: 

 

 
 
 
 
 
   

   

   

   

   

   

    

   

    

   

    

    
 
 
 
 

 

   

   

   

   
          

          
  (31) 

 

Differentiating Eq. (28) with respect to design parameters, Eq. (31) becomes 

 

 
 
 
 
  

    
      

   
 

   
      

   

     
   

   
      

   

 
       

 

   
      

   

  
     

      
  

   
      

    
 
 
 
 

 

   

   

   

   
          

          
  (32) 

 

Model 4 (Fig. 1d) consists of Model 2 in parallel with a constant structural damping unit. 

This model has four parameters (E0, h, E1 and η1). The dynamic modulus for the Model 4 is 

as follows: 

 

            
      

       
 (33) 

 

Using the same procedure as for Model 3 Eq. (11) for Model 4 is obtained as: 

 

 
 
 
 
   

    
      

   
 

   
      

   

  
       

 

   
      

   

     
   

   
      

   

  
     

      
  

   
      

   

 

 
 
 
 
 

 

   

  
   

   

   
          

          
  (34) 

 

Model 5 consists of a Maxwell model and a Voigt model connected in parallel, as shown in 

(Fig. 1e) and has four parameters (E0, h, E1 and η1). The dynamic modulus for the Model 5 is 

as follows: 
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 (35) 

 

Finally, Eq. (11) for Model 5 is obtained as: 

 

 
 
 
 
   

    
      

   
 

   
      

   

  
       

 

   
      

   

     
   

   
      

   

  
     

      
  

   
      

   

 

 
 
 
 
 

 

   

   

   

   

   
          

          
  (36) 

 

Eqs. (24), (26), (32), (34) and (36) can be written down at each frequency point for each 

measured FRF. Using all of the measured FRFs at all of the selected frequency points, a 

system of simultaneous equation can be written as: 

 
         

               (37) 

 

where, Nf  is the number of frequency points, NH is the number of measured FRFs and Np is 

the number of parameters in viscoelastic constitutive model. P is the vector of parameter 

changes and D is a known vector and U is the global sensitivity matrix relating parameter 

changes to response changes. Commonly, Eq. (37) is an over-determined system and can be 

solved using the least-square solution. The Singular Value Decomposition (SVD) approach 

was utilized to diagnose the rank-deficient systems. 

6. FRF correlation tests 

FRF correlation tests are used to assess the level of correlation between the measured FRFs 

and their updated analytical counterparts. As in Najib and Nobari [2], three different 

correlation criteria are used in this study. 

Frequency Response Assurance Criterion (FRAC) [2], [12]: 

 

                
   

 
  

       
 

   
 

  
          

 
  

       
 (38) 

 

where the superscript H is the conjugate transpose operator,     
 is a Nf (the number of 

frequency points)   1 vector of a measured FRF along the frequency axis for the excitation at 

the j-th DOF and response at the i-th DOF and     
 is its analytical counterpart. Hereinafter, 

         
     

  is referred to as FRACij. 
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Shape Correlation Coefficient (SCC) [2], [13]: 

 

       
   

               
 

   
                  

               
 (39) 

 

where        and        are NH (the number of measured FRFs)   1 vectors of measured 

and analytical FRFs at matching excitation/response locations. 

Amplitude Correlation Coefficient (ACC) [2], [13]: 

 

       
    

               

  
                 

              
 (40) 

 

7. Sensitivity of FRF 

Using the same notation as in Sections 2-03 the sensitivity of receptance FRF matrix with 

respect to a design parameter (p) can be obtained using 

 
        (41) 

 

as: 

 
  

  
 

   

  
 

    

  
 (42) 

 

Making differentiation of the Eq. (42), it is obtained that 

 
  

  
 

  

  
    

  

  
    

  

  
 (43) 

 

Using Eq. (41) again, the sensitivity of H can be written down in term of the sensitivity of Z 

matrix as 

 
  

  
   

  

  
  (44) 

 

Considering the element in i-th row and j-th column of Eq. (44), one obtains: 

 
    

  
    

   

  
   (45) 
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where    is the j-th column of the receptance matrix and   
 
 is its i-th column transpose. For 

E' and E'' as the design parameters, the sensitivities of an accelerance FRF with respect to 

storage and loss modulus is obtained as: 

 

   
  

   
    

      (46) 

 
     

    
     

      (47) 

8. Experimental procedure 

The experimental setup is identical to that used in [2]. It consists of a 300 mm×10 mm ×20 

mm steel beam (adherend) that is bonded to a heavy rigid steel block by a 50 mm×10 mm 

×20 mm adhesive layer (Fig. 2). The adhesive is Sikaflex-252, a one-component 

polyurethane adhesive, which cures with atmospheric moisture. The four points on the upper 

surface of the beam that were used as the excitation and response points are shown in Fig. 2. 

 

Fig. 2. (a) side view and (b) top view of the bonded beam and the points 1-4 (the dimensions 

are in mm and the rigid support block is sketched schematically). 

 

The Sikaflex-252 adhesive's specifications can be found in the adhesive product data 

sheet [15] and the applying procedure was explained by Najib and Nobari [2] and here is 

avoided for the sake of brevity. 
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Fig. 3. The test setup. 

 

In order to be able to investigate the effect of excitation level on the identified model, the test 

has been performed for the two excitation levels. Level 1 and Level 2 which correspond to 

the zero mean value random signals with 3.3 N and 46.2 N RMS, respectively. The analyzer 

was set to compute the OELF [2], [14] using: 

 

     
      

     

 (48) 

 

Where,       
 is the cross-spectrum of the acceleration at the point i (i=1-4) and the excitation 

force at the point 2 and      
 is the auto-spectrum of the excitation force at the point 2.  

Fixing the shaker at the point 2, the four accelerance FRFs were measured at the points 1-4 in 

Y direction using the test setup shown in Fig. 3. The frequency band of measurement was set 

to be within the 0-500 Hz with 1 Hz resolution. The analyzer was set to make 200 averages to 

attenuate measurement noise. The amplitudes of measured FRFs are presented in Fig. 4. 
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Fig. 4. Amplitude of measured FRFs for the bonded beam at the excitation Levels 1-2. 

 

9. FE models 

Using the ANSYS software a FE model was built for the bonded beam using 3D brick 

SOLID186 elements. This element has 20 nodes, that each node has three translational DOFs 

in X, Y and Z directions. The following material properties were considered for the beam and 

adhesive [2], [15]. 

Beam: density = 7800 kg m
-3

, Poisson's ratio= 0.3. 

Adhesive: density = 1160 kg m
-3

, Poisson's ratio= 0.44. 

A convergence study has been performed to obtain the appropriate mesh size. Four different 

FE models with uniform element sizes according to Table 1 were tested. The FRF, H22, was 

obtained from each model, using the viscoelastic Model 1 with the values of E0 = 6 MPa and 

h = 1 MPa for the adhesive, which presented in Fig. 5. Comparing the results quantitatively, 

it was observed that except the Mesh 1, the other meshes have very close FRFs. So, the Mesh 

1 is not a converged. Therefore it can be concluded that the mesh size in FE model with Mesh 

2 is refined enough for the purpose of adhesive material characterization. 
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Table 1: Convergence study on the FE model. 

Mesh 
Element size 

X×Y×Z (mm) 
FRAC

a
 

1 25×10×20 0.6571 

2 12.5×5×10 0.9900 

3 8.33×3.33×6.67 0.9985 

4 6.25×2.5×5 1 
a
              

          
              

 

 

Fig. 5. The amplitude and phase of the H22 from FE models with the mesh sizes according to 

Table 1. 

 

In the FE model, adjacent nodes of the beam and the adhesive on the bonding surface were 

merged to simulate perfect bonding. All of the nodes on the lower surface of the adhesive 

layer were constrained to simulate bonding to rigid support. The FE model is shown in Fig. 6. 
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Fig. 6. (a) 3D sketch of the bonded beam (the dimensions are in mm and the rigid support 

block is sketched schematically), (b) FE mesh. 

 

Once the FE model was built in ANSYS, the global mass matrix and stiffness matrices for the 

beam and adhesive were exported to separate text files. Using these files and experimentally 

measured FRF data, a computer program has been coded to rebuild the FE model and 

assemble the system of Eq. (37) and solve it using SVD method. At each iteration, after 

solving the system of equations, the necessary parameters changes were obtained and the 

parameters were updated. If the parameters changes become smaller than pre-specified 

thresholds, the iteration must be stopped and the parameters would converge to fixed values. 

Selection of appropriate values for the initial values of the parameters has a crucial effect on 

the success of updating process. 

10. Case study 1: Comparison between the RFM and the IEM 

In this case study, the results of the present method will be compared to those obtained based 

on the IEM (Section 4). In order to ensure that in the bonded beam case, the difference 

between the analytical and measured FRFs originates only from the adhesive, the FE model 

of the free-free beam has been updated which yields Young's modulus of 198 GPa for elastic 

beam [2]. 
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Two distinct and dominant peaks are apparent in the amplitude of measured FRFs. These 

peaks are far enough from each other that make it feasible to use a single DOF approximation 

method for the purpose of EMA and extraction of modal parameters. So, the circle-fitting 

method [16] was utilized to extract modal frequencies and loss factors from the measured 

FRFs. The results are presented in Table 2. 

 

Table 2: Extracted modal parameters. 

Excitation 

level (N) 

Frequency 

(Hz) 

loss factor 
(-) 

3.3 22.26 Hz 0.2044 

 
394.45 Hz 0.0720 

46.2 19.28 Hz 0.2202 

 
387.33 Hz 0.1121 

 

Using the IEM, the storage and loss moduli were identified at these modes for both levels 

using Eq. (20), iteratively. Also, Model 1 was assumed in the frequency ranges with 10 Hz 

bandwidth around the resonances and using the RFM, the storage and loss moduli for the 

adhesive were identified. The results are summarized in Table 3. As it is obvious in Table 3 

the results based on RFM and IEM are in nearly close agreement. For better evaluation of the 

performance of the methods FRF correlation tests have been utilized. FRAC values for each 

measured FRF and its analytical counterpart after updating are presented in Table 3 for both 

methods. Also, The ACC between the measured FRFs and those from updated FE model are 

plotted in Fig. 7. The results show that both methods result in FRFs with high level of 

correlation in comparison with the experimental FRFs. It is worth considering that in this 

experiment, dominant modes, far from each other on the frequency axis, made the results of 

the EMA to be accurate. This is not a general case and as discussed in Section 1, EMA 

inherently introduces errors and inaccuracies over and above those already present in the 

measured data. In contrast, in the RFM there is no need to EMA and so, the accuracy of the 

results is not dependant to the accuracy of EMA. 
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Table 3: Comparison between the IEM and the RFM around the resonances. 

Excitation 

level (N) 

Frequency 

(Hz) 

E' 

(MPa) 

E'' 

(MPa) 
FRAC21 FRAC22 FRAC23 FRAC24 

RFM 

3.3 17-27 6.7920 1.4193 0.9868 0.9961 0.9987 0.9971 

 
394-404 9.5561 1.8196 0.9989 0.9981 0.9918 0.9946 

46.2 14-24 5.2407 1.1926 0.9949 0.9872 0.9977 0.9960 

 
387-397 8.4740 2.1478 0.9997 0.9995 0.9962 0.9975 

IEM
 a
 

3.3 22.26 Hz 6.9740 1.4827 0.9957 0.9989 0.9973 0.9874 

 
394.45 Hz 9.6404 1.6085 0.9994 0.9990 0.9912 0.9949 

46.2 19.28 Hz 5.1831 1.1757 0.9915 0.9819 0.9957 0.9977 

 
387.33 Hz 8.7146 2.1234 0.9994 0.9998 0.9972 0.9986 

a 
For the IEM the FRAC values have been computed for the frequency ranges same as those for the RFM. 

 

 
Fig. 7. ACCs between the measured FRFs and those from updated FE model using the RFM 

around resonances and the IEM. 

11. Case study 2: Examining viscoelastic models 

In this study five viscoelastic constitutive models, presented in Section 5, will be considered 

for updating the FE model. According to Fig. 1, it is obvious that the simpler models (1, 2 

and 3) are particular cases of more complex models (4 or 5). The justification of separate 

examination of all of these five models is as follows. First of all, none of the 5 models present 

the exact model for the adhesive. As such, any of the 5 models, with different level of 

computational cost, will eventually provide parameters which, when used in FE model, will 
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provide a degree of correlation with experimental results. It should be noted, however, that, in 

inverse problems in general and identification process in particular, it is not always the case 

that a model with more parameters will provide a better representation of the system under 

identification, as the system behavior might be insensitive to some (redundant) parameters 

included in the model. This redundancy, or near redundancy, will lead to computational 

difficulties and problematic convergence and the initial values of the model parameters will 

have a significant impact on the convergence of the updating process. So all of the 5 models 

must be check for the sake of the completeness to see which model provides closer 

correlations with the experimental FRFs. Obviously, if the simpler models result in 

reasonably correlated FRFs, they will be more preferable than the more complex models 

because of their simplicity of implementation in the FE modelling.  

The Young's modulus of 198 GPa for the beam was used in the FE model as a known value 

(Section 10). Therefore the only remained unknown parameters in the FE model of bonded 

beam are parameters of considered viscoelastic model for the adhesive. 

First of all, the simplest model, Model 1, is considered to obtain an initial point for sensitivity 

analysis as well as to gain a first insight for choosing the initial values for the parameters of 

other models. The initial values of E0 = 8 MPa and h = 1.5 MPa were chosen. Four measured 

FRFs of the bonded beam, in the frequency range of 1-500 Hz with the step of 1 Hz were 

considered for updating process (Nf = 500, NH = 4 and Np = 2). After 7 iteration steps the 

parameters converged to E0=9.558 MPa and h=1.864 MPa. The results are summarized in 

Table 4 and the convergence of parameters is shown in Fig. 8. 

 

Table 4: Results of the updating process for the excitation Level 1 using Models 1-5. 

 
E0 

(MPa) 

E1 

(MPa) 

η0 

(kPa.sec) 

η1 

(kPa.sec) 

h 

(MPa) 
FRAC21 FRAC22 FRAC23 FRAC24 

Model 1 

Initial 8.0000 - - - 1.5000 0.8149 0.7090 0.6232 0.6159 

Updated 9.5578 - - - 1.8643 0.9903 0.9756 0.8806 0.8926 

Model 2 

Initial 9.0000 - 0.4000 - - 0.8693 0.6739 0.1848 0.2184 

Updated 9.3684 - 0.7757 - - 0.9718 0.8981 0.5369 0.5543 

Model 3 

Initial 5.0000 4.0000 - 4.0000 - 0.8968 0.7967 0.6710 0.6841 

Updated 4.7121 5.5573 - 6.0491 - 0.9866 0.9790 0.8979 0.9106 

Model 4 

Initial 6.0000 3.0000 - 3.0000 1.0000     

Updated 6.6700 3.1487 - 4.1810 0.9440 0.9908 0.9863 0.9541 0.9567 

Model 5 

Initial 5.5000 3.0000 0.4000 6.0000 - 0.8940 0.8011 0.7233 0.7260 

Updated 6.1460 3.4719 0.5502 1.0888 - 0.9933 0.9835 0.9478 0.9516 

 



20 

 

Fig. 8. Convergence of the parameters (a) E0 and (b) h through iterations in updating process 

of the FE model considering Model 1 and excitation Level 1. 

 

Using the obtained values for E0 and h the sensitivities of a typical FRF, H'22, with respect to 

E' and E'' (or equivalently with respect to E0 and h) were calculated through Eq. (46)-(47). 

Since the sensitivities of a FRF are complex functions of frequency, the amplitudes of these 

functions are presented in Fig. 9. It is obvious that H'22 shows significant sensitivity to E' and 

E'' around resonances. 

 

Fig. 9. Normalized absolute value of the sensitivity of H'22 with respect to (a) E' and (b) E''. 

 

In continuation, all of the models 2-5 were considered in four different updating efforts 

separately. The results are summarized in Table 4. To examine the models, FRF correlation 

tests were applied. For each model, the FRAC values for each measured FRF and its 

analytical counterpart after updating are presented in Table 4. Also, The SCC and ACC 

between the measured FRFs and those from updated FE model are illustrated in Fig. 10 for 
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Model 1, Fig. 11 for Models 2-3 and Fig. 12 for Models 4-5. The identified storage and loss 

moduli of the adhesive using all of the models are plotted together in Fig. 13 for comparison. 

 

Fig. 10. Correlations between initial and updated FRFs using Model 1 at excitation Level 1. 

 

 

Fig. 11. Correlations between initial and updated FRFs at the excitation Level 1 using Model 

2 (a, b) and Model 3 (c, d). 
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Fig. 12. Correlations between initial and updated FRFs at the excitation Level 1 using Model 

4 (a, b) and Model 5 (c, d). 

 

 
Fig. 13. Comparison between identified (a) storage and (b) loss moduli for the adhesive 

material at the excitation Level 1. 
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In the cases of Models 1 and 3 the values of identified E' and E'' are closer to those values 

obtained for the frequency range around 397 Hz. So, the updated FRFs are more correlated 

with experimental FRFs in this frequency range and less correlated around 22 Hz. These are 

obvious in Fig. 10b and Fig. 11d. For Model 2 the value of identified E' is between the values 

obtained for the frequency range around 22 Hz and 397 Hz. Therefore, less correlation is 

obtained around these frequencies. This can be seen in Fig. 11b. The best correlation was 

obtained using Models 4 and 5 and there is no significant discrepancy between the updated 

FRFs and consequently between results of correlation tests for these two models, as shown in 

Fig. 12. In Models 4 and 5 cases the values of identified E' and E'' are very close to those 

values obtained for the frequency range around the peaks. So, the updated FRFs show nearly 

perfect correlation with experimental FRFs. These are obvious in Fig. 13. The amplitude and 

phase of measured and updated FRFs for the excitation Level 1, using Model 5 are presented 

in Fig. 14 and Fig. 15. Nearly the same FRFs were obtained using model 4. 

Although the values of FRFs in all of the measured frequency point were exploited in 

updating process, the values of FRFs around the peaks have significant effect on the updated 

values of design parameters. This is mainly because of higher sensitivity of FRFs with 

respect to design parameters around the peaks. Using the measured FRFs one could not 

conclude that between Model 4 and 5 which one is more accurate and at least one other data 

points is needed. For example, if any data would be available for static modulus, the best 

model could be chosen between them. 

Different values were reported in the literature for the static (low frequency range) modulus 

of Sikaflex-252. Some instances are as follows. In the Sikaflex-252 structural adhesive 

product data sheet [15] the value of shear modulus for the adhesive was reported as 0.7 MPa 

(approximately). Considering Poisson's ratio of 0.34 the value of Young's modulus becomes 

1.876 MPa. Verhoff et al. [17] used the value of 21.7 MPa for the static Young's modulus. 

Armeanu [18] obtained the Young's modulus as 9.7 MPa according to ASTM D638 on an 

Instron-4204 universal testing machine with a crosshead speed of 1 mm/min whereas Link 

and Weiland [19] obtained this value as 6.6 MPa at 21.86 Hz using an eigen frequency based 

updating method. Huveners et al. [20] carried out a tensile shear test at temperature of 23°C 

and relative humidity of 60% and obtained the value of shear modulus as 0.5 MPa at the 

displacement rate of 2.5 mm/min. Considering Poisson's ratio of 0.34, the value of Young's 

modulus becomes 1.34 MPa. It is obvious that the reported values for the modulus of 

Sikaflex-252 are very scattered. According to the Table 3, the present method resulted in a 
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value of 6.974 MPa for the Young's modulus around 22.26 Hz that is in close agreement with 

the value of 6.6 MPa at 21.86 Hz obtained in [19]. 

 

 
Fig. 14. Amplitude of (dash) measured and (solid) updated FRFs using Model 5 at the 

excitation Level 1. 

 
 

Fig. 15. Phase of (dash) measured and (solid) updated FRFs using Model 5 at the excitation 

Level 1. 
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12. Case study 3: Investigation of the effects of excitation level 

In this case study, the effects of excitation level on the identified models is investigated. The 

FE model was updated using Models 4-5 for the excitation Level 2. The results are 

summarized in Table 5. The amplitude and phase of measured and updated FRFs for the 

excitation Level 2, using Model 5 are presented in Fig. 16 and Fig. 17 which demonstrate 

good correlation. Nearly the same FRFs were obtained using model 4. The identified storage 

and loss moduli in two levels of excitation are plotted in Fig. 18(a, b) for Model 4 and (c, d) 

for Model 5. 

It is obvious from Fig. 18 that, as the level of excitation increased from Level 1 to 2, the 

storage modulus reduces about 10-23% depending on the frequency. This is not the case for 

loss modulus. At low frequency band (below 94 Hz for Model 4 and below 45 Hz for Model 

5) the loss modulus reduces up to 20%, whereas above these frequency ranges it increases up 

to 25% depending on the frequency. This observation reveals the nonlinear behavior of the 

adhesive material which can be identified utilizing the proposed method at different 

excitation levels. 

Table 5: Results of the updating process for the excitation Level 2 using Models 4-5. 

 
E0 

(MPa) 

E1 

(MPa) 

η0 

(kPa.sec) 

η1 

(kPa.sec) 

h 

(MPa) 

FRAC21 FRAC22 FRAC23 FRAC24 

Model 4 5.1582 3.8978 - 3.8954 0.7703 0.9954 0.9885 0.9647 0.9706 

Model 5 4.8691 3.7561 0.5831 8.7038 - 0.9985 0.9841 0.9545 0.9657 

 

 
Fig. 16. Amplitude of (dash) measured and (solid) updated FRFs using Model 5 at the 

excitation Level 2. 
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Fig. 17. Phase of (dash) measured and (solid) updated FRFs using Model 5 at the excitation 

Level 2. 

 

Fig. 18. Identified storage and loss moduli for the adhesive material using (a, b) Model 4 and 

(c, d) Model 5 at the excitations Level 1-2. 
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13. Conclusion 

The RFM as a FRF-based model updating method was modified for the purpose of 

identification of parameters in viscoelastic constitutive model. The method was applied to 

update the FE model of a beam connected to a rigid support via a layer of elastic adhesive 

using experimentally measured accelerance FRFs. It was shown that the proposed method 

performs well in FE model updating and consequently in identification of viscoelastic and 

frequency dependent material properties. The value and frequency of peaks in FRFs have 

significant effect on the identified parameters. Besides, choosing the appropriate viscoelastic 

model is crucial in the success of model updating attempt and accuracy of the results. 

Therefore, the proposed method has the capability to be adopted for identification of the 

viscoelastic models with the following consideration. Firstly the values of storage and loss 

modulus must be identified around the resonances. This is similar to that is done usually in 

modal-based updating method notwithstanding the fact that the FRF-based methods are more 

preferable as discussed and showed in Section 10. Secondly, a viscoelastic model must be 

chosen for frequency range of interest with enough flexibility that its storage and loss 

modulus could intersect those values obtained for frequency bands around the resonances. It 

was shown that SLS model are not so flexible and a viscous or constant structural damper 

(stiffness proportional) in parallel with SLS makes it more suitable for the tested adhesive 

material. Also, it has been shown that, in contrast to the stiffness softening characteristic of 

the adhesive as the excitation level increases, the loss modulus of the adhesive increases 

especially at higher frequencies. 
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