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Abstract

In the consistent histories (CH) approach to quantum theory probabilities are assigned to his-

tories subject to a consistency condition of negligible interference. The approach has the feature

that a given physical situation admits multiple sets of consistent histories that cannot in general

be united into a single consistent set, leading to a number of counter-intuitive or contrary prop-

erties if propositions from different consistent sets are combined indiscriminately. An alternative

viewpoint is proposed in which multiple consistent sets are classified according to whether or not

there exists any unifying probability for combinations of incompatible sets which replicates the

consistent histories result when restricted to a single consistent set. A number of examples are

exhibited in which this classification can be made, in some cases with the assistance of the Bell,

CHSH or Leggett-Garg inequalities together with Fine’s theorem. When a unifying probability

exists logical deductions in different consistent sets can in fact be combined, an extension of the

“single framework rule”. It is argued that this classification coincides with intuitive notions of

the boundary between classical and quantum regimes and in particular, the absence of a unifying

probability for certain combinations of consistent sets is regarded as a measure of the “quantum-

ness” of the system. The proposed approach and results are closely related to recent work on the

classification of quasi-probabilities and this connection is discussed.

PACS numbers: 03.65.-w, 03.65.Ta, 03.65.Yz
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I. INTRODUCTION

A considerable amount of contemporary theoretical and experimental research is devoted

to elucidating the counter-intuitive nature of quantum-mechanical phenomena. Ever since

the birth of quantum theory, features which defy classical explanation have continued to

fascinate [1]. At the same time, a parallel programme has concerned itself with what is

perhaps the opposite issue, which is to explain the emergence of a quasi-classical domain

from an underlying quantum description [2–4].

The phenomenon of “quantumness” can be characterized in many ways but it is typically

linked with, for example, interferences, the breakdown of classical logic, entanglement and

violation of the Bell inequalities. Likewise classicality is defined in numerous ways but it is

linked with decoherence and the assignment of probabilities which indicate correlations in

time according to classical equations of motion. However, the typical definitions of quan-

tumness and classicality are quite far apart. The quasi-classical realm is often depicted as an

asymptotic regime described by very coarse grained variables suffering negligible interference

[2–4]. At the other end of the scale there are situations which on the face of it appear to

be quantum-mechanical in nature but can be modeled in classical terms, so sit very close to

the classical-quantum boundary.

The consistent histories (CH) formulation of quantum theory was first formulated over

thirty years ago and continues to be a source of interest and useful applications [2, 5–24]. It

was formulated in order to free standard quantum theory from dependence on an assumed

separate classical domain, as is required to extend quantum theory to the whole universe,

i.e. to quantum cosmology [25], since there can be no separate classical domain in the very

early universe. Instead of a classical domain the approach focuses on finding the situations

in which probabilities may be assigned to histories and hence, to which classical logic may be

applied. This framework has turned out to be a very useful one for studying the emergence

of classical behaviour from quantum theory. One can also examine from this framework

many of the so-called paradoxes of quantum theory, some of which are then seen to arise

from indiscriminate use of classical logic. Furthermore, the focus on histories of the system,

rather than events at a single time, means that the approach naturally adapts to situations

in which time enters in a non-trivial way, or indeed in which time is entirely absent, as is

the case in quantum cosmology. In all its applications it would probably reasonable to say
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that the CH approach has enjoyed considerable success. However, despite these successes

certain aspects of the CH approach have met with resistance.

The initial mathematical aim of the approach is, for a system in a given initial state ρ , to

determine which sets of histories, characterized by time-ordered strings of projection opera-

tors Pan(tn) · · ·Pa1(t1) (or sums of such strings), have negligible interference and therefore,

to which probabilities of the form

p(a1, a2, · · · an) = Tr (Pan(tn) · · ·Pa1(t1)ρPa1(t1) · · ·Pan(tn)) , (1.1)

may be assigned which obey all the usual sum rules. Such sets histories are then said to be

consistent. The sequences of alternatives described by those histories may then be discussed

using the rules of classical logic. One can then, for example, address whether the correlations

these probabilities indicate are well-approximated by classical dynamical laws.

The procedure, however, has a particular feature which is perhaps the greatest source of

criticism. This is that a given physical situation defined by a fixed initial state (and in some

cases a fixed final state) in general admits more than one consistent set of histories which

are incompatible, i.e. cannot be combined into a larger, single consistent set. Furthermore,

in situations where there is a fixed final state, it is easy to find examples where two non-

commuting observables, such as spin in two different directions, each have probability 1

in different incompatible consistent sets, at variance with naive notions of the uncertainty

principle. Perhaps even more challenging, there exist examples with “contrary” properties,

in which a certain variable has probability 1 in one consistent set and an orthogonal variable

has probability 1 in a different consistent set.

These intuitively challenging features clearly mean that it is not possible in general to

associate definite values with consistent sets of histories, and indeed the CH approach is

not, and was not intended to be, a hidden variables theory. Nevertheless these aspects of

the CH approach have led some to question the utility of the entire approach or to suggest

modifications or additional conditions which might restrict some of the more challenging

examples [20, 26–28]. Some of these features were first noticed by Griffiths in the very first

paper on the subject [8] and he has since offered numerous robust defences of the criticisms

[29, 30]. In brief, he argues that one of the rules of the game is that any logical deductions

must be made within the framework of single consistent set of histories – one cannot combine

incompatible sets. If one accepts this “single framework rule”, the intuitively challenging
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features indicated above are ruled out and in particular explicit logical contradictions are

not possible.

Although Griffiths’ procedure for handling multiple consistent sets is very reasonable in

operational terms, there are some situations in which we may have good physical reasons for

wishing to talk about properties living in incompatible consistent sets but the properties of

multiple consistent sets outlined above create an obstruction. This issue arises in particular

if we attempt to use the CH approach to delineate a clear boundary between the classical and

quantum regimes. The point is that in characterizing the classical regime, we would like to

be able to talk about complementary quantities, such as positions and momenta, in a single

logical framework so that we could discuss the logical connections between them. However,

the non-commutativity of these quantities means they are not in general found in a single

consistent set – they are usually found only in different incompatible sets. Hence in this

sort of situation it would be extremely valuable to determine if, for at least some physically

interesting examples, we can in fact combine certain types of incompatible consistent sets

in some way, i.e. to see if there is any way around the single framework rule.

The purpose of this paper is to propose an alternative viewpoint on the use and inter-

pretation of multiple consistent sets which extends the single framework rule and helps to

characterize the classical-quantum boundary in a way that meets intuitive expectations.

The proposed approach is to relax the focus on the standard formula for probabilities for

histories used in the CH approach Eq.(1.1) and instead ask, in each situation where incom-

patible consistent sets exist, if there is any unifying probability for some of the combined

incompatible sets which replicates the consistent histories result Eq.(1.1) when restricted to

a single consistent set. Although it is clearly not possible in general to find such a unifying

probability we shall show that there are many examples of multiple consistent sets in which

such a probability (in general non-unique) does in fact exist and it is then legitimate to com-

bine logical statements from different consistent sets. In simple examples, we can use the

Bell [31] and CHSH [32] inequalities together with Fine’s theorem [33, 34] to make this clas-

sification. This procedure leads to a natural classification of multiple consistent sets, which

is physically motivated and in particular meets the desired objective of characterizing the

classical-quantum boundary. Furthermore, from this perspective, the existence of multiple

consistent sets without a unifying probability is then simply a measure of the “quantumness”

of the system. It is not, as some have suggested, a problem with the consistent histories
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approach.

There have been a number of earlier proposals to classify consistent sets of histories,

most notably by Kent [27] and Wallden [28]. They were mainly motivated by a desire

to eliminate the most challenging examples of multiple consistent sets, namely those with

contrary properties mentioned above. However, as we shall see, this classification still allows

multiple consistent sets that contain some significant quantum behaviour. The focus of the

present attempt, by contrast, is to seek a physically motivated classification more in line

with our intuitive understanding of classical and quantum.

Some authors regard such classifications as “set selection principles” which inform the

interpretation of the formalism. In particular, it is sometimes asserted that, “nature some-

how chooses one set of histories from among those allowed, and then randomly chooses to

realize one history from that set” [27]. Here, no claims are being put forwards about whether

particular histories or sets of histories are realized and it is not the aim to find a set selection

principle that will complete the programme sketched in, for example Ref.[20]. Rather the

main aim is to explore the consequences of extending the single framework rule and deter-

mine how the intuitively understood classical-quantum boundary is expressed through the

consistent histories approach and in particular how it relates to the properties of multiple

consistent sets.

We summarize the key mathematical properties of the consistent histories approach in

Section 2. Multiple consistent sets and the proposed alternative approach to handling them

are discussed in Section 3. A number of examples with a unifying probability are given in

Section 4, along with a brief discussion of the possible consequences of the non-uniqueness

of the unifying probability. Examples without a unifying probability are given in Section 5.

The relationship to set selection principles of Kent and of Wallden are discussed in Section

6. A particularly important example of multiple consistent sets, concerning the question as

to whether quasi-classical behaviour persists to the future, is discussed in Section 7. The

relationship between this work and a recent work on the classification of quasi-probabilities

is described in Section 8. We summarize and conclude in Section 9.
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II. THE CONSISTENT HISTORIES APPROACH

We briefly review the formalism of the consistent histories approach. Full details may

be found in many different places [2, 5–24]. Alternatives at a single moment of time are

represented by a set of projection operators {Pa}, satisfying the conditions

∑

a

Pa = 1, (2.1)

PaPb = δabPa, (2.2)

where we take a to run over some finite range. A (homogenous) history is represented by a

time-ordered string of projections,

Cα = Pan(tn) · · ·Pa1(t1), (2.3)

where Cα is usually referred to as a class operator. One may also consider class operators

defined by sums of strings (and these are known as inhomogeneous histories). Here the

projections are in the Heisenberg picture and α denotes the string (a1, · · · an). The class

operator Eq.(2.3) satisfies the conditions

∑

α

Cα = 1, (2.4)

and also
∑

α

C†
αCα = 1. (2.5)

Probabilities are assigned to histories via the formula

p(α) = Tr
(

CαρC
†
α

)

, (2.6)

where ρ is the initial density operator. These probabilities are clearly positive and normalized

∑

α

p(α) = 1, (2.7)

which follows from Eq.(2.6).

The sample space for a quantum system consists of a projective decomposition of the

identity [9, 10]. Hence, for alternatives at a single moment of time the probabilities p(a)

are defined on the sample space consisting of the projective decomposition of the identity

Eq.(2.1). For the case considered here in which there are n sequential non-commuting
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projectors, the corresponding decomposition of the identity Eq.(2.4) is not a projective one.

However, it may be made so using the temporal logic approach of Isham et al [21, 22], in

which the Cα is replaced by an n-fold tensor product of projectors acting on an n-fold tensor

product Hilbert space. This then is a projective decomposition of the identity, on the larger

Hilbert space, and defines the histories sample space for the probabilities Eq.(2.6) [9, 10].

This assignment of probabilities to non-commuting quantities such as those appearing

here is only meaningful if there is no interference between pairs of histories and this is

measured by the decoherence functional,

D(α, α′) = Tr
(

CαρC
†
α′

)

. (2.8)

It satisfies the conditions

D(α, α′) = D∗(α′, α), (2.9)
∑

α

∑

α′

D(α, α′) = 1, (2.10)

and note that the probabilities are given by its diagonal elements

p(α) = D(α, α). (2.11)

The simplest and most important condition normally imposed is that the probabilities should

satisfy the probability sum rules and this is the case if and only if

ReD(α, α′) = 0, α 6= α′, (2.12)

for all pairs of histories α, α′, a condition is referred to as consistency of histories. In

many practical situations, there is present a physical mechanism (such as coupling to an

environment) which causes Eq.(2.12) to be satisfied, at least approximately, and in such

situations, it is typically observed that the imaginary part of the off-diagonal terms of

D(α, α′) vanish as well as the real part. It is therefore of interest to consider the stronger

condition of decoherence, which is

D(α, α′) = 0, α 6= α′. (2.13)

This stronger condition is related to the existence of records [6, 17].

In the search for further conditions for the assignment of probabilities, it is useful to

consider the quasi-probability

q(α) = ReTr (Cαρ) . (2.14)
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Because it is linear in the Cα, this quantity sums to 1 and also satisfies the probability sum

rules, but it is not in general positive. However, it is closely related to the probabilities

Eq.(2.7), because Eq.(2.4) implies that

q(α) = Tr
(

CαρC
†
α

)

+ 2ReTr
(

CαρC̄
†
α

)

,

= p(α) + 2ReD(α, ᾱ). (2.15)

Here C̄α denotes the negation of the history Cα,

C̄α = 1− Cα. (2.16)

This means that when there is consistency the probabilities are given by the simpler expres-

sion

p(α) = q(α). (2.17)

Consistency therefore ensures that q(α) is real and positive, even though it is not in general.

These properties suggest an alternative to the consistent histories approach in which the

probabilities are given by q(α), subject only to the requirement that

q(α) ≥ 0, (2.18)

a condition referred to as linear positivity [35]. (The sample space is still the histories

sample space described above). These probabilities agree with the usual assignments p(α)

when there is consistency, but this condition is clearly weaker than consistency so the reverse

is not true.

These properties also suggest an alternative condition, named partial decoherence [18],

which is the requirement that the probabilities satisfy Eq.(2.17), or equivalently, that each

history has zero interference with its negation. This condition is stronger than linear posi-

tivity, weaker than decoherence, but can be weaker or stronger than consistency.

The above formulae easily generalize to the case in which there is a final state ρf , as is

the case in post-selection. The probability for histories then is

p(α) =
1

Tr(ρfρ)
Tr

(

ρfCαρC
†
α

)

, (2.19)

(and similarly for the decoherence functional) and the quasi-probability Eq.(2.14) generalizes

to

q(α) =
1

Tr(ρfρ)
ReTr (ρfCαρ) . (2.20)
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Both consistency and linear positivity suffer from some unusual properties under sub-

system composition (also known as the Diośi test [23]). This is the requirement that the

condition for probability assignment for a composite system consisting of two uncorrelated

and non-interacting parts A and B should be equivalent to the probability assignments for

A and B separately. Partial decoherence comes very close to meeting subsystem composi-

tion, but narrowly fails for inhomogeneous histories. Only decoherence, Eq.(2.13), satisfies

it exactly (although it can also be satisfied by the very weak procedure outlined below).

Even weaker conditions ensuring the assignment of probabilities to certain types of histo-

ries are possible in some situations. The above formulae are all concerned with the conditions

under which a specific formula for the probabilities for histories may be successfully assigned.

However, there are certain situations when it is of interest to ask the simpler question as to

whether any probability exists, subject to certain conditions. This is closely related to the

question of determining whether certain situations admit a local hidden variable description.

To give a specific example, suppose we have a system such as a spin system with di-

chotomic variables in which there are three possible projections and for which there exist

non-negative probabilities p(a1, a2), p(a2, a3) and p(a1, a3), non-negative either because they

correspond to pairs of commuting observables, or because linear positivity is satisfied for

each pair. Suppose, however, that consistency of histories and linear positivity fail to yield

a formula for a positive probability p(a1, a2, a3) matching the three given pairwise probabil-

ities. Does this mean that there is no probability? The answer is that sometimes there is.

In particular, some probability exists matching the three pairwise probabilities if and only

if the Bell inequalities [31] are satisfied:

− 1 ≤ C12 + C13 + C23 ≤ 1 + 2 min{C12, C13, C23}, (2.21)

where the Cij are the correlation functions of the three probabilities, for example,

C12 =
∑

a1a2

a1a2 p(a1, a2). (2.22)

Similarly, when we have four pairwise probabilities the necessary and sufficient condition for

the existence of an underlying probability is the set of eight CHSH inequalities [32]. These

important results (Fine’s theorem [33, 34]) are simply existence theorems – they do not

provide a general formula for the probabilities of quantum-mechanical form. Nevertheless,

there is a significant difference between the case where some probability exists and the case
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where no probability exists. (Note however that the problem of matching a probability to a

given set of marginals is in general a very difficult problem [36]).

This procedure provides a way of assigning probabilities to histories or to non-commuting

observables this is demonstrably weaker than linear positivity. It also has the appealing

feature that it is compatible with subsystem composition [37]. We will make use of this

procedure in what follows to analyze multiple consistent sets.

Significantly, the sample space for probabilities defined in this way is no longer the histo-

ries sample space described above, but is instead the sample space of a local hidden variable

theory which will may have the form, for example of a classical phase space [38]. This is a

step outside the conventional CH framework but confers some useful advantages, as we shall

see.

III. MULTIPLE CONSISTENT SETS

In the Copenhagen interpretation, it is usually asserted that the only quantities we can

talk about in an unambiguous way are quantities that are physically measured. By contrast,

in the CH approach, it is claimed that we can extend that discussion to quantities that

are not measured, using consistent sets of histories and classical logic. For example, we

can talk about what is going on with a quantum system between measurements, or after

initial preparation but before the first measurement takes place. Or, we can talk about

past histories of the universe even though the only measurements made are in the present

moment. However, this extension from measured to unmeasured quantities turns out to

be subtle due to the existence of multiple consistent sets and care is required in terms of

deciding what sort of logical deductions can be made.

A. A Simple Spin Example

To exemplify this, consider the following example first given by Griffiths in his original

paper on the CH approach [8]. The example is a simple spin system, initially in the up state

in the z-direction |↑〉 and post-selected to be in the |+〉 state in the x-direction, where

|+〉 = 1√
2
(|↑〉+ |↓〉) . (3.1)
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We take the Hamiltonian to be zero and ask what happens between initial preparation and

final measurement using a projector Pa. The probability is given by Eq.(2.19) which turns

out to be

p(a) = 2|〈+|Pa|↑〉|2. (3.2)

If we take Pa to project onto the z-spin we get pz(↑) = 1, pz(↓) = 0, so the two histories are

consistent and have probability 1 for spin up. On the basis of this we might be inclined to say

the spin is up in the z-direction between measurements. However, if we take Pa to project

onto the x-spin we get px(+) = 1 and px(−) = 0. So again the histories are consistent but

we get probability 1 for spin + in the x-direction, which suggests that the spin takes definite

value in the x-direction between measurements.

One can look at a more complicated history in which both spins are projected on inter-

mediately, using a class operator of the form

Ca1a2 = P z
a2
P x
a1
. (3.3)

However, it is easily shown that such histories are not consistent. That is, we cannot combine

the probabilities for the two consistent sets into a single consistent set with probability given

by the formula Eq.(2.19). (One can work instead with the opposite operator ordering in the

class operator Eq.(3.3) and the resulting histories then are in fact consistent, but this is the

essentially trivial case in which the first projector coincides with the initial state and the

second projector coincides with the final state. We will suppose that the physical situation

dictates that the above ordering is the appropriate one).

It would clearly be incompatible with the uncertainty principle to assert that both the

x and z spin are definite in this way, so what are we to make of these properties? As

indicated in the Introduction, Griffiths argues that in any application of classical logic to

a quantum system with consistent sets of histories, any deduction must be made within

the framework of a single consistent set. Deductions belonging to different consistent sets

cannot be combined. In this example, we therefore cannot deduce that the spin takes definite

values in both directions. This example is the simplest example of a essentially universal

feature of the CH approach which is that a given physical situation in which we attempt to

ascertain what is happening between measurements admits a number of different consistent

sets which, if taken at face value, appear to have properties at variance with certain intuitive

notions of basic quantum mechanics.
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B. An Alternative Approach

Let us now focus in more general terms on what it would mean to think of the spins in both

directions as possessing definite values. The CH approach does not allow this. However, the

CH approach is specifically tied to probabilities for histories given by Eq.(2.19). But what

would be happen if we worked instead with other probabilities, such as the quasi-probability

Eq.(2.20), or the more general approach of the last section not involving a specific formula?

It is easy in this simple example to write down a unifying probability that does the job,

namely

p(a1, a2) = px(a1)pz(a2). (3.4)

This is clearly positive and also matches the above marginals for p(a1) in the x-direction

and p(a2) in the z-direction. In particular, p(+, ↑) = 1 and the remaining components are

zero. Therefore, a consistent joint probability for both spins exists, although it is not the

CH probability, Eq.(2.19). (One could also try the quasi-probability Eq.(2.20) associated

with the class operator Eq.(3.3) but this has a negative component).

Because some probability for both spins exists, there is no contradiction in asserting that

both spins take definite values. Indeed, it is well-known that all the predictions of a single

spin system of this type may be replicated by a hidden variable theory [31].

These important observations lead to the following strategy. In each situation in which

there are two or more consistent sets, we can ask if there is any unifying probability for

the combined consistent sets which matches the CH probabilities when restricted to each

individual consistent set. If such a probability exists, then we can assert that logical state-

ments from different consistent sets can be combined. (Here, we are of course invoking

the well-known connection between Boolean logic and probability emphasized by Omnès

[12–14]).

This approach clearly steps beyond the conventional CH approach although it is not in

contradiction with it. In the CH approach with the single framework rule statements from

different consistent sets cannot be combined, but here we argue that they can be, without

contradiction, in some, but not all circumstances. It thus seems reasonable to introduce an

extended single framework rule:

• Logical statements from different consistent sets cannot be combined unless a unifying

probability for those consistent sets exists.
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Note that a given system may have many incompatible consistent sets and generally,

only some of those sets can be combined in the way described above. This means that we

still cannot, in general, assign definite values to all the quantities describing the system.

Although we may do so within the framework of those sets for which there is a unifying

probability in which we are contemplating measuring some of the variables and then using

the probability to deduce the values of other unmeasured quantities lying within the unified

consistent sets.

With three or more consistent sets one can encounter more complicated combinations

of incompatible sets but the extended single framework rule continues to apply. Consider

for example a situation in which there are three consistent sets, which we denote CS1,

CS2, CS3 and suppose that there exists a unifying probability for two of the possible pairs,

CS1,CS2 and CS2,CS3, but not for the pair CS1,CS3. This means first of all that there is

no unifying probability for all three sets. Secondly, it means that we are allowed to make

logical deductions within the unified sets CS1 ∪CS2 and CS2 ∪CS3, but the extended single

framework rule means that we are not allowed to combine logical statements between these

two unified sets, and in particular we cannot invoke a “transitivity” argument involving CS2

to combine statements between CS1 and CS3.

Note also that since the probabilities for each consistent set may be expressed, via

Eq.(2.17), in terms of the Goldstein-Page quasi-probability, Eqs.(2.14), it is always pos-

sible to write down a unifying quasi-probability for the combined multiple consistent sets,

namely, the quasi-probability Eq.(2.14) obtained by combining the class operators from each

set. This is clearly a natural thing to check but it may or may not be positive in each case.

If it is not, there often exist other ways of constructing a unifying probability as outlined in

the last section.

As stated, the general search for a unifying probability outlined in the last section entails

a switch from the histories sample space to a local hidden variable theory sample space.

This is a significant change but carries two key advantages. First of all, it addresses the

ontological questions surrounding multiple consistent sets (i.e. to what extent can we assign

definite values to the histories in different consistent sets), in a way that is thoroughly

consistent with conventional thinking around hidden variable theories. Secondly, it also

brings the CH approach (with the extended single framework rule) into a position where

the quantum-classical boundary is characterized in a way closer to intuition and with other
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standard definitions of that boundary. We will see this in detail in the examples of the

following sections.

C. Another Simple Example

Another simple but very different example, given by Omnès [13], consists of a free parti-

cle in three dimensions initially in an outgoing spherical wave state |ψ〉 (e.g. a radioactive

decay) and the final state ρf is a measurement which localizes in position. We can then

ask what happens between initial and final states at a sequence of times t1, t2, · · · tn. There
are a number of different consistent sets. First, we could take the class operators to de-

scribe a sequence of coarse-grained projections onto ranges of positions denoted by centres

x1,x2 · · ·xn, not too closely spaced in time and onto reasonably large spatial regions. These

histories have probability close to 1 when the spatial regions lie along a straight line path and

are approximately zero otherwise, hence are consistent histories. Secondly, we could instead

do a sequence of projections onto ranges of momenta with centres p1,p2, · · ·pn and we will

find the probability is close to 1 for momenta close to the expected classical trajectory.

One cannot in general combine these different sets into a single consistent set since they

refer to incompatible quantum properties. However, it is easy to see that there is a unifying

probability for these two incompatible sets, namely the simple product,

p(x1,x2 · · ·xn) p(p1,p2, · · ·pn), (3.5)

which trivially matches the desired marginals. Here the sample space is the Cartesian

product of n (discretized) classical phase spaces for the point particle in three dimensions.

A third possibility is to consider also the projections onto the state or its negation at

each time, using a projector Pa, with a = 1, 2, where P1 = |ψ〉〈ψ| and P2 = 1 − P1, and

we denote these histories by a1, a2, · · ·an. These histories will be exactly consistent with

probability 1 for the single history consisting of the evolving state and probability 0 for any

other history. There is then the possibility of combing all three of the above consistent sets

using the probability

p(x1,x2 · · ·xn) p(p1,p2, · · ·pn) p(a1, a2 · · · an), (3.6)

which again matches the desired marginals. The sample space is then the Cartesian product

of the sample space for Eq.(3.5) with the histories sample space for p(a1, a2, · · ·an).
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In both of the examples in this section, the desired unifying probability is easily obtained

by taking a product of the probabilities for each consistent set (although this is not necess-

sarily the only way to obtain it). Hence these examples are reasonably trivial, because each

consistent set has no alternatives in common with the other sets. The more challenging (and

perhaps more common) case is that in which the consistent sets have partial overlap and

this we now consider.

IV. EXAMPLES WITH A UNIFYING PROBABILITY

A. The EPRB State

We first consider a particularly instructive example in which there is a unifying probability

for some parameter ranges but not for others. The example is the standard EPRB situation,

in which we consider a pair of particles A and B whose spins are in the singlet state,

|Ψ〉 = 1√
2
(| ↑〉 ⊗ | ↓〉 − | ↓〉 ⊗ | ↑〉) , (4.1)

where | ↑〉 denotes spin up in the z-direction. We consider the spins of particle A in the

directions characterized by unit vectors a1 and a2 and with values s1, s2; and on particle B in

directions a3 and a4 with values s3, s4, where each s may take values ±1. The probabilities

for pairs of such alternatives, one on A, one on B are each of the form

p(s1, s3) = Tr
(

P a1

s1
⊗ P a3

s3
|Ψ〉〈Ψ|

)

, (4.2)

where the projection operators are given by

P a

s =
1

2
(1 + sa · σ) , (4.3)

where σi denotes the Pauli spin matrices. We similarly define three more pairwise probabil-

ities p(s1, s4), p(s2, s3), p(s2, s4). Each of these four probabilities defines a set of “histories”

which is trivially decoherent, since the projection operators within each set commute.

Combining the above sets into larger consistent sets is non-trivial. Suppose we consider

histories involving both spins of each particle. To analyze these histories, we need the

decoherence functional,

D(s1, s2, s3, s4|s′1, s′2, s′3, s′4) = Tr
(

Cs1s2s3s4|Ψ〉〈Ψ|C†

s′
1
s′
2
s′
3
s′
4

)

, (4.4)
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where

Cs1s2s3s4 = P a2

s2
P a1

s1
⊗ P a4

s4
P a3

s3
(4.5)

and we have selected an ordering in which a1 precedes a2 and a3 precedes a4. The decoher-

ence functional is trivially zero for s2 6= s′2 and s4 6= s′4, but is not in general diagonal (or

diagonal in its real part) due to the presence of non-commuting operators. This means that

in general the four consistent sets defined above cannot be combined into a single consis-

tent set in which all four spin components are specified. Hence the four consistent sets are

incompatible in general.

However, we can now ask whether there is a unifying probability matching the four

probabilities p(s1, s3), p(s1, s4), p(s2, s3), p(s2, s4) from the four consistent sets. One possible

way to approach this might be to try the quasi-probability

q(s1, s2, s3, s3) = ReTr
(

P a2

s2
P a1

s1
⊗ P a4

s4
P a3

s3
|Ψ〉〈Ψ|

)

, (4.6)

which clearly matches the four probabilities. It is not positive in general but will be positive

for a parameter range that is larger than that for which the decoherence functional is diag-

onal, since it only requires the interference terms to be suitably bounded, not zero. (Hence

the problem of multiple consistent sets is generally weaker for the linear positivity approach

[35]).

But we can also ask very generally, without appealing to a specific formula, is there any

probability, perhaps defined on a hidden variables sample space, which matches the four

pairwise ones? The answer to this question, as indicated in Section 2, is given by Fine’s

theorem [33, 34], which states that there exists a non-negative probability p(s1, s2, s3, s4)

matching the given four pairwise probabilities if and only if the eight CHSH inequalities

hold [32]. These inequalities have the form

|C13 + C14 + C23 − C24| ≤ 2, (4.7)

plus three more similar relations with the minus sign in the other three possible locations.

Hence there is a unifying probability for the incompatible consistent sets as long as the CHSH

inequalities hold. As noted in Ref.[37], these inequalities can hold even when Eq.(4.6) is not

positive.

It is instructive to consider a specific example, namely that in which measurements are

made only in the x or z direction, so we take a1 = a3 = (0, 0, 1) and a2 = a4 = (1, 0, 0). The
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probabilities p(s1, s3) and p(s2, s4) then show perfect anticorrelation. It is then tempting

to assert that the spins take definite values and the standard argument, essentially that of

EPR [39], then appears to indicate that one can deduce the spin in both directions of both

particles using this anticorrelation.

In a consistent histories analysis, the histories in which the spins in both directions

of both particle is specified are not consistent (as is easily shown using Eq.(4.4)). The

anticorrelation exists within certain consistent sets, but the single framework rule forbids

such logical deductions from being combined with statements made in other, incompatible

sets. (See also the CH analysis by Griffiths of this situation [11]).

However, from the point of view of the approach of this paper, this is not the end of the

road. The correlation functions for this situation are C13 = C23 = −1 and C14 = C23 = 0

so all the CHSH inequalities are satisfied. This means that there is in fact some probability

distribution coinciding with the four marginals. In general one would expect there to be a

family of such distributions but it turns out in this case that the quasi-probability Eq.(4.6)

is positive so does the job. Using the explicit formula given in Ref.[37], this turns out to be

q(s1, s2, s3, s4) =
1

16
(1− s1s3)(1− s2s4), (4.8)

which is clearly non-negative and exhibits the desired correlations. (Since the quasi-

probability turns out to be positive in this case, the sample space is in fact the usual

histories sample space).

According to the extended single framework rule, logical statements from different con-

sistent sets may be combined in this case, since a unifying probability exists. This means

it is consistent to assert that the two particles have definite spins in both the x and z di-

rections. Physically, it corresponds to the known fact that this situation admits a local

hidden variables description. The CH approach with the usual single framework rule misses

this essentially classical situation. This example illustrates particularly clearly why it is of

interest to explore an extended single framework rule.
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B. The EPR State

Another closely related and pertinent example is the original EPR state [39], which in

one dimension is the two particle state

ψ(x1, x2) = N exp

(

−(x1 − x2)
2

σ2
− σ2(x1 + x2)

2

)

, (4.9)

where the parameter σ may be taken to be very small and is there to make the state a

normalizable Gaussian, and N is a normalization factor. The state is therefore tightly

peaked about x1 = x2 and in momentum space the state ψ̃(p1, p2) is tightly peaked about

p1 = −p2. One can consider two different consistent sets, one in which the positions of each

particle are specified, the other in which the momenta are specified. These are characterized

by projections onto small ranges of position and momentum. The probabilities indicate the

correlations described above. However, one cannot in general combine these two different

consistent sets into a single consistent set due to the presence of non-commuting operators,

so the two sets are incompatible.

We now therefore ask if there is a unifying probability in which the coordinates and

momenta of both particles are specified. This was answered by Bell a long time ago [40]. The

point is that the (regularized) EPR wave function Eq.(4.9) is a Gaussian, which implies that

its Wigner functionW (x1, p1, x2, p2) is non-negative [41], and is precisely the desired unifying

probability matching the probabilities |ψ(x1, x2)|2 and |ψ̃(p1, p2)|2 for the two consistent sets.

The sample space is the classical phase space for two particles moving in one dimension. It

is therefore consistent to assert that the coordinates and momenta of both particles take

definite values.

C. Histories of a Single Spin

Another instructive example is that provided by the spin systems studied in the Leggett-

Garg inequalities – the analogue of the EPRB situation for a single particle characterized

by alternatives at three or more times [42]. We focus on a variable Q̂ = σz which evolves

under Hamiltonian H = 1

2
ωσx (where σx, σz are the usual Pauli matrices). We consider the

two-time probabilities

p(s1, s2) = Tr (Ps2(t2)Ps1(t1)ρPs1(t1)) , (4.10)
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where the projectors at each time are P = 1

2
(1− sQ̂). It is easily shown that these two-time

histories are not consistent in general, however, they are for the case of a maximally mixed

initial state, in which case it may be shown that

p(s1, s2) =
1

2
(1 + s1s2C12) , (4.11)

where the correlation function C12 is given by

C12 =
1

2
〈Q̂(t2)Q̂(t1) + Q̂(t1)Q̂(t2)〉. (4.12)

With the above Hamiltonian and choice of Q̂, we have C12 = cosω(t2 − t1). Details may be

found, for example, in Ref.[43]. This is a more general example of the “hopping model” [44].

We may also consider similar two-probabilities at times t2, t3 and times t1, t3. We thus

obtain three consistent sets of histories with probabilities p(s1, s2), p(s2, s3) and p(s1, s3).

These are incompatible since the underlying set of histories in which Q is specified at all

three times is inconsistent in general. However, like the Bell and CHSH case, we can ask

if there is any probability matching the three marginals and the answer is again that some

probability p(s1, s2, s3) exists if and only if the four Bell inequalities Eq.(2.21) hold. (In this

context they are referred to as the Leggett-Garg inequalities). Again we step beyond the

usual quantum-mechanical history sample space to a “classical history” sample space, of the

type one might use in a stochastic process, in which Q takes definite values at three times.

D. Comments on the Non-Uniqueness of the Unifying Probability

Armed with above examples we are now in a position to address a potentially worrisome

feature of the procedure used to identify a unifying probability, namely the fact that it will

in general be non-unique. A natural question to ask is whether this non-uniqueness may

affect the logical or probabilistic reasoning we are seeking to apply when different consistent

sets are combined.

The point here is that any such reasoning is made using only the probabilities within

each separate consistent set, i.e. using only the marginals, and these are uniquely defined

(even though they can be matched to a non-unique family of unifying probabilities). Hence

although in the extended framework rule we are moving from a specifc formula for the

probabilities to a general formula, the two formulae must match at the level of individual

consistent sets.
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Differently put, the question we are interested in is whether the logical or probabilistic

reasoning within a given consistent set can be unambiguously combined with the logical or

probabilistic reasoning within another set. E.g. if A implies B in one consistent set and B

implies C in another consistent set, does this mean that A implies C? The answer is yes if

a unifying probability exists and there is no ambiguity since the marginal probabilities used

in making these deductions are uniquely defined. The existence or otherwise of a unifying

probability is simply a test to make sure that such deductions can be consistently made.

Similar statements hold in examples in which the reasoning is probabilistic rather than

logical. There are actually few examples of this type, although it is still necessary to be sure

that the reasoning is consistent.

Interestingly, in the example at the end of Section 4(A), in which some of the marginals

are zero and hence definite logical connections can be made, it turns out at the unifying

probability Eq.(4.8) is in fact unique. This is reasonably easily seen from explicit mo-

ment expansions given in Refs.[34, 37] and the detailed proofs of Fine’s theorem in Ref.[34].

Loosely speaking, the anticorrelations between s1 and s3 and between s2 and s4 essentially

fix Eq.(4.8) uniquely. One would expect this to be true for other similar examples, since if

some of the marginal probabilities are zero the corresponding components of the unifying

probability (which are summed to give the marginals) must also be zero, thereby imposing

significant restrictions on the possible form of the unifying probability. However, no general

proof of this claim is given here but this will be investigated elsewhere.

V. EXAMPLES WITHOUT A UNIFYING PROBABILITY

The EPRB and Leggett-Garg examples of the previous Section clearly supply examples

without a unifying probability distribution if the CHSH or Leggett-Garg inequalities are

violated. However, a more striking and important example of multiple consistent sets is the

three box problem [45]. This is essentially equivalent to a triple slit interference experiment.

It consists of a three state system with initial state

|ψ〉 = 1√
3
(|1〉+ |2〉+ |3〉) , (5.1)

and final state

|ψf〉 =
1√
3
(|1〉+ |2〉 − |3〉) , (5.2)
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We consider simple histories in which there is a projection P in between the initial and final

state. The probability for this is given by

p = 3 |〈ψf |Pa|ψ〉|2 , (5.3)

where we have used the fact that |〈ψf |ψ〉|2 = 1/3. We consider two different consistent sets.

In the first set there are two histories, given by projections P1 = |1〉〈1| and its complement

P23 = |2〉〈2|+ |3〉〈3|. We easily find that

p(1) = 1, p(2 or 3) = 0. (5.4)

In the second set, we consider P2 = |2〉〈2| and its complement, P13 = |1〉〈1|+ |3〉〈3|, and we

find that

p(2) = 1, p(1 or 3) = 0. (5.5)

On the fact of it, this appears to be a contradictory state of affairs since in one set the

system is predicted to be definitely in state 1 and in the other set the system is definitely in

state 2. As indicated already, we are not allowed to combine logical statements in different

sets. Nevertheless, this is one of the most disconcerting examples of incompatible consistent

sets.

One can, as in previous examples, ask whether there is a unifying probability for both

sets, as there is in some previous examples. However, it is clear that the only way to find

one is to allow some of the probabilities to be negative. For example, the quasi-probabilities

p(1) = 1 = p(2) and p(3) = −1 are consistent with the above properties. Hence there is no

unifying probability in this case and we do not expect to be able to assign definite properties

across multiple consistent sets.

Physically these properties are not surprising if we consider the closely related triple

slit experiment. There, we have wave functions ψ1, ψ2, ψ3 emerging from three slits and

impinging on a detector a short distance away. The wave functions are carefully chosen so

that there are some cancellations at the detector, ψ2 +ψ3 = 0 and ψ1 +ψ3 = 0. This means

that detector registers nothing if we cover up slit 1 or slit 2 but has a non-trivial reading if

we cover slits 1 and 2, an apparent contradiction if viewed in classical terms.

However, these results are unremarkable from the point of view of quantum mechanics,

since we know that two non-trivial wave functions may be superposed in such as way as to

give zero at a particular point. From this point of view, these disconcerting features are
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indications of quantumness. This is consistent with, and indeed a good example of, our

hypothesis that quantumness may be measured by the absence of a unifying probability.

Other examples of incompatible sets lacking a unifying probability distribution and with

contrary properties are easily found such as the hopping model of Ref.[44], discussed at

length in Ref.[28] and the GHZ state, discussed in Ref.[10].

VI. COMPARSION WITH EARLIER SET SELECTION PRINCIPLES

A number of previous authors have proposed set selection principles designed to eliminate

the sort of behaviour exhibited in the above examples. We briefly consider the proposals of

Kent [27] and Wallden [28]. Following their nomenclature for the moment, we will refer to

the probability Eq.(2.6) as the measure µ(α) on a set of histories. The essence of the three

box problem is that it is a “zero cover” situation in which the coarse-graining of histories

with non-zero measure leads to a history with zero measure. The set selection principles of

Kent and Wallden are designed to rule out this situation.

Kent accomplishes by restricting to “ordered consistent sets”, which is in essence the

requirement that the measure behaves in a monotonic way under coarse graining [27]. This

clearly implies that it is not possible to obtain a measure zero history by coarse-graining

histories with non-zero measure.

Wallden offers the slightly weaker proposal to restrict to “preclusive consistent sets” [28].

These are consistent sets of histories {α} for which there are no zero-measure coarse grainings

if µ(α) 6= 0.

These two principles successfully isolate the contrary features of the three box problem

and similarly for other examples. However, they clearly still admit multiple consistent sets

without a unifying probability distribution, as long as there are no zero-cover situations.

For example, this will be the case in the EPRB example for parameter ranges which violate

the CHSH inequalities (except perhaps for very special choices of parameters). That is, they

admit situations in which classical notions are violated at a statistical level, but there are no

outright contradictions from a classical perspective. Hence if viewed as a set selection prin-

ciple, the requirement of a unifying probability is clearly stronger (and so more restrictive)

than the requirements of Ordered Consistent Sets, or Preclusive Consistent Sets.

22



VII. PERSISTENT CLASSICALITY

Another significant example of multiple consistent sets first discussed by Dowker and

Kent concerns the question of whether or not a system exhibiting quasi-classical behaviour

persists in being quasi-classical into the future [20]. Consider a system characterized by

alternatives a1, a2, · · ·an at times t1, t2, · · · tn, which correspond to quasi-classical variables,

such as coarse-grained positions. We suppose that their histories are consistent so their prob-

abilities p(a1, a2, · · · an) are well-defined. If these probabilities are strongly peaked around

the classical equations of motion (and perhaps a few other reasonable properties hold), we

would say that the histories describe quasi-classical behaviour.

Consider now how these histories may be fine-grained to specify their behaviour to the

future of tn, at times tn+1, tn+2 · · · tN , say. We could consider future alternatives consisting

of the same quasi-classical variables, an+1, an+2 · · · aN . If these extended histories are con-

sistent their probabilities p(a1, · · · an; an+1 · · · aN ) would be well-defined and quasi-classical

behaviour persists to the future. However, one could also fine-grain to the future using

completely different variables, with alternatives bn+1, bn+2 · · · bN , which could refer to non-

classical features of the system. If these histories are consistent we get another well-defined

set of probabilities, p(a1, · · ·an; bn+1 · · · bN ). These two sets of consistent histories will be

incompatible in general, but the second set could exhibit behaviour very far from quasi-

classical.

Dowker and Kent showed, on general grounds, that it is possible to construct incompatible

consistent sets of this type. They did not give an explicit example, but these are presumably

not hard to find. They argue that this sort of example makes it difficult to claim that the

CH approach predicts emergent classicality since there is no principle favouring either one

of these consistent sets. Proponents of the CH approach typically respond by saying that

the CH approach makes probabilistic predictions for given sets of histories but remains

silent on the issue of whether one set, or the other, or both sets are realized, in any sense.

Nevertheless, this particular feature of the CH approach has been a particular source of

criticism (see for example Ref.[46]).

The approach of the present paper offers an alternative view on this example. As

in the previous examples, we ask if there is any unifying probability of the form

p(a1, · · ·an; an+1, bn+1, · · ·aN , bN), defined on a suitably chosen sample space, which matches
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the two probabilities above obtained from the CH approach. If such a probability exists, it is

then consistent to assert that the alternatives in both sets of histories take definite values. If

there is no such probability, we cannot make this assertion. Without a more specific example

it is difficult to say much more here. However, on the basis of the examples seen previously,

we can say that there will be at least some cases in which a unifying probability exists and it

is reasonable to talk about both types of future histories as if they both “happen”. Further-

more, we can also say that in the cases where no unifying probability exists, the existence of

very different consistent sets is simply a measure of quantumness, and the fact that it is not

possible to say in classical terms “what happens”, is no more surprising than, for example,

the difficulty of saying what happens in situations where the Bell inequalities are violated.

To be clear, this is by no means a resolution of the issue in the sense sought by Dowker

and Kent, who looked for a principle which would favour certain types of consistent sets

over others. It is simply the observation that this disconcerting feature is a reflection of

quantumness, so would be a property of any approach to quantum theory, not just the CH

approach.

VIII. RELATIONSHIP TO THE CLASSIFICATIONOF QUASI-PROBABILITIES

The approach of this paper – the idea of finding a unifying probability matching a given

set of marginals – has a clear relationship to recent work on the classification of quasi-

probabilities [37]. In that work it was noted that when quasi-probabilities crop up in quan-

tum mechanics, these are sometimes due to genuinely quantum-mechanical phenomena, but

they can also arise in essentially classical situations where there is in fact a genuine probabil-

ity distribution describing the situation but standard approaches do not automatically reveal

it. Hence one needs a way to distinguish between these two situations, and to construct the

probability distribution where it exists.

The approach is as follows. Suppose one is given a quasi-probability q(a1, a2, · · · an), for
example Eq.(2.14). Any quasi-probability will always have a set of marginals which are non-

negative. For example, in the case of Eq.(2.14) the single time quasi-probabilities obtained

by summing out n−1 alternatives are non-negative. Suppose that we determine that largest

set of non-negative marginals, each obtained by coarse-graining the quasi-probability. Since

they are non-negative, they may then be regarded as genuine probabilities for this coarse-
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grained set of quantities.

Given these marginals one can now ask is there a genuine probability p(a1, a2, · · ·an)
which matches the set of marginals. If there is, the underlying quasi-probability is called

“viable”. If not, it is “non-viable”. In simple examples, Bell and CHSH inequalities may

be used to determine where this probability exists and the difference between non-viable

and viable is clearly the difference between a genuinely quantum situation not describable

in classical terms and a classical situation for which a probability is not easily found by

standard approaches. In simple terms, the marginals of viable quasi-probabilities can be used

as if they were marginals of a true probability, and hence without contradiction, whereas

the marginals of non-viable quasi-probabilities cannot be used in this way.

One can now see the relationship between this classification and the classification of mul-

tiple consistent sets described in this paper. As noted earlier, given a family of incompatible

consistent sets of histories, there is always a quasi-probability, namely Eq.(2.14) which has

positive marginals matching the probabilities of each consistent set. Hence the question of

the existence or not of a unifying probability coincides precisely with the definitions of viable

and non-viable quasi-probabilities.

IX. SUMMARY AND CONCLUSION

The consistent histories approach has proved to be a very valuable tool for extending the

Copenhagen interpretation, understanding the classical limit and delineating the degree to

which classical logic may be applied to quantum-mechanical situations. The existence of

multiple consistent sets adds subtleties to the interpretation of the approach but the single

framework rule provides a clear limitation on what logical deductions can be made.

The consistent histories approach in its standard presentation entails a specific formula for

probabilities, Eq.(1.1), together with specific conditions, namely decoherence or consistency,

under which these probabilities are well-defined. The essence of the approach to multiple

consistent sets described here is to take a step outside the conventional consistent histories

framework and note that decoherence and consistency are part of a larger hierarchy of

classicality conditions which includes the weaker condition of linear positivity, and most

importantly and weaker still, the technique of finding a unifying probability for a given set

of marginal probabilities. In particular, the present work was based on the simple observation
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that, if one relaxes focus on the usual probability formula Eq.(1.1) and associated sample

space, then some incompatible consistent sets do in fact possess a unifying probability and

it is then consistent to assert that some logical deductions can be combined across different

consistent sets. This led to the proposal of an extended single framework rule, allowing

a wider set of logical deductions to be made as long as a unifying probability exists. In

some examples, this partially alleviates some of the ontological questions surround multiple

consistent sets, i.e. the question of the extent to which one can assign definite values to

quantities in different consistent sets. Of course, it remains true that it is not possible in

general to assign definite values to the alternatives describing incompatible consistent sets,

but the proposal put forwards here indicates that it is possible in more situations than

previously suspected.

Furthermore, the existence or not of a unifying probability provides a natural defini-

tion in the CH approach of the classical-quantum boundary which coincides in a number

of examples with intuitive notions and also with other commonly-used (but very weak)

classicality measures, such as the Bell, CHSH or Leggett-Garg inequalities, or non-negative

Wigner function. In particular, quantumness is seen to be the absence of a unifying prob-

ability for certain consistent sets of interest. This particular issue does not appear to have

been addressed previously in the CH approach, which has instead been very focused on the

emergence of classical behaviour in the asymptotic regime of histories of very coarse-grained

variables exhibiting negligible interference.

Numerous examples of situations both with and without a unifying probability were

given. In all cases there was clear accord with intuitive notions of classical or quantum. The

proposed classification of consistent histories was compared with earlier (although differently

motivated) set selection principles and found to be more restrictive. This work also bears

a close relationship with a recently proposed classification of quasi-probabilities and this

connection was discussed.
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