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Abstract

Monte Carlo (MC) methods such as Markov chain Monte Carlo (MCMC) and sequential Monte Carlo

(SMC) have emerged as popular tools to sample from high dimensional probability distributions. Be-

cause these algorithms can draw samples effectively from arbitrary distributions in Bayesian inference

problems, they have been widely used in a range of statistical applications. However, they are often

too time consuming due to the prohibitive costly likelihood evaluations, thus they cannot be prac-

tically applied to complex models with large-scale datasets. Currently, the lack of sufficiently fast

MCMC methods limits their applicability in many modern applications such as genetics and machine

learning, and this situation is bound to get worse given the increasing adoption of big data in many

fields. The objective of this dissertation is to develop, design and build efficient hardware architec-

tures for MCMC-based algorithms on Field Programmable Gate Arrays (FPGAs), and thereby bring

them closer to practical applications.

The contributions of this work include: 1) Novel parallel FPGA architectures of the state-of-the-art

resampling algorithms for SMC methods. The proposed architectures allow for parallel implementa-

tions and thus improve the processing speed. 2) A novel mixed precision MCMC algorithm, along

with a tailored FPGA architecture. The proposed design allows for more parallelism and achieves low

latency for a given set of hardware resources, while still guaranteeing unbiased estimates. 3) A new

variant of subsampling MCMC method based on unequal probability sampling, along with a highly

optimized FPGA architecture. The proposed method significantly reduces off-chip memory access

and achieves high accuracy in estimates for a given time budget. This work has resulted in the devel-

opment of hardware accelerators of MCMC and SMC for very large-scale Bayesian tasks by applying

the above techniques. Notable speed improvements compared to the respective state-of-the-art CPU

and GPU implementations have been achieved in this work.
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Chapter 1

Introduction

1.1 Motivation

Bayesian Inference has become increasingly popular in modern machine learning such as Bayesian

networks, due to its ability to represent uncertainty in parameter estimates and analyse data of complex

structures using flexible models [3, 4]. The computations associated with most common Bayesian

tasks, e.g. estimation, prediction and model comparison, boil down to integrations. In some situ-

ations, it is possible to perform such integrations exactly either by simple Riemann integration or

splines [71]. Unfortunately, most real-world problems are rarely amenable to these exact inference

especially when modelling large data sets, and numerical integration is limited by large dimensions

[77]. Therefore most of the interest in Bayesian methods have been focused on better methods of

approximate inference in the form of Monte Carlo estimates or variational approximations [3]. The

Monte Carlo methods tackle the problem of integrations as expectations, and thus estimate the in-

tractable integrals through sampling. Therefore the key problem in approximate Bayesian inference

is the sampling from any arbitrary probability distribution.

In most applications, generating independent random samples from the target probability distribution

in the Bayesian model is not feasible, due to its high-dimension and multi-modality. In practice, it is

often the case that either the generated samples have to be dependent (e.g. from carefully designed

Markov chains), or the samples are generated from some standard distributions such as Normal dis-

3



4 Chapter 1. Introduction

tribution and then the samples are weighted by the target distribution (e.g. Importance Sampling

and Rejection Sampling). In other words, these two techniques of generating random samples are

essential to Monte Carlo integration procedure.

Markov chain Monte Carlo (MCMC) is a class of methods that generate dependent samples by evolv-

ing a Markov chain designed to have a stationary distribution as the target distribution. MCMC

sampling has been the main tool used to draw samples in Bayesian inference problems since 1990s,

because of its ability to sample from posterior distributions in Bayesian modelling regardless of di-

mension or complexity. However, MCMC methods are often far too computationally intensive to be

of any practical use [67], and their runtimes can easily reach weeks or months [1, 16, 60]. The main-

stream of current research on MCMC methods has been focused on proposing variants of algorithms

that scale to large datasets to reduce their runtimes.

Sequential Monte Carlo (SMC) methods are based on the framework of Sequential Importance Sam-

pling (SIS), in which one builds up the trial sampling distribution sequentially and computes the

importance weights recursively [53]. SMC methods have been particularly popular to generate sam-

ples from posterior distributions in dynamic systems, where a sequence of target distributions with

increasing dimension happens. They are applicable to a very large class of models especially the non-

linear problems where the interest is in tracking and/or detection of dynamic signals [25]. However,

SMC methods may be slower than that Bayesian applications require in some real-time problems due

to large number of samples which are necessary to guarantee the accuracy in the estimation of the

states of the systems. This situation would be changed by parallel computing, since most parts of

SMC procedures are ready to be executed in a parallel computing platform, as will be shown later.

1.2 Challenges and Contributions

Although SMC methods are powerful and effective in the application of non-linear and/or non-

Gaussian state space models, they are often too computationally intensive in their application to

complex models. The most commonly used SMC algorithms consist of three basic steps: genera-

tion of new samples, computation of sample weights and resampling. Sample generation and weight
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computation are the most computationally intensive steps, but they are straightforward for parallel

implementation in order to increase the speed. Resampling is not computationally intensive, but it

requires a collective operation (such as the sum or cumulative sum) among the generated samples.

Thus it affects the speed of the whole algorithm. When these algorithms are implemented in parallel

computing platforms, the resampling becomes a bottleneck due to the necessity for exchanging a large

number of samples through the processing elements [13]. The main challenges for speed increase of

the SMC algorithms in parallel computing devices include exploiting parallel resampling algorithms

and architectures.

MCMC methods are time-consuming mainly due to the likelihood computations as they necessarily

need to access all of the data at each iteration in order to estimate how well the data are explained

by the sampled parameters. This makes MCMC prohibitively slow to converge, especially when the

distribution is high-dimensional and multi-modal. Assuming independent and identically distributed

(i.i.d.) data, the likelihood function complexity is O(N), where N is the size of the data set. The

evaluation of the likelihood functions has become the dominant computational bottleneck when large

datasets are targeted. Therefore, accelerating the likelihood computations is the most crucial task in

order to allow the application of MCMC to complex models with large-scale data sets.

Besides the likelihood computations over the whole dataset, memory issue has also become a bot-

tleneck in the acceleration of MCMC algorithms, as the dataset to make inference has been largely

increased and growing fast. The data transfer between the processing elements and external memo-

ries can limit the system’s performance if the memory bandwidth is not enough to constantly feed the

processing elements. Thus it imposes a big challenge on the applicability of MCMC in many modern

applications, as MCMC needs to access the data memory across iterations and the latency imposed

by the data transfers between memory and processing elements limits the overall performance.

Due to the increasing speed demands of MCMC and SMC applications, a number of previous works

have proposed the use of multi-core computational devices such as Central Processing Units (CPUs)

and Graphics Processing Units (GPUs) to accelerate these algorithms by parallel computation. In this

work, the focus is on the acceleration of the above methods using the reconfigurable device: Field-

Programmable Gate Arrays (FPGAs). FPGA technology has shown to be a promising candidate for
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accelerating many algorithms due to its highly-parallel bit-oriented architecture [66]. By appropri-

ately decomposing the problem into different blocks that can be executed in parallel and mapping

them into an FPGA, a considerable amount of acceleration can be achieved compared to CPU imple-

mentation [12]. Another important advantage of FPGAs is their flexibility to operate in any custom

arithmetic precision format. Instead of implementing operators in double floating-point precision,

which is the default approach in MCMC applications, reduced arithmetic precision can be used, mak-

ing operators utilising fewer resources and allowing for more parallelism for a given device. Besides,

the fully customizable architecture in FPGAs can largely take advantage of the characteristics of the

specific MCMC-based algorithms, in order to further improve the speed.

This thesis aims to speed up the SMC and MCMC algorithms in FPGAs by proposing new designs

of algorithms and novel customized architectures, in order to largely utilize the advantages and char-

acteristics of FPGAs. The runtime of the SMC methods is reduced by parallel implementation of

the algorithm with optimized parallel resampling architectures, to fully utilize the computational re-

sources in FPGAs. The MCMC sampling speed is increased by implementing likelihood-related

arithmetic operators in custom precision arithmetic in FPGA, but without introducing any bias in the

estimates of the integrals. As such, more parallel operators can be instantiated for a given resource

budget, and thus improving performance. The thesis also investigates how to adapt the data subsam-

pling based MCMC algorithms to be implemented in FPGAs for applications with large datasets, in

order to reduce the external memory access latency. This is achieved by proposing unequal proba-

bility sampling to select the subset based on the data contribution to the estimated likelihood. The

results presented in the thesis have shown that significant speedups can be achieved with the proposed

FPGA implementations against the respective state-of-the-art implementations in CPUs and GPUs.

This thesis contains a number of contributions on the development of the hardware accelerators of the

MCMC-based algorithms. They are summarized in the following list (the detailed discussions of the

contributions are given in each Chapter):

• The introduction of novel parallel architectures which map four resampling algorithms to an

FPGA, taking advantages of the inherent parallelism of SMC algorithms. It is the first work

that presents parallel FPGA architectures for the state-of-the-art resampling algorithms, and it
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showed significant speedups compared to that of CPU and GPU implementations.

• A custom-precision firefly MCMC algorithm which guarantees unbiased sampling under cus-

tom precision arithmetic, leading to significant performance gains; An optimised FPGA-based

architecture of this algorithm is proposed, which capitalises on the nature of FPGA devices to

support custom arithmetic precision.

• A novel methodology for the construction of tight lower bound functions of the target prob-

ability distribution function based on the selection of the rounding mode of the FPGA arith-

metic operators in combination with verification tools for modelling numerical behaviour (i.e.

Gappa++), in order to maximise the performance of the proposed custom-precision MCMC

algorithm.

• A methodology for selecting the custom arithmetic precision of the custom-precision MCMC

system that would maximise its performance based on the system’s performance model and the

estimates of the parameters from pre-runs.

• A communication-aware MCMC algorithm based on unequal probability sampling, that takes

into account the performance characteristics of the underlying memory hierarchy. The pro-

posed algorithm reduces the data transfer overheads among memories, compared to the regular

MCMC and other subsampling-based algorithms, leading to faster execution times and higher

accuracy in the estimates for a given time budget.

• An optimized hardware architecture tailored for FPGA implementation that maps the com-

munication aware MCMC algorithm on FPGA and efficiently utilises high bandwidth on-chip

memory blocks on FPGAs.

1.3 Organization of the Thesis

This thesis is organized in six chapters. In this chapter, the motivation and contributions of this work

are presented.
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In Chapter 2, a brief background on the theory of Bayesian Inference is described. It contains the

basic principles of MCMC and SMC methods to follow the remaining chapters. Besides, the main

challenges and recent developments on both algorithms focusing on how to improve the performance

and increase the speed of these methods are described and concluded in details. Then we summary

that how we tackle the speed problem of these two algorithms, especially for big data applications.

Finally, a separate section is devoted to the related work where a complete literature review is pro-

vided, together with the previous works on GPUs and FPGAs which accelerated the MCMC-based

algorithms.

Chapter 3 investigates ways to accelerate the SMC methods by proposing novel parallel resampling al-

gorithms and architectures. An optimized version of Systematic Resampling (SR) is proposed, while

other three state-of-the-art resampling algorithms are presented. The parallel architectures for each

algorithm are proposed to be ready to implement in FPGAs. The speedups of the four architectures

are compared to the respective GPU implementations and discussions on the results are provided.

An unbiased MCMC FPGA-based accelerator under custom precision regimes is proposed in Chapter

4. This novel mixed precision MCMC algorithm simulates from the exact target distribution in con-

trast to existing approximate MCMC samplers, while the large majority of likelihood computations

are performed in reduced precision. Two Bayesian logistic regression case studies of varying com-

plexity are used to evaluate the performance of the proposed hardware architecture. The results show

significant speedups compared to existing FPGA- and CPU-based works that utilise double floating

point arithmetic, without any bias on the sampling-based estimates.

In Chapter 5, we propose a communication-aware MCMC framework that takes into account the un-

derlying performance of the memory subsystem during the sampling process. The framework is based

on a novel subsampling algorithm that utilises an unbiased likelihood estimator based on Probability

Proportional-to-Size (PPS) sampling, allowing information on the performance of the memory system

to be taken into account during the sampling stage. The proposed system in FPGA addresses exactly

the memory-bound problem in the MCMC construction, opening the way for applying the MCMC

algorithm to large scale datasets.

Finally, the current state of our work and potential future works are summarized in Chapter 6.
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Chapter 2

Background Theory and Related Work

2.1 Background

In the era of abundant data, many real-world data analysis problems involve estimating unknown

quantities or parameters from some given observations, which needs tools for modelling, searching

and understanding large datasets. Examples include air traffic management using radar measurements

[80, 18, 43], digital signal extraction [25, 53], machine learning [71, 85, 5, 6], statics physics [53, 11]

and genetics [16, 87], just to name a few. In most of these applications, prior knowledge about

the unknown parameters being modelled is available [25]. This knowledge allows us to explain the

observed dataset by Bayesian models, which infer the posterior probability of the unknown variables

given the observed data. Bayesian modelling can represent the uncertainty in the model using the

information of prior distributions.

The Bayesian Theorem [30] follows:

p(θ|y) = p(y|θ)p(θ)
p(y)

(2.1)

where y denotes the data of observed values of a system, and θ denotes some unobserved parameter(s)

for the model of the system. There are four key quantities in the Bayes formula which have their

respective meanings: p(θ) is the prior probability of the parameter θ while p(y|θ) is the likelihood

10
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function of y; the posterior probability distribution of the unknown parameters θ given y is p(θ|y)

and it contains all of the information combining prior knowledge and observations, and the p(y) is

called as normalized constant or marginal likelihood.

With p(θ|y) the Bayesian rule can be applied to make model comparison and prediction. However,

computing the Marginal Likelihoods:

p(y) =

∫

p(y, θ)dθ =

∫

p(y|θ)p(θ)dθ (2.2)

can be computationally intractable for two reasons: 1) it can be a very high dimensional integral;

2) the likelihood term can be complicated. Historically, the need to evaluate integrals was a major

stumbling block for the take up of Bayesian methods. Hence, drawing samples to estimate related

quantities from a given probability distribution is a fundamental task in Bayesian inference as well as

in many other statistical applications [30, 53]. Nevertheless, MCMC is a method to generate random

samples from any posterior probability distribution function in Bayesian Inference, which doesn’t

need to compute the normalizing constant p(y) as we will show later. This is the first reason why

Monte Carlo sampling such as MCMC is popular in Bayesian Inference problems.

Using the samples generated from the posterior probability distribution (2.1) in Baysian model, we

can perform a series of inference tasks, e.g. estimate the unknown parameters of the model for the

given dataset, make predictions of the coming data using the model parameters and compare different

models based on the observed dataset. All these quantities or tasks can be computed from the samples

by evaluating the following integral:

Ep(θ|y)(f) =

∫

f(θ)p(θ|y)dθ (2.3)

where f(θ) is a function which depends on the task of interest. The above integral is thus the ex-

pectation of f(θ) under the Bayesian posterior distribution. For example, to estimate the mean of

the parameters we set f(θ) = θ. To predict the future observations, we set f(θ) = p(y′|θ) where y′

is the coming observations. These integrals can be easily estimated when enough samples from the

posterior distribution p(θ|y) are available (which will be explained in details later), otherwise they
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can be intractable in real applications since both the parameters and the data can have high dimen-

sions, making it impossible or impractical to evaluate the integrals analytically or using numerical

methods [53]. This is the second reason why we need Monte Carlo sampling (MCMC or SMC) in

these problems.

An example application: classifying handwritten digits

Here we use a real application to clearly illustrate how the above Bayesian modelling framework is

applied in practice. MNIST database is a set of handwritten digit images containing a training set of

60,000 examples, and a test set of 10,000 examples. Let x = {x1, ..., xN} be the training digits of

N images and each x can be seen as a vector. Correspondingly, let y = {y1, ..., yN} be their classes.

The goal is to infer a Bayesian model which can predict the class of the digit in the test dataset or the

future digits, taking into account the above training data. Assume that a logistic regression model1

is used to solve a two-class classification problem such as classifying MNIST 7s and 9s [58]. The

probability of its class (y ∈ {−1, 1}) for a input data x (one image) given the parameter values (θ) of

the logistic model, i.e. p(y|x, θ) is equal to the logistic regression likelihood:

L(θ) = p(y|x, θ) = 1

1 + exp{−y · θTx} (2.4)

The probability of the total training data set {x, y} given the parameters of the model θ is:

p(y|x, θ) =
N
∏

i=1

p(yi|xi, θ) =
N
∏

i=1

Li(θ) (2.5)

The aim of Bayesian inference is to estimate the unknown parameters of the model, in order to predict

future data or make model comparison. That is to say, at first we need to compute the posterior

probability distribution p(θ|y, x) of the unknown parameters θ, given the training data {x, y}:

p(θ|y, x) =
p(y|x, θ)p(θ)

p(y)
=

p(θ)
∏N

i=1 Li(θ)

p(y)
(2.6)

1There are many alternative models available in Bayesian Inference [3].



2.2. Markov chain Monte Carlo (MCMC) 13

Using the above posterior distribution, we then are able to predict its class ỹ of the future data x̃:

p(ỹ|x̃) =
∫

p(ỹ|x̃, θ)p(θ|y, x)dθ (2.7)

Note that the prediction in Bayesian inference is not based on a point estimate of the unknown pa-

rameters, but rather on the whole posterior probability distribution. Besides, other tasks (e.g. model

comparison, finding moments of the posterior) can be performed in a similar way.

The key and necessary task in Bayesian problems is how to compute the above integrals, which is far

from straightforward and therefore it requires sampling from the posterior probability distribution to

compute the integral using Monte Carlo integration. The following sections in this chapter will focus

on how MCMC or SMC algorithms tackle the sampling problem as the basis of Bayesian Inference,

in order to estimate these integrals.

2.2 Markov chain Monte Carlo (MCMC)

2.2.1 Basic Principles

MCMC methods can be used to sample from any given probability distribution such as the complex

posterior distributions in the Bayesian problems. This is achieved by relaxing the requirement that the

samples should be independent. The output of an MCMC algorithm is a sequence of samples from

the correctly normalised distribution of the target distribution p(θ). These samples then can be used

to estimate any function of interest in respect of θ, e.g. its mean, variance as mentioned above.

Assuming we need to draw samples from a desired distribution p(θ), a Markov chain generates a

correlated sequence of states: θ0 → θ1 → θ2 → θ3 → θ4 → θ5 · · · . Each step in the sequence is

drawn from a transition operator T (θ → θ′), which gives the probability of moving from state θ to

state θ′. According to the Markov property, the transition probabilities depend only on the current

state θ. A basic requirement for T is that given a sample from p(θ), the marginal distribution over the
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next state in the chain is also the target distribution of interest p:

p(θ′) =
∑

θ

T (θ → θ′)p(θ) for all θ′. (2.8)

This requires irreducibility: the ability to reach any θ where p(θ) > 0 in a finite number of steps, and

aperiodicity: no states are only accessible at certain regularly spaced times [64].

The samples generated from MCMC are typically used to estimate the expectation of the functions

f(θ) we have mentioned in the above section, with respect to the Bayesian posterior or any probability

function p(θ). We rewrite the equation (2.3) as following:

I(f) =

∫

f(θ)p(θ)dθ (2.9)

By collecting Ns samples from MCMC, the above integral I(f) can be approximated by tractable

sums that converge (as the number of samples Ns tends to infinity) to I(f). The following central

limit theorem holds for suitable test functions f [24]:

Ĩ(f) =
1

Ns

Ns
∑

n=1

f(θn) −→ Normal(I(f), σ2
lim(f)) (2.10)

i.e. the sum is an asymptotically unbiased estimator of the integral I(f) [71].

2.2.2 MCMC Algorithms

The simplest way to construct a Markov chain with stationary distribution p(θ) is the Metropolis-

Hastings algorithm (M-H) as shown in Algorithm 1, where q(θ) is the proposal distribution.

In each iteration, a proposed move of the chain is considered, by using the proposal distribution (line

2) to generate the new state, i.e. sample θ′. Then the acceptance ratio a (line 3) is computed by

evaluating the target probabilities and proposal distributions of the proposed sample and the previ-

ous sample. When the Bayesian posterior probability distribution in Equation (2.1) is targeted, the

normalizing constant is cancelled out when computing the ratio a. Therefore, only the likelihood
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Algorithm 1: Metropolis-Hastings MCMC

Input: initial setting θ0, number of samples Ns;

Output: parameter samples θi, i = 1, ..., Ns;

1: for i = 1 to Ns do

2: Propose θ′ ∼ q(θ′|θi−1).

3: Compute a =
p(θ′)q(θi−1|θ′)
p(θi−1)q(θ′|θi−1)

;

4: Set θi = θ′ with probability min(1, a), otherwise θi = θi−1.

5: end for

function and prior distribution need to be evaluated in MCMC construction. Finally the proposed

sample is accepted or rejected with the probability based on the acceptance ratio (line 4).

When a symmetric proposal distribution which satisfies q(θi|θ′) = q(θ′|θi), such as the random walk

proposal, i.e. Gaussian distribution, is used in M-H, the algorithm is named as Metropolis algorithm,

which is shown in Algorithm 2. The benefit of Metropolis algorithm compared to M-H is that the

ratio a reduces to that of the target probabilities (line 3).

Algorithm 2: Metropolis MCMC

Input: initial setting θ0, number of samples Ns;

Output: parameter samples θi, i = 1, ..., Ns;

1: for i = 1 to Ns do

2: Propose θ′ ∼ θi−1+Normal(0, σ2I);

3: Compute a =
p(θ′)

p(θi−1)
;

4: u ∼ Uniform(0,1);

5: if u ≤ a then

6: θi = θ′;
7: else

8: θi = θi−1;

9: end if

10: end for

Metropolis and M-H algorithms are the most fundamental algorithms in MCMC literature. The choice

of the proposal q(·) in M-H is fairly arbitrary, but it should be easy to simulate and evaluate in practice.

There is often a trade-off: we would like “large” jumps (updates), so that the chain explores the state

space, but large jumps usually have low acceptance probability as the posterior density can be highly

peaked. As a rule of thumb, it often sets the spread of q(·) to be as large as possible without leading

to very small acceptance rates, say < 0.1 [40]. For example, when taking q(θ′|θ) = θ + N(0, σ2) in
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Metropolis MCMC, the step size σ is often chosen to obtain the acceptance rate a around 0.23.

2.2.3 MCMC Output Analysis

MCMC generates samples from the probability distribution p(θ) by sequentially constructing a Markov

chain that satisfies (2.10). In practice it is often advisable to discard some initial states of the chain

(throwing away a number of iterations at the beginning of an MCMC run is often called “burn-in”),

in order to reduce the initialisation bias. Although MCMC generates statistically consistent samples

from the target distribution, the samples are correlated due to the use of a Markov chain. This depen-

dency leads to an increase in asymptotic variance σ2
lim of the MCMC estimate in (2.10), compared to

the case where independent samples of the target distribution are used. This loss in efficiency can be

quantified by the Effective Sample Size (ESS) [40] in (2.11):

ESS = Ns/(1 + 2
k

∑

j=1

ρ(j)) (2.11)

where Ns is the number of post burn-in MCMC samples and
∑k

j=1 ρ(j) is the sum of the first k

monotone sample autocorrelations. The ESS estimates the “effective” number of samples, which is

always lower than Ns. Thus the adopted performance metric for MCMC samplers is ESS/sec, which

combines raw sampling speed (runtime) and ESS [40].

Although the MCMC estimates are asymptotically unbiased, in practice the bias can not be avoided

due to running MCMC for a finite number of steps. Besides, the bias is also introduced for some

other reasons: 1) subsampling of the data which uses only a fraction of the whole data to provide a

faster estimation of the likelihood; 2) reduced precision in the evaluation of the likelihood function.

Both approximations aim to increase the speed of MCMC execution, by allowing a small bias in

the stationary distribution of the Markov chain. The ESS metric is often used to compare MCMC

algorithms that simulate from the exact posterior distributions, and it only considers the variance in

the output. However, when bias is introduced in the algorithm due to the need for faster execution,

both the bias and variance are fundamental for understanding and comparing the performance of the

estimator.
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The bias and variance of the estimator Ĩ are defined as

Bias[Ĩ] = E[Ĩ − I] (2.12)

Var[Ĩ] = E[(Ĩ − E[Ĩ])2] (2.13)

The metric that is commonly used in literature to compare different MCMC algorithms is the error in

the estimate of (2.10). This error can be quantified by the risk in the estimate, which is defined as the

mean squared error in the estimate of (2.10), i.e. R = E[(Ĩ− I)2], where the expectation is taken over

multiple simulations of the Markov chain [48]. This risk can be decomposed as the sum of squared

bias and variance:

E[(Ĩ − I)2] = E[(Ĩ − E[Ĩ] + E[Ĩ]− I)2]

= E[(Ĩ − E[Ĩ])2] + (E[Ĩ]− I)2

= Var[Ĩ] + Bias[Ĩ]2

(2.14)

The objective of MCMC in practice that runs for a finite number of samples is to obtain estimates

with lower risk in a given time. The approximate MCMC algorithms often allow a small bias in

the estimates. By doing so, a larger number of samples can be collected in the same amount of

computational time and therefore reduce the variance in the estimate. The design of high performance

MCMC algorithms for big data often comes down to the bias-variance trade-off, and can be studied

using the risk of the estimator.

2.3 Sequential Monte Carlo (SMC)

2.3.1 Principles and Algorithms

Sequential Monte Carlo (SMC) is a valid alternative sampling method to MCMC, which is often

used to compute the posterior distributions in dynamic models with time-varying parameters, while

MCMC methods are used in static (or steady-state) models which are time-invariant. The key idea
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of SMC is to generate a set of samples in the full space and then update them with corresponding

weights. The basis of SMC is Importance Sampling (IS) and Sequential IS (SIS), but SMC operates

in parallel inherently in comparison to SIS. SMC methods are very flexible, easy to implement, par-

allelisable and applicable in very general settings [25]. Over the last few years, SMC has developed

in many application fields such as simulating macromolecules, statistical missing data problem, non-

linear filtering in the state-space model [53]. Several closely related algorithms, under the names of

bootstrap filters and particle filters, have appeared in different research fields.

SMC methods are density estimation algorithms which are commonly used to infer the hidden state

sequence of a state-space model, given a set of observations. Assuming we observe yt at each time

t, the basic problem is to estimate the posterior distribution of “hidden” trajectories p(x0:k|y1:k). The

key idea of SMC is to use a set of weighted samples (particles) {xi
0:k, w

i
k}Ns

i=1 to represent the posterior

p(x0:k|y1:k). That is to say, the posterior is approximated using Ns particles xi
0:k, i = 1, · · · , Ns, with

the corresponding importance weights wi
k at time k (1 6 k 6 t):

p(x0:k|y1:k) :=
Ns
∑

i=1

wi
kδ(x0:k − xi

0:k) (2.15)

where δ function is the Dirac delta function.

SMC methods inherit the idea of IS that samples from the proposal distribution (also named as im-

portance density) q(x0:k|y1:k) instead of the target distribution which is intractable to sample. Accord-

ingly, the unnormalized weights are defined as wi
k =

p(xi
0:k|y1:k)

q(xi
0:k|y1:k)

, and the corresponding normalized

weight is w̃i
k = wi

k/
∑

wi
k. The purpose of SIS is to update the particle xi

k−1 to obtain the next

state xi
k recursively when obtaining a new observation yk. Suppose the proposal distribution can be

decomposed into

q(x0:k|y1:k) = q(xk|x0:k−1, y1:k)q(x0:k−1|y1:k−1) (2.16)

then the weights of the particles can be computed recursively. Namely, the particles are drawn ac-

cording to xi
k ∼ q(xk|x0:k−1, y1:k). According to p(xi

0:k|y1:k) = p(yk|xk)p(xk|xk−1)p(x0:k−1|y1:k−1)
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and (2.16), the weights are updated via

wi
k = wi

k−1

p(yk|xi
k)p(x

i
k|xi

k−1)

q(xi
k|xi

0:k−1, y1:k)
(2.17)

If the proposal distribution is only dependent on the previous particles xk−1 and current observations

yk, the weights can be rewritten as

wi
k = wi

k−1

p(yk|xi
k)p(x

i
k|xi

k−1)

q(xi
k|xi

k−1, yk)
(2.18)

In this condition, we only need to store the particles {xi
k}Ns

i=1 without the need for previous particles

{xi
0:k−1}Ns

i=1 and observations y1:k−1.

The critical disadvantage of SIS is weight degeneracy: the variance of the importance weights is in-

creasing over time. Therefore, after several iterations only one normalized importance weight tends to

be 1 while others tend to be zero which is negligible. The direct consequence is that the vast majority

of particles have little significance because of their too small weights. When some degeneracy crite-

rion is fulfilled, we need to use some resampling techniques, also named as selection, rejuvenation

in some literature. Resampling removes particles of small weights and copies the particles of high

weights according to their respective weights, in order to get a new set of particles. The details on

how to implement resampling for SMC methods will be discussed in Chapter 3.

The general framework of SMC (or particle filter) algorithm is described in Algorithm 3. It mainly

consists of three steps at each time instant: 1) In the Sampling step, the particles are drawn from

the proposal distribution; 2) In the Importance step, the weight of each particle is updated to obtain

the unnormalized weight set; 3) In the Resampling step, firstly the weights are normalized, then the

particles are copied or replaced according to their normalized weight to obtain a new set of particles

with the same number of total particles, and the new particles are weighted equally. Note that the

Sampling and Importance steps are independent operations among the particles, and they can be

implemented in parallel for each particle. However, the resampling step needs a collective operation

among the particles, which imposes some constraints on the step’s parallelization.
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Algorithm 3: Sequential Monte Carlo Framework

Input: initial or prior distribution p(x0), number of particles Ns, observations y1:t;

1: // Initialization

2: for i = 1 to Ns do

3: Sample xi
0 from prior distribution xi

0 ∼ p(x0);
4: end for

5: for k = 1 to t do

6: for i = 1 to Ns do

7: // Sampling Step

8: Sample x̃i
k ∼ q(xk|x0:k−1, y1:k);

9: // Importance Step

10: wi
k = wi

k−1

p(yk|xi
k)p(x

i
k|xi

k−1)

q(xi
k|xi

k−1, yk)
.

11: end for

12: // Resampling Step

13: Normalize the weights;

14: Multiply/Discard particles {x̃i
0:k}Ns

i=1 according to their high/low importance weights wi
k, to

obtain the new set of Ns particles {xi
0:k}Ns

i=1;

15: Set wi
k = 1/Ns for i = 1, ..., Ns.

16: end for

2.3.2 SMC for Nonlinear Filtering

The SMC methods are commonly used to solve nonlinear filtering problems in the dynamic system

such as the state-space model. When used for filtering, SMC methods are also named as particle

filters. Dynamic models are defined by a pair of equations: 1) the observation equation yk = g(xk, vk),

which gives the value of observation under the current unobserved signal (hidden states) with noise

vk; 2) the state/system equation xk = f(xk−1, uk), which can be represented by a Markov process.

The filtering problem consists of estimating the hidden states in dynamical systems when partial

observations are made, and random perturbations (vk and uk in the equations) are present in the

observations as well as in the dynamical system. The objective is to compute posterior distribution of

the states of the model, given some noisy and partial observations.

Considering the nonlinear filtering problems in the dynamic systems, using the observation and state

equations of the system, we can prove that wi
k = wi

k−1

g(yk|xi
k)f(x

i
k|xi

k−1)

q(xi
k|xi

k−1, yk)
. For sake of simplicity, we

often use the prior distribution as the proposal (importance sampling) distribution, i.e. q(x0) = p(x0)

and q(xk|xk−1, yk) = f(xk|xk−1), then the recursion is simply wi
k = wi

k−1g(yk|xi
k). The procedures
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of particle filter/SMC are shown below in Algorithm 4.

Algorithm 4: SMC or Particle Filter (PF) for nonlinear filtering

Input: prior distribution p(x0), number of particles Ns, observations y1:t;

1: Sample xi
0 from prior distribution xi

0 ∼ p(x0) and set k = 1;

2: // Sequential importance sampling Step

3: for i = 1 to Ns do

4: Sample x̃i
k ∼ f(xk|xk−1);

5: Evaluate the importance weight wi
k = g(yk|xi

k).
6: end for

7: // Selection Step

8: Resample with replacement Ns particles {xi
0:k}Ns

i=1 from the set {x̃i
0:k}Ns

i=1 according to the

normalised importance weights;

9: Set k := k + 1; go to Step 2.

2.3.3 Resampling

Resampling is a key stage in SMC methods to prevent the weight degeneracy problem and improve

the estimation of states by concentrating particles into domains of higher posterior probability [25].

Resampling normally consists of two stages: computing the sum of the weights and weights nor-

malization. Whereas most of the steps of SMC like the generation of particles and weights can be

implemented in parallel, the calculation of the sum of weights requires a collective operation among

weights. The main algorithms for resampling include 1) Multinomial resampling; 2) Stratified resam-

pling; 3) Systematic resampling; 4) Metropolis resampling; 5) Rejection resampling. These methods

have been presented and compared by Lawrence M. Murray et al. (2013) with an implementation on

a GPU device [65]. Another problem brought by resampling is Sample Impoverishment, because the

particles with low weights generate less or even no descendants while descendants of that with high

weights increase more and more. The diversity of the particles after resampling weakens, thus it is

insufficient to approximate the posterior density. This becomes more serious when the noise in the

state equation of the system is too small, which results in the worst scenario where the new set of

particles is actually descendants of only one i.e. the most robust particle. There are several methods

(Resampling-Move, Kernel Smoothing etc.) to overcome impoverishment and one of the most sim-

ple and direct way is to utilise a large number of particles, but this often leads to large amounts of
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computations.

2.4 Recent Progress

2.4.1 The trend in SMC

In the previous section the basic particle filter with some general resampling techniques is introduced.

Recently there are numerous work in particle filtering focusing on the improvements of various meth-

ods. They include the design of importance functions, resampling strategies with decreased computa-

tional complexity, methods to overcome the sample impoverishment problem and methods to improve

the particle filter performance.

First, the sample impoverishment problem can be addressed via Regularized particle filter [26] or by

introducing Markov Chain Monte Carlo (MCMC) moves within a particle filter [28, 26]. Regularised

resampling improves the sample diversity by using a continuous kernel approximation instead of a

discrete one. In [76], the resampling step is replaced by Markov Chain Monte Carlo moves using

the Independent Metropolis Hastings Algorithm (IMHA), in order to generate completely new parti-

cles. The computational complexities for the generic, regularized and IMHA particle filters are also

studied in [76], and it is shown that the IMHA resampling method resulted in the least computational

complexity.

Besides, there are a number of methods to improve the performance of the particle filter. Auxiliary

particle filters [26, 68] modify the resampling weights to incorporate measurement information, which

comes down to using an importance function that takes measurement data into account. An alternative

method is the SMC Filtering with the Resample-Move algorithm. It is introduced in [27] which adds

an MCMC move to each particle after resampling to improve the sample diversity.

Furthermore, there are some works which introduce the simplified resampling algorithms to increase

the speed of the particle filter with a small penalty in the performance [42, 86]. Another type of

filters named as Gaussian particle filtering (GPF [49]) completely removes the resampling step. GPFs

operate by approximating the desired densities as Gaussian distributions. Hence only the mean and the
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variance of the densities are propagated recursively in time. At each time, the particles are generated

from a Gaussian distribution, then the mean and covariance of the filtering are updated using the

importance weights of the particles. Therefore there is no need to perform the resampling step.

Another major research direction of the current particle filter (PF) is the real-time PF and distributed

PF, which aim to reduce the computational complexity of the filter and meet the requirement of the

system with time constraints. The adaptive Real-time PF was proposed by C. Kwok etc. in [50], by

dividing sample sets between all available observations and then representing the state as a mixture

of sample sets. The distributed PF with two resampling schemes has been proposed by Bolić etc. in

[15], along with the FPGA architectures.

2.4.2 MCMC for Big Data

Currently, the dataset to make inference in Bayesian statistics has been largely increased and grow-

ing fast not just in size but in complexity of the structures [3]. Running MCMC methods on the big

datasets is often far too computationally intensive to be of any practical use [9], as MCMC algorithms

require at each iteration to sweep over the whole dataset. Besides, the datasets become “big data”

at a much lower dimension than in many frequentist settings due to the repeated computation of the

expensive likelihood function in MCMC simulations. There are two main challenges in the MCMC

methods to be used in the big data applications. Firstly, the likelihood computations over the whole

dataset at each iteration can be very time-consuming for large datasets; Secondly, MCMC methods re-

quire keeping the whole dataset in memory and the latency of accessing data points from the memory

can have a large impact on the system’s performance.

Lots of effort has been recently spent on proposing variants of MCMC algorithms that scale to large

datasets. The simplest method involves parallelizing the likelihood to speed up computations. In this

method, the data are partitioned with each assigned to a processor or core. At each iteration, each

core computes the likelihood for its partition and then passes the result to a central processor to obtain

the sum of the log likelihood. As long as there is no significant communication overhead between

the processes, the speed of the whole algorithm will be increased while still sampling from the true
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posterior distribution.

Recent developments in Markov chain Monte Carlo (MCMC) have been focused on taking advan-

tage of approximations to the target density. These approaches can be broadly classified into two

groups: Consensus Monte Carlo (CMC) and subsampling-based algorithms. The CMC approaches

(also named as Divide-and-conquer approaches, see [74]) divide the initial dataset into batches, run

MCMC on each batch separately and then combine the results to obtain an approximation of the pos-

terior. For these algorithms, the strategy to efficiently combine the batch posterior approximations

is difficult to obtain and it has no theoretical guarantees for convergence [9]. The subsampling ap-

proaches use subsets of data to provide a faster estimation of the likelihood in which only a fraction

of the whole dataset is employed to estimate the likelihood. Thus they often lead to biased estimates.

Other recent work uses a lower bound on the local likelihood factor to simulate from the exact poste-

rior distribution while evaluating only a subset of the data at each iteration. However, the construction

of these functions and the quality of the bound depends on the target distribution. The details of these

algorithms will be discussed in the Section: Related Work.

2.4.3 Specialised Hardware Accelerations

Monte Carlo based algorithms such as MCMC and SMC are usually very computationally intensive

tasks, and their runtimes can easily reach weeks or months in the general-purpose microprocessor, i.e.,

Central Processing Unit (CPU), especially when using large-scale data sets. Parallel computational

devices such as multi-core CPUs, the massively parallel processors of Graphics Processing Units

(GPUs) and Field Programmable Gate Arrays (FPGAs) have been proposed recently to accelerate

these algorithms.

Multi-core CPUs integrates two or more independent actual processing units in one chip while the

multiple cores can run multiple operations or tasks at the same time, increasing the overall speed

for algorithms which are amenable to parallel computing. Besides, running tasks on multi-core CPU

is easier to program compared to other competing platforms. For this reason, multi-core processors

have been widely used across many application domains. However, regarding the MCMC algorithms,
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a multi-core CPU cannot provide enough parallelism like GPUs or FPGAs to satisfy the speed re-

quirements, especially for real time applications. Also, they cannot fully exploit the properties and

characteristics of specific algorithms, e.g. reducing the precision used for likelihood evaluation of

MCMC algorithms, which is a normal technique used in Monte Carlo simulations by a trade-off

between the accuracy and speed.

GPUs are massively parallel processors in one chip, and their highly parallel structure makes them

more efficient than general-purpose CPUs for algorithms where the processing of large blocks of data

is done in parallel. The works for Bayesian researchers on GPU-accelerated Bayesian learning have

been rapidly rising in recent years. However, the programming languages used for GPUs such as

Nvidia’s CUDA need to be optimized carefully in order to maximize the system’s performance. The

optimization process includes the configuration of threads and blocks, balancing the stream multi-

processors (SP) and avoiding bank conflicts etc. These optimizations can be difficult for non-experts

compared to the parallel programming in multi-core CPUs.

FPGAs have proven to be a very promising and competing platform for MCMC and SMC acceler-

ations, due to their capability to implement massively parallel computational units to speed up the

likelihood evaluations [63]. Contemporary FPGAs have massive resources of reconfigurable logic

gates and RAM blocks to implement complex digital computations. The parallelism and reconfigu-

bility properties make FPGAs very suitable platform to map variants of MC-based algorithms and

compare their respective performance improvement. By appropriately dividing the algorithm into

parallel tasks that can be executed at the same time and mapping them into an FPGA, a consider-

able amount of acceleration can be achieved. An important advantage of acceleration of MCMC

algorithms on the FPGA devices is their flexibility to operate in any custom arithmetic precision,

instead of implementing operators in double floating-point. Utilizing reduced precisions in Monte

Carlo algorithms has a positive impact on both memory- and computation- bound problems.

When running MCMC methods in GPUs and FPGAs platforms, relaxing the requirement for high

precision allows the MCMC algorithms to execute faster and with less energy, compared to double

floating-point design in multi-core CPUs. By utilising low precision (custom floating point) datapaths,

it consumes fewer resources and leads to a higher degree of parallelism compared to full precision
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(double floating point) datapaths for a fixed area resource. As such, recent works that target GPUs

and FPGAs have been investigating the utilisation of custom arithmetic precision for the estimation

of the likelihood. However, departing from double precision arithmetic for likelihood evaluation

leads to biased estimates with respect to systems that employ double precision arithmetic throughout

the computations, because of the approximations in each likelihood term. When exact estimates are

required, the utilisation of high precision data-paths with lower performance is unavoidable.

2.5 The Approach of this Thesis

Distributed and parallel implementations of the Particle Filter or SMC algorithms are needed in order

to achieve minimum execution time to allow these algorithms practicable for modern SMC appli-

cations. Therefore, in this thesis parallel resampling algorithms and architectures are studied and

proposed to allow parallel implementation of SMC algorithms in FPGAs. This is achieved by two

ways: 1) parallel architectures for two traditional resampling algorithms (Residual Systematic Resam-

pling and Systematic Resampling) are proposed using the adder tree and recursive doubling methods

to compute the sum and cumulative sum of the weights of particles respectively; 2) two Monte Carlo

resampling (Metropolis and Rejection) algorithms are presented while their corresponding parallel

architectures are proposed.

In order to allow faster execution of MCMC methods, multi-core implementations of the likelihood

computation in MCMC construction have been studied recently. This thesis builds upon the approxi-

mation models of the likelihood terms, which builds a lower bound on the real likelihood terms based

on their respective reduced precision values and then simulates MCMC while evaluating the likeli-

hood mostly on reduced precisions. In such a way, more parallelism of the likelihood computation

can be achieved for a given resource in the computational devices such as FPGAs. This method can

guarantee unbiased estimates if we make sure that the reduced precision values are lower bounds on

the real values (double floating point values). In addition, MCMC methods can be accelerated by

allowing a small bias in the estimates and utilizing a fraction of the data points to evaluate the likeli-

hood at each iteration, i.e. data subsampling based MCMC algorithms. This thesis proposes the use
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of unequal probability sampling in the data subsampling based MCMC algorithms, in order to expose

the performance of the memory sub-system to the MCMC algorithm and thus guide the sampling

process, leading to a reduction in the access to memories which have large latency.

The main objective of this thesis is to develop hardware architectures that allow for high speed SMC

and MCMC algorithms. It focuses on how to modify the existing algorithms to be mapped on FPGAs

with the proposed and tailored FPGA architectures. Although the modified algorithms and proposed

architectures are devoted to FPGAs, the ideas of how to utilize parallelization can be applicable for

other parallel computing platforms such as GPUs, which will be discussed in Section 6.2.

2.6 Related Work

In this section we review the existing works in literature which are closely related to the work pre-

sented in this thesis. These works include SMC acceleration using parallel hardware such as GPUs

and FPGAs, MCMC algorithmic adaptations and current MCMC methods for large dataset. The pre-

vious work on SMC accelerations is particularly focused on the parallel and/or optimized resampling

algorithms and architectures in hardware. The literature on MCMC to tackle the time-consuming

likelihood computations includes the data subsampling based MCMC algorithms and MCMC accel-

erations in FPGAs and GPUs using custom precision techniques and other optimization methods. At

the end of each section, we provide comparisons and comments on how the work in the thesis differs

and outperforms previous work in the reviewed literature.

2.6.1 Resampling for SMC methods in GPUs and FPGAs

There is exhaustive literature on parallelization of particle filters (SMC methods) and resampling

using GPUs and FPGAs. A large number of works on resampling is trying to simplify the resampling

step by trading the performance for speed improvement, instead of improving the resource utilization

in FPGAs or GPUs to increase the speed. Besides, a full comparison on how to parallelize these

resampling algorithms has never been done.
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FPGA-based implementations of parallel particle filters are presented in [15, 14, 75] and more recent

work is done in [41, 42]. [15] proposes a new form of systematic resampling (which is named as

residual systematic resampling, RSR) algorithm and ways in which this algorithm can be parallelized.

The authors also propose two efficient distributed implementations of the particle filters on FPGA. The

proposed RSR algorithm can be easily pipelined in hardware implementation and applied in the two

proposed distributed particle filter architectures. However, a sum of the weights of the particles needs

to be performed for the RSR algorithm and this operation can become the computation bottleneck in

the proposed architectures. Both [14] and [42] introduce the simplified partial resampling algorithms

which perform resampling only in part of the particles by using a simple threshold-based scheme.

In the partial resampling proposed in [14], the particles are grouped into two separate classes: one

composed of particles with moderate weights and another with dominating and negligible weights.

The particles with moderate weights are not resampled and unchanged, whereas the negligible and

dominating particles are resampled. In the simplified resampling algorithm proposed in [42], the

weights of each particle are compared with a threshold T . The particles with weights less than T

are discarded and replaced by the particles with weights greater than T . Both resampling algorithms

reduce the execution time because a part of the particles is not resampled at all, but these algorithms

negatively affect the resampling quality and the overall performance of the filter. [75] proposed fully

pipelined distributed implementation of particle filter using the RSR algorithm proposed in [15] and

they use some additional memory block to handle the resampling routing between the distributed

processing elements. [41] proposed an improved residual resampling algorithm for non-normalized

weights. However, this algorithm assumes that the sum of the weights is known in advance.

GPU-based implementations of resampling have been presented in [45, 35, 65]. Both [45] and [35]

employ the traditional systematic resampling (SR) but using different parallel implementations of the

cumulative sum of the weights. [35] use a forward adder tree to calculate the sum of the weights; then

a backward adder tree is used to construct the cumulative sum of the weights. The authors also provide

information on the relative time spent in the different steps of particle filter, in the GPU and CPU

implementation respectively. The results show that the major part of the time is spent on resampling in

the GPU implementation, whereas the particle update is a dominant step in the CPU implementation.

[45] propose a load balanced particle replication algorithm for systematic resampling, which gives
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almost constant execution speed in a GPU device. All these works we have mentioned are based on the

traditional systematic resampling and therefore they need to calculate the sum or the cumulative sum

of the weights, which consumes lots of computational resources in FPGAs and GPUs. In contrast,

[65] proposes two novel resampling algorithms (Metropolis and Rejection resampling) which are

more readily parallelised in hardware. The authors showed that these alternative approaches perform

significantly faster on the GPU than the commonly used systematic resampling algorithm, due to

their avoidance of collective operations across all weights, which better suits the GPU architecture.

However, the main disadvantage for these two algorithms when implemented on a GPU is that they

cause warp divergence [65][46] due to branch statements, or different trip counts of loops. Besides,

the execution times of these two algorithms are sensitive to the variance in weights. That is to say,

Rejection resampling may suffer from frequent rejections and Metropolis resampling from possibly

large convergence times.

The work we present in Chapter 3 of the thesis is the first to propose parallel FPGA architectures

for Systematic, Metropolis and Rejection resampling. We also propose an improved FPGA imple-

mentation of the Residual Systematic Resampling (RSR). It is the first to include a comparison of the

main state-of-the-art resampling algorithms when implemented on FPGAs, highlighting their advan-

tages and demonstrating how each scales with the number of particles and the variance in weights of

particles. Finally, it also provides a comparison on their execution times on FPGAs, GPUs and CPUs.

2.6.2 MCMC in Algorithm Adaptation

For problems with large data-set, the evaluation of the likelihoods dominates the computational cost

of MCMC algorithms. The increased computational time lies in the complete scan of the data at each

iteration through likelihood evaluations. There are several major methods to overcome computational

problems brought by the big data. A detailed review of current MCMC methods used for large datasets

can be found in [9].

Speeding up likelihood computations

The simplest method is to speed up the required computations by parallelising the likelihood evalua-
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tions exploiting the data independence property. [21] implemented Bayesian models draw on MCMC

simulation using parallel computations by CUDA implementations in GPUs which reduced signif-

icantly the runtime processing of MCMC simulations. Other approaches can be broadly classified

into two groups: Consensus Monte Carlo (CMC) and subsampling-based algorithms. The CMC ap-

proaches [74] divide the initial dataset into batches, run MCMC on each batch separately and then

combine the results to obtain an approximation of the target posterior distribution. [44] propose to

combine the batch posterior approximations using Gaussian approximations or importance sampling.

However, the strategy to efficiently combine the batch posterior approximations is difficult to obtain

and it has no theoretical guarantees for convergence [9].

Many recent works are based on subsampling methods. These approaches use subsets of data to

provide a faster estimation of the likelihood in which only a fraction of the whole data set is employed

to estimate the full likelihood. [48] introduce an approximate Metropolis-Hasting rule with controlled

bias that allows accepting or rejecting samples with high confidence using only a fraction of the data.

[8] propose an adaptive subsampling technique which is an alternative approximate implementation

to [48] that only requires evaluating the likelihood of a random subset of the data. This algorithm

is a more robust approach compared to [48] and can provide estimates under a user-controlled error.

However, both algorithms in [48] and [8] are approximate, and they rely on a bound for the difference

between the log-likelihood contributions at the proposed and current sample, and that of the control

variates [70]. [69] propose a subsampling of the data based on the contribution on each likelihood

term, which by a bias-correction can be turned into an unbiased estimator of the likelihood function.

This algorithm needs to build a surrogate of the true likelihood, using either a Gaussian process or

a spline approximation. As such, it requires computing the surrogate likelihood for all data before

running the subsampling step, thus introducing another costly requirement. [58] present an auxiliary

variable MCMC algorithm that also queries the likelihoods of a small subset of the data but achieves

exact posterior distribution. The fundamental assumption of this approach is that each product term

in the likelihood can be approximated from below by a function easier to compute. The drawback of

this method lies in the construction of these functions and the quality of the bound depends on the

target distribution. Furthermore, the authors have demonstrated that an acceleration is only achieved

when the approximation is tight enough.
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Data transfer problem in MCMC for big data

Most methods such as parallelizing likelihood and data subsampling address the problem of speeding

up the likelihood computations. However the existing work doesn’t consider the properties of memory

hierarchies in modern computational systems, but treats the memory as one monolithic storage space.

As such, in current design of MCMC applications for big data with high performance, normally the

memory issue other than the likelihood computation becomes the dominant bottleneck, and often

impacts significantly the system’s performance of the whole algorithm.

A subsampling approach that addresses the memory issue is proposed in [31], which applied random

projection techniques to Bayesian regression of large dataset. The proposed algorithm used the fixed

projected dataset, which is built by a single multiplication by a random matrix, to construct MCMC

simulations. However, the authors in [10] show that the accuracy guarantee of [31] is too weak for

some important Bayesian inference tasks, and usually the complete random sampling does not work

well in MCMC methods [67].

The thesis proposes a communication-aware MCMC framework that takes into account the underlying

performance of the memory subsystem during the sampling process in Chapter 5, leading to faster

execution times. The proposed algorithm addresses exactly the memory-bound problem in the MCMC

construction, opening the way for applying the MCMC algorithm to large scale datasets.

2.6.3 MCMC methods in GPUs and FPGAs

Previous works on accelerating MCMC methods on GPUs are very limited. The GPU implementa-

tions are mainly focused on parallelizing the likelihood computations [21]. Most FPGA-based Monte

Carlo designs exploit the reduced precision data-paths to allow for more parallelism for the likelihood

computations. Previous works on FPGAs using mixed precision can be found in [83, 20, 61, 63, 62].

[83] propose an FPGA-based architecture for Monte Carlo simulations that monitors and configures

the precision used in the system during run-time. In [83] high- and low- precision simulations are

compared using the Kolmogorov-Smirnoff metric and the precision is adapted so that the distance

between the distribution of the samples from high precision module and low precision module is
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smaller than a threshold. However, placing such a threshold is empirical and does not constrain the

bias. [20] proposes a mixed precision methodology for Monte Carlo simulation in reconfigurable

accelerator systems. They use an auxiliary mixed precision run to correct the bias in the output esti-

mates. However, their method requires knowledge of the function of interest during the design of the

system, and as such the generated samples cannot be used for other estimates. The authors in [61]

propose the use of custom precision arithmetic for population-based MCMC methods where multiple

parallel chains are used to improve the mixing properties of the chain. However, [61] can only be

applied to the MCMC algorithms which use multiple parallel chains. [63] propose a framework for

identifying an optimum custom precision number representation in the MCMC architecture, targeting

a specific bias-variance ratio at the output. Furthermore, [62] propose an optimised FPGA architec-

ture for Population-based MCMC. Besides the introduced error and bias correction in the outputs of

the system proposed previously, the biggest problem for all previous works using custom or mixed

precision on FPGAs is that it’s hard to guarantee which precision to be utilised that would lead to

sufficiently accurate result defined by the user.

In this work we also focus on accelerating the likelihood evaluation part of MCMC by utilizing the

custom precision technique in FPGA design, but we arrive at a method in which the samples are

generated from true posterior distribution. Here we apply the underlying idea in [58] to the custom

precision support on FPGAs, in order to reduce the computation time as well as achieve an unbiased

estimator. Instead of using approximate functions for the likelihood terms as in [58], we use custom

precision approximations and we show how we can guarantee that these approximations are a lower

bound to the true likelihood term (which is a requirement for [58] to generate accurate samples from

the posterior distribution). To the best of our knowledge, this is the first work to produce and guarantee

an unbiased MCMC estimation using mixed precision design on FPGAs. Also it is the first work to

present the combination of the ideas on custom precision design and data subsampling in MCMC for

big data applications, which results in an unbiased MCMC accelerator.
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2.7 Summary

This Chapter provides the basic concepts of the Bayesian Inference, introduces the SMC and MCMC

algorithms and principles and highlights their current research directions especially the hardware

accelerations.

From the literature review, the parallelization method is only proposed for the systematic resampling

algorithm, while the two Monte Carlo resampling algorithms are only implemented in CPU and GPU.

FPGA-based architectures for these two algorithms have never been done. Besides, a full comparison

of these state-of-the-art resampling algorithms in CPUs, GPUs and FPGAs has never been done.

Although there is a significant amount of work on MCMC acceleration recently, they are limited

because of a few reasons: 1) the approximate MCMC algorithms such as data subsampling methods

suffer from the biased estimates or another costly computations for bias correction; 2) research that

uses FPGAs suffers from the memory bandwidth problem and also the biased estimates when using

custom precision technique.

The following chapters focus on the acceleration of these algorithms using FPGAs. We show how

these algorithms can be adapted and more suitable for FPGA implementations compared to the ex-

isting work on CPUs and GPUs. Novel algorithms are also proposed to fully utilize the resources in

FPGA to minimum the execution time.
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Parallel Resampling Algorithms and

Architectures for SMC Methods on FPGAs

3.1 Introduction

Particle Filters (PFs), also known as Sequential Monte Carlo (SMC) methods, are density estimation

algorithms which are commonly used to infer the hidden state sequence of a state-space model, given

a set of observations. They can efficiently handle non-linearity and/or non-Gaussianity in the model

and they exhibit great robustness and accuracy. They have thus been widely used in target tracking,

digital signal extraction, air traffic management and robot localization [25, 53, 19, 18], among other

applications. Although powerful, PFs are also computationally intensive, which becomes a major

issue in its application to complex models, especially with real-time constraints [25].

PFs use a set of N particles (i.e. samples) to estimate the density of the state at each time step t.

The most common PF algorithm (bootstrap filter) is shown in Algorithm 5. For each time t and for

each particle i, the following steps are performed. In the sampling step, each particle’s state xi
t (which

is a vector) is propagated to the next time step using the transition equation of the model. In the

importance computation step, the likelihood of each particle given the observation yt at the present

time step is evaluated. This is the weight of the particle. Based on the values of the weights, a new set

of particles is generated in the resampling step. In this step, particles with large weights are replicated

34
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several times while those with small weights are discarded. Finally, the resampled particles are used

to estimate the new state.

Algorithm 5: Particle Filter Algorithm

for t = 1, . . . , T
for each i ∈ {1, . . . , N}

1. Sampling: xi
t ∼ p(xt|xi

t−1);

2. Importance computation: wi
t = p(yt|xi

t);

3. Resampling:{x̃i
t} ∼ {xi

t, w
i
t};

4. Output calculation: Calculate desired estimate of the state x̂t =
∑N

i=1 x̃i
t/N .

The sampling and importance computation steps are independent operations for each particle, so

they are inherently parallel and straightforward to implement in parallel devices such as GPUs and

FPGAs. Resampling however requires a collective operation (either a sum or a cumulative sum of

all the weights), which makes it the most challenging step to parallelize. Moreover, resampling is

crucial for the stability of the PF because it prevents the filter from weight degeneracy and improves

the estimation of states by concentrating particles into domains of higher posterior probability [25].

However, parallelizability of the filter is affected by the resampling step, and the major part of time in

the GPU implementation of PF is spent on resampling, where the time spent on the other three steps

become almost negligible when the number of particles increases considerably [35]. Resampling

gives a serial time complexity of O(Nlog2N) for the multinomial resampling compared to O(N) for

the stratified and systematic resampling [39], where N is the number of particles. [35] analysed the

time spent on each part of PF in the GPU implementation, which is shown in Figure 3.1. The results

demonstrated that the major part of the time is spent on resampling in the GPU, especially when the

number of particles (N ) increased. Therefore, resampling is a crucial and computationally expensive

part in PF [25]. It becomes a bottleneck in parallel hardware implementations of PF and there is much

to gain in the speedup if this step can be accelerated.

This Chapter focuses on four state-of-the-art resampling algorithms: Residual Systematic Resampling

(RSR), Improved Systematic Resampling (ISR), Metropolis Resampling and Rejection Resampling

based on recent literature. Novel parallel architectures are proposed for each algorithm. RSR and
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Figure 3.1: Time percentage spent on each step in PF by Gustaf Hendeby’s work in GPU implementation in

2010 [35].

ISR use a parallel SUM and CUMSUM (cumulative sum or pre-fix sum) operation respectively fol-

lowed by parallel and pipelined offspring evaluators. On the other hand, Metropolis and Rejection

architectures do not require collective operations, but the parallel blocks of them must have global

access to all the weights. Therefore, memory access strategies which implement a simplified Random

Permutation Generator (RPG) are proposed for the parallel Metropolis and Rejection architectures.

The main contributions of this work are:

• The introduction of novel parallel architectures which map four resampling algorithms to an

FPGA. This is the first work that presents parallel FPGA architectures for the state-of-the-art

resampling algorithms and compares their execution time with that of GPU implementations;

• Memory access strategies for parallel Metropolis and Rejection architectures. An optimized

RPG circuit which uses a cyclic shifter is proposed to randomly forward weights from the

memory to the parallel processing blocks and guarantee that all blocks have global access to

the weights memory;

• A modified version of SR, which we call Improved Systematic Resampling (ISR), is introduced

to save resources and achieve further speedup in hardware. Moreover, the advantages of each

algorithm for parallel implementation are summarized.
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3.2 Resampling Principles

The resampling step in PF aims to regenerate the particle population by removing particles with small

weights and replicating particles with large weights. It can be considered as a randomised algorithm

which inputs the number of particles (N ) and the weights of all particles (wi, i = 1, . . . , N ). The

weights can be normalized or non-normalized as the normalization can be performed either in the

step of importance computation or resampling. Here, the weights are assumed to be non-normalized.

The output of the algorithm is the number of offsprings of each old particle (oi, i = 1, . . . , N ), i.e.

how many times particle i is replicated. Alternatively, the output can be the index of the ancestor of

each particle of the new particle population (ai, i = 1, . . . , N ). In Table 3.1, the two different types

of outputs of resampling for the particles with normalized weights are shown from a simple example.

As we shall see, each resampling algorithm naturally takes one form or the other, and it is easy to

convert between the two forms.

Table 3.1: Two types of the outputs after resampling: (a) index of the replicated particles (b) replication factors

or offsprings of the particles

Particles Weights (a) index (b) offsprings

1 w1 = 1/2 1 2

2 w2 = 1/3 1 1

3 w3 = 1/12 2 1

4 w4 = 1/12 3 0

The principle of resampling is to make sure the offspring vector satisfy the following two conditions

(3.1) and (3.2) [23]:
N
∑

i=1

oi = N (3.1)

E(oi) = Nwi/sum(w) (3.2)

The first equation ensures that the total number of the new resampled particles keeps unchanged. The

second equation shows that the expected value of the number of replications of a particle should be

proportionate to the value of its weight. The resampling quality is often quantified by how much the

algorithm’s result deviates from the expected value of equation (3.2). This is given by the relative

root-mean-square error (RMSE) (3.3), computed from the offspring vector and weight vector [47].
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RMSE = sqrt(
1

N

N
∑

i=1

(
oi
N

− wi

sum(w)
)2) (3.3)

3.3 Resampling Algorithms

This section presents the four resampling algorithms, followed by a summary and comparison of these

algorithms at the end. The improved systematic resampling (ISR) is proposed here to achieve further

speedup in hardware implementation.

3.3.1 Residual Systematic Resampling (RSR)

The standard resampling algorithms (e.g. Multinomial, Stratified, Systematic resampling) are based

on multinomial selection of oi, which is equivalent to selecting with replacement N particles x̃j

from the original set of particles {xi} where P (x̃j = xi) = wi, i, j = 1, . . . , N . Among these

methods, Systematic Resampling (SR) is favourable over the others considering resampling quality

and computational complexity [39] and thus it is the method of choice for most implementations,

including those in FPGAs and GPUs. The original SR proposed in [39] has non-deterministic runtime

which depends on the distribution of the weights, as it needs to precompute a cumulative sum of the

weights and do a binary search. [15] proposed residual systematic resampling (RSR) as an alternative

form in order to introduce deterministic runtime, and its pseudocode is given in Algorithm 6. In RSR,

the number of offsprings of a specific particle is determined in the for loop by truncating the product

of the number of particles and the normalized weight using uniform random numbers. The random

number is updated at each iteration as shown in line 6 of the pseudocode. As a result, the algorithm

has a deterministic processing time. However the data dependency inside the resampling loop limits

its potential parallelization.
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Algorithm 6: Residual Systematic Resampling

o = RSR(N,w) : w ∈ R
N → R

N

//non-normalized weights to replication factors

1: sum = Sum(w);
2: u ∼ U [0, 1);
3: for j = 1 to N do

4: temp = Nwj/sum− u;

5: oj = btempc+ 1;

6: u = oj − temp;

7: end for

3.3.2 Improved Systematic Resampling (ISR)

Recently, [65] presented another form of systematic resampling, which delivers the cumulative off-

spring vector i.e. Oj as shown in Algorithm 7. This algorithm first calculates the cumulative sum

of the weights, then truncates the product of the number of particles and the cumulative weight.

As a result, it has no data dependency inside the resampling loop. As SR replicates the particle i,

oj = bNwjc + 0/1 times for any values of u in [0, 1), the expected number of replications is consis-

tent with (3.2). In this subsection, an improved SR algorithm (ISR), shown also in Algorithm 7, is

introduced to simplify the calculation of the systematic outputs using u = 0. This proposed modifi-

cation removes the need to generate a uniform random number for each execution of SR, which will

translate in resource savings in the FPGA, as will be shown in the next section. However, by setting

u = 0, the resampling quality is slightly affected, which will be discussed in the Section 3.5.

Algorithm 7: Improved Systematic Resampling

o = ISR(N,w) : w ∈ R
N → R

N

//non-normalized weights to replication factors

1: cw = cumsum(w);
2: sum = cwN ,O0 = 0;

3: for j = 1 to N do

4: Oj = bNcwj/sumc; //Oj = bNcwj/sum+ uc in [65]

5: oj = Oj −Oj−1;

6: end for
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3.3.3 Metropolis and Rejection Resampling

[65] proposes two novel resampling algorithms which are more readily parallelized in hardware. The

pseudocode of the two algorithms is presented in Algorithm 8 and Algorithm 9. Neither algorithm

requires a collective sum or cumsum operation. Metropolis resampling is based on the well-known

Metropolis algorithm and it requires the ratio between two weights at each step of the inner loop.

After B steps for each weight (outer loop), the algorithm is assumed to have converged to the correct

particle distribution implied by (3.2) (for more details see [65]). The selection of B is a trade-off

between speed and accuracy, with smaller B achieving faster execution time but a larger bias is

introduced in the resampling results. [65] provides guidance as to the selection of B by assuming

the upper bound sup w on non-normalized weights and the expected weight value are known. One

can always use large B (resulting in increased execution time) to improve the resampling quality.

However, this algorithm still produces a biased sample as B must be finite.

Algorithm 8: Metropolis Resampling

a = Metro(N,w) : w ∈ R
N → R

N

//non-normalized weights to ancestor indexes

1: for i = 1 to N do

2: k = i;
3: for n = 1 to B do

4: u ∼ U [0, 1];
5: j ∼ U{1, . . . , N};

6: if u ≤ wj/wk then

7: k = j;

8: end if

9: end for

10: ai = k;

11: end for

Compared to Metropolis resampling, Rejection resampling is easier to configure and unbiased. Rejec-

tion resampling is based on the rejection sampling algorithm. The idea of this method is to propose

ancestor indexes until an index is accepted based on the ratio in line 4. As the sup w operated in

the while conditional is a constant in each resampling step, one speed improvement can be achieved

by setting sup w = 1 in the importance computation step without introducing any extra calculations.

Hence no division needs to be performed in the resampling step. Compared to Metropolis resampling,
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Rejection resampling is easier to configure and unbiased but it has a non-deterministic runtime, since

the number of while loop iterations in line 4 are unknown.

Algorithm 9: Rejection Resampling

a = Rej(N,w) : w ∈ R
N → R

N

//non-normalized weights to ancestor indexes

1: for i = 1 to N do

2: j = i;
3: u ∼ U [0, 1];
4: while u > wj/sup w do

5: j ∼ U{1, . . . , N};

6: u ∼ U [0, 1];
7: end while

8: ai = j;

9: end for

3.3.4 Algorithm Summary

Both RSR and ISR require a collective operation over the weights, specifically sum and cumulative

sum, which makes them less readily parallelised in hardware. ISR also needs an additional memory

space to store the cumulative weights. Another disadvantage of these two algorithms is that the

collective operation can exhibit numerical instability for large N or large weight variance [65]. This

is more observable when using single-precision arithmetic instead of double-precision arithmetic.

On the other hand, Metropolis and Rejection resampling can be parallelized more easily, due to the

lack of collective operations (the outer loop iteration of both algorithms are completely independent).

However, Metropolis results in increased complexity and a biased result, while Rejection’s runtime

is non-deterministic. FPGAs are more suitable than GPUs to implement Metropolis and Rejection

algorithms, due to the GPU divergence problem mentioned above. Note that the output of the four

algorithms takes one of the two forms described in Section 3.2. Even though the form of the output

will affect the overall PF’s architecture, this is out of the scope of this Chapter which focuses solely

on the resampling stage.
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3.4 Proposed Resampling Architectures

In this Section, we propose optimized FPGA architectures for all four algorithms described in the

previous section. First, the parallel architecture of RSR is presented based on [7], and novel parallel

architectures are proposed for the other three algorithms. All architectures parallelize resampling by

splitting the particles into M sub-sets of N/M particles each and assigning them to M parallel pro-

cessing blocks. The form of the processing block differs between architectures. Parallel architectures

to implement sum and cumulative sum on FPGAs are also introduced for RSR and ISR algorithms

respectively. Furthermore, in order to satisfy that the multiple resampling blocks for Metropolis and

Rejection architectures have global access to the weights memory at each iteration, an optimized

Random Permutation Generator (RPG) is proposed to connect the weights memory and resampling

blocks.

3.4.1 Parallel Architectures for RSR and ISR

To achieve parallel architectures for the RSR algorithm, we first propose parallel sum computations

for streaming weight sets as inputs. Following this step and based on [7], we propose the method to

remove the data dependency inside the RSR resampling loop by utilizing the intermediate results from

the previous parallel computation of sum. To parallelize ISR algorithm, we first propose parallel ar-

chitecture to compute the cumulative sum of the streaming weight sets, then the parallel computation

of the cumulative offsprings is straightforward as it has no data dependency.

The RSR and ISR architectures are shown in Figure 3.2 and 3.3 respectively. The total N weights

are split into M sub-sets and assigned to M parallel processing blocks to process N/M weight by

each block. The M weight sets are stored in one memory unit where each memory address stores

M weights (one from each set). This allows us to read M weights in the same cycle. Firstly RSR

calculates the sum of the weights while ISR calculates the cumulative sum of weights and stores them

in the cumulative weights memory. After the collective operations, M weights are assigned to the

parallel RSR blocks and M cumulative weights to ISR blocks at each time for offspring evaluation.

Following the evaluation, the offspring results are stored in the respective output memory.
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Figure 3.3: Parallel architecture for the proposed ISR resampling

RSR and ISR algorithms need a first step that computes the sum or cumulative sum of weights re-

spectively. Although the sequential computation is straightforward, its parallelization in hardware is

challenging due to the output data dependency. Parallel sum (SUM) and cumulative sum (CUMSUM)

algorithms are described in [34] and shown in Figure 3.4. The sum algorithm is an adder tree. With

respect to CUMSUM, recursive doubling is a naive parallel scan and needs many data exchange op-

erations. The three-step recursive doubling algorithm is more suitable for a large number of inputs,

as it consumes fewer resources (i.e. adders) compared to the recursive doubling method.

The proposed FPGA implementations for the two collective operations are shown in Figure 3.5.

Please note here we need to compute the sum or cumulative sum for streaming weight sets and this

is the reason that an accumulator is placed in the end of the block in Figure 3.5. In Figure 3.4, only
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Figure 3.4: The parallel sum and cumsum algorithms in the form of block diagrams (wi−j =
∑j

i w): (a)

Tree SUM; (b) Recursive doubling CUMSUM for a small number of input; (c) Three-step recursive doubling

CUMSUM for a large number of inputs.

one weight set as parallel input is assumed. Both architectures in Figure 3.5 are based on using a

large amount of parallel pipelined adders and feeding them with a new set of weights at each cycle.

For both architectures, an accumulator is placed after the main datapath in order to accumulate the

values of each weight set. Note that the SUM and CUMSUM can have different parallel degrees as

the offspring evaluation of RSR and ISR. We use M1 to represent the parallel degree of both SUM

and CUMSUM. For CUMSUM, M1 − 1 uniform adders are also necessary to produce the M1 out-

puts (cumulative sums) for each weight set, which is illustrated in Figure 3.5. The execution time (in

clock cycles) for SUM and CUMSUM can be reduced from N +LSUM and N +LCSUM cycles for a

sequential implementation to N/M1 + LSUM and N/M1 + LCSUM cycles respectively, where LSUM

and LCSUM are the latency of the SUM and CUMSUM datapaths respectively.

(a) (b)

Tree SUM

…...

Three-step recursive 

doubling CUMSUM

Uniform add

…...

…...

…...

Figure 3.5: Block diagram of the parallel sum and cumsum algorithms for streaming weight sets as inputs on

FPGAs: (a) Parallel SUM; (b) Parallel CUMSUM.
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Following the collective operations, both RSR and ISR have to evaluate the number of offsprings of

each particle (for loop in Algorithm 6 and 7). These operations can also be parallelized. In contrast

to ISR, RSR offspring evaluation cannot be straightforwardly implemented in parallel. [7] proposed

a way to parallelize RSR by calculating the initial random number used for each block in advance.

Assuming M offspring evaluation blocks are implemented for RSR and each block processes N/M

weights independently, the random number used for each block is generated using the algorithm in

Algorithm 10 which is represented as Ui = f(U) in Figure 3.2. The algorithm needs to compute the

sum of the weights processed by each block, which is achieved from the pipelined SUM algorithm in

Figure 3.5.

The proposed ISR resampling algorithm is more readily parallelized compared to RSR, due to lack of

data dependency between its loop iterations. The drawback is that one additional memory is needed

to store the cumulative sum of the weights. Another difference between ISR and RSR is the absence

of random number generator (RNG) in the proposed ISR architecture as shown in Figure 3.3.

Algorithm 10: Parallel computation of random numbers used for parallel RSR resampling ar-

chitecture

1: u1 ∼ U [0, 1];
2: sum = sum(w);
3: for i = 2 to M do

4: Si =
∑M(i−1)

j=1 wj;

5: ri = N(Si − u1)/sum;

6: ui = u1 + drie −NSi/sum;

7: end for

3.4.2 Parallel Architectures for Metropolis and Rejection with Memory Access

Strategies

The Metropolis and Rejection resampling algorithms can be paralellized more easily due to the lack of

collective operations between weights. Nevertheless, the memory access pattern of the two algorithms

is different compared to that described in the previous section. While each RSR and ISR offspring

evaluation block works on a sub-set of the weights independently, each Metropolis and Rejection

resampling block requires global and randomized access to all the weights. This Section introduces
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1) novel parallel architectures for Metropolis and Rejection resampling; 2) memory access strategies

using the proposed Random Permutation Generator (RPG).

Weights 

Memory Simplified RPG

Metro/Rej 

Block 1

Metro/Rej

Block 2

Metro/Rej

Block M

. . . .

output 

a

Memory

RNG

weights

Figure 3.6: Parallel architecture for Metropolis and Rejection resampling

The parallel architectures for Metropolis and Rejection resampling based on the proposed memory

access strategy are presented in Figure 3.6. The weights are stored in the same way as described for

RSR and ISR. Here, an RPG circuit is introduced to handle the communication between the weights

memory and the Metropolis or Rejection resampling blocks. This RPG circuit has to guarantee that

each block has random and global access to all the weights, i.e. every block can choose any weight

with equal probability (uniform sampling). At each cycle, M weights are read from the memory

and they pass through this circuit which, by using the outputs of an RPG, randomly allocates the M

weights to the parallel blocks. Then the indexes of the ancestors of the resampled particles are stored

in the respective output memory.

The commonly used algorithm for an M -element RPG is the Knuth Shuffle which is shown in Al-

gorithm 11, and its FPGA implementation is presented in [17]. The Knuth Shuffle RPG proceeds

through M − 1 steps and each step has operators including RNG, remainder and swap functions.

As the purpose of the RPG here is to randomly distribute the weights to each block and complete

permutations implementation is not necessary, we propose a simplified circuit with only one step

using a cyclic shifter and Mlog2M bits RNG to implement an RPG in FPGA. The optimized RPG

algorithm to be implemented in FPGA is described in Algorithm 12. It treats the permutation from 0
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Algorithm 11: Knuth Shuffle RPG

1: Initialization: Q = {1, . . . ,M};

2: for n = M to 2 do

3: j ∼ U{1, . . . ,M};

4: i = j%n+ 1;

5: swap(Qn, Qi);
6: end for

to M − 1 as one value, and then shifts this binary value by some random number of bits. Finally, the

value after cyclic shifting can be regarded as one random permutation of M -element.

Algorithm 12: simplified RPG in FPGAs

1: Initialization: Q ∼ permutation of the numbers 0 : M − 1 in binary (Mlog2M bits);

2: i ∼ U{0, . . . ,Mlog2M − 1};

3: Out = Cyclic shifter (Q, i);
4: Output: Out ∼ a random permutation of {0, . . . ,M − 1} as a binary representation.

This simplified RPG takes advantage of the hardware implementation in which all numbers are rep-

resented in binary, and thus leads to a reduction in resources and time compared to the Knuth Shuffle

RPG. It still satisfies the condition that every element is chosen with equal probability at each place

i.e. p(Qi = j) = 1/M , for each i = 0, . . . ,M − 1 and j = 0, . . . ,M − 1. The disadvantage of

this algorithm when compared to the Knuth Shuffle RPG is that the number of total permutations is

reduced from M ! to Mlog2M . Nevertheless, this is shown to affect the resampling quality of parallel

Metropolis and Rejection algorithms only minimally (see Section 3.5.1). Therefore, this optimized

RPG is proposed to randomly allocate the weights read from the memory to each parallel resampling

block of Metropolis and Rejection architectures as shown in Figure 3.6.

3.5 Evaluation and Experiments

The four proposed architectures are implemented on a Xilinx Virtex-6 LX240T FPGA. All arithmetic

operators are taken from the Xilinx Coregen library in single floating point precision. Uniform ran-

dom numbers are generated using the cores described in [81]. As mentioned before, two parameters

(M1,M) are used for the parallel RSR and ISR architectures, where M1 represents the parallel degree

of SUM and CUMSUM, and M represents the parallel degree of the offspring evaluation. Accord-
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ingly, only one parallel degree M for the Metropolis and Rejection architectures is considered since

no sum or cumulative sum is needed for these two algorithms.

3.5.1 Resampling Quality

We first assess the resampling quality of the proposed architectures, i.e. how close the resampled

particle set is to the ideal given by (3.2). We use the same simulated weights as the ones used in [65],

which is the standard way to assess the resampling quality, and this allows us to easily compare to

the results of the GPU implementations in [65]. The simulated weights are generated based on the

following equation:

wi =
1√
2π

exp(−1

2
(yie − yo)

2) (3.4)

yo represents the time varying observation value and yie represents the estimated values based on the

particles xi in the sampling step in Algorithm 5. These weights (which are the likelihoods of particles

fitting the observation) are produced based on the assumption that the importance function of the PF

is a Gaussian, i.e. yo ∼ N (yie, 1). Multiple weight sets are generated, with varying particle number

N and y = mean(ye)− yo, i.e. yie − yo ∼ N (y, 1). The parameter y indicates the relative variance in

weights. Increasing y means that the relative variance in weights increases too.

First, the resampling quality of the four algorithms is compared using the RMSE given by the equation

(3.3). The RMSE of the SR algorithm in [65] is also shown as a point of reference. Experiments are

done for N = 24, 25, . . . , 220 and for y = 0 to y = 4. The results are shown in Figure 3.7 and 3.8.

The results lead to the following conclusions: 1) the proposed ISR has the same resampling quality as

the original Systematic and RSR; 2) RSR and ISR give a lower RMSE than Metropolis and Rejection

resampling, which results from the fact that the Metropolis is a biased sampler and the Rejection

is affected by the distribution of uniform random numbers used as the indexes; 3) The RMSE of

Rejection is lower than that of Metropolis for small variance in weights, but it converges to the RMSE

of Metropolis when y increases.

The resampling quality of the FPGA implementations of ISR and RSR does not change with respect

to the degree of parallelism. In contrast, the resampling quality of the parallel implementations of
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Figure 3.7: Root-mean-square error (RMSE) of different resampling algorithms for various weight sets having

different variances (which are indicated by y) at N = 210.
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Figure 3.8: RMSE of resampling algorithms for various particle numbers at y = 1 (left) and y = 3 (right).

Metropolis and Rejection algorithms can be different compared to the sequential ones, since we use

the global memory access strategy described previously. We consider four cases: 1) the sequential

implementations; 2) parallel implementations with the Knuth Shuffle RPG; 3) parallel implementa-

tions with the simplified RPG; 4) parallel implementations without an RPG. In the last case, each

block of Metropolis and Rejection architectures works on a sub-set of weights just like RSR and ISR,

and only has access to the corresponding sub-set of weights. In cases 2 and 3 each block has global

access to all of the weights as in the sequential one because the RPG is used. We check the RMSE

quality of the draws for both algorithms and the average number of proposed indexes (while loop
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Figure 3.9: Test results of different memory access strategies for parallel Metropolis and Rejection implemen-

tations with the parallel degree M = 32 (which is the maximum degree achieved in our target FPGA device

with half-utilization of logic): (left) RMSE of Metropolis draws at y = 4; (middle) RMSE of Rejection draws

at y = 3; (right) the average number of iteration steps for each weight of Rejection at y = 3.

iterations in Algorithm 9) until an index is accepted for each weight for Rejection resampling. The

average number is taken from 100 independent runs. The results are shown in Figure 3.9.

The results confirm that there is no quality loss using the memory access strategies with the Knuth

Shuffle RPG or our simplified RPG for parallel execution of Metropolis and Rejection resampling

compared to the sequential execution. Nevertheless, the absence of RPG has a large impact on the

resampling quality as the resampling is only performed inside each block. It becomes even worse

when the variance of weights i.e. y increases or the weights are sorted. The worst case happens when

all the non-zero weights are processed by only one resampling block. Another drawback of not using

an RPG for parallel Rejection resampling is that it causes largely increasing execution time as more

steps need to run before the acceptance of each weight. In conclusion, the simplified RPG-based

memory access strategy permits the parallel algorithms to achieve the same resampling quality as the

sequential one. Moreover, the simplified RPG consumes much less resources and has a lower latency

compared to the Knuth Shuffle RPG.

3.5.2 Resource Utilization and Execution Time

Table 3.2 gives the resource utilization (measured in floating point adders and accumulators), and the

total number of clock cycles for N weights of the parallel SUM and CUMSUM architectures shown in

Figure 3.5 when using the parallel degree M1. L1 and L2 are the latency of the adder and accumulator
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respectively. All results are post place and route.

Table 3.2: Resources and Execution time for parallel SUM and CUMSUM algorithms in FPGA (parallel

degree M1)

Resources & CLK cycles SUM CUMSUM

Adders M1 − 1 1.5M1 +
M1

4
log2M1 − 3

Accumulators 1 1

CLK cycles N/M1 + L1log2M1 + L2 N/M1 + L1log2M1 + L1 + L2

Table 3.3 shows the resource utilization and total clock cycles (for a complete resampling opera-

tion with N weights) for all four architectures, given the parallel degree M1 and M . The memory

utilization is also shown here.

Each architecture uses M blocks for offspring evaluation or index generation, while the RSR and ISR

also require resources for SUM or CUMSUM implementation. Metropolis and Rejection architec-

tures need extra resources for the simplified RPG which uses a Mlog2M bits Cyclic shifter and also

for multiplexers to select data from the memory based on the outputs of the RPG. Note that the M−1

blocks which implement Algorithm 10 can be reused from the offspring evaluation blocks. Regard-

ing memory utilization, ISR architecture needs one more memory to store the cumulative weights

compared to the other three architectures. For the RSR, ISR and Metropolis architectures, all the

concurrent blocks produce output streams in parallel at the same clock cycle so the outputs from each

block can be written to the memory together. Therefore, only one memory unit is needed for these

three architectures to store the outputs (offsprings or indexes). However, the Rejection blocks produce

output streams at random clock cycles. Therefore, a single memory unit is necessary for each block.

In total, M memory units are needed as output memory for parallel Rejection architecture but the

total output memory size is the same as that of the other schemes.

Table 3.3 also shows the total number of clock cycles needed to complete the resampling operation

for all architectures, given the parallel degree (M1,M ) and the number of particles. The clock cycles

needed by RSR and ISR consist of the cycles needed for SUM or CUMSUM (shown in Table 3.2) and

the cycles needed for offspring evaluation which is N/M + LRes where LRes represents the latency

of offspring evaluation. LRes for RSR is larger when using M > 1 because of the additional latency

needed for the computation of ui. The execution times of Metropolis and Rejection resampling are
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Table 3.3: Resources and Execution time of RSR and ISR with parallel degree (M1,M ), of Metropolis and

rejection with parallel degree M

RSR scheme ISR scheme Metropolis Rejection

Resources
SUM (parallel degree M1) CUMSUM (parallel degree M1) M Metropolis blocks M Rejection blocks

M RSR blocks M ISR blocks Mlog2M bits Cyclic shifter Mlog2M bits Cyclic shifter

Weights Memory
Number of Memories 1 2 1 1

Total Size (bits) 32 ∗N 32 ∗ (2N) 32 ∗N 32 ∗N

Output Memory
Number of Memories 1 1 1 M

Total Size (bits) log2N ∗N log2N ∗N log2N ∗N log2N ∗N

CLK cycles

N
M1

+ N
M

+ L N
M1

+ N
M

+ L BN
M

+ L SN
M

+ L

L = 9log2M1 + 80 (-35 if M = 1) L = 9log2M1 + 54 L = 35 + log2M L = 35 + log2M

BN/M + L and SN/M + L cycles respectively for parallel implementations where L is the latency,

B in Metropolis is the iteration steps configured by the user and S in Rejection represents the average

number of iteration steps performed before acceptance of each weight. Note that the S for Rejection is

not fixed and depends on the weight distribution, and we can estimate S with reasonable accuracy after

performing the Rejection numerous times. Both B for Metropolis and S for Rejection resampling can

be very large as the variance in weights increases, and this makes these two architectures less efficient

for large amounts of particles as will be shown shortly.

Table 3.4 gives the resource utilization (slices, LUTs, etc.) of a single resampling block for each ar-

chitecture in the target device. For M parallel resampling blocks which are needed for the respective

parallel architectures, the required resources can be estimated by multiplying by M (although in the

real implementation the total utilization varies slightly due to synthesis and place and route optimiza-

tions). Table 3.4 also gives the clock frequency achieved for the non-parallel (i.e. M = 1) and parallel

(M = 32) implementations of each architecture.

Table 3.4: Resources (of one resampling block) and Clock frequency achieved for each architecture on a

Virtex-6 LX240T FPGA

RSR ISR Metropolis Rejection

Resources of one block

Slices 414 351 430 462

Slices registers 1545 1490 1696 1647

LUTs 1063 949 1092 1089

CLK(MHz)
M = 1 227 336 289 327

M = 32 193 185 130 156

Figure 3.10 shows how the execution time (clock cycles) changes with the amount of utilized re-
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Figure 3.10: The execution times for N = 210 against the resources of slices on the target device Virtex-6

LX240T of the algorithms at y = 1.

sources (slices) for each architecture at N = 210 and y = 1. The total resources of three representa-

tive Xilinx FPGAs are also marked in the figure (vertical lines) to provide a reference. The maximum

M1 and M which can be achieved in different devices are easy to obtain according to this figure.

For example, with 50% utilization of slices on the target device, we can achieve (M1,M )=(32,32),

(16,32), (-,32), (-,32) for the four architectures respectively, and with full utilization of the device we

can achieve (64,64), (32,64), (-,64), (-,64) respectively. The figure shows that RSR and ISR are faster

when we utilize fewer resources but become slower than Metropolis and Rejection as more resources

become available and the amount of parallelism increases. This is not surprising given the formulas of

Table 3.3 as the latency of the SUM and CUMSUM datapaths in RSR and ISR architectures consumes

a big proportion of the total time.

To reserve resources for the other stages of particle filter, 50% utilization of the FPGA logic resources

is assumed. Given this assumption, Figure 3.11 shows how the execution times of the four archi-

tectures change with N for two cases of variance (y = 1 and y = 3). It is worth noting that the

execution time of RSR and ISR does not change with y when N is fixed. In contrast, the execution

time of Metropolis and Rejection changes dramatically because the number of iterations increases

considerably when y increases.
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Figure 3.11: The execution times against the particle numbers N at y = 1 (left) and y = 3 (right) in FPGA

with less than 50% utilization of the target device.

Figure 3.12 shows the speedup of FPGA resamplers versus the respective implementations on an

NVIDIA K20 GPU device presented in [65] for the same two cases of y. The speedups for Metropo-

lis resampling and Rejection resampling are in the order of 1.7x-25x and 2.3x-49x respectively for

large particle numbers (N ≥ 210), while the minimum speedups of RSR and ISR are 5.8x and 8.9x

respectively. Another observation is that GPU can provide comparable performance to the FPGA for

large numbers of particles, but not for small numbers of particles. This happens because the GPU

cannot achieve full thread utilization unless we use a massive amount of particles (see [65]), while the

FPGA is able to utilize a high percentage of its resources even for small problems. Therefore FPGAs

can give high speedups for N ≤ 210 as shown in Figure 3.12. As a reference, the CPU time of each

algorithm can be found in [65].

4 6 8 10 12 14 16 18
10

0

10
1

10
2

10
3

log2(N)

S
p
e
e
d
u
p

 

 

RSR in FPGA vs systematic in GPU

ISR

Metropolis

Rejection

4 6 8 10 12 14 16 18
10

0

10
1

10
2

10
3

log2(N)

S
p
e
e
d
u
p

 

 

Figure 3.12: The Speedup of FPGA implementation of the target device with 50% utilization over the GPU

implementation in [65] at y = 1 (left) and y = 3 (right).
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3.6 Discussion and Conclusion

In summary, the execution time of Metropolis and Rejection resampling largely depends on the vari-

ance in weights, while that of RSR and ISR is fixed. For FPGA implementations, at small variance

in weights, Metropolis and Rejection resampling are preferred to RSR and ISR, and Rejection out-

performs Metropolis at large N ; at large variance in weights, Metropolis and Rejection resampling

should only be considered at small N such as N ≤ 210, and RSR or ISR should be preferred at large

N . The advantage of ISR compared to RSR is no dependent operations within the offspring evalu-

ation. The proposed ISR should be preferred at small or medium particle numbers (e.g. N < 212)

while RSR outperforms ISR at large N (e.g. N > 214). When compared to GPU implementations,

all four parallel implementations in FPGAs provide significant speedups. Note that both Metropolis

resampling and Rejection resampling cause warp divergence in GPU, so FPGAs are more suitable for

these two algorithms.

It should be noted that the use of on-chip FPGA memory is assumed for all the implementations.

However it may not be feasible to store all the weights in on-chip memory at very large numbers.

For example, the LX240T FPGA has enough on-chip memory to fit at most 216 weights for ISR

and 218 weights for the other three architectures, assuming we use single floating point arithmetic.

With N around one million (220), off-chip memory needs to be used and the time to transfer weights

from/to this memory can limit the FPGA performance if the memory bandwidth is not enough to

constantly feed the processing elements. However, employing one million particles is a rare case in

contemporary applications of the particle filter, so this work can adapt to most current applications.

Finally, discussions and considerations on how to utilize the proposed parallel resampling architec-

tures in the distributed particle filter system for real applications are provided in Chapter 6.



Chapter 4

An Unbiased MCMC FPGA-based

Accelerator Under Custom Precision

Arithmetic

SMC and MCMC methods are the two main tools to sample from high dimensional probability dis-

tributions in Bayesian inference [2]. Unlike SMC, MCMC methods are often used in static models

with time-invariant parameters. The main computation in the MCMC algorithms lies in the posterior

probabilities of the model parameters for a given set of observations. In Chapter 4 and Chapter 5

of the thesis, we focus on the optimization of MCMC algorithms in algorithmic modifications and

architectural optimizations. Here we propose a mixed precision MCMC algorithm which is suitable

for FPGA implementation. With the proposed architecture, significant speedups compared to existing

FPGA- and CPU-based works that utilise double floating point arithmetic can be achieved, while still

guaranteeing asymptotically unbiased estimates.

4.1 Introduction

Bayesian methods play a central role in modern Machine Learning mainly due to their ability to

capture uncertainty in parameter estimation [4]. A key step in Bayesian inference is the sampling from

56
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an arbitrary probability distribution [53, 71, 32, 85]. Markov chain Monte Carlo (MCMC; Chapter

6 of [71]) method is one of the most popular and successful tools to draw samples effectively from

arbitrary probability distributions in Bayesian inference problems. For this reason, it has been widely

used in a range of statistical applications, including computational physics, population genetics and

statistical classifications [53, 32, 62].

The MCMC algorithms allow sampling from a large class of distributions and scale well with the

dimensionality of the sample space. They are often used to tackle the problem of sampling from a

probability distribution known up to a normalizing constant, with the purpose of using the generated

samples to estimate otherwise intractable integrals (this task is known as Monte Carlo integration).

For the estimation of the above integrals, the MCMC algorithms need to estimate how well the data

are explained by the sampled parameters (i.e. likelihood function estimation), which becomes the

dominant computational bottleneck when large datasets are targeted. Thus, speeding up the likelihood

computation has attracted the focus in academia and industry in order to allow the application of

MCMC to models with large-scale dataset. Currently, the lack of sufficiently fast MCMC methods

limits their applicability in many modern applications like genetics and machine learning, and this

situation is bound to get worse given the increasing adoption of big data in many fields of industry

and research.

This challenge has motivated approximate MCMC approaches [37, 38, 33, 82] that are based on

approximations of the target distribution. A summary and review of current MCMC methods used for

large datasets can be found in [9]. Most of them tend to use subsampling based approaches to provide

a faster estimation of the likelihood for only a subset of the whole data [48, 8, 58, 69]. Other recent

works focus on the computation engine, and investigate the calculation of the likelihood function

based on custom precision arithmetic in order to achieve low latency and allow for more parallelism

for a given set of hardware resources. However, both approaches lead to biased estimates that exhibit

large variance due to the approximations of the target distribution. Even though a controlled biased

estimate can be accepted in certain applications [63], there is a large number of applications where

unbiased estimates of the given parameters of the sampling distribution are required, and MCMC

algorithms are expected to perform exact inference in these problems [20].
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In this Chapter we are focusing on problems that are compute-bound, having the evaluation of the

likelihood function as the limiting performance factor. Towards addressing this problem, a novel

MCMC construction is proposed, the custom-precision firefly MCMC (CF-MCMC), that samples

from the exact posterior distribution even though it operates under a custom precision regime, and its

implementation in an FPGA device. The key idea behind this work, that enables custom precision

arithmetic in the computation of the likelihood function, is the introduction of an extra parameter in

the problem parameter space that models the mode of the computations, i.e. the arithmetic precision,

in the calculation of the likelihood function. This chapter shows that by properly sampling the new

augmented space, unbiased estimates of the parameter of the distribution are computed even though

part of the computations are performed under custom precision arithmetic. Furthermore, we extended

the work of the custom precision design in FPGA by (1) investigating and comparing alternative

custom precision likelihood construction approximates targeting improved performance (i.e. effective

samples per second) and (2) proposing a method to maximize the performance of the algorithm by

selecting the optimal arithmetic precision based on performing short MCMC pre-runs on a set of

candidate precisions. A summary of the main contributions of this work are as follows:

• A novel mixed precision MCMC algorithm which leads to unbiased estimates, taking into ac-

count the unique custom precision capabilities of FPGAs;

• A novel architecture which maps the algorithm to an FPGA. The architecture includes the

necessary data structures and sampling mechanisms to accommodate the use of the auxiliary

binary variables. With the proposed data structure for storing the auxiliary variables, both high

and low precision data paths can be fully pipelined, and thus further improving the throughput;

• A novel methodology for the construction of tight lower bound functions of the target prob-

ability distribution function based on the selection of the rounding mode of the FPGA arith-

metic operators in combination with verification tools for modelling numerical behaviour (i.e.

Gappa++) in order to maximise the performance of the proposed algorithm;

• A methodology for selecting the custom arithmetic precision of the system that would maximise

its performance based on the system’s performance model and the estimates of the parameters

from pre-runs.
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4.2 MCMC Basics

In scientific computing, we often need to compute some integrals in a very high dimensional space

such as:

I(f) =

∫

f(θ)p(θ)dθ (4.1)

The probability distribution p(θ), i.e. the target density, can be a distribution from statistical physics

or a conditional distribution arising in data modelling - for example, the posterior probability of a

model’s parameters given some observed data, where f(θ) is the function of interest.

In the field of statistics, these integrals are vital for calculating the expectation or expected values of

distributions. However many functions and distributions cannot be integrated analytically especially

for higher-dimensional integrals. For most probabilistic models of practical interest, these expecta-

tions cannot be evaluated by exact methods. In these cases, a general and powerful framework, i.e.

the Markov chain Monte Carlo (MCMC) method, is employed, which can be used to generate sam-

ples from any given probability distribution. Using the generated samples, the integral I(f) can be

approximated by tractable sums that converge (as the number of samples Ns tends to infinity) to I(f).

The following central limit theorem holds for suitable test functions f under weak assumptions [24]:

Ĩ(f) =
1

Ns

Ns
∑

n=1

f(θn) −→ Normal(I(f), σ2
lim(f)) (4.2)

i.e. the sum is an asymptotically unbiased estimator of the integral I(f) [71].

MCMC generates samples from the probability distribution p(θ) by sequentially constructing a Markov

chain that satisfies (4.2). In practice it is often advisable to discard some initial states of the chain

(throwing away a number of iterations at the beginning of an MCMC run is often called “burn-in”),

in order to reduce the initialisation bias. In this work, the parameters of interest are denoted by θ of

D-dimensions, and it is assumed that N data points {xn}Nn=1 (with each component xn as a vector)

have been observed. An MCMC sampler makes transitions from a given θ to a new θ′ such that the

posterior distribution p(θ | {xn}Nn=1) remains invariant. Consider the most commonly used MCMC

algorithm (Metropolis MCMC; Chapter 7.3 of [71]) in Algorithm 13. In each iteration, a proposed
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move of the chain is considered, by using a proposal such as a Gaussian random walk ( line 2) to

generate the new θ′ that is accepted or rejected with the probability based on the ratio of the posterior

probabilities (i.e. how well the new value explains the data) (line 4-9). The main computation load

lies in the evaluation of the full posterior probability at every iteration in line 3. Using the Bayesian

theorem and assuming that the data {xn}Nn=1 are i.i.d. (it is often assumed in real applications) and θ

has the prior p(θ), the posterior distribution breaks down into a product of the likelihood of each data

point i.e. p(xn | θ) as:

p(θ | {xn}Nn=1) ∝ p(θ)
N
∏

n=1

p(xn | θ) (4.3)

For notational convenience, we write the nth likelihood term as

Ln(θ) = p(xn | θ) (4.4)

Algorithm 13: Metropolis MCMC

Input: initial setting θ0, number of samples Ns;

Output: parameter samples θi, i = 1, ..., Ns;

1: for i = 1 to Ns do

2: Propose θ′ ∼ θi−1+Normal(0, s2ID); // a random walk proposal with step size s.

3: Compute a =
p(θ′ | {xn}Nn=1)

p(θi−1 | {xn}Nn=1)
;

4: u ∼ Uniform(0,1);

5: if u ≤ a then

6: θi = θ′;
7: else

8: θi = θi−1;

9: end if

10: end for

Although MCMC generates statistically consistent samples from the target distribution, the samples

are correlated due to the use of a Markov chain. This dependence leads to an increase in asymptotic

variance σ2
lim of the MCMC estimate in (4.2), compared to the case where independent samples of

the target distribution are used. This loss in efficiency can be quantified by the Effective Sample Size

(ESS) [40] in (4.5):

ESS = Ns/(1 + 2
k

∑

j=1

ρ(j)) (4.5)
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where Ns is the number of post burn-in MCMC samples and
∑k

j=1 ρ(j) is the sum of the first k

monotone sample autocorrelations. The ESS estimates the “effective” number of samples, which is

always lower than Ns. Thus the adopted performance metric for MCMC samplers is ESS/sec, which

combines raw sampling speed (runtime) and ESS [40].

4.3 Mixed Precision MCMC Methodology

4.3.1 Custom-Precision Firefly MCMC (CF-MCMC)

On each iteration of MCMC, the likelihood term for each data point must be evaluated to obtain

the target density, which is the most computation expensive part of the algorithm. [58] proposed

Firefly Monte Carlo (FlyMC), which introduces an auxiliary variable for each observation which

determines whether it should be included in the exact evaluation of the posterior distribution or not.

A lower bound function for each likelihood term caters for the observations that are not included

in the evaluation of the posterior, and an extra sampling step is included in the algorithm in order

to sample the above indication parameter. As such, FlyMC generates samples from the exact target

posterior rather than from an approximation distribution. Nevertheless, the drawback of FlyMC is that

useful lower bounds can be difficult to obtain for many problems. Moreover, [58] have shown that

the algorithm’s performance depends on the tightness of the bound; it only achieves significant gains

when computational light and tight bounds are applicable. The idea of using lower bounds to reduce

the cost of MCMC has been exploited previously in [59]; [9] (Section 4.3) propose construction of the

lower bound that avoids specifying a resampling fraction, but it requires the integrals of the exponents

of the lower bound functions to be tractable.

This work is based on the same principle as the FlyMC, but the introduced auxiliary parameter is

utilised to indicate whether or not the likelihood computation for each data point is performed under

double precision or custom precision regime. Thus, instead of requiring the derivation and use of

approximate functions for the likelihood terms, the work utilises custom precision approximations

and utilize precision-related tools to guarantee that these approximations are indeed a lower bound
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to the true likelihood term (which is a requirement for [58] to generate samples from the posterior

distribution), removing the need to manually design the approximation function as in FlyMC. Thus,

the proposed framework produces lower bounds automatically regardless of the class of problem.

In the rest of this chapter, LDn(θ) and LCn(θ) denote the double precision likelihood term and the

custom precision lower bound of the likelihood of the nth data point, respectively. For each data point

xn, a binary auxiliary variable zn ∈ {0, 1} is introduced, indicating the type of the likelihood term

computation i.e. double or custom precision. Assuming that LCn(θ) has been constructed such as it is

always less than the double precision likelihood LDn(θ), i.e. LCn(θ) ≤ LDn(θ) (such construction is

shown later on in the Chapter), then each zn is modelled to have the following Bernoulli distribution

conditioned on the relative difference between these two precision values:

zn ∼ Bernoulli(1− LCn(θ)/LDn(θ)) (4.6)

The augmented posterior distribution is shown below:

p(θ, {zn}Nn=1 | {xn}Nn=1) ∝ p(θ)
N
∏

n=1

p(xn | θ)p(zn | xn, θ) (4.7)

As in other auxiliary variable methods, this augmentation does not damage the target distribution in

(4.3):

∑

z1

...
∑

zN

p(θ)
N
∏

n=1

p(xn | θ)p(zn | xn, θ)

= p(θ)
N
∏

n=1

p(xn | θ)
∑

zn

p(zn | xn, θ)

= p(θ)
N
∏

n=1

p(xn | θ)

(4.8)

Therefore, the marginal distribution over θ in (4.7) is still the correct posterior distribution given in

Equation (4.3).
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Consider each product of the joint distribution:

p(xn | θ)p(zn | xn, θ)

= LDn(θ)[
LDn(θ)− LCn(θ)

LDn(θ)
]zn [

LCn(θ)

LDn(θ)
]1−zn

=















LDn(θ)− LCn(θ) if zn = 1

LCn(θ) if zn = 0

.

(4.9)

For simplicity, we call the data points with their zn = 1 as “bright data” and those data points with

their zn = 0 as “dark data” to follow FlyMC terminology. Please note that the double precision

likelihood LDn(θ) now only appears in those bright data. At any given iteration, we only compute

their likelihoods in reduced precision for the dark data. Therefore, the full likelihood is now given by:

L(θ) =

zi=1
∏

i

(LDi(θ)− LCi(θ)) ∗
zj=0
∏

j

LCj(θ) (4.10)

This algorithm can be seen as shifting the computational burden from evaluating LDn(θ) to evalu-

ating LCn(θ) plus a step to sample this new parameter. The computational gains are coming from

evaluating some likelihoods in custom precision instead of utilising double precision in all likelihood

evaluations.

For the rest of the thesis, the above proposed algorithm is called custom-precision firefly MCMC

(CF-MCMC) algorithm and its steps are shown in Algorithm 14. The overhead of introducing a

sampling stage of the auxiliary variable zn, has a small penalty in the performance of the algorithm

as this resampling is performed only for a random fixed-size subset of the data [58]. This results

from the fact that at every iteration most of the binary variables are kept unchanged. The sampling

step for zn is shown in lines 8-11 and 14-19 of Algorithm 14, which is performed immediately after

the computation of the likelihood. Since the likelihoods of the bright data points have already been

evaluated in the MCMC step of line 7, the implementation of the algorithm can reuse these values

and resample all the instances that correspond to “bright data” points without any extra computational

cost. As only few zn variables that zn = 0 change in each iteration (assuming a tight lower bound),

the resampling of the dark points’ variables is performed at a fixed rate (1/ResampleFraction as shown
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in line 15), to avoid computing the full precision likelihoods for all the dark data in each iteration2.

The above partial resampling leads to a chain with slower mixing rate. However, as indicated in [58],

the approach works well in practice as the bottleneck for mixing is usually in the space of θ. For

a given budget in likelihood evaluations, allowing more steps in the θ space is intuitively likely to

reduce initialization bias faster than resampling all variables at each iteration.

Algorithm 14: CF-MCMC Algorithm

Input: initial setting θ0 and {zn}Nn=1, Ns;

Output: parameter samples θi, i = 1, ..., Ns;

1: for i = 1 to Ns do

2: Propose θ′ ∼ θi−1+Normal(0, s2ID);

3: L(θ′) = 1; // likelihood initialization

4: for n = 1 to N do

5: u1 ∼ Uniform(0,1);

6: if zn = 1 then

7: // likelihood computation for bright data

L(θ′) = L(θ′) ∗ (LDn(θ
′)− LCn(θ

′));
8: // zn sampling

9: if 1− LCn(θ
′)/LDn(θ

′) ≤ u1 then

10: zn = 0;

11: end if

12: else

13: // likelihood computation for dark data

L(θ′) = L(θ′) ∗ LCn(θ
′);

14: // partial sampling of zn for dark data

15: if n%ResampleFraction = RandInteger(1, ResampleFraction) then

16: if 1− LCn(θ
′)/LDn(θ

′) > u1 then

17: zn = 1;

18: end if

19: end if

20: end if

21: end for

22: Compute a =
L(θ′)

L(θi−1)
;

23: u2 ∼ Uniform(0,1);

24: if u2 ≤ a then

25: θi = θ′;
26: else

27: θi = θi−1;

28: end if

29: end for

2Setting the value of ResampleFraction is discussed in Section 4.4.
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4.3.2 Lower Bound Function Construction

In order for the samples to come from the original posterior distribution when the augmented posterior

distribution is utilised, the custom precision likelihood LCn(θ) is required to be a lower bound on the

full precision likelihood LDn(θ), i.e. LCn(θ) ≤ LDn(θ). [58] uses specific expressions (distribution

classes) for the lower bound. In order to achieve this in a custom precision setting, we firstly proposed

to use the tool Gappa++ [52] which determines and verifies numerical behaviour, and particularly

rounding error in computations with floating point operations. The tool manipulates logical formulas

stating the enclosures of expressions in some intervals. In particular, Gappa++ allows bounding

computational errors due to floating point arithmetic. It works effectively and fast across a range of

function constructions and especially for the linear functions. For most problems it takes less than a

minute to obtain the precision-related error bound [52].

Let’s denote the maximum absolute error bound between two floating point precision constructions

of p(xn | θ), one under double precision arithmetic (i.e. LDn(θ)) and one under a custom precision

p(xn | θ)c, that is provided by the Gappa++ tool as ε, where ε ≥ 0 (i.e. |LDn(θ) − p(xn | θ)c| < ε).

Then, LCn(θ), is defined as:

LCn(θ) = p(xn | θ)c − ε (4.11)

which ensures that LCn(θ) ≤ LDn(θ), i.e. that LCn(θ) is a lower bound of LDn(θ).

The tightness of the lower bound construction is important to the performance of the CF-MCMC

algorithm because it impacts the number of bright data points at each iteration, which essentially

determines the execution time of the CF-MCMC algorithm. In the first method proposed to construct

the lower bound, Gappa++ was used solely in order to obtain the lower bounds for the likelihood

function. However, the tightness of the bounds provided by Gappa++ (i.e. ε) depend on the actual

operations involved in the function under investigation. [52].

For this reason, we propose an alternative lower bound function construction in order to provide

a tighter custom precision bounds, further boosting the performance of the algorithm. The second

approach capitalises on the fact that in FPGA designs the user can tune the rounding modes of the

floating point operators. As such, by appropriately tuning the rounding mode of the operators under
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a custom precision implementation, the user can guarantee a lower bound by construction. To take

advantage of this, we separate the parts of the likelihoods for which lower bound guarantees are

obtained by construction (for example in the case where there is an addition of two positive quantities)

and to parts for which this is not possible and their error bounds are estimated through Gappa++. The

proposed lower bound function design allows utilization of the Gappa++ tool in combination with the

rounding mode configuration of the arithmetic operators on FPGAs, producing tighter lower bounds

for a given custom precision, with respect to the existing methodology.

Given the logistic regression likelihood function in Equation (4.12) as an example, the first proposal

of the lower bound function (4.13) is based on the error bound ε1 of the whole function which is

provided by Gappa++.

Ln(θ) =
1

1 + exp{θTxn}
(4.12)

LCn(θ) =
1

1 + exp{θTxn}
− ε1 (4.13)

Regarding the second proposal, we firstly use Gappa++ to obtain the rounding error ε2 of the dot

product operation inside the exponent operation. Then we add ε2 to the custom precision dot product

values. Secondly, we set specific rounding modes (round up or round down) for the other operators

that are monotonic, in order to guarantee the final result is a lower bound. This alternative lower

bound function can be shown as the following equation:

LCn(θ) =div(1, add(1, exp(θTxn + ε2,RoundUp),

RoundUp),RoundDown))

(4.14)

where the rounding modes of the division, addition and exponent operations are set to round down,

round up and round up respectively.
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4.4 FPGA Implementation

4.4.1 Proposed Hardware Architecture

FPGA devices have been considered by researchers and practitioners for MCMC acceleration because

of their ability to implement many processing elements for the likelihood calculation, as well as due

to their flexibility to implement any custom arithmetic precision regime. Assuming that the data

points can fit in the on-chip memory blocks (an assumption that will be lifted later on), an FPGA

system that implements an MCMC sampler is given in Figure 4.1a, where high memory bandwidth

that matches the computational capabilities of the processing elements (for likelihood evaluation) is

provided through the on-chip memories.
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of candidate 
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.

log 

likelihood

candidate 

sample

(a) The overall architecture

log likelihood

Ln(θ)  
evaluator

Data Mem 1

Data Mem 2

Data Mem 3

Data Mem 4

Ln(θ) 
evaluator

Ln(θ) 
evaluator

Ln(θ)
evaluator

samples
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Figure 4.1: (a) The overall architecture of the FPGA-mapped MCMC sampler which mainly contains the

generic and likelihood L(θ) evaluator block. (b) The architecture of double-precision floating point likelihood

L(θ) evaluator design with the conventional parallel implementation at P = 4.

The FPGA-mapped MCMC sampler (not considering the off-chip memory access) generally contains

two blocks as shown in Figure 4.1a: a hardware block for the generic MCMC operations (i.e. propose

new sample, accept/reject ratio calculation) and a block to compute the full likelihood L(θ) in the

logarithmic domain in order to avoid numerical instability in the evaluation of the likelihood [78]. The

generic block in Figure 4.1a corresponds to the operations in line 2, 5 and line 23 to 28 of Algorithm

14. Because likelihood evaluations dominate the computational cost, the performance of the MCMC

sampler can be improved by implementing many parallel likelihood evaluation blocks. When the

likelihood evaluation can be decomposed into sub-components due to i.i.d assumption of the data

(which is also assumed in the thesis), FPGA implementations typically use a likelihood evaluation
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block which consists of parallel likelihood modules [55]. Let’s denote the number of modules by P ,

and an example of the conventional double-precision floating point design at P = 4 is given in Figure

4.1b. Accordingly the data memory is partitioned into P blocks, thus each evaluation block processes

one block of data. Finally the total sum (i.e. the full log likelihood) is computed by combining the

outputs of the P blocks. For compute-bound tasks (as the one considered in this work), the goal

is to maximize the number of parallel blocks within the available resources in the FPGA device,

minimizing as such the execution time of a single MCMC iteration. This motivates the idea in this

Chapter to implement low precision data paths in order to save computational resources and increase

the sampling throughput. Generally the low precisions can be any arithmetic precisions smaller than

double floating point, such as single floating point or fixed point. In this work, we use the floating

point arithmetic with different significand bits as the low precisions and this will be shown later.

The generic architecture designed for the CF-MCMC algorithm which utilizes multiple high-precision

datapaths is presented here and it is depicted in Figure 4.2. We denote each parallel degree of the high

and low precision datapaths as PH and PL respectively (PH < PL). Accordingly, the data are stored

in PL memories and each data memory is attached with a set of BM and DM memories to store the

indexes of the bright and dark data points respectively. Rather than storing the binary value of each

zn, we store the indexes of the bright and dark binary variables separately in the two independent

memories (BM and DM). Also, for each memory, the system keeps track of the total number of bright

and dark points.

For each iteration, the system needs to perform the likelihood computation and zn sampling for the

bright and dark points. Thus two steps (as shown in Figure 4.2) are performed in sequence to ac-

cept/reject the proposed sample. First, in Step 1, the system accesses PH BM memories in parallel to

use the bright data index to access the bright data in the corresponding data memories, which are then

passed to the high-precision data paths to evaluate the sum of the log likelihood of the data points with

zn = 1. At the same time, these bright data are also passed to the first PH low-precision data paths to

compare the difference between these two values LDn(θ) and LCn(θ) in order to update zn required

for the next iteration. Therefore, the other (PL − PH) low-precision datapaths remain idle (appear

light gray in the figure) during this step. The above process continues till all the bright data points are

processed. Then, in Step 2, the PL DM memories are read in parallel to access the dark data points
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Figure 4.2: The architecture of CF-MCMC algorithm using mixed precision design at PH = 2 and PL = 4.

The full likelihood is computed and the binary variables are updated by two steps: 1) Bright data likelihood

computation in parallel using 2 blocks and zn sampling; 2) Dark data likelihood computation in parallel using

4 blocks and partial zn sampling. The light gray blocks indicate they remain idle at the corresponding step.
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in parallel, which are passed through the PL low-precision data paths. Accordingly, at every cycle,

PH out of the PL dark data will be chosen randomly to go through the PH high-precision data paths

for updating the corresponding zn. Therefore only PH/PL of the dark variables are resampled, and

all the data paths are fully utilised in this second step. Since the dark data can be resampled at a fixed

fraction rate as mentioned previously, the system samples the dark data at the fraction rate PH/PL

based on the degree of parallelism that has been achieved for the high and low precision paths, in

order to maintain all data paths busy and maximize utilization.

As many applications target sets of data that do not fit in the on-chip memory of FPGAs, external

memories are utilised to store the data. In such situation, the system segments the data set into smaller

subsets, and operates on them in a sequential order until all the subsets are processed. Standard

techniques can be applied such as double buffering, in order to match the computational and memory

bandwidth capabilities of the system. The overall processing on the FPGA device remains the same,

but for every iteration the system needs to transfer data from the external memory. As a result,

compared to the on-chip memory which can be directly addressed and accessed by the datapaths,

the communication between the FPGA and off-chip memory can limit the FPGA performance if the

memory bandwidth is not enough to constantly feed the processing elements.

4.4.2 Intelligent Data Distribution

In order to maximise the performance of the system, the bright data and dark data points need to be

equally distributed in the memories, otherwise there may be a deviation in the utilization of the data-

paths when executed in parallel. This work proposes a methodology based on proportional allocation

for redistributing the data to the memories in an intelligent way in order to maximize the performance

of the system. The goal is to rebalance the dark data points across the available memories, in order to

reduce the overall latency of each iteration of the MCMC algorithm.

Assuming the case where all data can fit in the on-chip memories, the system can introduce a rebal-

ancing step after each iteration in order to minimize the latency of each iteration by maximizing the

utilisation of the processing elements.
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At every point in time, the system keeps track of the number of total bright and dark points stored

in each memory block. After each iteration, the system checks the percentage of the bright or dark

points stored in each memory block against the average number of bright and dark points respectively

in the system. Then, a reshuffle of the data points is initiated in order to result in memory blocks that

have equal proportion of dark points.

To briefly demonstrate the benefit of rebalancing the dark data points among memories, assume that

we have two memories and each memory contains M1 and M2 dark data (M1 > M2) at one iteration.

Let CPE denote the input throughput of the evaluation block in cycles. The execution time (in clock

cycles) to process these data points without data distribution is T1 = max(M1CPE,M2CPE), where

if a distribution step is introduced to the system, the execution time T2 is given by

T2 =
M1 −M2

2
CM +

M1 +M2

2
CPE

where CM models the clock cycles needed to transfer a data point from one memory to another,

and
M1 −M2

2
CM models the time taken for data distribution. Assuming that one data point can be

read/stored in the memory in every cycle (i.e. CM = 1), it is easy to show that T1 ≥ T2 always

holds if CPE ≥ 1. The above implies that it always pays off to rebalance the dark data points, when

it takes more than one clock cycle to consume a data point and the data points can be transferred

from one memory block to another in one clock cycle. The above model is used to decide whether a

redistribution of the data would improve the performance of the system.

In the case where off-chip memories are used to store the data, the above redistribution of the data

takes place when the data are transferred from the external memory to the on-chip memories on

FPGA, removing any time penalty imposed by the distribution of the data as a separate process as in

the case where the data are stored in on-chip memories.

4.4.3 Performance Model

In this section, an analytical performance model of the system is derived in order to reason on how

the selected custom precision impacts the execution time of the system. The total processing time (in
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cycles) of the MCMC method for generating Ns samples consists of the time spent for performing the

MCMC sampling TMCMC , assuming the data are already on chip, and the time required to transfer

the data on-chip/off-chip, Ttransfer , which is shown in Equation (4.15).

Ttotal = TMCMC + Ttransfer (4.15)

In the case of a double-precision MCMC design (i.e. baseline), a sample is generated every N/PDP

clock cycles. Thus, the total time spent for generating Ns samples is:

TDP−MCMC = Ns ∗ N /PDP (4.16)

where N is the number of the data points and PDP is the parallelism of double-precision MCMC

design. In comparison, the time needed for the CF-MCMC architecture in total is given by:

TCF−MCMC = Ns ∗ (Nα/PH + N (1 − α)/PL) (4.17)

where α is the proportion of bright data, and PH , PL are the parallelism of the high- and low-precision

paths respectively.

In the case where no off-chip memory is used, Ttransfer can be omitted otherwise Ttransfer can be

modelled as:

Ttransfer =
Ns ∗ (N ∗ D ∗ sizeof (data) + N ∗ dlogN e)

bandwidth
(4.18)

where D is the dimension of the each data point and dlogNe is the bit-width of the index for the z(n)

variables.

Please note that the above execution time Ttotal only refers to the raw execution time (i.e. time

needed to generate Ns samples) of the corresponding MCMC sampler. As mentioned in Section

4.2, the sampling efficiency metric which is used to compare the performance of different MCMC

algorithms and their implementations also needs to include the effect of sample dependency using the

ESS metric given in (4.5). The rate of effective samples per clock cycle can be derived by dividing

ESS by the execution time i.e. ESS/Ttotal , which can also be seen as the effective throughput of the
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MCMC system.

4.5 Custom Precision Tuning

Even though the above construction guarantees unbiased estimates for any adopted custom precision,

the selected custom precision has impact on the performance of the system and needs to be tuned.

In order to achieve the maximum performance in terms of effective throughput, the designer needs

to consider the impact of custom precision selection to the parallelisation factor achieved, as well

as the percentage of bright data points during the execution of the algorithm. As the precision is

reduced, more parallelism can be obtained for a set of resources, and thus reducing the total execution

time of the system; however the percentage of the bright data points increases accordingly, as the

gap between the lower bound function and the target likelihood function increases, which in turn

introduces additional runtime as more high-precision computations need to be performed. Here, the

work focuses on exploiting the optimal precision selection, in order to maximise the performance of

the system.

In this work, a static analysis selection method is proposed by modelling the processing time and

resources versus the utilised custom precision. Please note that the ESS cannot be modelled during

static analysis, so this work aims to maximise samples per cycle that are generated by the system (i.e.

raw speed). The proposed methodology consists of two steps:

1) Resources v.s. Precision

The first step is to compute how the resource utilisation varies with the custom precision of the system.

This step only requires the pre-synthesis of the floating point IPs under different precisions on FPGA

in order to estimate the total resource utilisation of the likelihood function evaluation block under

different custom precision regimes. Then, for a give target FPGA device the maximum achievable

parallel degree, i.e. P , can be obtained for each custom precision candidate.

2) Bright Data v.s. Precision

The second step needs to consider the percentage of the bright data points during the execution of the
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algorithm in order to estimate the optimal configuration of the system. An estimate of the number of

bright data points M , is given by:

M =
N
∑

n=1

∫

p(θ | {xn}Nn=1)
LDn(θ)− LCn(θ)

LDn(θ)
dθ (4.19)

However, in order to estimate the above quantity, we need to draw samples from the actual target

distribution p(θ | {xn}Nn=1), which is the reason for the design of such system. Following [63],

M can be estimated by short MCMC pre-runs. As the
LDn(θ)− LCn(θ)

LDn(θ)
factor in equation (4.19)

takes small values, the variance of the estimation of M will drop down fast as the number of samples

increases. Here we propose that M is estimated using short FPGA-mapped pre-runs, taking advantage

at the same time of the parallelism offered by FPGA devices across the different runs, as have been

demonstrated in [63].

Utilising information from these two steps, i.e. information on the resource requirements for likeli-

hood function evaluation under different custom precisions and an estimate of the number of bright

points M , the performance model introduced before is utilised in order to provide estimates of the

theoretical raw speedup leading to the selection of the optimal custom precision of the system. Please

note that the ESS effect is only known at runtime and cannot be captured by the above static analysis

based model. However, as the obtained results indicate, the above model can provide an informative

prediction of the performance of the system.

4.6 Performance Evaluation

4.6.1 Case Studies

Logistic regression is used in many fields, including medical and social sciences. Here we consider

two Bayesian problems with different dimensionality and data size that utilize a logistic regression

model. Both case studies are representative of the distributions normally targeted by MCMC, both in

terms of the types of arithmetic operators used, as well as the problem size they incorporate.
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Synthetic Problem

Initially, the performance of the proposed system is evaluated by performing logistic regression on

a synthetic data set, a two-class classification problem in two dimensions (and one bias dimension).

As such, the ground truth of the parameters is known and it is used for the evaluation of the obtained

estimates. Here the linear model in (4.20) is used: a set of 500 independent data x = x1:500 is

generated randomly; the data set y1:500 ∈ {−1, 1} is simulated using the parameters β = (−10, 5, 10).

The logistic regression likelihood of each data point is given by (4.21), where θ = (β0, β1, β2) are the

parameters, and the bias parameter is absorbed into θ by including 1 as an entry in xn.

y = sign(β0 + β1x1 + β2x2) (4.20)

Ln(θ) =
1

1 + exp{−ynθTxn}
(4.21)

MNIST Classification

The second case study focuses on a real problem, which is the logistic regression task described in

[85]. The task is to classify handwritten digits (7s and 9s) in the large MNIST database, which has

been widely used for training and testing in the field of machine learning [51]. The first 12 principal

components (and one bias) are used as features. A set of 2000 data points are chosen from the total

12,214 data so the MCMC algorithm queries 2000 likelihood terms per iteration in this experiment.

Each likelihood takes the form shown in (4.21) where xn is the set of features for the nth data point.

As opposed to the first case study, the parameter dimension increases to 12 plus a bias, where the total

number of likelihood terms increases from 500 to 2000.

4.6.2 Hardware Implementation Details

The architecture in Figure 4.2 is implemented on a Xilinx Virtex-6 LX240T FPGA. The arithmetic

operators of the generic MCMC block are implemented in double-precision floating point. The high
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and low likelihood evaluation blocks which are fully pipelined are implemented under double pre-

cision floating point arithmetic and reduced custom precision arithmetic respectively, using floating

point operators generated by FloPoCo [22]. All designs run on a single 150 MHz clock and fully

utilized the available FPGA’s resources. All results are post place and route.

4.6.3 Quality of MCMC Samples

We first assess the quality of the generated samples of three algorithms: the proposed custom-

precision firefly MCMC (CF-MCMC), a double-precision implementation MCMC (DP-MCMC),

which is used as a reference design, and a custom-precision MCMC (CP-MCMC), which uses the re-

duced precision for the computation of all likelihood terms i.e. existing approach in digital hardware

design community. For convenience, the notation sAeB is used in this Chapter to denote a floating

point representation, where A is the number of significant bits and B is the number of exponent bits.

Figure 4.3 shows the distributions of the predictive mean of parameter β1 for the synthetic problem us-

ing the above three Monte Carlo simulations. In each MCMC simulation, N = 30, 000 sample points

are generated, and each of three algorithms are repeated for 3, 000 times with different random seeds.

Both CP-MCMC and CF-MCMC algorithms utilised a custom precision of s8e8 (i.e. 8 significant bits

and 8 bits for the exponent). As the results indicate, for CP-MCMC simulations where the reduced

precision data-paths are used for all the likelihood terms and models the existing hardware design

approaches, the mean value of the parameter has a significant bias and also a larger variance com-

pared to the DP-MCMC results, supporting the results obtained in [20, 63]. However, the CF-MCMC

sample distributions have the same variance and mean as DP-MCMC samples, which demonstrates

that the proposed algorithm removes any bias introduced in the results due to low-precision computa-

tions. Please note that even though the actual value of the estimated parameter is 5, the data that have

been generated by the model support a parameter value of 5.12 (the mean estimate of DP-MCMC and

CF-MCMC algorithms).

Figure 4.4 depicts the bias and the variance in estimating the predictive mean on MNIST dataset,

for a range of reduced custom precisions (with the number of significant bits varying from 5 to 23
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Figure 4.3: Distribution of the mean value of the first parameter samples in the synthetic problem with 3,000

runs of DP-MCMC (at precision s52e11), CP-MCMC and CF-MCMC (both at precision s8e8).
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in double precision (s52e11), CP-MCMC and CF-MCMC run in the precision with the number of significant

bits from 5 to 23. The green line indicates the average percentage of the bright data by 10,000 iterations in

each of the 100 CF-MCMC runs.
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and a fixed exponent bits number of 8) for CP-MCMC and CF-MCMC algorithms with comparison

to DP-MCMC simulations (where double precision with the significant bits 52 and the exponent

bits 11 used). For each algorithm, 10,000 sample points are generated, and each MCMC simulation is

repeated for 100 times. As shown in the figure, for every design point, both bias and standard deviation

increase as the utilised custom precision uses fewer bits in the case of CP-MCMC. However, for the

proposed algorithm, CF-MCMC, the obtained estimates have the same mean value and deviation as

in the case of DP-MCMC algorithm regardless of how much the precision is reduced (apart when

the number of significant bit is reduced to 5, but still there is no bias in the estimate). Figure 4.4

also shows the proportion of bright data point of the data set for CF-MCMC under different reduced

precisions. The proportion of bright data is only 0.0005% at single-precision s23e8, but increase to

67% at a very small precision s5e8, indicating the the lower bound function becomes less tight as the

precision decreases.

In summary, the two case studies indicate that the proposed system can produce unbiased estimates

even under custom precision regimes without any noticeable difference in the variance of the estimate

compared to an implementation that utilises double-precision floating point arithmetic throughout the

system, except in the case where the precision is reduced significantly (i.e. 5 bits for the significant).

Furthermore, it is observed that the current techniques that utilise custom precision in the likelihood

evaluation lead to biased estimates, as it is expected.

4.6.4 Resource Utilization

The proposed architecture CF-MCMC shown in Figure 4.2, and the double-precision architecture

(DP-MCMC) shown in Figure 4.1b have been implemented in the target device, where the dataset

are stored in the on-chip BRAMs. Table 4.1 gives the resource utilization (Registers, LUTs, Slices

etc.) of the generic MCMC block which uses double precision floating point arithmetic operators,

and also the resources required by one log-likelihood evaluation block at double-precision for both

case studies. Here we also show the total memory size needed by both architectures to store the data

and the auxiliary variables.
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Table 4.1: Resources of the generic block and one log-likelihood evaluation block using double floating point

arithmetic operators, and memory size for CF-MCMC on Xilinx Virtex-6 LX240T.

Resources (double-precision) Slices Registers LUTs Slices DSP48E1s Memory Size

Generic block 2853 4837 1722 11 -

Log Likelihood Synthetic Problem 5203 7666 2533 47 9.2 KB

Evaluation block MNIST Problem 13168 18919 6242 143 0.2 MB

Figures 4.5a and 4.5b show the resource utilization of a single likelihood evaluation block of the

synthetic example and MNIST problem under different reduced precisions respectively. The double-

precision block’s resources in Table 4.1 are also plotted in this figure. The figures imply that a factor

of parallelism between 4-5 can be extracted when part of the computations can be mapped to reduced

precision likelihood evaluation blocks utilising a precision between 8-18 significant bits. The above

figure provides an expectation of the maximum gain in the performance that can be delivered by the

proposed system compared to a double precision floating point implementation.
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Figure 4.5: The resource utilization of a single likelihood evaluation block of (a) the two-dimension (plus a

bias) problem and (b) the MNIST problem with custom precision where the significant bits range from 5 to 23

and a fixed exponent bits at 8, and also double precision.

4.6.5 Effective Sampling Throughput

In this section, the Effective Sampling Throughout speed-up is investigated for the proposed architec-

ture. As the aim is to achieve the maximum throughput, full utilization of the FPGA logic resources

is assumed for both architectures (CF-MCMC and DP-MCMC). Therefore, a maximum number of
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Figure 4.6: The speedups in terms of the effective sampling throughput of CF-MCMC architecture over DP-

MCMC on the target device for the two case studies.

parallel log-likelihood evaluation blocks is obtained for each sampler, by selecting the optimal con-

figuration of high and custom precision likelihood calculation blocks, PH and PL, using the proposed

performance model. The effective sampling throughput is measured by ESS/Ttotal as described in

Section 4.4.3. We compare the speedups in the throughput for our proposed CF-MCMC accelerator

over DP-MCMC design, and the results for both problems are shown in Figure 4.6 for a range of

values of the number of significant bits utilised in the CF-MCMC system. For the precision shown

in the figure, the optimal configurations (PH and PL) that fully utilise the targeted FPGA device are:

(PH , PL) = {(8, 22), (8, 20), (4, 36), (1, 46), (1, 38), (1, 36), (1, 34), (1, 30)} for the synthetic prob-

lem, and (PH , PL) = {(2, 22), (2, 20), (2, 16), (1, 14), (1, 12), (1, 12), (1, 10), (1, 10)} for the MNIST

problem.

As the figure shows, the speedups obtained for the two problems with the evaluated precisions are

in the order of 0.72x-3.67x and 0.51x-4.07x, for the synthetic and the MNIST problem respectively.

The results show that by reducing the utilised precision in CF-MCMC, a higher degree of parallelism

is possible. However, at the same time, the proportion of the bright data increases, which in turn

introduces extra latency as the computation for bright data likelihood is executed in a lower parallel
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degree. Furthermore, there is a reduction in the effective sample size (ESS) as the precision is

reduced. This is evident by the obtained results, where a peak in effective sampling throughput

speedup is observed at a specific precision configuration. Furthermore, it is observed that the proposed

system can be outperformed by the double precision implementation when few significant bits are

utilised (less than 6), indicating the need to have in place a performance model that predicts the

throughput of the system. The optimal precisions for both problems are (s, e) = (15, 8), with the

corresponding speedup of 3.67x and 4.07x.

Another metric to compare the performance of MCMC algorithms is the mean squared error (or risk)

in the estimate of (4.2), i.e. R = (I − Ĩ)2, where the expectation is taken over multiple simulations

of the Markov chain [48]. The risk can be decomposed as the sum of squared bias and variance, and

the objective of MCMC in practice is to obtain estimates with lower risk. Figure 4.7 shows how the

logarithm of the risk in estimating the mean of the parameter for MNIST, decreases as a function of

the execution time. The experiment configuration is the same as in [48]: we first estimate the true

mean using a long run of regular MCMC; then we compute multiple estimates of the mean from

the algorithms under investigation and obtain the risk in these estimates. In our test, the average

risk is based on 100 runs for each algorithm. The figure demonstrates that the proposed CF-MCMC

algorithm largely reduces the risk compared to that of DP-MCMC, by reducing the variance faster

within the same time period.

4.6.6 Theoretical Performance Model Evaluation

In this subsection, the accuracy of the theoretical performance model proposed in Section 4.5 is

evaluated, and it is shown how it can be utilised in order to maximise the performance of the proposed

system. For this investigation, the MNIST case study is utilised.

The evaluation of the framework is performed under three metrics: 1) the Theoretical speedup, which

is computed by the theoretical performance model TCF−MCMC = M/PH + (N −M)/PL using the

parallelism PH and PL we achieved in the target hardware and the bright data point M in Equation

(4.19); 2) the actual Raw speedup, which is computed using the actual runtime by executing the
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Figure 4.7: The Risk in the estimate of the mean of the parameter.

configuration in the FPGA device at each precision; 3) the Effective Sample speedup, which is com-

puted through ESS/Ttotal i.e. the effective sampling throughput as described in the above subsection,

and it includes the actual runtime when executed in the FPGA device and also the ESS effect in the

generated samples (this speedup is used in the rest of the article unless explicitly stated).

Figure 4.8a shows the Theoretical, Raw, and Effective speedups for a range of precisions between

the proposed architecture CF-MCMC and DP-MCMC. In total 100 runs were conducted in order

to capture the possible variations in ESS. The results confirm that the derived performance model

captures well the performance of the system under all the precisions, where the ESS effect, even

though it is not captured by the performance model, does not have significant impact on the model’s

performance prediction accuracy. The confidence interval bars denote the variation in the Effective

Sample speedup performance along different runs of the system for 95% confidence interval.

As has been described before, the performance model utilises the estimation of the number of bright

points based on short pre-runs (e.g. 1000 samples). Given that this estimate is not exactly the same as

the converged parameter values and thus it only provides an approximation of the number of bright

points in the system, it is necessary to investigate the sensitivity of the predicted speedups obtained
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Figure 4.8: The theoretical performance model is evaluated by (a) comparisons of the Theoretical speed

(estimated time), actual Raw speedup (execution time in FPGA), and the Effective Sample speedup (execution

time in FPGA and including the ESS effects); and (b) the range (max and min values as denoted by the bars)

of the theoretical speedup assuming a maximum deviation between the actual and predicted number of bright

points of up to 15%.

by the performance model with respect to the variation of the actual number of bright points from the

predicted one. In this investigation, the number of bright points M is set to take values in an interval

[M∗(1− p) M∗(1 + p)], where M∗ denotes the estimate of (4.19) based on short pre-runs, and then

compute the theoretical speedups according to the number of bright data in this interval. The results

for p = 15% are shown in Figure 4.8b.

The results indicate that at high precisions, the theoretical speedups have little variation with respect

to the number of bright points. However, the above variations do not have an impact on the choice for

the optimal custom precision that should be employed by the system, and thus the provided theoretical

performance model and optimal precision selection method are still valid even in the case where the

estimates of (4.19) have up to 15% deviation from the real values.

4.6.7 Lower Bound Construction Comparison

In this subsection, the construction of the lower bound functions proposed in Section 4.3.2 is inves-

tigated in order to assess how the lower bound constructions impact the speedups of the CF-MCMC

algorithm. The MNIST case study is used for this investigation. Three different constructions are

compared. The first construction is the method that utilises only Gappa++ in order to estimate the

error bound (Gappa++). The second method is to estimate the error bound for part of the function

through Gappa++ and utilises specific rounding modes in order to ensure a lower bound construction
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Figure 4.9: The speed-ups (Effective Sample speed-up) of CF-MCMC architecture over DP-MCMC implemen-

tations on the target device for the MNIST problem, under the three lower bound function constructions.

(proposed). The third method utilises the round mode for part of the function (similar as before), but

now the final error bound for the whole function is estimated through simulations using the MPFR

library [29] (MPFR). The third method does not provide any theoretical guarantees for lower bound,

but it can be seen as a reference of the maximum speedups of the CF-MCMC algorithm that could be

achieved. The results in terms of Effective Sample Speedup performance for the MNIST problem are

shown in Figure 4.9, while all constructions have no obvious influence on the bias and variance of the

generated samples.

As shown in the figure, the proposed construction, which is based on the rounding mode, results

in systems that outperform systems that are based on the construction of the lower bound function

based on our previous work (Gappa++). Furthermore, the proposed approach which guarantees a

lower bound construction gives similar performance results to the method that is based on simulations

(MPFR) and no guarantees in the construction can be provided. Nevertheless, all constructions lead

to similar speedups when high precisions are utilised.

The above observation can be further generalised beyond the specific case study. Let us rewrite the
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performance model provided in Section 4.4.3. Assuming PH = 1, the execution time to generate one

sample: Tsample = Nα+N(1−α)/PL can be rewritten as: Tsample = N ∗(1/PL+(1−1/PL)α). For

a given utilised precision, the number of parallel low precision units PL is fixed on a target device. If

the proportion of the bright data points (i.e. α, which depends on the lower bound proposal) satisfies

(1− 1/PL)α << 1/PL i.e. α << 1/(PL− 1), then the execution time Tsample will be almost equal to

N/PL which doesn’t depend on the quality of the lower bound construction. As such, all constructions

would provide similar speedup when high custom precision evaluation blocks are utilised.

For example, for the MNIST problem when the precision bits are at 5, 7 and 9, PL = [29 26 22] (for

PH = 1) and 1/(PL − 1) = [0.0357 0.04 0.048] while α = [0.10 0.025 0.0066]. When more than 11

significant bits are used, α << 1/(PL − 1) and thus all the constructions provide similar speedups.

Looking further into the obtained results, the last two methods (i.e. the proposed method and the

MPFR method), provide the best performance when PH = 1 instead of PH = 2, which is the case for

the first method (Gappa++) for precisions 7 and 9. This is due to the fact that the proposed method

and MPFR provide tighter bounds than the first method (Gappa++), and as a result the proportion of

bright data decreases at these two precisions points, leading to configurations that utilise fewer high

precision evaluation units.

4.6.8 Comparison to a Multi-core CPU Implementation

The proposed system was also evaluated against an optimised version of the standard (i.e. double

precision) MCMC algorithm that was running on a multicore system using the MNIST case study.

The selected system was running CentOS 7 64-bit and utilised an Intel i7-3770 processor with 8

cores and 8 GBs of RAM, where the compiler is the gcc version 4.8.3. The CPU-based system was

developed using OpenMP in order to utilise all the available cores in the system (i.e. 8), as well as

using -O3 optimisations. The program takes full advantage of the available cores (100% utilisation),

as the likelihood calculations are distributed evenly across the available cores (assumption of i.i.d

data).

The obtained speedup results (i.e. Effective Speed-up) are shown in Table 4.2. The DP-MCMC
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implementation achieves a speedup around 44.3x against the CPU, where the proposed CF-MCMC

achieves speedups in the range between 22.5x to 180.5x. depending on the utilised custom-precision.

The above results demonstrate the speedup gains of the proposed system.

Table 4.2: Speed-ups of DP-MCMC and CF-MCMC FPGA samplers against an 8-core CPU sampler.

FPGA designs DP-MCMC
CF-MCMC at various precisions (number of significant bits)

5 7 9 11 13 15 19 23

Speedup vs. 8-core CPU 44.3x 22.5x 56.1x 115.6x 156.7x 169.6x 180.5x 157.5x 148.0x

4.6.9 Comparison to an FPGA Implemented FlyMC Algorithm

Finally, a comparison against the FlyMC algorithm proposed in [58] is performed in this section,

as this is the closest work to ours. FlyMC algorithm can provide considerable speed ups when it is

compared against a regular MCMC algorithm implementation in software, as is acknowledged by the

authors [58]. For this to be the case, a lower bound function needs to be constructed as well as tuning

for each data point needs to be performed through MAP in order to ensure tight bounds at the data

points. The authors in [58] call this version of the algorithm MAP-tuned MCMC. However, such

lower bound functions can be difficult to be obtained for many problems [58], and MAP tuning for

each data point is required prior to the execution of the system imposing overheads to the overall exe-

cution time of the algorithm. The authors also investigate an alternative implementation of FlyMCMC

that skips the MAP tuning for each data point and call this algorithm Untuned FlyMC. However, their

obtained results show that the actual speed ups compared to regular MCMC are less impressive and

sometimes it can lead to longer execution times compared to regular MCMC.

The important point of departure between this work and [58], is that the lower bound functions are

custom precision versions of the target distribution and are automatically calculated by our system.

As such, our proposed algorithm can be applied to any problem but as a trade-off it does not give the

impressive speed ups claimed in [58] (i.e. for the MNIST problem, the authors claim 22x speedup for

the MAP-tuned FlyMC compared to their regular MCMC implementation in a CPU).

In order to investigate the performance of the FlyMC algorithm in an FPGA, and how it compares

against an implementation of a regular MCMC and the proposed CF-MCMC algorithm, the untuned
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Figure 4.10: Achieved speed-ups in terms of the resulting sampling efficiency of the original FlyMC algorithm

in [58] and our proposed algorithms over the double-precision MCMC implementation (DP-MCMC) on the

target device for the MNIST problem.

FlyMC was mapped in an FPGA. To further explore the custom precision supported by the FPGA de-

vice, the lower bound function in the FlyMC architecture was implemented under different precision

regimes (i.e. 23 significant bits correspond to a single precision floating point implementation of the

lower bound function suggested by [58] for the MNIST problem). The obtained results are shown

in Figure 4.10. As the results indicate, the FlyMC’s performance (in terms of effective samples per

second) is inferior to the regular MCMC FPGA implementation following the patters that was ob-

served in the corresponding CPU implementations [58]. Furthermore, the use of custom precision in

the implementation of the lower bound function leads to similar performance systems. In both cases,

the underlying reason for leading to these performance points is the loose lower bound function used

in the system. In any case, the proposed algorithm outperforms the FPGA implementation of the

FlyMC.
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4.7 Conclusions

In this Chapter, the CF-MCMC algorithm and its mapping to an FPGA device was presented. The

proposed algorithm exploits the custom precision support of FPGAs in order to accelerate computa-

tional bounded MCMC problems, by utilising low precision calculations of the likelihood function

in an intelligent way. The key contribution of this work is that by introducing a set of auxiliary vari-

ables, the proposed CF-MCMC accelerator guarantees the generation of unbiased estimates which is

important for applications that cannot tolerate any bias in the estimates. Experimental results show

that notable speedups over double-precision designs can be achieved with our proposed architecture

in both software and hardware implementations.

The focus of this chapter is to optimize the likelihood computation in FPGA implementation. How-

ever, it doesn’t consider the data transfer overhead in applications with large dataset. The following

chapter will investigate the potential of using FPGA to overcome the memory issue for MCMC algo-

rithms based on data subsampling.



Chapter 5

Communication-Aware MCMC Method for

Big Data Applications on FPGAs

5.1 Introduction

Over recent years, Bayesian methods have become increasingly popular due to their ability to analyse

data of complex structures using flexible models. Modern Bayesian inference problems utilise large

dataset and the current trend is for these datasets to grow fast [3]. The availability of large datasets

allow the construction of complex models, leading to computationally expensive likelihood functions

in the MCMC methods. As such, the application of MCMC algorithms to modern problems start

becoming prohibited and many researchers and practitioners work on the acceleration of MCMC.

Two main research directions can be found in the literature for MCMC acceleration. The first direc-

tion focuses on the acceleration of the likelihood computation through approximation models, and/or

parallelising its evaluation based on the assumption of i.i.d data [58]. The former approach has the

difficulty of selecting a suitable approximation model that has the desired properties of fast evaluation

and at the same time obeys certain assumptions on the quality of the approximation [58]. The latter

approach has been explored by various works using multi-core CPU and GPU devices, and eventually

the system’s performance is limited by the available memory bandwidth [56].

89
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The second direction focuses on reducing the number of data points that need to be processed in every

MCMC iteration, and effectively addresses the memory bandwidth problem. Most of the methods in

this category propose a sampling scheme to generate an unbiased estimate of the likelihood function

based only on a small sample of the dataset [48, 8, 69]. However, the existing works treat the memory

as one monolithic storage space, and are oblivious on the performance characteristics of the various

memory technologies of modern memory system hierarchies. As such, the actual latency of access-

ing a data point from the memory is not taken into account in the MCMC construction, and all the

“accesses” are considered to have the same cost (i.e. latency, power).

The work proposed in this Chapter belongs to the second set of work, and it proposes a sampling-based

algorithm that aims to reduce the memory accesses, but it exposes the performance of the memory

sub-system to the MCMC algorithm in order to guide the sampling process, constructing as such a

communication-aware MCMC algorithm. The key idea is the use of Probability Proportional-to-Size

(PPS) sampling, where the inclusion probability of each data point is proportional to its approximate

contribution to the likelihood function, allowing the system to reason during run-time on how often a

specific data point will be accessed, and as such it can decide on its suitable storage location across

the memory hierarchy.

The main contributions of this work are:

1) A communication-aware MCMC algorithm based on PPS sampling is proposed, that takes into

account the performance characteristics of the underlying memory hierarchy. The proposed algorithm

reduces the data transfer overheads among memories, compared to the regular MCMC and other

subsampling-based algorithms, leading to faster execution times;

2) An optimized hardware architecture tailored for FPGA implementation that implements the pro-

posed algorithm and efficiently utilises the on-chip memory blocks;

3) Evaluation of the proposed architecture in the Xilinx ZedBoard containing a Z-7020 device using

the logistic regression model on MNIST database. The proposed design achieves a speedup of 3.37x

over a highly optimised regular MCMC design in FPGA and obtain much lower risk in the estimates.

It should be noted, that FPGAs are particular suited for the proposed algorithm due to the customi-
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sation of the use of the on-chip memory blocks, as well as due to the available high on-chip memory

bandwidth that allows the full utilisation of of multiple processing elements for the likelihood evalu-

ation.

5.2 Communication-Aware MCMC Method

This Chapter proposes a novel subsampling-based MCMC method which utilises an intelligent way

to sample the dataset in order to evaluate the likelihood partially. The main focus of the work is on

the approximation of the regular Metropolis test step in line 3 to line 9 in Algorithm 13 of Chapter 4.

As the code illustrates, this is equivalent to compare two values: the reformulated random number u0

and the average difference µ in the log-likelihoods of θ′ and θi−1 (the computations are performed in

the log-domain).

u0 =
1

N
log(u),where u ∼ Uniform[0,1] (5.1)

µ =
1

N

N
∑

i=1

li,where li = logp(xi | θ′)− logp(xi | θi−1) (5.2)

If µ > u0, the proposed sample θ′ is accepted, otherwise it is rejected. In this work, the above

Metropolis step is approximated similar to [48], and it is casted as a hypothesis test. Given the random

sample {li1 , ..., lin} drawn from the population {l1, ..., lN}, a statistical hypothesis test is developed

to decide whether the population mean is greater or less than u0 with a user defined confidence.

The standard deviation s of the sample mean l̄, together with l̄, is used to compute the test statistic

t = (l̄ − u0)/s which follows a standard Student-t distribution with n− 1 degrees of freedom. Then

δ = 1− Φn−1(|t|) is computed, where Φn−1(|t|) is the cdf of the standard Student-t distribution, and

it is compared with a fix threshold (user defined) ε, in order to determine the level of confidence for a

decision to be taken.

The parameter ε is introduced in the subsampling-based MCMC algorithms to control the bias in the

estimates. When the ε is set to 0, there is no bias and the variance in the estimate can be brought down

to zero if we can draw an infinite number of samples. However, for a given amount of computational

time, it is better to allow a small bias in the estimate if it makes it cheap to generate a sample and thus
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reduce the variance quickly. The optimal setting of ε is to minimize the risk (Equation 2.14 in Section

2.2.3 of Chapter 2) for a given time budget.

In [48], the authors propose to use equal probability sampling, i.e. simple random sampling (SI),

and the results show that it doesn’t work well as a large sampling fraction is needed for the algo-

rithm to make a decision. On contrary, Probability Proportional-to-Size sampling (PPS) is an unequal

sampling method where each sample is selected with a probability (which is often called “inclusion

probability”) that is proportional to its contribution towards the quantity under estimation in (5.2).

Compared to SI, PPS can largely reduce the variance in the estimate of the mean, leading to a MCMC

chain with more efficient draws for a given time budget compared to a regular MCMC on the full

dataset. Moreover, in unequal sampling, the data points that have been assigned high probabilities

will have higher probability to be chosen across iterations than the samples with low probabilities.

The proposed work exploits the above property of PPS, in order to reason on the actual storage of the

data points during the execution of the algorithm. Thus, the data points with high inclusion probabil-

ities are kept in the on-chip memories where data points with low inclusion probabilities are left in

the slower access off-chip memory. Please note that the inclusion probability of a data point depends

on the values of the current sample, creating the need to dynamically reallocating data point across

the memory hierarchy during the execution of the algorithm. However, due to the smoothness of the

likelihood function, and the small distance between the current and proposed samples, the inclusion

probabilities do not have to be evaluated in every iteration. In more details, to design a sampling

scheme with unequal probabilities, we first construct sampling weights ωi = |li|. Then for a given

target size m of the subset S , i.e., |S| = m, each unit is selected with inclusion probability πi = cωi

where c is a positive constant satisfying
∑N

i=1 πi = m. The population mean and its variance can be

estimated using the Horvitz-Thompson (HT) estimator3:

l̄ =
1

N

∑

i∈S

li/πi (5.3)

var(l̄) =
1

N2

∑

i∈S

(1− πi)(li/πi)
2 (5.4)

Given the above estimates, the algorithm follows the same flow as in SI, where t is computed and

3Please note that the HT estimator has these expressions under a design of Poisson sampling [84].
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compared to ε in order to determine if a decision can be made.

The proposed communication-aware MCMC (CA-MCMC) algorithm is shown in Algorithm 15. The

PPS sampling design is based on the Poisson sampling proposed in [84]. The advantage of Poisson

sampling is its simple implementation, and on the simplicity in estimating the variance of the HT-

estimator as shown in (5.4). There are some key points in the proposed algorithm: Firstly, this method

doesn’t need to update πis at every iteration. This would require access on the whole dataset, leading

to the same cost as in the regular Metropolis step. The algorithm only updates the probabilities when

it cannot use the subset to make a decision (defined by the parameter flag regular mcmc to 1 in line

22). If a decision cannot be taken, a regular Metropolis step is performed. This is shown in line 5

to 9, where the on-chip dataset is also built. Secondly, an adaptive method is proposed to determine

the size of the subset M target which is initialised at m in line 1. The variable conseq done is used

to record the progression of the algorithm, and it is used to guide the selection of the sample size

M adjust . This is shown in line 24 to 29.

The advantage of the CA-MCMC algorithm compared to the random sampling based MCMC (RS-

MCMC) algorithm proposed in [48] is that it reduces the variance in the estimator of the likelihood

using PPS sampling. Thus the average size of the subset is reduced. Moreover, as the algorithm is

now based on an unequal sampling technique, reasoning on the “optimum” storage location of the

data points can be performed. The proposed algorithm can store the data points with high inclusion

probabilities in the on-chip memories, with the potential to reduce considerably the data transfer times

from the off-chip memory, pushing further the memory-bound problem and allowing more samples

to be drawn in a given time budget.

5.3 Hardware Mapping

5.3.1 IP Architectures and FPGA system Integration

In this section, an FPGA-based architecture is proposed for the implementation of the proposed CA-

MCMC sampler, together with two other architectures for the implementation of the regular (tradi-
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Algorithm 15: Communication-Aware MCMC Algorithm

Input: initial setting θ0, number of samples Ns, parameters: ε, m, M adjust , conseq thres;

Output: samples of parameter θi, i = 1, ..., Ns;

1: Initialization: i = 1,flag regular mcmc = 1,

M target = m, conseq done = 0;

2: while i < Ns do

3: Propose θ′ ∼ θi−1+Normal(0, s2ID);

4: u ∼ Uniform(0,1);

5: if flag regular mcmc == 1 then

6: Compute the log-likelihood term l in (5.2) for the whole data;

7: Update πis and build the on-chip dataset;

8: Perform the regular Metropolis step;

9: i = i + 1 ;flag regular mcmc = 0;
10: else

11: Draw a subset S with |S| = M target from Poisson Sampling, and access the data either

from on-chip dataset or the main memory; // where we reduce the off-chip access.

12: Estimate l̄ and its variance using HT estimator;

13: Compute δ = 1− Φn−1(|t|);
14: if δ ≤ ε then

15: if u0 ≤ l̄ then

16: θi = θ′; //accept

17: else

18: θi = θi−1; //reject

19: end if

20: i++;flag regular mcmc = 0 ; conseq done ++;
21: else

22: flag regular mcmc = 1 ; conseq done −−;
23: end if

24: if conseq done ≥ conseq thres then

25: M target = M target −M adjust ;
26: end if

27: if conseq done ≤ (−1 ∗ conseq thres) then

28: M target = M target +M adjust ;
29: end if

30: end if

31: end while
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the three algorithms. Assuming the total data size is N with each component xn as a vector of D-

dimension (consisting of D single precision floating point numbers), DDR stores the whole dataset

and the on-chip memory can store M data points. For the regular MCMC, the on-chip memory

performs as temporary storage. When computing the likelihood, we first transfer a subset of the

data in off-chip to the on-chip memory and constantly process these data points. This is performed

repeatedly until we processed all the data points in off-chip memory. For the random sampling based

MCMC (RS-MCMC), the on-chip memory performs as a FIFO. In order to draw a subset from the

whole dataset, in every cycle a data point is drawn randomly without replacement from off-chip to

on-chip memory. At the same time, the likelihood datapath can process the data points from the on-

chip memory without stalling. As the data points are randomly chosen, the DDR memory needs to be

accessed in every data point acquisition, which is a disadvantage of the RS-MCMC algorithm. Please

note that the sampling stage is done in parallel with the computation of the likelihoods (the subset

does not depend on the result of the likelihood evaluation), and the existence of the on-chip memory

guarantees that the datapaths can be fully pipelined and utilised.

In the case of the proposed CA-MCMC architecture, the on-chip memory performs as a FIFO but also

as working memory. In each iteration, when we update πis, we store a subset of data from the dataset

on the on-chip memory using Poisson sampling. As such, the data points with high probability to

be selected in the next subset are already in the on-chip memory (which is determined by the “On-

chip flag” shown in Figure 5.2(c)). As the data in the on-chip memory maintain similar inclusion

probability values for several iterations, the off-chip access is largely reduced.

To further improve the performance of the systems, the CA-MCMC and RS-MCMC architectures

have been parameterised to access a mini-batch of data points B (contiguously stored in memory)

in each read operation from the off-chip memory instead of reading one data point each time. The

benefit of increasing the mini-batch size B is the reduced latency of accessing B data point from the

off-chip memory, but this is in the expense of introducing a more coarse sampling of the dataset. This

will be further discussed in Section 5.4.
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Table 5.1: System and Problem parameters.

N Total Number of data points.

D Dimensions of each data point.

Ns Number of samples to be generated for each MCMC IP.

ε the fixed threshold to control the bias of the RS-MCMC and CA-MCMC IPs.

M the number of the datapoints which can be stored in the on-chip BRAMs of

the three IPs when mapped on an FPGA.

B the size of the mini-batch to be transferred from the DDR to FPGA each time

for the RS-MCMC and CA-MCMC algorithms when mapped on an FPGA.

5.3.2 Performance Model

As the work is focused on pushing the memory bandwidth bound, the derived performance models

capture the required memory accesses to the external memory. As the latency of the on-chip memory

to the IP can be designed to be one clock cycle per data point (D floating numbers), as we have

shown in Figure 5.2, and since all datapaths are fully pipelined, the overall performance of the system

is dictated by the transfer of data points from the off-chip memory to the IP. Table 5.1 provides a

summary of the problem and system parameters.

Let N be the total number of data points, where each point is a D-dimensional vector whose elements

are under single precision floating point representation. Assuming that the algorithms perform Ns

iterations, then the regular MCMC architecture which requires access to all the data points in each

iteration, needs NMCMC external memory access in total, which is given by:

NMCMC = NsND (5.5)

In the case of the RS-MCMC architecture, the number of data used for the likelihood evaluation is

reduced. Due to random sampling, each sampled data-point needs to be transferred from the off-chip

memory to the IP. Assuming that on average each iteration requires MRS data points, the expected

off-chip memory access is given by:

NRS−MCMC = NsMRSD (5.6)

In the case of the proposed CA-MCMC architecture, most of the data points used for the likelihood
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evaluation will consist of the data points with high inclusion probabilities. Let’s assume that in aver-

age MCA data points used in each iteration (this is different from MRS as the two architectures utilise

different sampling techniques), and on average a percentage, α, of these points will be available in the

on-chip memory. Please note that α will increase as the size of the on-chip memory (M ) increases.

Then the off-chip memory access times will be (1−α)MCA. Assuming the rate to perform the regular

Metropolis step and update the inclusion probabilities πis is on average β, the total number of off-chip

memory accesses for Ns iterations is given by:

NCA−MCMC = βNsND + (1− β)NsMCA ∗ (1− α) (5.7)

5.4 Evaluation and Experiments

5.4.1 Case Study

As the case study to assess the performance of the proposed system, the logistic regression problem

in Chapter 4 which is widely used in the MCMC literature [48, 8, 56, 57, 54] is considered. Logistic

regression is used in many fields, including medical and social sciences. In this case study, the

target distribution is the posterior for a logistic regression model trained on the MNIST dataset for

classifying digits 7 vs 9. The logistic regression likelihood is given by:

p(xn|θ) =
1

1 + exp{−ynθTxn}
(5.8)

where xn ∈ R
D is the set of features for the nth data point and yn ∈ {−1, 1} is its class. The dataset

in the study consists of 10,000 data points chosen from the total 12,214 data points in the database,

and the first 12 principal components (and one bias) from PCA are used as features, i.e., D = 12.
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5.4.2 Parameter Selection

In the following sections, an investigation is performed to assess the impact of the various parameters

to the overall performance of the algorithms. In the proposed implementation, the initial values for

the parameters are as following: m = 500,M adjust = 100, conseq thres = 10. Please note that no

actual tuning has been performed in the selection of these parameters, and their values were mainly

guided to be similar to the parameters used in RS-MCMC [48]. The performance of the proposed

algorithm under different values of ε, and the size of mini-batch size B is investigated in the following

sections.

5.4.3 Resource Utilization

The three MCMC IPs proposed in Section 5.3 were implemented using Xilinx Vivado HLS, and

single precision floating point number representation was used for all datapaths. The overall system

was mapped on a Xilinx ZC702 ZedBoard with the system clock (which is also used in the IPs) set to

100 MHz. All the reported results are measured results from the board except if it is stated otherwise.

Table 5.2 shows the results of the FPGA resource utilisation for the three MCMC samplers, with the

same architecture parameter M = 1000 which is limited by the number of BRAMs available in the

ZedBoard. The regular and RS-MCMC use fewer BRAMs than the CA-MCMC, as the two algorithms

do not substantially benefit from storing a subset of the data on-chip 4. In the case of the proposed

CA-MCMC architecture, extra on-chip memory is needed to store the inclusion probabilities, one-

bit flag for each data to remark if the data is on-chip or not, and the address of the on-chip data in

off-chip memory, as shown in Figure 5.2. Please note, as the dimensionality D of the data increases,

the above overheads diminish as their storage requirements do not scale with the dimensionality of

the data. Also, the logic resources such as LUTs and DSPs for RS-MCMC and CA-MCMC are very

close and both utilise more logic resources than the regular MCMC architecture. This is expected as

both subsampling-based architectures need to perform extra computations for calculating the mean

and variance of the likelihood estimator in order to make a decision at each iteration. It should be

4A small gain can be realised in these two algorithms by having a small proportion of the data on chip. However as

the size of the dataset increases, this gain diminishes, which is not the case for the proposed CA-MCMC.
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noted that all systems fit easily in this relative small FPGA device, indicating the potential use of

FPGA devices in this application domain.

Table 5.2: Resource utilisation of the three MCMC FPGA-mapped samplers with the architecture parameter

M = 1000.

IP Block LUTs FFs DSPs BRAMs

Regular 25639 (48%) 15623 (14%) 105 (47%) 24 (9%)

RS-MCMC 34718 (65%) 20240 (19%) 138 (62%) 36 (13%)

CA-MCMC 33618 (63%) 20756 (19%) 151 (68%) 86 (30%)

Total 53200 106400 220 280

5.4.4 Obtained Risk and Speedup

Figure 5.3 shows how the Risk in estimating the mean parameter of the MNIST decreases as a function

of the execution time for the different architectures, having fixed the design parameters as follows:

B = 1 and ε = 0.1. The experiment configuration is the same as in [48]: the true value of the

mean is estimated using a long run of the regular MCMC algorithm, and then this values is used as

a reference point. Multiple estimates are then computed from the three architectures, and the Risk

is calculated. In the provided results, the risk is calculated over 200 runs of each algorithm. The

figure demonstrates that the proposed architecture largely reduces the risk compared to that of the

regular and RS- MCMC, by drawing more samples and reducing the variance faster within the same

time period. The obtained speed-ups for the CA-MCMC and RS-MCCM over the regular MCMC

are 1.58x and 1.19x respectively. The speed-up of the proposed system CA-MCMC compared to the

single precision optimised CPU implementation of the regular MCMC executed in an Intel i7-3770

3.4 GHz CPU (single thread) is 13.5x.

The performance of the proposed algorithm was also investigated under different values of ε, which

determines the required confidence in the estimation of the likelihood for taking a decision in the

Metropolis step. The obtained results are shown in Figure 5.4. In all the tested cases, the proposed

algorithm outperform the regular MCMC architecture, with an optimal setting for ε to be 0.1. As

ε is increased, the algorithm needs fewer data to sample in order to make a decision, and thus more

samples are generated per unit of time, leading to a reduction in the variance of the estimate. However
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Figure 5.3: The Risks in the estimate of the mean of the parameter with the design parameters: B = 1 and

ε = 0.1.

the bias in the estimates also increases. It should be noted, that as more samples are generated, the risk

will be dominated by the bias, leading to a monotonic relationship between ε and risk. Nevertheless,

for the given execution times the best performance is obtained for ε = 0.1.
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Figure 5.4: The Risks of CA-MCMC in the estimate for different settings of ε with the design parameter B = 1.

Moreover, we investigated the impact of the mini-batch size B to the performance of the algorithm

having fixed ε to 0.1. The speedups of the two architectures normalised over the performance of the

regular MCMC 5 for different values of B are shown in Table 5.3. The obtained results show that

5Please note that the performance of the regular MCMC architecture is not affected by B, as it requires all the data to

be streamed to the FPGA.
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Figure 5.5: The Risks in the estimate of the mean of the parameter with the optimal design parameters.

the optimal speedups for RS-MCMC and CA-MCMC are 2.10x at B = 25 and 3.37x at B = 20

respectively. Figure 5.5 captures how the Risk in the estimate reduces as a function of wall-clock

time for these two optimally tuned designs.

Table 5.3: Speedups of RS- and CA- MCMC for different values of B, normalised over regular MCMC.

B 1 5 10 20 25 50

RS-MCMC 1.19x 1.48x 1.72x 1.84x 2.10x 1.52x

CA-MCMC 1.58x 2.39x 3.21x 3.37x 3.35x 2.70x

Finally, the performance model introduced in Section 5.3.2 is utilised to make predictions of the

speedups of CA-MCMC architecture for different FPGA devices that utilise larger on-chip memory

storage space. The predicted speed-ups are shown in Figure 5.6, assuming the default design B = 1.

As more on-chip BRAMs are available, the data reuse percentage α in (5.7) is increased and thus

the performance of the proposed architecture improves. However, as M increases, the execution

time of the regular and RS- MCMC has little improvement as we have shown in (5.5) and (5.6), and

effectively diminished for large datasets.

It should be noted that storing 10% of the whole dataset in on-chip BRAMs seems a very optimistic

scenario in real big data applications. Nevertheless, when the on-chip data size reduces to be very

small, the main contribution on the performance improvement comes from that the size of the subset
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used in CA-MCMC algorithm is smaller that that of regular and random subsampling MCMC. For

example, from Figure 5.6, when the available BRAMs in the FPGA device (ZC7015) only stores

5% of the whole data, it shows a speedup of 1.55x. That is to say, even considering to store on-

chip a smaller percentage of the dataset, the reduced subset size of CA-MCMC algorithm still gives

performance improvement compared to regular and random subsampling MCMC algorithms.

5.5 Conclusions

This Chapter presents a novel communication-aware and subsampling-based MCMC framework, to

push further the memory bandwidth bottleneck in current MCMC applications for big data. The key

contribution of this work is that by introducing the PPS sampling to draw subset, the proposed design

can largely reduce the off-chip memory access across iterations, therefore a lower risk in the estimate

can be achieved for a given time budget. Experimental results show that notable speedups and reduced

risks over other highly optimized FPGA designs are achieved with the proposed architecture. Even

though the presented results are problem specific, the methodology can be applied to other problems

with potential gains as it couples the “contribution” of the data with its storage location.
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Conclusion

The previous Chapters propose novel resampling algorithms, parallel resampling architectures, preci-

sion optimization for MCMC on FPGAs to speed up likelihood computation and the communication-

aware MCMC method to reduce the memory access cost. This chapter starts with the summary of the

current achievements of the thesis, discussions on some important issues posed in previous chapters

followed by the directions of the future work.

6.1 Summary and Discussion of the Achievements

Bayesian methods have attracted lots of attention in modern deep learning systems and they have been

widely used by practitioners and researchers mainly due to their ability to capture uncertainty in the

models and systems. Examples include deep generative models [72] or deep belief networks (DBNs)

[36] and dropout neural networks [79]. Accounting for uncertainty is central to deep learning system

to guarantee the artificial intelligence safety. By conditioning on the data, the Bayesian methods

not only perform point estimation, but also convey the uncertainties associated with the estimates.

However, at the same time, with the availability of large data sets and the constant need to develop

more complex models that better capture the targeted problem, significant computational challenges

have been presented in Bayesian methods such as SMC and MCMC. Currently the approaches based

on multi-core CPUs, GPUs, and FPGAs, have become the main trend aiming to accelerate these

105
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methods. In this thesis, we show how the FPGA devices can be used to accelerate MCMC and SMC

methods by fully utilizing the computational resources, word-length optimizations and high on-chip

memory bandwidth. Notable speedups compared to the respective CPU and GPU design have been

achieved in this work.

Chapter 3 focused on how to parallelize the resampling step of SMC method. We proposed par-

allel architectures for four state-of-the-art resampling algorithms (systematic, residual systematic,

Metropolis and Rejection resampling). We also proposed the memory access strategies for Metropo-

lis and Rejection resampling architectures to guarantee the same reampling quality as non-parallel

implementations. Speedups of 10x to 49x over the respective GPU implementations were achieved

using the proposed design on FPGAs.

The main limitation of the systematic and residual systematic resampling algorithms is that they need

to compute the sum or the cumulative sum of the weights, which consumes lots of computational

resources such as adders in FPGAs. For large number of particles/weights, it limits the maximum

degree of parallelism we can achieve in FPGA device and therefore the speedups compared to GPU

reduced when the number of particles increased a lot. For this reason, it is beneficial to store the

weights and perform sum or cumulative sum using fixed point representation instead of the floating

point numbers. Nevertheless, the Metropolis and Rejection resampling don’t need to perform the

collective operations. However, their execution time largely depends on the variance of the weights,

which may cause slow convergence and thus long execution time. Rejection resampling also has non-

deterministic runtime and this will have impact on the implementation of the whole SMC or particle

filter system.

When considering how to use these parallel resampling architectures for the particle filter system, it

should be noted that the output of the two resampling categories characterizes different forms, and this

can lead to alternative architectures when implementing the distributed particle filter system. In [13],

two architectures for distributed particle filters were presented: one is based on distributed resampling

with proportional allocation (RPA) and the other is based on resampling with non-proportional alloca-

tion (RNA). Both architectures can benefit from each of the propose parallel resampling architectures

in this work. Nevertheless, the RNA architecture is more suitable for FPGA implementation when
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using systematic or residual systematic resampling, as it has less memory requirement compared to

the RPA architecture.

In Chapter 4, the focus was transferred to MCMC methods. A novel FPGA-based MCMC construc-

tion is proposed that utilises the custom precision support of FPGA devices in order to accelerate the

computations, guaranteeing at the same time asymptotically unbiased estimates. Key to this approach

is the extension of the parameter space by an extra parameter that indicates the required precision in

the computation of the likelihood of a data point. Compared to existing FPGA- and CPU-based work

which utilises double floating point arithmetic, significant speedups have been achieved.

The main difference of this design compared to previous work on mixed precision MCMC is that

we use the custom precision likelihood as a lower bound on the actual likelihood values. The lower

bound requirement was satisfied by using formal verification tools Gappa++. However, it’s not clear

how tight the bound provided by Gappa++. Therefore we also proposed the utilization of the rounding

mode configuration of the operators. Unfortunately, the rounding mode cannot be used for all types of

operation. Nevertheless, combining Gappa++ and the configuration of rounding mode builds a lower

bound tight enough to give significant performance improvement compared to previous work.

The main limitation of this work is that the results are achieved in the situation where the data set can

be are stored in the on-chip memories in FPGA. However, when the utilized MNIST database comes

larger or a real problem with big data is targeted, external memories such DDR and disks need to use

for these problems. In this case, every time before we process the data, we need to bring part of the

data sets in external memory to the on-chip memories, then this part of data will be processed first and

this is repeated until the total data sets are processed. As a result, the communication time between

off-chip memory and FPGA device can exceed the processing time, thus it becomes the dominant

bottleneck in terms of the performance of the whole system. This motivates the work in Chapter 5

that aims to tackle the memory bound problem in MCMC construction.

Finally, Chapter 5 proposed a communication-aware MCMC framework that takes into account the

underlying performance of the memory subsystem during the sampling process, leading to faster

execution times. The framework is based on a novel subsampling algorithm that utilises an unbiased

likelihood estimator based on Probability Proportional-to-Size (PPS) sampling, allowing information
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on the performance of the memory system to be taken into account during the sampling stage. The

proposed design on FPGA achieved a speedup of 3.37x over a highly optimised traditional MCMC

design on FPGA, and 13.5x over the respective CPU design.

The main limitation of the proposed algorithm is that it still required performing the regular Metropo-

lis step with a high frequency, which needs to access all the data points to evaluate the full likelihood

functions. Thus it limits the maximum speedup we can achieve on FPGA even when a larger size

of on-chip memories is available. Improvement can be made by proposing more efficient way to

compute the approximate likelihood contribution, such as using either a noise-free Gaussian process

or a thin plate spline surface as proposed in [69], in order to further improve the performance of the

current system.

Previous work related to Chapter 5 is quite limited in literature, although lots of variants of MCMC

algorithms use subsampling method. The key problem for MCMC algorithms to apply to big data

is the communication time between datapaths and the data memory. It is unavoidable to keep all the

data in memories and the question is that how we can reduce the main memory access which has large

latency. Advanced data reduction techniques such as random projection can be investigated in order

to reduce the memory overhead of MCMC methods brought by big data applications.

Overall, the main contribution and core breakthrough of this research is that we tackle both the com-

putation bound and memory bound problem for Bayesian methods (MCMC and SMC) in the big data

regime using FPGAs. This is achieved by taking into account the unique capabilities of FPGAs such

as highly-parallel bit-oriented architecture and custom precision support. With the proposed hardware

accelerators for MCMC and SMC, these methods can be applied to real data analysis applications and

solve the intractable or computationally intensive tasks in Bayesian inference.

6.2 Extensions and Future Work

This work can be extended in several directions including comparison of different types of resampling

algorithms, developing custom precision resampling and particle filter architectures and using multi-

ple FPGA devices and/or heterogeneous multi-core computing platforms such as FPGAs and GPUs
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to further improve the performance per energy unit in the field of SMC and MCMC.

• There are some other resampling algorithms that are commonly used in particle filters besides

the four algorithms presented in this thesis. For instance, the Alias method [73] is a family of

efficient algorithms for sampling from a discrete probability distribution, which is actually the

optimized rejection sampling algorithms by stacking the weights. The Alias method’s complex-

ity doesn’t depend on the variance of the weight set which is not the case of rejection sampling.

A possible research direction would involve the comparison of the Alias method with the rejec-

tion and Metropolis sampling from the software and hardware implementation point of view.

The main disadvantage of the Alias methods to be implemented in FPGA is that they need

more memory to construct the Alias table and a large number of memory accesses in the step

of initialization of the work-lists.

• Another important direction to accelerate particle filters is the conversion of double floating

point to any custom precision in hardware implementation. It is beneficial to use small number

of bits in floating point or fixed point representation in order to reduce area requirements. A

low-complexity residual resampling in fixed-point arithmetic has been explored in [13]. Nev-

ertheless, finite precision analysis and further work should be performed to allow the rapid and

automated design space exploration involving optimisation of the precision configurations in

particle filter by performance and speed trade-off.

• The resampling architectures proposed in this thesis is straightforward to be used in the dis-

tributed particle filtering. Future work can focus on the implementation of different application

problems with comparisons of the proposed resampling architectures in different application

domains.

• Current GPUs also support custom precision arithmetic, therefore it will be an interesting re-

search direction to implement our proposed MCMC algorithm in Chapter 4 in GPU to compare

its performance to that of FPGA in this work. The main emphasis of the design then should be

in exploiting the construction of the tight and low bound functions of the likelihood in GPU.

• Another possible and promising research direction of custom precision MCMC design is using
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fixed precisions. As the results shown in Chapter 4, even in a much smaller floating point

setting, still a small speedup chan be achieved with the proposed design. It would be interesting

to see how this will change if we move to the fixed point precision. Obviously the trade-off is

that by allowing a far low bound function we can achieve more parallelism.

• Since the main goal of Chapter 5 is to reduce the memory accesses, current method uses appli-

cation specific architectures. Nevertheless, this methodology can be applied to other problems

with potential gains as it couples the “contribution” of the data with its storage location. Auto-

mated parameter tuning and mapping, taking into account the application data size and device

size, that enables application independent optimizations can be explored to extend the applica-

tion fields of this method.

• Currently as we have seen the results shown in Figure 5.6 of Chapter 5, there is a limitation

of the speedups even increasing the on-chip size. This is due to the required steps to perform

the regular Metropolis step in the current communication-aware algorithm. New method can

focus on how to propose computationally efficient way to compute the approximate likelihood

contribution, i.e., the inclusion probability to avoid the regular step, thus further improve the

performance.

• We have provided results on the speed improvement of the communication-aware MCMC algo-

rithm. In addition, it is very interesting to see how this approach may have effect on the power

consumption, since the proposed approach improves the energy efficiency related to the data

movement. Some power monitor tool can be used to analysis the power consumption of the

three algorithms implemented in FPGA in Chapter 5 to have a comparison.

• A more general direction to accelerate the MCMC and SMC methods may be to utilize mul-

tiple FPGAs, and/or heterogeneous multi-core computing platforms with accelerators such as

FPGAs and GPUs, since current big data problems can be too large to be comfortably processed

on a single device. The memory bottlenecks can be eliminated by splitting data across multiple

devices. Tools and methods need to be developed for optimisation of workload distribution for

heterogeneous multi-core systems, in order to improve the performance per energy unit in the

field of SMC and MCMC.
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[13] M. Bolić. Architectures for efficient implementation of particle filters. PhD thesis, Stony Brook

University, 2004.
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