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Abstract

Liquid-Gas interactions and break-up processes are found in many technological and en-
vironmental applications, from Internal Combustion and Gas Turbine engines to food
processing and manufacturing. Their complete characterisation at realistic Weber and
Reynolds numbers is not possible, due to the vast range of scales integrated and the re-
quirement of a ’minimum’ computational mesh size to capture these scales. To this day, a
number of questions remain unanswered, with relative research still ongoing. It is crucial
to understand such phenomena so that any technological applications can be optimised
and the environmental impact can be reduced. Currently, there is a high need to develop
appropriate numerical modelling tools that provide both mass conservation and accurate
interface topological properties. Two common interface modelling approaches are the
Volume of Fluid and the Level Set, typically coupled into CLSVOF methods to ensure
improved surface representation and good mass properties. In this work, a novel in-house
Mass Conservative Level Set (CMLS) method is developed and validated extensively. The
CMLS novelty is in the Level Set coupling with the Volume of Fluid, being processed only
when necessary, providing a faster and more robust approach. Doing so, some numerically
imposed limitations due to the ’physics’ and ’stability’, are overcome.

The novel CMLS is employed for primary break-up investigations, in a single liquid droplet
and jets. Single droplet break-up remains a benchmark test case, as it provides good foun-
dations for liquid jet break-up and spray atomisation modelling. In such processes, the
main effective parameters considered are the Weber and Reynolds numbers, along with
the Ohneshorge (droplets) and Dynamic Pressure ratio (jets). Contrary to most studies,
this work employs the surface density evolution using the Σ − Y model. The droplet
break-up cases, show a strong correlation between the break-up initiation time and the
Ohneshorge number, whilst as the Weber increases so does the droplet complete break-up
time. This is of particular interest as at higher Weber numbers, surface density effects be-
come negligible and thus by definition the complete break-up time should in fact decrease.
However, similar behaviours were noted in previous studies. The droplets surface density
evolution shows a ’quasi-independent’ relationship with the gas Weber. In the jets, a
strong correlation between the surface density and ligament formation exists. However,
the surface density is ’quasi-independent’ of the liquid Reynolds and the gas Weber. The
gas boundary layer presence in jets, shows to both reduce and delay any liquid/gas inter-
face perturbations and the potential break-up.

To summarise, the present investigations are generally in good agreement with previous
studies, with minimal contradictions in cases. The novel CMLS capabilities show promis-
ing results both in the two- and three- dimensional space. This work provides good
foundations for a slightly alternative research approach in two-phase flows modelling.
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Chapter 1

Introduction

1.1 Multiphase Flows

1.1.1 Scope

Liquid-Gas multiphase fluid flows are found in every aspect of life, from environmental to
industrial applications, such as paint sprays, aeronautics, automotive engineering, manu-
facturing, metal processing and turbines [90]. Most engineering and energy processes deal
with multiphase flows on some level [102], typically within the context of combustion and
sprays. Over the last decades any field dealing with multiphase fluid flows have rapidly
developed at the expense of environmental sterility. There is a vast range of ongoing
research in understanding and predicting the instabilities involved in these liquid-gas in-
teraction processes.

In the present environmental and energy fields, the combustion systems are now designed
to reduce the level of harmful emissions and increase efficiency so fuel consumption is min-
imised. However, due to the complex geometries and flow types integrated in Gas Turbine
fuel injectors, many difficulties arise during modelling. In the field of aeronautics, turbines
and power plants, emphasis has been given on reducing the combustion noise so that any
environmental noise pollution is minimised. In doing so, low emission combustors are
developed that are liable to instabilities in the combustion chambers, resulting in flame
blow outs [83] [90] [102]. This is due to the turbulent nature of the high speed gas flow,
both at the combustor inlet and inside the fuelling system [83] [130].

In marine and steam turbine applications, both the production and performance can be
improved by increasing the mixing process and reducing the drag force produced during
the wind/blade interactions, respectively. To do so, the fuel injection systems are re-
modelled to provide higher energy efficiency. Meanwhile, the life of the pumps and valves
is improved by strongly minimising any cavitation present with the aid of multiphase
fluid flow simulations and modelling of such systems. Considering the extensive use of
such complex flows, it is mandatory to better understand all flow integrated processes,
to obtain efficient and improved models for real-life applications. In doing so, any en-
vironmental impacts can be reduced [90] [130] and all technological applications can be
optimised whilst the performance levels will be maintained.
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In the physics-context, fluids refer to liquids and gases that are significantly distinctive
yet obey the same motion laws. Fluid flow can be driven by a range of forces, distinguished
as body forces (i.e. gravity) and surface forces (i.e. pressure, shear and surface tension).
Multiphase flows have more than one phase, from which are generally classified as gas-
particle (i.e continuous fluid occupied by discrete solid particles) and bubbly flows (i.e.
continuous fluids occupied by gaseous bubbles) [40].

In multiphase fluids context, one can distinguish between flow and model types. Two
main flow types are the disperse flows and segregate flows. Disperse flows suggest that
one continuous volume phase is widely distributed with drops, bubbles or particles from
the other phase. Segregate flows, are occupied by more than one distinctive fluids of
continuous streams, separated by interfaces [13].

Despite these two limiting flow states, further sub-separation phases are integrated within
each. In the disperse flow framework, model equations are required to account for the
phase interactions and particle dispersions in turbulence. Here, two model types can be
distinguished, that of trajectory and two-fluid. In the trajectory models, the phase is
studied by following the representative large particles present with respect to the drag,
lift and momentum forces. The flow details surrounding each particle, is further based on
the acting forces of drag, lift and momentum, alternating the particles trajectory.

In the two-fluid models, the phase is considered as a ’second’ continuous phase that in-
teracts with the general continuous phase. Here, the leading properties are the exchange
of mass, momentum and energy [13]. In the two-fluid models, the disperse phase dis-
crete nature is negligible and only the continuous phase effects are approximated during
theoretical or computational solutions. In the sections to follow, two-phase flows are
considered in the context of liquid-gas interactions, typically found in Gas Turbines and
Internal Combustion engines.

1.1.2 Liquid-Gas Interactions in Jets

In many industrial applications such as a typical liquid fuel jet engine, droplets are formed
at the outlet of the injector nozzle, due to high-speed injection spray. This process is
known as Atomisation and is driven by multiphase flow dynamics. At first, it would be
appropriate to accurately characterise some of the terms involved in these processes.

The term ”spray” describes a gas jet-like flow conditions, where due to surrounding gas,
a liquid phase is transformed into a collection of immerse solid or liquid droplets moving
in a regulated manner. The term ”atomiser” refers to the device via which a fluid flow
is passed under controlled direction, resulting to spray formation by the liquid flow and
downstream [40].

Considering the spray at the nozzle exit, two distinct regions can be considered, defined
as primary and secondary, Fig. 1.1. The liquid jet break-up evolution is strictly linked
to the small disturbances at the liquid surface integrated within. The disturbances are
primarily caused by the liquid jet interaction with the ambient gas [90].
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Fig. 1.1: Liquid Jet Atomization: Classification between Primary and Secondary regions;
along with any various sized scales integrated within.

1.1.2.1 Primary Region

The primary region is the spray region just at the outlet of the nozzle where droplets and
large blobs of fluid co-exist. The primary break-up region, highly influences the formation
of the dispersed droplets and the mixing behaviour between gas and liquid. Here, the flow
is characterised by the liquid and gas interactions from the Rayleigh-Taylor and Kelvin-
Helmholtz instabilities, Fig. 1.1, where the latter is key for turbulence creation.

With time these instabilities grow, resulting to ’ligaments’ and ’droplets’ formation under
the aerodynamic interaction processes, whilst further down smaller scale droplets of larger
population are produced Fig. 1.1. As these instabilities are well defined both in time and
space, whilst their interfacial surface area is rather small, a Eulerian method is usually
employed to resolve the interface [130]. Such approach is both computationally wise and
more affordable, since in such cases the main focus is at some region of the flow field and
not the individual particles trail.

1.1.2.2 Secondary Region

As the liquid break-up further develops, the Secondary region forms, described as a dis-
perse droplet region away from the nozzle outlet, with droplets being completely formed
(atomised liquid) and are quasi-independent of the nozzle size [15], Fig. 1.1. Here, the
interfacial surface area is very large, making Eulerian approaches very cost ineffective.

The droplets present are well defined and rather geometrically simple, making Lagrangian
tracking methods more effective for numerical investigations, by enabling individual track-
ing of these formed droplets. Therefore, switching between Eulerian and Lagrangian meth-
ods when necessary is a popular approach, so that the primary and secondary regions can
be modelled appropriately and is followed by number of researchers [7][85][108].
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1.1.2.3 Liquid Jet Instabilities

During liquid-gas interactions a liquid phase comes in contact with the gas-phase and
under high enough gas flow conditions, liquid parts enter the gas phase in the form of
various sized ligaments or droplets. Such processes are typical of liquid jet break-up
and spray atomisation, leading to numerical modelling complexities. To decrease those,
research studies often investigate the isolated fundamental phenomena, from a single
liquid drop break-up/deformation to typical jet-integrated phenomena like the Plateau-
Rayleigh, Rayleigh-Taylor and Kelvin-Helmholtz jet instabilities.

These phenomena are mostly created from the shear force developed at the interface
due to the speed difference, during the gas and fuel injections. The Plateau-Rayleigh
phenomena regards cases at quite low velocity, where the exiting liquid stream from the
nozzle region breaks into droplets, due to surface tensions decreasing the surface area.

Such phenomena, will occur provided the liquid stream cross-section wavelength is larger
than its circumference [130]. The Plateau-Rayleigh instability is closely coupled with the
Rayleigh-Taylor instability. The latter one forms due to buoyancy properties between two
fluids of different densities. Here, the perpendicular destabilising gravitational forces are
higher than the restoring forces of dissipation and interfacial tension, giving rise to the
lighter material. Consequently, wavelength perturbations develop from linear into a non-
linear growth phase, resulting to the ligament and droplet formation mentioned earlier
[130][40].

Finally, the Kelvin-Helmholtz instability develops when existing small scale perturbations
pull kinetic energy from the shear flow. Provided the interface of two fluids is characterised
by sharp velocity gradients (i.e. large velocity difference from one fluid to another), small
wave-like perturbations will rapidly grow into larger waves [40][23]. The instabilities
formed due to Rayleigh-Taylor, are usually larger than the ones formed from Kelvin-
Helmholtz instabilities, whilst the latter ones ’drive’ any laminar to turbulence transitions.

1.1.2.4 Dimensionless Parameters in Two-Phase Flows

In multiphase flows studies, there is a range of non dimensional numbers that are highly
important and dependant on the relative driving processes of the flow. The most common
ones used, particularly in Atomization, are the Reynolds (Re), Weber (We), Capillary
(Ca), Momentum/Dynamic Pressure Ratio (M) and Ohnesorge (Oh) numbers; sum-
marised in Table 1.1. Here, ρ and µ is a reference density and viscosity, respectively,
whilst the subscripts L and G, denote Liquid and Gas.

The Reynolds number is the ratio between inertial to viscous forces whilst the Weber num-
ber is defined as the ratio between inertial to surface tension forces. Generally speaking,
higher Re suggests higher We that usually leads to droplet break-up and flow instabilities.
The Capillary number accounts for the liquid viscous to surface tension forces across a
liquid/gas interface. The Ohnesorge number is defined by the liquid viscous to the iner-
tial and surface tension forces ratio, enabling a comparison between viscous and capillary
forces. It is extracted through the velocity component elimination between Re and We
numbers.
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Non Dimensional
Flow Parameters

Expressions

Weber WeL =
ρLU

2
L`

σ
, WeG =

ρGU
2
G`

σ

Reynolds ReL = ρLUL`
µL

, ReG = ρGUG`
µG

Momentum Ratio M =
ρGU

2
G

ρLU
2
L

Capillary Ca = µU
σ

Ohnesorge Oh = µ√
ρσ`

Table 1.1: Common non-dimensional flow parameters in spray atomization.

One should note that in such processes, there are more non dimensional parameters,
which are not used in this work. Both Re and We, are distinct for liquids and gases.
However, in Ca and Oh, the velocity U , density ρ and viscosity µ are for liquid strictly, as
during liquid/gas interactions the flow quality further downstream is mainly affected by
the liquid structures. The ` variable is a characteristic dimension, which in this work is
typically taken as the gas or liquid inlet thickness. Finally, U is the characteristic velocity
of the gas or liquid and σ is the surface tension coefficient.

The presence of surface tension ultimately prevents infinite droplet break-up and intro-
duces stability in the system according to Thermodynamics. At large Reynolds, the
boundary layer is small which significantly affects both the potential break-up and any
filaments created. The Momentum or Dynamic Pressure is the ratio of the density and ve-
locity between the liquid and gas present. This ratio typically distinguishes the jet types.
For M << 1, one considers a Diesel-type injector where UL >> UG denoting jet-like
conditions. For M > 1, denotes Air-Blast ’atomizers’, with typically UL << UG where
large break-up occurs due to the surrounding gas interacting with the liquid, resulting
to liquid structures of various sized scale and types. The case of M ≈ 1 results in flows
where liquid/gas interaction is minimal with small Atomization present.

Atomisation processes of liquid fuel essentially characterise the mixing product between
fuel and air [130], which in turn defines the combustion performance of GT and IC en-
gines. Thus, appropriate modelling and accurate prediction of such flows along with any
phenomena integrated within is vital. In doing so, the vast range of such systems used
in the industry can be optimised. However, due to the high complexity of such gas-liquid
interactions, a range of unanswered questions remain to this day.
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1.2 Modelling Complexities and Tools

At present, most knowledge and understanding is derived from experimental investiga-
tions. Exact analytical solutions can only be established for the basic problems, such as
oscillating bubbles and steady-state droplet motion [13]. Meanwhile, more complex con-
figurations and applications, such as turbulent flows evolving high Weber and Reynolds
numbers (i.e. flow injectors in IC and GT engines), are still under extended research [102],
with respect to the flow behaviour and any physical instabilities present. Here, either one
or both phases are usually turbulent, establishing additional challenges both in analytical
and experimental research. Some flow applications can be experimentally studied using
laboratory-sized models. However, in most instances, real-life flow applications are exper-
imentally impossible for a variety of reasons [13].

Multiphase flow modelling is defined by a lot of interactive terms based on averaging pro-
cesses and thus accurate characterisation of these flows is considerably difficult. The flow
morphologies present and in turn the interfacial area distinguishing the existent phases
[41], results in very complex physics and mathematical characterisations of such flows. In
cases where phase changes occur and chemical reactions are present, more difficulties are
imposed as mass, momentum and heat transfer changes occur between the fluid phases
[41]. Finally, the need to impose the solenoidal condition in the pressure Poisson equation
for incompressible flows, results in increased density ratios between the liquid-gas phases,
making such flows that more complex [83].

The lack of sufficient computational models is generally liable [13][102] to:

• The solution of the non-linear Navier-Stokes equations.

• The vast range of multiple scales ranging from µm (i.e. droplets) to mm (i.e.
ligaments) and m (i.e. combustor chambers).

• The accurate location of the interface.

• The need of appropriate jump conditions at the interface.

• The appropriate boundary conditions.

Consequently, both experimental and accurate theoretical/computational modelling is re-
quired, whilst appropriate research is still on going.

Computational Fluid Dynamics (CFD) is a common tool towards the acquirement of the
desired solutions with a number of approaches available in the literature. A typical CFD
approach is the Direct Numerical Simulations (DNS), that use numerical schemes to pro-
vide accurate solutions of the governing Navier-Stokes equations. DNS models resolve all
time and length scales present, making them both the most accurate but also the most
computationally expensive approaches [102], even at small Reynolds. The obtained solu-
tions are only approximations to the theoretical results and developing better accuracy
in more complex cases such as turbulent multi-phase flows is still undergoing development.
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In DNS simulations, only a small fraction of the flow is characterised, whilst the bound-
ary conditions are approximated strictly to the simulations resolution. The DNS methods
can in fact simulate disperse flows, evolving numerous droplets and particles, over long
time periods. However cases such as liquid jet break-ups, bubble injectors or droplet
break-up are yet to be well understood. Possibly in the future and provided the com-
putational power and speed are majorly improved, any multiphase fluid flow integrated
phenomena will be captured and the Navier-Stokes equations of each phase/component
will be fully resolved.

Such limitations in the DNS methods, suggest the need of sub-grid models to account
for the smaller scales, such as Large Eddy Simulations (LES). Some relative approaches
are only well developed in a single-phase flow framework, whilst most studies employ the
typical interface tracking methods that in turn lack to obtain a solution of the finest scales
[8].

Current research is focusing on continuously defining the transition region between struc-
tures that are smaller than a cell size and the resolved interface. Doing so, the mean
surface density (area) is obtained, denoting the interfacial area quantity within each com-
putational cell. The latter is known as the Σ− Y and ELSA methods [4]. However, this
approach excludes any characterisation of the actual shape and geometry of the structures
involved [80] [4].

Once an appropriate modelling approach is established, the final model can provide useful
information on:

• The involved variables evolution.

• The different mechanisms controlling the flows.

• The quantitative aspect of the dynamics involved.

• The threshold values of the non-dimensional parameters.

Conclusively, better break-up models are required to account for all integrated phe-
nomena and limitations, since they are found in a vast range of technological applications.
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1.3 Interface Capturing Methods

In two-phase flow problems, there is a vast range of interface localisation methods avail-
able, usually distinguished into surface-tracking and volume-tracking. These methods
can be typically described in a Lagrangian or Eulerian framework. Knowing the interface
position and its evolution is of high importance in direct simulations of multiphase fluid
flows. The variety of methods available are typically based on the type of grid size, de-
fined as the geometric domain shape formed post discretisation. The grid size types are
distinguished between deformable and fixed grids, occupied by a characteristic geometric
cell arrangement. Deformable ones refer to grids using cell faces for the interface repre-
sentation, whilst fixed grids employ distinct processes for the interface tracking (i.e. front
tracking).

In this work the methods presented are front-tracking methods using an Eulerian ap-
proach for the NS solution [130]. The advection is done by a set of marker points, where
the interface is defined explicitly and enables simple interface curvature computations.
Front-tracking methods are very successful at low Re numbers but fail to work as well
in cases such as the primary break-up region or droplet formation [44][50]. One can im-
plicitly capture the interface using a Eulerian transport equation. Here, we briefly review
some of the most common techniques, whilst emphasising on the Volume of Fluid (VOF)
and the Level Set (LS) approaches.

1.3.1 Surface-Tracking Methods

A common surface tracking method is the Lagrangian Particle, usually employed within a
Eulerian phase [70]. In this approach the particles interact with the surrounding fluid and
are typically employed in sprays and bubbles investigations. One can extract information
for the physical phenomena integrated in a particle motion. To do so, the Newtonian
motion equations are solved in Lagrangian coordinates and the continuity/momentum
equations in the continuum phase [70].

Another approach is the Smooth Particle Hydrodynamics (SPH), employed in a La-
grangian particle framework. The SPH is based on the fluid replacement by a set of
particles, see Fig. 1.2. The fluid properties are computed by the particles that are used as
interpolation mapping properties within a computational grid [78]. SPH can model inter-
faces well as it provides simple formulations of great conservation properties. However for
accurate simulation in the three-dimensional space requires a large number of particles,
making it computationally expensive.

The Marker-and-cell (MAC) method originally proposed in Harlow et al. [51] is a La-
grangian approach, where marker particles within the domain cells are used for the inter-
face reconstruction. These marker particles follow the fluid motion but are not defined
by the mass or other properties. MAC methods are mostly employed in two-dimensional
fixed meshes of uniform size using finite difference schemes [51][72]. They are rather com-
putationally expensive methods due to the need of large memory and CPU run times to
account for the required marker particles number.
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To minimise both the computational cost and the required memory, many use the
Surface Marker method. Opposing to MAC, here the marker particles are defined only
at the fluid surface instead, see Fig. 1.2. However doing so, the MAC volume track-
ing property is removed [98][51]. The Surface Marker enables uniform spacing amongst
the particles and any computational difficulties between distinct surfaces are simplified.
However, applications in the three-dimensional space are more complex due to the need
of accurate particle ordering across the surfaces [98].

Fig. 1.2: Schematic of (a) SPH and (b) Surface Marker interface tracking methods.

1.3.2 Volume-Tracking Methods

Some studies in fluid-structure interactions, work within a Eulerian-Lagrangian frame-
work. One approach, is the expression of all relative equations based on the initial fluid
domain [72]. To do so, one can employ the particles trajectories (i.e. Lagrangian coordi-
nates), which suggests that the transformed equations become numerically difficult due
to the irregularity of these characteristic lines [72]. Alternatively, some studies use the
fluid domain boundary at a time t, back in the initial boundary, to develop an interface
mapping. However, such approach fails to provide conservative schemes [72].

A typical formulation is the Arbitrary Lagrangian Eulerian (ALE), which uses the initial
fluid domain mesh and deforms it along with the fluid domain [72]. A major drawback
in ALE is the need of the elementary matrix at each time step for the spatial derivatives
computation within finite elements, due to the change in the mesh. Additionally, due to
the moving mesh, a spatial point at one time step may be excluded at the new mesh,
which in turns requires interpolation [72].

Alternatively, one can employ the immersed boundary method, by Peskin et al. [86].
Typical Eulerian-Lagrangian methods are applied within fixed meshes. The immersed
boundary approach is based on a curvilinear mesh which freely moves in the Cartesian
mesh [86], whose eulerian variable interactions with the mesh is processed using a discrete
Dirac function.
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In cases of very complex interfaces, particularly in a three-dimensional space frame-
work where the re-meshing frequency is high, mesh generation becomes difficult which in
turn increases the computation cost [116]. Therefore, interface-capturing techniques are
employed instead, that reduce the required steps for re-meshing. Such approaches are less
complex and very cost-effective, however the interface representation is not as accurate
[116]. Such methods are developed in a fixed spatial domain, where the interface location
is marked by an interface function. The capturing of the interface is processed within the
finite element mesh resolution occupying the interface area.

A more rare approach is the Interface-Tracking/Interface-Capturing (MITICT) method
[114]. Such formulation is usually employed in both fluid-solid and fluid-fluid interface
flow problems of moving meshes. Here, fluid-solid interface cases are easily tracked using
moving-mesh formulations, whilst fluid-fluid interface studies are more difficult to track
[114]. Employing MITICT methods, one can capture the fluid-fluid interfaces based on
the fluid-solid interfaces tracking mesh. This approach has mostly been applied in free
surface and ship hydrodynamics [114].

Tezduyar et al. [116], showed a deforming-spatial-domain/stabilised space-time (DSD/SST)
formulation with the finite element expressed in a space-time domain [116]. In this
method, the mesh update occurs as the fluid occupying the spatial domain, changes
with time. Here, the domain nodes motion is mainly governed by the elasticity equations.
Such approach is of high convergence rate whilst any numerical oscillations and instabil-
ities present in complex fluid flows are removed [116].

More recently, a new class of CFD methods available is the Lattice-Boltzmann (LB) ap-
proach originally proposed by Chen et al. [16]. In such methods the discrete Boltzmann
transport equation is solved, describing the gas density function evolution of particle-like
points [35]. Opposing to typical CFD methods, the LB method is applied in the meso-
scopic scale to recover the NSE in the macroscopic framework. In principle, the state of
the fluid under investigation is defined by the distribution functions that evolve in time
due to the fluid molecules streaming and colliding.

Such approach enables easy microscopic modelling and droplet break-up processes [25].
The LB is typically employed in droplet collision and micro/nano-flow cases but is not
limited to turbulent flows. They involve explicit procedures and are usually confined
within cartesian type meshes, making their usage limited. However, time step limitations
found in typical explicit methods are in fact reduced in the LB approach, making them a
good alternative on the traditional CFD tools.

As mentioned, this work is developed based on the Volume of Fluid and Level Set meth-
ods. The VOF methods track the interface by solving an equation for the liquid volume
fraction occupied in each cell, distinguishing the two phases. The interface reconstruction
is obtained of which the curvature is computed. For φ = 1, the cell is occupied by liquid
and for φ = 0 with gas. For 0 < φ < 1 then a liquid-gas interface is enclosed. This
direct volume tracking and advection, makes VOF methods extremely mass conservative.
However, obtaining interface topology information is rather difficult.
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The Level Set method uses a smooth function to distinguish between liquid and gas
regions based on its sign (i.e. positive/negative). Positive sign indicates liquid present
and negative for gas. The marker (or LS function) is a signed distance function. As the
LS function is smooth, both locating the interface and curvature computations are much
easier and more accurate, however LS does not conserve mass during interface evolution.
This method has a much easier description of the interface than VOF, defined by the 0
iso-contour that moves with the local velocity. However, the LS function needs to be mod-
ified to maintain its property as a signed-distance function [102]. Figure 1.3 provides a
basic schematic demonstrating the difference in the interface capturing principle between
VOF and LS.

The main objective in developing interface modelling tools, is to obtain methods that are
both mass conservative (i.e. VOF) and accurate at predicting the interface location (i.e.
LS). To do so, many studies couple VOF and LS into the so called CLSVOF methods, first
proposed by Sussman and Puckett [110]. In this make, the reconstruction of the interface
is based on the normals computation from the LS function and the VOF function is used
for the interface position constraining purposes.

Fig. 1.3: Basic principles schematic of VOF interface tracking in a cell arrangement (top)
and LS interface tracking (bottom) using the original curve points to return them as a
height (signed distance function).
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Mass conservation is achieved through the LS function correction as a function of VOF.
The CLSOVF methods are often a good compromise in comparison with pure VOF or LS
methods, however they are complex to reconstruct. Solutions obtained can be noisy, due
to the need of accurate interface reconstruction and curvature computations, imposing
challenges and imprecise solutions in cases.

Son et al. [109] overcame these issues by proposing a CLSVOF approach, based on nec-
essary geometric formulations for the interface reconstruction. Their results presented
solutions that are ’not worst’ than other pure VOF or LS methods. Meanwhile, in Pijl et
al. [100] a CLSVOF method was developed, based on VOF-PLIC and classic LS. They
stated that such coupling is not as straightforward in view of the interface reconstruction
due to the VOF method complexities. However good mass conservations properties were
obtained comparable to VOF approaches [100].

A mass conservative and accurate CLSVOF method was presented in Barber et al. [42].
Although the desired properties from VOF and LS method were preserved, with a less
diffusive approach, the CPU computations were found to be significantly more than typ-
ical VOF ones. However their CLSVOF could not achieve enough accuracy when applied
in break-up cases and lacked in interface convergence, particularly in 3D [42].

Considering the current available CFD approaches and the modelling requirements for
two-phase fluid flow investigations, in the present thesis a novel mass conservative Level
Set (CMLS) method is developed. This novel approach uses both LS and VOF appro-
priately to produce a mass conservative and sharp modelling tool. The CMLS presented
in this work, is extensively validated both in the two- and three-dimensional space. It is
then employed in two-phase flow investigations, by focusing in the single liquid droplet
and jet break-up processes.
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1.4 Thesis Objectives and Outline

1.4.1 Thesis Objectives

The present work aims to investigate existent modelling tools, using DNS methods and
focuses on two common interface tracking methods, Volume of Fluid and Level Set. From
there, a novel in-house Conservative Mass Level Set (CMLS) method is developed. The
relative numerical modelling tools are presented and the methods are both validated and
compared through common test cases. The final CMLS is employed in single drop break-
up and liquid jet break-up processes. All numerical methods and working procedures
along with the novel CMLS method, are implemented using an in-house Boundary Fitted
Flow Integrator code (BOFFIN), by the Mechanical Engineering Department of Imperial
College. The present work main objectives can be summarised as follow:

• Employ, validate and compare two interface capturing methods, VOF and LS.

• Develop a novel Conservative Mass Level Set (CMLS) method that retains the
advantages of VOF and LS and minimise any drawbacks.

• Employ CMLS in single Drop Break-Up processes, both in two- and three-dimensional
space.

• Employ CMLS for Liquid Jet Break-Up (primary atomisation) simulations in a
quasi-planar coaxial gas flow set up.

1.4.2 Thesis Outline

Chapter 2 introduces the general numerical solutions employed in a two-phase fluid flow
framework and the characteristics of incompressible fluid flows are outlined. From there,
the numerical discretisation methods used in this work are detailed developed. Any CFL
limitations with respect to the Weber and Reynolds numbers are appropriately covered.
Thereafter, interface modelling tools are presented and two methods are extensively in-
vestigated and compared, the Volume of Fluid and Level Set methods. In Chapter 3 a
novel conservative mass Level Set (CMLS) method for interface modelling is introduced.
The section extensively outlines the philosophy of the method along with the numerical
tools employed. The novel method is then validated and compared with the Volume of
Fluid and Level Set methods, through a series of test cases. Chapter 4 studies the break-
up process of a single liquid drop in a gas flow, under the effects of the Weber numbers
for a fixed Ohnesorge. The results are analysed and validated through a series of previ-
ous studies. The surface density evolution is examined in detail. Chapter 5 presents an
analysis on liquid jet break-up processes, primarily driven by the Dynamic Pressure ratio
and the gas Weber numbers. The Rayleigh-Taylor and Kelvin-Helmholtz instabilities are
also captured and analysed accordingly. The relative investigation of such phenomena
presented interesting results, with some difference in comparison with previous studies.
Finally, the surface density evolution is also examined and shows major differences than
the ones in a single droplet break-up process. Chapter 6 summarises the CMLS modelling
implementation properties along with the major findings from the studies developed. Rel-
ative recommendations for future work are discussed, with respect to the CMLS method
and the liquid break-up process in droplets and jets.
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Chapter 2

Numerical Solutions of Two-Phase
Fluid Flows

2.1 Incompressible Fluid Flows

Incompressible fluid flows refer to fluids where the fluid density (ρ) particle or the density
flow variation remains constant [102], with Dρ/Dt = 0 (or ∇ · u = 0). The general mass
and momentum conservation equations for incompressible flows, also known as Navier-
Stokes equations, are:

∇ · u = 0, (2.1)

ρ
Du

Dt
= −∇P + f +∇ · µ(∇u +∇uT ) (2.2)

In Eqn. (2.2) the pressure is usually a thermodynamic function of density or temperature.
However, in incompressible flows, pressure is constrained by the velocity field, thus it will
take any value to ensure a divergence free flow [102].
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2.2 Interfacial Fluid Mechanics

The study of two-phase flows raises two main complexities, the variable density and
viscosity and the interfacial surface tension treatment. The interface motion between two
phases is the first difficulty and it is vital to accurately describe the interface location prior
to any modelling. In the literature, there are two methods for the interface identification;
(a) to explicitly specify every interfacial point location and (b) to employ a marker function
for the whole domain. In this work, the marker function method is used, which can also
be denoted in many forms. The marker function is employed as a discontinuous Heaviside
step function, H, defined in the entire domain, Eqn. (2.3). Note, if H is given, the
interface change can be sharply defined from one value to the other.

H(x) =

{
0, x < 0
1, x > 0

(2.3)

The jump conditions across the interface Γ in two-phase flows are derived by employing
the principle of mass conservation in a control volume CV as:

ρΓ = ρL − ρG

µΓ = µL − µG
(2.4)

Assume zero thickness, then no accumulation of mass exists within. Here, two possible
cases exist. If no phase change present and for arbitrary density ratios, the fluid velocity
continuity in jump notation yields uL = uG and [u]Γ = 0 [102]. Considering the interface
normal (n), then [ V = uL · n = uG · n ]; implying that the normal velocity V is the
interface velocity. If phase change present, it is still required that the mass flux entering
should be equal to the mass flux leaving a CV. This results in the mass flow rate (ṁ)
expressed as:

ρL(uL · n− V ) = ρG(uG · n− V ) = ṁ (2.5)

Another important aspect in a two-phase flow boundary motion, is the evaluation of the
surface tension σ, which can be modelled by retaining the capillarity effect caused by the
intermolecular forces (i.e. Van der Waals). This effect is due to the stress concentration
at the sharp interfaces (Marangoni effect) [102]. In the microscopic equilibrium frame-
work, surface tension generally arises as the interface is not a thermodynamically optimal
region. Here, molecules ’choose’ to be either at the gas or liquid density resulting in free
energy reduction.
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The the surface tension σ force is of [fΓδΓ = σκnδΓ]. Here δS is an infinitesimal
interface, fΓ is the surface tension force, κ is the curvature and n is the normal interface.
Briefly, the curvature is a function of the unit tangent vector moving along a curve, with
the tangent following the normal direction. The curvature sign is strictly dependent on
the normal orientation choice and reads κ = −t · (dn/ds), where s is the arc length of the
curve, Fig. 2.1. Now, employing the momentum conservation where the interfacial fluid
discontinuity properties and surface tension are present, yields

0 = −
∮
∂S

ρu(u · n− V )ds+

∮
∂S

n ·T δS +

∫
S

fσδS, (2.6)

Here, the first term is zero, if no phase change, as the CV motion follows the fluid velocity
and V = u · n. Integration of one side followed by the other, the term

∮
∂S

n ·T δS gives
the jump in the surface tension tensor T, across the interface [102]. The fσ term denotes
the surface force per unit area expressed as fσ = σκn +∇Sσ; the last term is the surface
gradient which is zero for constant surface tension [102]. The results are true for any CV
occupying the interface and must hold for any point at the interface so that:

−[T]S · n = σκn +∇Sσ, (2.7)

More details on the treatment of this ’jump’ at the interface are presented in Section
3.3.3. The present section summarises the incompressible flow governing equations. The
numerical solutions for two-phase flows are developed below appropriately.

Fig. 2.1: Curvature sign based on normal orientation choice. If curvature is curving away
from the interface κ < 0 else κ > 0.
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2.3 Numerical Discretisation Tools

In the literature, there is a range of available methods to numerically solve two-phase
flows. The most common ones are the Finite Difference (FD), the Finite Element (FE)
and the Finite Volume (FV).

2.3.1 Finite Difference (FD)

The use of Finite Difference method enables the Navier-Stokes derivatives approximation
in their ’strong’ form [93]. It is considered to be the oldest from all and is believed that
it was initially proposed by Euler. The method always begins with the differential form
of the conservation equation [40]. The FD principles are simply expressed with the direct
derivative definition of a Φx function as:(

∂Φ

∂x

)
x=xi

=
Φ(xi + ∆x)− Φ(xi)

∆x
+O(∆x) (2.8)

The (∂Φ/∂x)xi derivative denotes a point with spatial index of (i, i + 1). Here, the
partial derivatives are replaced by the functions nodal values approximation at each grid
point [113]. Consequently, per grid node there is one algebraic equation, where both the
variable value and a specific number of neighbouring nodes are unknowns. FD methods
are only employed in structured grids, where the grid lines are essentially local coordinate
lines [40][113]. The FD is a simple method that can easily achieve high-order schemes.
However, global conservation is not present unless treated carefully, whilst the simple
geometries restriction limits its usage in complex flows.

2.3.2 Finite Element (FE)

The FE method is employed with a set of unstructured discrete volumes or finite elements
in a solution domain. More specifically, triangles or quadrilaterals grids are used in two-
dimensions and tetrahedra or hexahedra in three-dimensions. In this method, a weight
function is first employed and multiplied with the equations prior to any integration over
the whole domain [104], which in basic form reads:(

∂Φ

∂x

)n
=

n∑
i=1

Φ(xi)ai(x) (2.9)

where n is the number of nodes of the domain and ai(x) is a linear shape function em-
ployed within each finite element, for the solution approximation [40]. The linear shape
function is developed based on the element corner values and the weight function retains
the same form. From there, the conservation law weighted integral is substituted by this
approximation. Then the equations under solution need the integral derivative to be zero
at each nodal value. In the end, one obtains a set of non-linear algebraic equations. FE
methods work well with arbitrary geometries and refining is easily achieved with each
finite element being subdivided [40][104].
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However, due to its application on unstructured grids, the linearisation of the matrices
equations are not arranged in the same manner with regular ones. Thus, obtaining efficient
solution methods its more complex. In FE general methods, a common approach is
the Control Volume based FE method (CV-FEM). Here, the variable variation over an
element is described by shape functions. Around each node, CVs are constructed through
the finite centroids connection. The integral conservation equations are applied similar
to the FM method - described later on - and the CV boundaries fluxes and source terms
are computed element wise [40][104].

2.3.3 Finite Volume (FV)

Finite Volume methods are very similar to FE, but instead use the conservation equations
in integral form, which are applied in the sub-parted domain, into contiguous CVs. The
variable values to be computed, are located at the node of each CV [40][107]. It is also
the simplest from all whilst all approximated terms provide physical meaning. However,
they are very cost ineffective when used for higher than 2nd order computations and im-
plemented in the three-dimensional space.

When numerically solving fluid flows, properties such as pressure, velocity and den-
sity must be treated carefully. This work investigates two-phase fluid flows in a struc-
tured mesh of Cartesian arrangement (see details in Appendix D). Thus one needs only
(∆xi,∆yj,∆zk). Here, ∆(x, y, z) are the grid cell sizes in a three-dimensional Cartesian
system and any desired properties are a function of both space and time. From there,
one can solve the Navier-Stokes equations explicitly or implicitly. In this work, the NS
equations are solved explicitly.

Now, considering Fig. 2.2, in the xi vicinity, the scalar Φi yields:

Φi =
1

Vi

∫
Vi

Φ(x)dx (2.10)

Fig. 2.2: One-dimensional domain discretization into computational cells, of ∆x width.
The filled circles denote the cell centres and the vertical lines denote the cell edges.
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In FV methods the solution is strictly obtained at the computational nodes (i.e. the
CV centres). The function values can be obtained by interpolation, using Explicit or
Implicit integration formulas.

A summarising table of all three methods for comparison is shown in Tab. 2.1.

Method Pros Cons

FD
-Easy implementation.
-High order.

-Curved Boundaries difficult
treatment.
-Mesh adaption difficulty.

FE

-Complex geometries easy
implementation.
-Boundary Conditions easy
implementation.

-Order/Mesh adaption difficulty.

FV
-Conservation properties
principles.

-Cost ineffective at higher orders.
.

Table 2.1: Overview of the advantages and disadvantages in common Finite Methods.

The present work, employs Finite Volume methods that are explicitly solved and
coupled with the conservative equations described earlier; result in a global momentum
conservation upon solution [40]. However, there is ongoing research to this present, in
efforts to improve all finite methods [11][59][79] and particularly the FV [37][68].
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2.4 Finite Volume Discretisation

2.4.1 Convective and Diffusion Terms Discretisation

The general conservation of a scalar Φ, in differential form can be expressed as:

∂(ρΦ)

∂t︸ ︷︷ ︸
Unsteady

+ div(ρuΦ)︸ ︷︷ ︸
Convective

= div(ΓgradΦ)︸ ︷︷ ︸
Diffusive

+ |Sc|︸︷︷︸
Source

(2.11)

Integrating the above equation over a CV, one obtains in conservative (integral) form:∫
V

(∫ t+∆t

t

∂

∂t
(ρΦ)dt

)
dV +

∫ t+∆t

t

(∫
A

n · (ρuΦ)dA

)
dt =∫ t+∆t

t

(∫
A

n · (ΓΦ)dA

)
dt+

∫ t+∆t

t

∫
V

SΦdV dt,

(2.12)

denoting the CV flux balance. Discretisation of the convective (CON) term requires the
Φ computation at the faces of the CV and the flux computation at the CV boundaries
[40][102][123].

Fig. 2.3: Piecewise linear profile in x-momentum across the West and East Cell faces,
denoting the interpolated values at the equivalent nodes.
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Discretisation of the conservative (integral) form, Eqn. (2.12), yields:

(ρΦP )t+∆t − (ρΦP )t+∆t

∆t
∆V +

6∑
α=N,S,E,W,L,R

ραΦαVαAα =

=
6∑

α=N,S,E,W,L,R

Γα(∇Φ)αAα + SΦ∆V

(2.13)

where Φ is the face value, taken over the 6 near-neighbour nodes and α = (N,S,E,W,L,R)
subscripts denote the cell faces in a staggered arrangement for a three dimensional space,
(see Appendix F). Now, Eqn. (2.13) in matrix notation eventually yields:

αPΦP =
6∑

α=N,S,E,W,L,R

ααΦα + bP (2.14)

With bP standing for all other coefficients including any source terms, Sc, for instance
gravity forces and surface tension. Now, recalling Eqn. (2.12), where the source terms
have been dropped for clarity:

∂Φ

∂t
= −CON(Φ) +DIFF (Φ), (2.15)

Where CON(Φ) is the convective term and DIFF (Φ) is the diffusive term. Both terms
can be evaluated either Explicitly at time step n or Implicitly at n+1. Recalling Eqn.
(2.12), the flow field should satisfy continuity in one dimension with d(ρu)/dx = 0 or ρu
to be constant. Thus integration of (2.12), in a CV across the West to East faces, denotes:

(ρuAΦ)e − (ρuAΦ)e =

(
ΓA

∂Φ

∂x

)
e

−
(

ΓA
∂Φ

∂x

)
w

(2.16)

with the diffusion derivatives computed using piece wise linear profile, Fig. 2.3, as:(
ΓA

∂Φ

∂x

)
e

= ΓeAe

(
ΦE − ΦP

∆xe

)
,

(
ΓA

∂Φ

∂x

)
w

= ΓwAw

(
ΦW − ΦP

∆xw

)
(2.17)

if Ae = Aw then the integral transport equation yields

FeΦe − FwΦw = De(ΦE − ΦP )−Dw(ΦP − ΦW ) (2.18)

where generally F = ρu and D = Γ/∆x; ρF denoting the mass flux.
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2.4.1.1 Convective Term

To evaluate the face fluxes, for the Convective (CON) term one can use Piecewise Linear
Profile, for instance in x-momentum, Fig. 2.3, denoting Φe = (ΦE + ΦP )/2 and Φw =
(ΦW + ΦP )/2. Thus the transport equation gives:

Fe
2

(ΦP + ΦE)− Fw
2

(ΦP + ΦW ) = De(ΦE − ΦP )−Dw(ΦP − ΦW ), (2.19)

Which in discretisation form reads:

αPΦP = αWΦW + αEΦE, (2.20)

Here, the coefficients are:

aW = DW + FW

2
,

aE = DE − FE

2
,

aP = aW + aE + (Fe − Fw),

(2.21)

at the West and East cell faces. For the CON term, consistent discretisation is important.
Thus, face density approximation should be proceeded in a conservative manner.

2.4.1.2 Diffusive Term

For the Diffusive term discretisation, we also employ piecewise linear profile. Here we
apply upwind difference scheme, where the flow direction is accounted for, so that the
cell face Φ will be equal to the upstream node Φ. So, if positive flow direction, (i.e.
Fw > 0, Fe > 0), then Φw = ΦW and Φe = ΦP , else (i.e. Fw < 0, Fe < 0), then Φw = ΦP

and Φe = ΦE. Thus Eqn. (2.18) now yields

FeΦE − FwΦP = De(ΦE − ΦP )−Dw(ΦP − ΦW ) (2.22)

which in final form reads:

αPΦP = αWΦW + αEΦE (2.23)

where the coefficients are αP = αW + αE + (Fe − Fw), with the neighbour coefficients
denoted by:

aW = DW + ‖Fw, 0‖ ,
aE = De + ‖−Fe, 0‖ ,

aP = aW + aE + (Fe − Fw),
(2.24)

Finally the coefficients αR and αL for both CON andDIFF terms read αR = −ρrur/2∆xP
and αL = ρlul/2∆xP . For the y- and z- momentum, similar processes can be followed to
obtain the values at N and S for the j-direction and E and W for the k-direction [123].
One should note that if the source term is constant then all other coefficients are the same
and b = Sc∆x. Otherwise, if the source term is Φ dependant, then linearisation yields
S = Sc + SPΦP so that:

α
′

P = αP − SP∆x (2.25)
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2.4.2 Temporal Discretisation

Considering an ordinary first order differential equation of initial conditions, one has:

dΦ(t)

dt
= f(t,Φ(t)) ; Φ(t0) = Φ0 (2.26)

If one is looking for the solution Φ at a short time, ∆t after t0. Then the new initial
condition will be the solution at t1 = t0 + ∆t, which can be developed to t2 = t1 + ∆t,
t3 = t2 + ∆t and so forth. Integrating Eqn. (2.26), between the limits of tn to tn+1 then:∫ tn+1

tn

dΦ

dt
dt = Φn+1 − Φn =

∫ tn+1

tn
f(t,Φ(t))dt, (2.27)

which is an exact equation and the shorthand notation Φn+1 ≡ Φ(tn+1) is employed. There
are several discretisation methods for time integration, divided into explicit or implicit
methods, such as:

• Explicit (forward) Euler : Φn+1 = Φn + f(tn,Φn)∆t+O(∆t)

• Implicit (backward) Euler : Φn+1 = Φn + f(tn+1,Φn+1)∆t+O(∆t)

• Midpoint Rule: Φn+1 = Φn + f(tn+ 1
2 ,Φn+ 1

2 )∆t+O(∆t2)

Generally speaking, the explicit (forward) Euler result into closed-form formulas where
direct computation of dependent scalars are obtained through known values. Implicit
methods instead, provide a linear/non-linear equation system by coupling the unknown
values at a new time level [40][64]. The midpoint rule, also known as the Crank-Nicholson
(CN), uses a 2nd order trapezoid rule on the partial differential equations. The CN is in
fact, an implicit scheme that enables the use of much larger ∆t and results in O(∆t2).
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2.4.2.1 Explicit Euler

In the Explicit Euler method and considering (2.14), all sources and fluxes are computed
at tn with:

αnPΦn+1
P =

∑
αnαΦn

α + bnP (2.28)

In a CV or a grid point context, the new time level value is only unknown at this node,
with the neighbour values being evaluated in previous time levels, thus the new unknown
value at each node can be computed. Equation (2.28) denotes a solution at the new time
step based on the previous steps solution. With respect to the explicit stability analysis
Eqn. (2.28) is unstable at large ∆t.

Now, the spatial derivation for the scalar Φ at the new value Φn+1, if one employs UDS
along the x-direction of a uniform grid [40], reads:

Φn+1
i = Φn

i +

[
−u

Φn
i − Φn

i−1

∆x
+

Γ

ρ

Φn
i+1 + Φn

i−1 − 2Φn
i

(∆x)2

]
∆t (2.29)

by defining the dimensionless parameters of d = 2Γ∆t/ρ(∆x)2 and c = u∆t/∆x, Eqn.
(2.29) becomes:

Φn+1
i = (1− 2d− c)Φn

i + dΦn
i+1 + (d+ c)Φn

i−1 (2.30)

Where d is the time step to the characteristic diffusion time ratio, denoting the required
transmission time of a disturbance due to diffusion, over a ∆x distance. The c parameter is
known as the Courant-Friedrichs-Lewy condition or Courant number. It accounts for the
time step to characteristic convection time ratio, denoting the required convection time of
a disturbance over a ∆x distance [40][123]. In Eqn. (2.30) the neighbour nodal values are
always positive resulting to no further unphysical instability behaviour. However, Φn

i can
be negative and provided negligible diffusion, a maximum limit is imposed on the time
step ∆t size as:

∆t =
c∆x

umax
< 1 (2.31)

This condition states that the choice of ∆t must be small enough during one time step, so
that the relative material property moves by less then one grid space. This implies that
in high speed flows the time step must be very small. Finally, if c is satisfied, all spatial
and temporal neighbour coefficients in Eqn. (2.30) are positive [123].
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2.4.2.2 Implicit Euler

Another suggested approach that ensures stability properties, is with the use of backward
or Implicit Euler method. Here, all the fluxes and source terms are computed at the new
time level with respect to the unknown variable values. The equation solved is of the form
Eqn. (2.20) but for n+1 instead of n, as:

aPΦn+1
P =

∑
ααΦn+1

α + bP (Φn+1), (2.32)

whose solution gives a first-order time-accurate solution.

Applying CDS on Eqn. (2.24) one gets:

aPΦ
n+1/2
P =

∑
ααΦn+1/2

α + bP (Φn+1/2), (2.33)

Known as Crank-Nicholson method and by employing linear time interpolation Φ
n+1/2
P =

1
2
(Φn+1

P + Φn
P ) we have:

αP
2

Φn+1
P +

αP
2

Φn
P =

∑ αα
2

Φn+1
α +

∑ αα
2

Φn
α + bP (Φn+1/2), (2.34)

Rearranging the above by grouping all terms with respect to n, a new system is obtained
as:

a∗PΦn+1
P =

∑
α∗αΦn+1

α + b∗P , (2.35)

Where α∗P = αP/2 and b∗P = bP (Φn+1/2) +
∑
α∗αΦn

α − α∗PΦn
P . Here, the solution of Eqn.

(2.35) will produce a second-order time-accurate solution. Note, that regularly two steps

are required, a predictor and a corrector, for an accurate estimation of Φ
n+1/2
P so one can

obtain bP [40].
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2.4.2.3 Physics and Stability Imposed Limitations

In the context of numerical simulations for immiscible fluids, restrictions on ∆t and ∆x
arise, when accounting for the viscous and capillary effects. The ’global’ Weber number,
denotes a relation between inertial and capillary effects [18], reading:

We =
ρU2`

σ
(2.36)

where ` is a characteristic reference parameter, typically a drop diameter or a liquid jet
nozzle outlet and U is the bulk velocity of liquid or gas. Meanwhile, in droplet-laden
flows, Weber defines the inertia and surface tension forces effects on the possible droplet
break-up.

Previous experimental data [29][65] and theoretical analysis [77][112][124] (see Section
4.1), noted that a critical Wecr < 10 exists under which droplets do not further disin-
tegrate. However, during flow destabilisation in turbulent processes Wecr ≤ 10. It was
therefore concluded that for the resolution of any droplets or liquid structures present, a
smallest grid size requirement is imposed for the computational domain, until Wecr limit
is reached. Now, if one assumes comparable analogy to an air stream drop break-up, the
pressure balance for aerodynamic pressure, ρGU

2
G and capillary pressure, σ/`, imposes a

peeled-off fragments size of ` ∼ σ/(ρGU
2
G). Consequently, σ becomes an effective param-

eter (i.e. We number) despite the non explicit break-up mechanism, where the velocity
dependence here is strong, (i.e. ∆U−2), [65].

From there, Menard et al. [112] work on jet atomisation, noted that ∆ is defined on the
assumption that no secondary break-up develops with respect to the smallest droplet,
implying all spray integrated droplets satisfy:

We =
ρGU

2`

σ
≤ 10 (2.37)

where ` ∼ ∆, suggesting that Weber is ∆x based, as We∆x ≤ 10 [18][112].

A flow is locally capillary driven if We < 1, [18]. Pai et al. [77] and Pitsch et al. [17]
previous investigations in spray atomisation noted that all interface perturbations are
damped strictly by the viscous forces. Provided the largest flow structures size were
nozzle diameter comparable, capillary effects were negligible. However, if the ligaments
cross dimension is mesh size comparable, break-up occurs due to capillary effects. Here,
the droplets become mesh size comparable, as the break-up thickness goes lower than the
mesh resolution [77]. Consequently, a new gas We∆x is proposed [17][28][77], reading:

WeG∆x =
ρGU

2
G∆x

σ
≤ 1 (2.38)

suggesting that all computations should be over-resolved [18][17].
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Thus a mesh based Weber number, ensures resolution in all types of two-phase flow
investigations, from single droplets, liquid jet break-up and full atomisation processes.
Building on that, restrictions on ∆t and ∆x arise due to the ’physics’ and ’stability’,
accounting for the viscous and capillary effects.

Considering a local (cell) Reynolds [34], solution instabilities and possible divergence oc-
curs in the DIFF term. In addition, further limitations arise as one needs a capillary
wave to travel less than a grid space, thus Re∆x ≤ 2 and We∆ < 1. These requirements
impose restrictions with respect to the ’physics’ (i.e. ∆x), that in turn create ’stability’
limitations (i.e. ∆t), summarised in Tab. 2.2. Note, additional ∆t constraints are im-
posed during solutions of high frequency perturbations, not addressed here.

Physics

Limitations Re∆x ≤ 2 We∆x < 1

∆x ≤ ρumax

µ
ρu2

max

σ

Stability

Limitations DIFF Ca CFL

∆t < umax∆x
µ

√
ρ∆x3

σ
∆x
umax

Table 2.2: Imposed restrictions on ∆x and ∆t accounting for viscous and capillary effects.
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2.4.3 Pressure-Velocity Correction Method

The Navier-Stoke equations in incompressible fluid flows can be solved with a number of
different approaches. In this work, we employ the pressure-velocity coupling scheme in a
staggered grid, integrated within the Semi-Implicit Method for Pressure-Linked Equations
(SIMPLE). In principle, the SIMPLE-type scheme initially employs a guessed pressure
field and predicts the velocity field from the momentum equation solution. Consequently,
any type of convergence and pressure or velocity fields oscillations can be avoided [99][107].
In the momentum equations, the pressure gradient already appears. However, the conti-
nuity equation does not contain the pressure gradient explicitly.

Here, we formulate a pressure that satisfies continuity, thus a pressure equation (Poisson
pressure) is deduced that is then solved to obtain the necessary pressure field [102], [123].
From that, the updated pressure and corrected velocity fields are obtained to satisfy the
continuity equation. The result obtained from the discretised Poisson equation, is a sym-
metric, positive-definite coefficient matrix solved by Conjugate Gradient Solver. Doing so
in a staggered grid framework, strong coupling is enabled between the pressure and the
velocities. To compute the correct pressure and velocity fields, one starts from the x- and
y- momentum equations (see Appendix B) with:

∂u

∂t
+
∂uu

∂x
+
∂vu

∂y
= −1

ρ

∂P

∂x
+

1

ρ

∂τij
∂x

+
1

ρ

∂τij
∂y

+ fσx (2.39)

where τ accounts for the viscous effects and fσ is the surface tension (body) force.

Decompressing the pressure into P = P n+PC , where PC is the corrected pressure, a new
momentum equation from Eqn. (2.39), yields:

∂u

∂t
+

1

ρ

∂PC

∂x
+
∂uu

∂x
+
∂vu

∂y
= −1

ρ

∂P n

∂x
+

1

ρ

∂τij
∂x

+
1

ρ

∂τij
∂y

+ fσi (2.40)

A velocity can then be defined as:

∂û

∂t
=
∂u

∂t
+

1

ρ

∂PC

∂x
(2.41)

Thus, the momentum equation is finalised to:

∂û

∂t
+
∂uu

∂x
+
∂vu

∂y
= −1

ρ

∂P n

∂x
+

1

ρ

∂τii
∂x

+
1

ρ

∂τij
∂y

+ fσi (2.42)

Using central difference scheme, (see Appendix C), in both time and space, one can define
a numerical operator as:

û = L(u,u, ρ) (2.43)
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Evaluating (2.41) at time tn+ 1
2 using CDS again, one gets:[

un+1 − un

∆t

]n+1/2

=

[
û− un

∆t

]n+1/2

−
[

1

ρ

∂PC

∂x

]n+1/2

+O(∆t2) (2.44)

and by simplifying:

un+1 = û− 1

ρn+1/2

[
∂PC

∂x

]n+1/2

(2.45)

Now considering a Staggered grid (Appendix D), the x-velocity is stored at the faces
i− 1/2 and i+ 1/2, so that:

un+1
i+1/2 = ûi+1/2 −

1

ρ
n+1/2
i+1/2

[
∂PC

∂x

]n+1/2

i+1/2

= ûi+1/2 −
1

ρ
n+1/2
i+1/2

∂PC

∂x
(2.46)

which by expansion yields:

un+1
i+1/2 = ûi+1/2 −

1

ρ
n+1/2
i+1/2

PC
i+1 − PC

i

∆x
= βi+1/2

(
PC
i+1 − PC

i

)
(2.47)

Now recalling the Continuity equation and from Eqn. (2.47), one gets:

∂u

∂x
+
∂v

∂y
= 0 (2.48)

Then, replacing Eq.(2.45) at time n+ 1,

∂

∂x

[
1

ρn+1/2

∂PC

∂x

]
+

∂

∂y

[
1

ρn+1/2

∂PC

∂y

]
=
∂û

∂x
+
∂v̂

∂y
(2.49)

In a staggered arrangement, the pressure is stored at the cell centre. Integrating over the
Vi,j yields:∫

Vi,j

(
∂

∂x

[
1

ρn+1/2

∂PC

∂x

]
+

∂

∂y

[
1

ρn+1/2

∂PC

∂y

])
dV =

∫
Vi,j

(
∂û

∂x
+
∂v̂

∂y

)
dV (2.50)

Employing the divergence theorem strictly on the u-terms we finally obtain the corrected
velocity field from the corrected pressure as:

1

∆x

1

ρ
n+1/2
i+1/2

(
∂PC

∂x

)
i+1/2

− 1

∆x

1

ρ
n+1/2
i−1/2

(
∂PC

∂x

)
i−1/2

=
ûi+1/2 − ûi−1/2

∆x
(2.51)

29



2.5 Interface Modelling

As discussed, interface tracking methods are distinguished between surface and volume
tracking. The latter ones, can overcome some of the surface tracking limitations, by
using volume fractions for the solution regions within each computational cell. Two pop-
ular volume-tracking methods are the Volume of Fluid and Level Set. Such approaches,
overcome some topology changing limitations and maintain mass conservation properties
within accurate interface capturing computations. This section reviews both methods, by
employing and comparing them through a series of classic validation test cases.

2.5.1 The Volume of Fluid Method

The Volume of Fluid (VOF) employs the discrete version of the marker function, also
known as the ’color’ function, denoted by φ(x, t), which can be understood as the volume
fraction of liquid in each cell [55]. It is a Eulerian approach consisting of two sequential
processes:

• Interface Advection

• Interface Reconstruction.

The motion equations are closed with the density and viscosity constitutive relations of:

ρ = φρL + (1− φ)ρG
µ = φµL + (1− φ)µG

(2.52)

Here, φ is equal to 1 for liquid and 0 for gas. This implies, that the density and viscosity
are piecewise continuous as a result of φ being a step function [121]. By denoting a
transitional area between the two fluids, (i.e. a discontinuous step), the two fluids can be
modelled as a continuum; satisfying continuity ∇ · u = 0. Consequently, for φ = 1 the
cell is fully occupied by liquid and for φ = 0 by gas, whilst for 0 < φ < 1 the cell contains
both, Fig. 2.4[121][102].

Fig. 2.4: Cell arrangement demonstrating VOF interface reconstruction with the shaded
squares denoting the volume function. Note, each shaded square is representative of the
equivalent size to the fractional volumes.
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Finally, the scalar φ convection equation for the volume fractions, in conservative form,
reads:

∂φ

∂t
+∇ · (uφ) = 0, (2.53)

Provided the fractional volume per cell is known, an approximation of the interface can
be obtained. Hence VOF accounts for the volume transfer and then imports it in the
receiver cell, provided enough ”space” is available.

2.5.1.1 Interface Advection

Discretisation of Eqn. (2.53) introduces numerical diffusion resulting in step profile smear-
ing, due to the volume fraction discontinuity across the two-phase interface. To minimise
such errors, one should reconstruct the interface within each cell (0 < φ < 1) [102][121]
and compute the interfacial cell fluxes to obtain a sharp advection of the interface [130].
To do so, high-resolution techniques are employed that also enable preservation of the
monotonic variable distribution (i.e. satisfy boundedness criterion) [127]. There is a vast
range of such methods available.

In Boris et al. [12], the Flux-Corrected Transport (FCT) methods were developed based
on a predictor-corrector structure. FCT methods employ a first order non-oscillatory
scheme for the solution advection, followed by a correction step that removes large dissi-
pative errors. In the current VOF implementation, the Compressive Interface Capturing
Scheme for Arbitrary Meshes (CICSAM) is employed, originally proposed in Ubbink et
al. [121]. CICSAM is a differencing scheme based on the donor-acceptor flux approxima-
tion. It is an advection scheme that can find a solution to φi+1 while maintaining a sharp
interface [47]. The Normalised Variables Diagram (NVD) is the basis of CICSAM scheme.
The NVD concept was first introduced by Leonard et al. [66] and is usually employed
in convective discretisation schemes. Considering a convected scalar φ variation along a
direction normal to the CV faces, Fig. 2.5, one gets the normalised variable as:

φ̃ =
φ− φU
φA − φU

, (2.54)

With respect to Fig. 2.5, three different cells can be seen, the upwind (U), the donor
(D) and the acceptor (A) cells. In such schemes, the face under investigation is the one
located between (D) and (A), denoted with φ+

f [47], Fig. 2.5.

Fig. 2.5: Schematic of 1D Control Volume and its flow direction.
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An important property of NVD, is known as Total Variation Diminishing (TVD),
which is usually employed in cases where non-oscillatory solutions are needed. Its prin-
ciple regards the flux limitation of the conserved scalar to a point where local maxi-
mum/minimum of the scalar profile are not produced [134].

The NVD is based on the normalised face value plotted as a function of the normalised
donor-cell Fig. 2.6. To obtain a system where any oscillations are avoided and is not arti-
ficially diffusive, the NVD characteristics, should pass from 0 and P respectively, Fig. 2.6.
The NVD is obtained with respect to the CBC, in which at the centres of the neighbour-
hood control volume, the variable distribution should remain smooth, φD ≤ φf ≤ φA,
Fig. 2.5. Recalling (2.54), the convection boundedness criteria implies φ̃D ≤ φ̃f ≤ 1,
illustrated in Fig. 2.6, so the volume fraction value at the CV φf is computed as:

φf = (1− β̃f )φD + β̃fφA, (2.55)

β̃f =
φ̃f − φ̃D
1− φ̃D

, (2.56)

In CICSAM, for the CBC to be satisfied an additional assumption for the dependance
region is required and is based on c. Here, the local c is used at the CV face (Sf ).
Combining c with the CBC, then one gets φ̃D ≤ φ̃f ≤ (1, φ̃D/cf ). The coupling of donor-
acceptor scheme with the NVD, is the first part of the CICSAM scheme, known as the
HYPER-C scheme [121].

The HYPER-C scheme [121], is a very compressive scheme where in a scalar field, every
finite gradient is turned into a step profile, due to the downwind differencing scheme
used. This is not always desirable in cases of interfaces being tangential to flow direction.
Therefore, it is advisable to use a less compressive scheme, such as ULTIMATE-QUICK
(UQ), which is based on the QUICK scheme [121]. It uses a three-point upstream weighted
quadratic interpolation for the cell face values [47] as:

φUQ =
6

8
φW +

3

8
φP −

1

8
φE (2.57)
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Fig. 2.6: Normalised Variable Diagram for a) different schemes and b) CICSAM scheme.

The switch between the two schemes is based on a blending factor, ξ so that 0 ≤ ξ ≤ 1.
The factor ξ is strictly based on the angle between the normalised face value motion
direction and the interface. Here, the normal to the interface is a step described over
one mesh cell, whereas in cases of tangential to the interface position, moderate gradient
exists [121][127]. Thus, the normalised face value of the color function is computed by:

φ̃f = ξφ̃CBC + (1− σf )φ̃UQ, (2.58)

Where σ is evaluated by the angle θf cosine between the vector df , Fig. 2.5 and the
normal vector to the interface n = ∇φD/|∇φD| as:

θf = arccos|
−→
d −→n |, (2.59)

σf =

{
1 + cos 2θf

2
, 1

}
, (2.60)

The procedure developed depends on the CFL condition. In Waclawczyk et al. [127], to
overcome these limitations, they employ the High Resolution Interface Capturing (HRIC)
scheme. As in the CICSAM case, the HRIC is also based on the NVD. This approach can
be expressed in three steps. Primarily, the estimation of the normalised cell face values
φ̃f are computed, based on a the NVD diagram, connecting the upwind and downwind
schemes continuously [127]. From there, one can use a first order UDS to satisfy CBS along
with the blending factor, introduced earlier. This results in a dynamic blending scheme,
accounting for the volume fraction local distribution. However, if the CFL condition is
non satisfied, stability issues arise. Thus φ̃f correction is based to the local c, enforcing a
continuous switch between the scheme [127].
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2.5.1.2 Interface Reconstruction

Typical geometric interface reconstruction methods, introduce geometrical interface rep-
resentation. In contrast, high-resolution schemes satisfy the conditions derived above
via appropriate discretisation schemes. To accurately compute the flux approximations
(advection), one needs to reconstruct the interface. To do so, the normals computation
is based on the gradient estimation of the discrete volume fraction. The normals are
computed from the φ scalar, with φ = 0 when normals point to gas. The m = ∇φ
discretisation for the cell faces normals, Fig. 2.7, reads:

mx = −φi,j − φi−1,j

∆x
, my = −φi,j − φi,j−1

∆y
, mz = −φj,k − φj,k−1

∆z
(2.61)

From there, the cell centre vectors are computed from m, using Arbitrary Lagrangian-
Eulerian (ALE) method [22]. The ALE method passes the face stored values and restores
them at the cell centres; denoting a normal based reconstruction approach that employs
the neighbour points, Fig. 2.7. The ALE result can be summarised as n =

∑
Fkmk,

denoting the sum of the φ scalar values as a function of the m normals, at the cell centre.

Fig. 2.7: Cell notation schematic denoting the scalars φi,j stored at the cell centres and
normal vectors n stored at the cell faces.
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2.5.1.3 Other VOF-based Methods

Other common VOF-based reconstruction methods available in the literature are the
Simple Line Interface Calculation (SLIC) and the Piecewise-Linear Interface Calculation
(PLIC). The SLIC method can be employed for geometric approximation of fluid inter-
faces. Here, the fluid surfaces are locally defined with respect to each mixed fluid zone.
SLIC VOF is rather simple and accurate. Usage in three-dimensions is very easy whilst
merging/breakage of the interface happens immediately. However, numerical diffusivity
and accuracy limitations are the main drawbacks [81].

Meanwhile, the PLIC approach is the VOF-based method that uses a piecewise- linear
interface calculation. Is an interface reconstruction method and is based on the concept of
defining the interface as a line in 2D or plane in 3D. PLIC VOF is rather simple and accu-
rate whilst interface merging/breakage happens automatically. However, implementation
in 3D is rather difficult and utilisation in boundary fitted grids is complex [69]. Figure
2.8, shows the interface reconstruction differences, between a VOF-SLIC and VOF-PLIC
with the Color Function VOF methods.

Fig. 2.8: Basic schematic of the principle VOF color function in comparison with VOF-
SLIC and VOF-PLIC.
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2.5.1.4 Validation

A common interface tracking validation case, is a liquid disc in a single vortex field [9].
Here, a liquid disc of radius R = 0.15 is placed in a unit sized domain and the disc centre
is located at (0.5,0.75), Fig. (2.9), in a [128 × 128] grid points. The velocity field is
described by a two dimensional stream function with:

ψ =
1

π
sin2(πx) sin2(πy) (2.62)

Here t ≤ T (where T = 3), the time step is ∆t = 5 × 10−4 with a Courant number
c = 0.1. In the exact (ideal) solution, the liquid disc is stretched over time to develop into
a much thinner ligament, due to the velocity field. At t = T the disc reaches maximum
deformation.

Fig. 2.9: Snapshots of (a) initial solution of a liquid drop in a 1282 domain and (b) VOF
solution for t = T .
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2.5.2 The Level Set Method

The Level Set (LS) method, is an implicit capturing approach of the interface. A smooth
marker function ψ(x, t), denoting the LS function, is employed to identify the distinct fluid
regions. The ψ(x, t) = 0 iso-surface denotes the interface itself; with ψ > 0 being liquid
and ψ < 0 being gas. The LS function is propagating in the normal direction, denoted
as the hyper-surface fluid motion, whose velocity field is given by u|In = (uI , vI , wI) [105].
The fluid interface is a material surface, provided the interfacial mass transfer is zero,
denoted with zero level set of ψ [101], as:

∂ψ

∂t
+ uI · ~∇ψ = 0, (2.63)

Typically, ψ is preferred to be defined as a signed distance function:

|~∇ψ| = 1, (2.64)

In principle, the ψ value in every point along the n direction, is equal to the minimum
distance between n and the ψ isosurface [101][125]. The ψ advection is processed based
on the condition that the material derivative must vanish.

In theory, actual zero-level set localisation is unnecessary for the advection equation so-
lution; thus if the tracked interface is the zero-level of ψ, then the interface is implicitly
represented [125]. Now, numerical errors during advection result in loss of the distance
property of ψ. In the literature, there is a number of approaches available depending on
the desired LS solution [105][75]. Some employ a fast marching method to find a solution
for the stationary equation expressed in (2.64) [105]. In this approach, the CFL limita-

tions are bypassed, by directly solving |~∇ψ| = 1.

Others, like in Sethian et al. [105], preserve the properties of Eqn. (2.64) by using a mod-
ified velocity field to solve (2.63) [6], where the original velocity field is extended from the
surface, by solving ∇ψ · ∇u = 0. This is done, as the speed function strictly has physical
meaning across the interface. Following such approach, in theory, the ψ evolution shall
not result into deformation, making reinitialisation process unnecessary [105][75].

In this work, to maintain the distance property (signed function), the reinitialisation
process is employed, solving

∂ψ

∂τ
+ S(ψ)

(∣∣∣~∇ψ∣∣∣− 1
)

= 0, (2.65)

known as the Hamilton-Jacobi equation (see Appendix G), where τ is the pseudo-time. In
(2.65), the reinitialisation process is essentially a smoothing of the ψ distribution, which
in turn results in significant mass loss [125]. Equation (2.65) denotes the position of the
front at time t described by the zero LS of ψ. Considering strictly the front propagation,
LS is time-independent leading to a stationary LS formulation, τ →∞, |~∇ψ| = 1 so S(ψ)
is constant for all times [125].
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However, in cases where the interface has ”drifted” off the distance function during
the interface reconstruction, the function S(ψ) is employed as a numerically smeared sign
function, which takes the form of:

S(ψ) =
ψ√

ψ2 + ∆2
(2.66)

where ∆ = max(∆x,∆y), so that if [ψ → 0, S(ψ) = 0] and [ψ →∞, S(ψ) = 1]. Since the
stability of the above must satisfy c < 1, ∆τ is chosen so that the LS advection progresses
at less one grid-point per pseudo-time. Here in (2.66), the distance function reconstruction
is hurtled away from ψ = 0 and slows down near ψ = 0. Numerical smearing of sign(ψ)
function, results in a decrease in the sign magnitude of Eqn. (2.66). Consequently,
the interfacial information propagation speed is slowed down. Discretisation of (2.65)
can be very accurate, which in turn provides an accurate distance profile reconstruction.
However, CFL limitations are present.

Sethian et al. [5][105] fast marching method bypassed this, by locally solving ~∇ψ = 1
and using only the points near the interface. This proved to be a very efficient method
but accuracy was limited and reinitialisation of the near-interface points introduced front
displacement. To overcome these new limitations, Desjardins et al. [84] employed a ψ
hyperbolic tangent function. The idea was based on the fact that the LS computation
requires only one information, the zero iso-surface of the LS function. This implies that the
LS function evolution with the advection equation over the whole domain is not required
[84]. Consequently, limited treatment to the structural boundary vicinity, enables the use
of the hyperbolic tangent function as:

φ =
1

2

(
tanh

ψ

2ε
+ 1

)
(2.67)

where ε is a parameter controlling the interface profile thickness as ε = ∆x/2 and ψ is
a Level Set function, now defined by ψ = 0.5, rather than ψ = 0. Provided a solenoidal
velocity u field (i.e. ∇ · u = 0) and assuming uI = u, Eqn. (2.63) can be expressed in
conservative form as:

∂ψ

∂t
+∇ · (uψ) = 0, (2.68)

where ψ is not a distance function anymore. Thus, given a ψ definition along with Eqn.
(2.68), the ψ scalar should be conservative. Solution of (2.68), does not ensure preservation
of (2.67) [84]. Employing Eqn. (2.68) for the ψ transportation and restoring ψ in (2.67),
both mass conservation under ψ = 0.5 iso-surface and numerical robustness are improved.
However, a reinitialisation equation is still required (in conservative form), which reads:

∂ψ

∂τ
+∇ · (φ(1− φ)n) = ∇ · (ε(~∇φ · n)n) (2.69)
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Since Eqn (2.69) is advanced in τ , the left hand side is a compression term resulting in
profile sharpening, and the right hand size is a diffusion term preserving the characteristic
thickness of the profile. Consequently, solution of (2.67) and (2.69) system, implies suc-
cessful ψ = 0.5 iso-surface transportation, maintenance of the hyperbolic tangent profile
shape and ψ conservation [84]. For more details on the method one can refer to Desjardins
previous works in [75][84]. In this thesis, the LS discretisation in time, is obtained using
3rd Order TVD Runge-Kutta scheme [106], (see Appendix F).

The zero-level curve motion is strictly based on the normal n, pointing from liquid to gas,
as:

n = −
~∇ψ
|~∇ψ|

(2.70)

The interface curvature computation, κ, trails the previous work by Luo et al. [60] and
is computed from the height function method. Since the normal is the gradient of the LS
function ψ, the curvature is simply computed by κ = −∇ · n, which in two dimensional
form yields:

κ = ∇ ·

(
~∇ψ
|∇ψ|

)
= ∇ · (ψx, ψy)√

(ψ2
x + ψ2

y)
(2.71)

Expanding yields:

κ =

(
∂

∂x

ψx√
ψ2
x + ψ2

y

)
+

(
∂

∂y

ψy√
ψ2
x + ψ2

y

)
=

ψxx + ψyy
(ψ2

x + ψ2
y)

1/2
(2.72)

where the subscripts x and y denote the first ψ derivative in x- and y- directions, computed
with CDS.

Finally, employing the implicit function theory (see Appendix H) and simplifying, the
curvature in two-dimensions yields:

κ =
ψ2
xψyy − 2ψxψyψxy + ψ2

yψxx

(ψ2
x + ψ2

y)
3/2

(2.73)

which is similarly extended to three-dimensions as:

κ =


ψ2
x(ψyyψzz − ψ2

yz) + ψ2
y(ψxxψzz − ψ2

xz) + ψ2
z(ψxxψyy − ψ2

xz)
+2[ψxψy(ψxzψyz − ψxyψzz) + ψyψz(ψxyψxz − ψyzψxx)]

+2[ψxψz(ψxyψyz − ψxzψyy)]


(ψ2

x + ψ2
y + ψ2

z)
3/2

(2.74)
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2.5.2.1 Level-Set Reinisialisation Convergence Criteria

In the pure LS methods, where the normal computation and location of the interface is
based on the LS function ψ, all level sets are being tracked instead of the one of interest.
Consequently, the method becomes computationally expensive and introduces difficulties
during interface evolution. In this work, to overcome such limitations, the LS formulation
is developed within a narrow band (NB), originally proposed in Adalsteinsson et al.
[5]. Employing a narrow band essentially provides solutions to the problems with the
computational ’energy’ focused within a thin band located around the front [5].

In the NB general concept, the LS function is updated within the narrow band (inner
zone) and the remainder points are employed strictly for BC purposes (buffer zone), Fig.
2.10. As soon as the front motion reaches the edges (buffer zone) the calculations are
stopped and a new NB is built with the zero level set. Opposingly to typical NB use,
in the present work the ψ initialisation and transportation is performed everywhere, to
extract the zero-ψ, whilst the narrow band is strictly employed to check the LS error.
Thus an inner zone thickness is employed strictly for the LS sign function.

The zones in Fig. 2.10, can be summarised as:

• Narrow Band (NB): zone limited within the Buffer zone points.

• Inner Zone Thickness (ε): zone containing cells where LS error is checked.

• Interface Band: band containing all cells were actual interface is present.

Fig. 2.10: Narrow band in a cell arrangement denoting the interface along with the inner
zone, buffer zone and fixed interface band.

The inner zone thickness is a function of the mesh size, denoted by ε and is employed as a
checking parameter reading ε < 1.5∆x, implying that a change in ∆, results in a ε change
[71][122]. Thus, it can be said that ε is ’data’ dependent [71].
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Within the inner zone, the interface band is defined based on all cells containing the
interface for a restricted LS value. Doing so, ε ensures a narrow band size applicable to
each case, whilst the interface band limits the LS computational zone to the minimum
requirements for solution accuracy. Such formulation enables computational accuracy in a
more cost effective manner. Recalling the previous discussion for Eqn. (2.65) and the zero
LS motion limitation as a function of c, here ∆τ = c∆x with c = 0.3. This implies that ∆τ
is dependent on the speed function nature. From there, the reinitialisation convergence
criteria can be developed.

In this work, the criteria is employed as initially proposed in Sussman et al. [71] and
applied in the NB as:

Err =
1

N

∑
i,j|ψn

i−j |<ε

∥∥ψn+1
i,j − ψni,j

∥∥ < ∆τ∆x2
(2.75)

Here, N is the number of interfacial grid points, ψn+1
i,j and ψni,j are the LS function values

computed at some given point for two successive iterations. The maximum tolerance limit
reads:

Errmax = max[10−6,∆τ∆x2] or Errgrad|ε = (∇ψ − 1) < 0.1 (2.76)

where, Errgrad is the LS function gradient error limited within the ε band. It is computed
with 5th order Weighted Essentially Non-oscillatory (WENO) scheme, which is presented
in the next section. The 5th WENO implies that the stencil is at least five points, whilst to
achieve solution convergence the criteria requires that Err < Errmax. Note, such method
allows only one iteration per ∆t, for convergence criteria to be satisfied.

Generally speaking the LS reinitialisation procedure is ’proportional’ to the LS distortion
itself. It is required only when steep or flat LS gradients are developed. As previously
noted, an important property when numerically solving such equations, is that the relative
parameter characteristics originate at the interface. This implies, that the LS equations
are numerically solved for pseudo-τ steps with a pseudo-courant number. Consequently,
a correct signed distance function for c · τ steps away from the interface is obtained [2].
Such approach works very well coupled with the narrow band method both in terms of
accuracy solution and reduced computational time.

Note, as the number of reinitialisation steps goes higher, the LS moves a lot, whilst the
computational cost and time increase as well. In the literature, different suggestions are
proposed for the required reinitialisation steps. In Tanguy et al. [112] is performed at
every step, whilst in Shao et al. [63] every 100 steps. Theofanous et al. [82] proposed
a more ’flexible’ method were reinitialisation is processed every 20 − 100 steps. In this
work, reinitialisation is performed every 50 steps, satisfying the maximum number of steps
required for solution to converge, thus maintain computational accuracy and ensure cost
effectiveness.
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2.5.2.2 Discretisation of Level Set

Hamilton-Jacobi equations, appear in numerous applications, thus a vast range of high-
order numerical methods are found in the literature. Two very common ones, are the
essentially non-oscillatory (ENO) and the weighted essentially non-oscillatory (WENO)
methods. Both methods are effective non-linear spatial discretisation approaches. ENO
scheme was first proposed by Harten et al. [3]. The scheme uses a monotone numerical
Hamiltonian, a high-order ENO reconstruction and a high-order stability to preserve the
Runge-Kutta time stepping process [61].

Originally, ENO was designed for hyperbolic conservation laws [3] and were later extended
for the HJ solutions [105]. An improvement of ENO, the WENO [3] scheme was developed,
initially proposed by Peng et al. [61]. Schemes, such as ENO can induce global instability
due to the linear instability used for the linear spatial discretisation, resulting to spurious
oscillations in the solutions.

In this pure LS method, the advection equation is discretised in space using 5th WENO.
The spatial derivatives are expressed as the weighted sum of the numerical fluxes di=1,5,
with: [

∂ψ

∂x

]
i

=
∑

k=0,1,2

αkd
k
i (2.77)

Here, αk denotes the stencil weight calculations computed as:

α0 =
1

10

(
1

IS0 + ε

)2

, α1 =
6

10

(
1

IS1 + ε

)2

, α2 =
3

10

(
1

IS2 + ε

)2

(2.78)

where ε = 10−20 is chosen small enough for the denominator to be non zero.

Then, the smoothness indicators are employed reading:

IS0 = 13
12

(d1 − 2d2 + d3)2 + 1
4
(d1 − 4d2 + 3d3)2

IS1 = 13
12

(d2 − 2d3 + d4)2 + 1
4
(d2 − d4)2

IS2 = 13
12

(d3 − 2d4 + d5)2 + 1
4
(3d3 − d4 + d5)2

(2.79)

Due to the fast/slow moving interfaces in the LS method, here it is important to maintain
(|∇ψ| = 1), throughout or at least at the interface. The grid convergence criteria, amongst
others, also applies when a correct numerical solution becomes independent of the grid
cell size.
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2.5.2.3 Validation

In this section, the liquid droplet in a shear vortex case is used for the pure LS simula-
tions. The case is simulated in a [128 × 128] mesh for varying tolerance, as discussed in
Section 2.5.2.1, for a) Errmax = 1× 10−3 and b) Errmax = 0.1. Observing Fig. 2.11, the
tail of the shear vortex in both cases is not visualised as the LS mass loss is very large,
for t = T . In comparison with VOF, the LS is more accurate in capturing the interface.

Figure 2.11 shows that in Errmax = 1× 10−3, a small blob indication is noted, whilst in
Errmax = 0.1 the tail is sharper. However, in the latter case, the head of the vortex also
seems slightly different than in Errmax = 1 × 10−3. Note, decreasing tolerance does in
turn decrease CPU run time, however the results typically do not alternate much. Con-
clusively, the results are consistent with the LS discussions developed earlier whilst in this
work we keep Errmax = 1 × 10−3 as both the test case errors and results do not change
substantially.

Fig. 2.11: Plot of the shear vortex of a liquid drop in a 1282 mesh with LS for two
tolerances, a) Errmax = 1× 10−3 and b) Errmax = 0.1.
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2.5.3 Comparison of VOF-CICSAM and LS

The VOF method lacks in accurate interface topology capturing, whereas LS lacks in
mass conservation properties. To compare the two, a liquid disc moving in the diagonal
direction (45o) along a uniform gas flow is employed. The solutions were run for 20T ,
where T denotes one period for the disc to cross the domain once and return to its original
position. The simulations are first run in a [40× 40] mesh size for R/∆ = 4, 8.

In Fig. 2.12, snapshots forR/∆ = 8 are presented. The LS disc was able to retain its shape
well, but the mass loss was quite large, such that the disc had completely disappeared by
t = 20T . On the contrary, the VOF-CICSAM disc preserved mass well but struggled to
maintain the shape, resulting into a square, by t = 20T . Next, we tested R/∆ = 8 in a
[64× 64] mesh size, Fig. 2.13. In this case, the LS was superior in capturing the interface
in comparison with VOF, by preserving the disc shape quite well.

Due to the slight mesh refinement and the small increase in the number of grid points
across the disc diameter, the LS mass conservation is significantly better preserved, than
in R/∆ = 4. In the VOF case, despite the good mass conservations properties, the shape
of the disc turned into a square by t = 20T , denoting the method limitations in interface
capturing.

Next on, the mass and curvature errors (ε%) with t∗ are demonstrated, where t∗ = t/tR
and tR = R/Ux. The plots are presented for R/∆ = 4 and are summarised in Figures 2.14
and 2.15. Additionally, Fig. 2.16, shows the volume error for VOF and LS, at different
radius/mesh size ratios, starting from R/∆ = 4 up to 64. The results obtained are in
agreement with the literature and the conclusions discussed within the previous sections.
The VOF-CICSAM is more mass conservative than LS, but struggles in capturing the
interface accurately.
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Fig. 2.12: Snapshots of disc in a uniform gas flow for Level Set and VOF-CICSAM, with
R/∆ = 8 in a 402 mesh, for t = 0, 10T, 20T ; where LS shows ψ = 0 and VOF shows
φ = 0.5
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Fig. 2.13: Snapshots of disc in a uniform gas flow for Level Set and VOF-CICSAM, with
R/∆ = 16 in a 642 mesh, for t = 0, 10T, 20T .
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Fig. 2.14: Mass error (ε%) for R/∆ = 4 with t∗, VOF and LS.

Fig. 2.15: Curvature error (εκ%) for R/∆ = 4 with t∗, VOF and LS.

Fig. 2.16: Comparison of Mass error (εM%)with R/∆ for VOF and LS, at t = 0.
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2.6 Summary

This section presented and validated some of the numerical solutions employed in this
work. The FV method was selected for the discretisation of the NS equations which here
are solved explicitly. Two interface modelling options were presented and reviewed, that
of VOF-CICSAM and LS. In agreement with the literature, overall the VOF-CICSAM
method is very mass conservative but really lacks accuracy in capturing the interface.

On the contrary, the LS method looses mass as expected, however interface topology
properties are well captured. Both methods showed a good decreased in the mass errors
with grid refinement, as is expected for any interface capturing method. The VOF method
presents a more stable mass conservation as a function of the mesh size, (i.e. is always
mass conservative) whilst LS showed inconsistent mass conservation behaviour.

In the Shear vortex case, the VOF method was very mass conservative independently of
the mesh size. However, indications of blobs at the vortex tail, validated the inability to
accurately capture the interface. Meanwhile, the LS showed improved mass conservation
with mesh refinement. In the case of a diagonally moving liquid disc, both methods
presented problems in cases. The VOF method showed good mass properties, but could
not preserve the disc shape, regardless of the R/∆ ratio. The

LS method maintained the disc shape well even in coarse meshes. However, it struggled
to preserve mass even in more refined meshes (εM ≈ 40%), whilst for ratios of R/∆ < 8,
the mass loss eventually reached 100%, with the disc completely disappearing. Finally,
as theory suggests, the LS curvature computation overruled the VOF method, regardless
the mesh size. This was also validated in the liquid disc case, where the original shape
was quickly altered into a square shape by early computational times.
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Chapter 3

Conservative Mass Level Set
(CMLS) Method

3.1 Introduction

As presented earlier, VOF and LS methods are two popular interface tracking methods.
The VOF methods are very mass conservative but lack accuracy. Opposingly, LS methods
provide good interface topology (i.e. normals, interface location and curvature computa-
tions) but suffer from mass loss. In this section, we present a novel mass conservative LS
method (CMLS), where the normals from LS are employed for the interface reconstruc-
tion and the mass correction is enforced based on two different approaches. The actual
interface reconstruction is based on a geometrical approach. The full CMLS method
philosophy and all the relative numerical tools are detailed presented in the following
pages. Once the basic model is presented, the code is validated through a series of test
cases and compared accordingly with the pure VOF-CICSAM and LS methods. In the
end, the optimum interface capturing method, CMLS is extended in 3D and evaluated
appropriately.
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3.2 Philosophy

In this section, we present a novel Mass Conservative Level Set (CMLS) method. Here,
the LS normals are employed for the interface reconstruction. The LS mass conservation
correction is based on the previous works by Luo et al. [60] using the interface curva-
ture and Zoby et al. [134] for a uniform interfacial cell correction. From there, the mass
gain/loss is computed and redistributed accordingly. The actual interface reconstruction
is based on a geometrical approach initially proposed by Scardovelli et al. [103]. The
general algorithm of the CMLS method employed here, can be summarised as:

• Initialisation of both Level Set ψ and Volume of Fluid φ functions.

• Compute interface normals with level set using n = f(ψ) and locate interface posi-
tion from ~nψ.

• Compute initial LS mass Vψo using a smooth VOF (φS) marker, originally proposed
in Sussman et al. [71].

• Compute Theoretical Mass loss (Vloss%) and proceed with coupling based on Errmass >
1 × 10−2(%). Once coupling processed, compute area A using LS normals with
A = f(~nψ).

• Compute the Interface Curvature (κΓ) using a linear interpolation of ψ as a level set
weighting factor. Advect level set function ψn at ψn+1 and recompute φn+1 value
from ψn+1.

• Correct mass according to Vloss > εmax criteria, with εmax denoting the max toler-
ance. Here, in principle we essentially relate the level set ψ and the general volume
fraction dV , with dV = f(δψ) = Vloss + Vψo . Mass correction is processed with
two different approaches, based on the ’instant’ computational needs. The first
approach, corrects using a uniform mass distribution at the interface cells, (dVΓ),
trailing Zoby et al. [134]. This method, assumes mass is homogeneously distributed
over a planar surface. The cell mass is computed using the ψ cell value. However,
cases such as local LS properties are not taken into account. Thus, if such correction
is not sufficient, the mass correction is then based on the interface curvature, κΓ.
This approach is based on the criteria δψ ∝ κΓVloss, trailing Luo et al. [60]. To do
so, we employ the A = f(~nψ), so that δψ = (dV/A), Fig. 3.1. Note the correction is
limited to 0.05∆x, to avoid ’over’ correction and ensure accuracy. The actual mass
correction from κΓ is processed with:

(dVκ)Γ = Vloss
κpΓ∑
k κ

p
(3.1)

where p is a parameter and the sum is over the number of interface points.
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Fig. 3.1: Schematic of level set correction with δψ.

• Reconstruct the interface using φn+1, based on the reconstructed points in a geo-
metrical manner to yield a new interfacial plane, trailing Scardovelli et al. [103]
work. Here, the normals and interface location necessary are level set employed, ~nψ.

• Advect φn+1 and the new ψn+1 and reinitialise the final level set ψn+1 function using
3rd order Runge-Kutta scheme.

With respect to the p parameter in Eqn. (3.1), different values have been denoted in the
literature. In Luo et al. [60], (p = 1) whilst Zoby et al. [134], uses uniform corrections,
(i.e. p = 0). The p choice can significantly affect the computational results. In cases of
large filaments present, p = 0.05 is enough, whilst for droplet break-up cases, p = 0.5 is
required, to preserve any existent small droplets. To show the ’p’ variation effects, a series
of coarse test cases are employed, a shear vortex, a basic drop break-up and a sloshing
test, Figures 3.2-3.4. Note, these are strictly for demonstration purposes on the various
’p’ effects, with detailed investigations and better analysis of such test cases provided in
later sections.

Fig. 3.2: Shear vortex for different p values in a (80× 80) mesh size.
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Fig. 3.3: Droplet break-up for different p values in a (80× 80) mesh size.

Fig. 3.4: Sloshing test for different p values in a (80×80) mesh size. Here, p = 0, 1 breaks
after t > 1.
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In the shear vortex, the ’p’ choice mostly impacts the captured tail resolution. In the
droplet break-up the number of fragments captured varies, for p = 1 three fragments are
observed whilst for p = 0, 0.5 two. In the sloshing test case, p = 0, 1 fail to capture the
interface position for the total simulation time and only p = 0.5 captures it effectively. A
basic schematic demonstrating the CMLS steps is shown in Fig. 3.5. Note, the reinitiali-
sation proceedings of the final level set ψn+1 function follows Section. 2.5.2.2.

Fig. 3.5: Flowchart schematic of the CMLS method.
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3.3 CMLS Numerical Tools

3.3.1 Mass and Momentum Coupling

In this section we present the mass and momentum coupling for the CMLS method in
summarised steps. The process is done in two loops using LS and the pressure correction
method.

First Loop

Primarily the level set is advanced with the previous time step n and is computed at an
intermediate time level n+ 1/2 as seen below, respectively.

ψn+1 = F(un, ψn) +O(∆t)

ψn+1/2 = 1/2(ψn+1 + ψn)
(3.2)

From there, the density (ρ) and viscosity (µ) are evaluated at the intermediate time level
n+ 1/2 with

ρn+1/2 = ρ(ψn+1/2)

µn+1/2 = µ(ψn+1/2)
(3.3)

and the non-conservative velocity, using ∇ · u∗ 6= 0, is computed with the momentum
equation as

u∗ = L(un, un+1/2, ρn+1/2) +O(∆t) (3.4)

Employing the pressure correction method, already presented in Section 2.4.3, one gets:

PC = G(u∗, ρn+1/2) (3.5)

and the corrected velocity to satisfy ∇ · un+1 = 0, reads:

un+1 = H(u∗, ρn+1/2, PC) (3.6)
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Second Loop

During the second loop, the velocity at intermediate time level n+ 1/2 is computed as:

un+1/2 = 1/2(un+1 + un) (3.7)

followed by the non-conservative velocity (using ∇ · v∗ 6= 0) and with the momentum
equation, yields:

u∗ = L(un, un+1/2, ρn+1/2) +O(∆t2) (3.8)

Similarly to the first loop, the pressure correction computation is obtained with:

PC = G(u∗, ρn+1/2) (3.9)

and the equivalent velocity correction to satisfy ∇ · vn+1 = 0, gives:

un+1 = H(u∗, ρn+1/2, PC) (3.10)

Finally, the Level Set is advanced with the intermediate velocity n+ 1/2 as:

ψn+1 = F(un+1/2, ψn) +O(∆t2) (3.11)

and the final density and viscosity at the new time level n+ 1 yields:

ρn+1 = ρ(ψn+1)

µn+1 = µ(ψn+1)
(3.12)
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3.3.2 Compute cell density and viscosity

The density and viscosity along a particle path are both constant. However, these prop-
erties with respect to LS, change in a sharp manner at the front (i.e. ’steep’ gradients
exist), whilst ψ is a smooth function. Thus, ρ and µ are discontinuous across the interface.
Moreover, although ψ is initially a distance function, it will not retain this property during
advection, a jump is developed at the interface when two fluids are merged. So, resolving
ρ(ψ) or µ(ψ), numerical instabilities or numerical oscillations around the interface will be
present, particularly in large density ratios.

To prevent those, the cell density and viscosity equations are expressed in terms of a
smooth VOF marker φS, as:

ρ = φSρliq + (1− φS)ρgas and µ = φSµliq + (1− φS)µgas (3.13)

The smooth VOF (φS) marker employed, as initially proposed in Sussman et al. [71],
reads:

φS =


0, ψ < −δ

1
2

[
1 + ψ

δ
+ 1

π
sin
(
πψ
δ

)]
, |ψ| ≤ δ

1, ψ > δ
(3.14)

denoting that the interface thickness is ≈ 2δ/|∇ψ|. This smooth φS marker is usually
included in the smeared Heaviside function to improve numerical robustness. However,
here is strictly employed to compute the VOF volume given a ψ value.

In this work, the LS front has a uniform thickness, implying the need of |∇ψ| = 1 when
ψ ≤ δ. So, provided the LS is equal to the distance function (see Eqn. 2.64), then from
Eqn. (3.14) it follows that the interface thickness is 2δ. Here, φS is limited within the
transition band from 0 to 1, Fig. 3.6, over a distance δ =

√
2∆ in two dimensions and

δ =
√

3∆ in three dimensions, accordingly. Note, δ is essentially the cell diagonal, which
is the maximum cell distance possible. Increasing δ makes the function smoother. The
smooth marker (φS) is a first-order approximation to the liquid area in 2D and volume in
3D, in the domain, Eqn. (3.15) below.

Aliq =
Ncell∑

φSi,j∆
2 +O(∆) and Vliq =

Ncell∑
φSi,j,k∆

3 +O(∆) (3.15)
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Fig. 3.6: Marker function transition zone with ψ/δ.

3.3.3 Surface Tension Treatment

Two-phase flows modelling using interface tracking methods typically involves an im-
mersed boundary (phase interface). This is the surface tension forces locus and any fluid
property discontinuity, is usually expressed with the jump conditions. There are two main
methods in the literature to treat such singularities, the Continuum Surface Force and
the Ghost Fluid Method. CSF method was initially proposed in a VOF formulation by
Brackbill et al. [62]. The model does not treat surface tension as a boundary condition,
instead it appears as a continuous function, where the surface tension is modified as a
localised volume force near the interface. In cases of dominant surface tension, a spurious
velocity field is developed which in turn introduces numerical errors. These errors are
due to the imbalance between surface tension and pressure gradient forces along with any
curvature estimation errors [62].

To tackle this issue, the method requires that an exact balance is introduced of the nor-
mal component for both surface tension forces and pressure gradient. The CSF method
is of first order accuracy due to the numerical smoothing inherited [62]. To treat the
numerical smoothing evolved in the CSF method, Fedkiw et al. [91] proposed the Ghost
Fluid method (GFM). The GFM is employed in multiphase flows, where both the CON
and DIFF terms are discontinuous at the interface, this results in a viscosity and density
jump at the liquid/gas interface. In Fedkiw et al. [91], the discontinuity imposed by the
multiphase interface is captured within the inviscid compressible Eulerian equations [91],
[130]. The GFM treats the oscillations inherited and the interface jump conditions are not
used explicitly. The appropriate interface conditions are implicitly applied by creating a
’ghost’ fluid. Consequently, GFM is well coupled with Level Set which in turn implicitly
represents the interface.
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The surface tension in the pressure gradient discretisation is directly imposed, this
also satisfies the force balance concept [130]. The density, viscosity and curvature are
computed by linear interpolation, which in turn imposes the need of a signed distance
from the interface. Note, in VOF formulations this signed distance is reconstructed from
the VOF function temporarily, whilst in LS it already exists by definition. The surface
tension force is a singular term that can lead to the presence of numerical stabilities,
known as parasitic currents. The effects of these instabilities are reduced by the discreti-
sation of the pressure field resulting in a discontinues solution [30][130]. At the interface,
both the CON and DIFF terms are discontinues in time due to the viscosity and density
jump during a phase change from liquid (gas) and gas (liquid).

Fig. 3.7: Ghost Fluid Method schematic demonstrating the ghost and real pressure values.

In the Ghost Fluid method, the pressure gradient discretisation with location i− 1/2,
reads:(

∂P ∗

∂x

)
i−1/2

=
PG
i − Pi−1

∆x
=
Pi − Pi−1 − JP K

∆x
(3.16)

where JP K is the Pressure jump at the cell face, which in terms of the surface tension σ
yields:

JP K =


σκΓ if φi−1 ≤ 0 and φi > 0
−σκΓ if φi−1 > 0 and φi ≤ 0
0 otherwise

(3.17)

where x is the direction towards the interface and φi is the scalar value at the interface.

58



The interface curvature, (κΓ) is simply computed from linear interpolation using the
Level Set function ψ, as a level set weighting factor of:

θψ =
|ψi−1|

|ψi−1|+ |ψi|
(3.18)

For Eqn. (3.18), away from the interface θψ ≈ 1. Close to the interface θψ ≈ 0 provided
the left cell θi−1/2 → 0 (near the interface) and ψi−1. From there, the interface curvature
is computed with:

κΓ = κi−1(1− θψ) + κiθψ (3.19)

3.3.3.1 Interface Curvature Validation

To show the validity of the method for κΓ, primarily a static liquid disc was placed in
a uniform domain. The disc was tested for R/∆ = [4, 8, 16, 32, 64] and the relative
|εκΓ
|(%) was computed and plotted in 2D, Fig. 3.8. The interface curvature appears to

be of O(∆). The curvature denotes a sufficient convergence overall, however the last two
points, R/∆ = [32, 64], are slightly off. As the cell curvature computation is LS based,
which is discretised using 5th WENO, the stencil will be at least 5 points. At R/∆ ≈ 2,
denotes that the stencil is the whole liquid disc and the expected errors will be large. So,
as we compute the curvature in a point, correct solutions will only be obtained across the
interface, with inaccuracies present every where else.

Fig. 3.8: Interface curvature error |εκΓ
|% with R/∆.
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Next, a diagonally moving droplet with R/∆ = 8, was placed in a uniform coarse
mesh of [64 × 64]. The circle crosses the boundary fifteen times. The case was tested
with VOF-CICSAM and CMLS for a brief comparison. The relative error εκ with t∗ is
plotted in Fig. 3.9, where t∗ = t/tR and tR = R/Ux. It is clear, that the CMLS curvature
computation is very stable even for a coarse mesh and demonstrates superior accuracy
than a VOF-CICSAM approach.

Fig. 3.9: Curvature error εκ% with t∗ in R/∆ = 8 domain, for VOF and CMLS.

In Brackbill et al. [62] CSF method, the force density in the transition region is
proportional to the surface curvature. In their work, they showed that the interface can
be expressed by a continuous model, implying a non grid-aligned transition region exists
at the interface of two fluids. They found that the interface curvature is quasi-continuous
along the interface, provided κ∆ ≤ 1, where ∆ is the mesh size. In this work, GFM
method is used instead. By definition the curvature reads as κ = 1/R. Thus the present
calculations in terms of the mesh size and the disc radius, denoted ∆/R = 0.693 < 1,
suggesting κΓ varies quasi-continuously across the interface.
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3.3.3.2 Parasitic Currents in a Liquid Static Drop

Parasitic currents develop in the adjacent interface fluid regions due to the local GFM
body force variation. To primarily understand their origin, the forces acting on a liquid
static drop, suspended in a continuous phase of zero gravity are considered. In theory,
all the velocities in this case would be zero once equilibrium is established [111]. Now
considering the momentum conservation equations, all the velocity-related terms are zero
and in cases of static drops, the equations reduce down to:

0 = −∇P + σκ∇ψ (3.20)

known as the Young-Laplace equation, relating the pressure different at the interface,
where the inner drop pressure is larger than the outer one. During numerical compu-
tations of the curvatures, small errors are produced by the pressure equation resolution
from the interface jump conditions. Taking the curl of Eqn. (3.20), then κ should satisfy
∇κ×∇ψ = 0 [111]. Provided the latter condition is unsatisfied, artificial velocity values
are generated across the interface, known as parasitic currents.

To compliment this discussion, the development of parasitic current due to surface tension
acting on a fixed liquid drop are investigated. Considering a [128 × 128] mesh, a static
drop of R/∆ = 24 is centred in a unit sized domain. A constant time step ∆t = 2× 10−5

is used, with a density ratio of ρL/ρG = 1000 and the viscosities are µL = 10−4 and
µG = 1.6× 10−5. The surface tension effects are tested for σ = [0.01, 0.05, 0.07, 1.0, 2.0]
and a sample result for σ = 1.0, is presented in Fig. 3.10.

Additionally, a three-dimensional snapshot is shown in Fig. 3.11, with the pressure field
enclosed within. The Capillary number based on the parasitic currents is plotted with
time t∗ in Fig. 3.12 and are summarised in Table 3.1. For the dimensionless time we
employ t∗ = t/tσ with tσ =

√
ρD3/σ and D being the drop diameter [111].

σ Capillary
0.01 10−5

0.05 10−6

0.07 10−7

1.0 10−8

2.0 10−12

Table 3.1: Summarised values of Capillary number for the different surface tension.
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Fig. 3.10: Two-dimensional sample snapshot of parasitic currents in a fixed liquid drop,
for σ = 1.0. Here the velocity field is shown outside and across the periphery of the drop
along with pressure field enclosed within the drop.

Fig. 3.11: Three-dimensional sample snapshot of parasitic currents in a fixed liquid drop,
for σ = 1.0, with the orange contour denoting the level set solution and the pressure field
enclosed within the drop (i.e. green colour).
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Note, in two-phase flow studies such as liquid droplets and liquid jet break-up pro-
cesses, the Capillary number is a key parameter, determining the break-up dynamics. The
two processes are directly linked, as in high velocity jets, droplet break-up occurs due to
the effects of the capillary forces acting on it. These forces account for a range of recorded
instability modes, such as the Rayleigh-Taylor that induces any drop deformation/break-
up by capillary pinching [28][118]. In the upcoming sections, such processes are investi-
gated, within the 0.01 ≤ σ ≤ 0.07 range, presented in Tab. 3.1.

Fig. 3.12: Plot of Ca number with time t∗ for various σ.

In Harvie et al. [32], a study of the parasitic currents effect in a CSF environment was
presented. Their work suggested that the effects can be limited both by the NS inertial
and viscous terms. When the densities and viscosities are equal and under low enough We
parameters so that inertial effects are negligible, the parasitic currents effect is limited by
the viscous terms [32]. They also concluded that a mesh refinement leads to an increase
in the parasitic currents, and their magnitude scales with 1/Ca.

However, they noted that the magnitude of these currents does not depend on the com-
putational time step. The latter statement, has also been validated in this work. By
definition, an increase in σ should result in a decrease of Ca. In Figure 3.12 this be-
haviour is observed, however it is interesting to note that for a small σ increase, the Ca
number decreases by at least one order of magnitude.
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Another important parameter in such test cases, is the spurious currents intensity,
denoted by the La number. Here, we study the spurious currents evolution in terms
of the Ca number as a function of the Ohnesorge number, that can be expressed as a
function of Laplace, as Oh = 1/

√
La. By definition, an increased in σ denotes a decrease

in Ca, which follows an increase in La and equivalently a decrease in Oh, in a inversely
proportional manner [111].

Figure 3.13 shows the Ca behaviour as a function of Oh. Legendre et al. [111], noted
that the interfacial uniform κΓ tangential should remain the same over time. They also
stated the exact velocity field should be zero throughout the domain and pressure should
follow the La pressure jump at the interface [111]. The present results are in agreement
with their work.

Fig. 3.13: Maximum spurious currents (Ca) as a function of Oh, for various σ.
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3.3.4 Interface Reconstruction

There is a range of VOF sub methods for interface reconstruction as discussed before,
such as the PLIC [69], SLIC [81] or ELVIRA [88] methods. In this work the interface
reconstruction is based on the previous work by Scardovelli et al. [103]. Since in our
CMLS method the LS is strictly linked to the area computation (Section 3.2), an accu-
rate interface reconstruction method is needed. Here, the interface is reconstructed in a
geometrical manner were the reconstructed points are chosen to yield a new interfacial
plane, within each cut cell.

Interface reconstruction in such manner, requires both the forward and inverse problem.
Here ∆ is the cell side and is denoted by c1 = c2 = c3 in x-, y- and z- directions, Fig.
3.14. Note, the working procedures will be presented only in two dimensional space and
the equivalent three-dimensional expressions are just summarised.

Fig. 3.14: Interface reconstruction in a computational cell demonstrating the cut area 2D
(left) and cut volume 3D (right).

Primarily the forward problem is treated where one can consider a computational cell,
Fig. 3.14. The cell can be divided into two parts by a linear interface, where each fluid
area is found accordingly. To do so, one can define an explicit expression relating the
cut cell area to a parameter, here its α, so that the linear interface (straight line) can be
defined [24] as:

nxx+ nyy = α (3.21)

with (nx, ny) being the unit normal vector and α denoting the minimum distance of the
interface line to the origin. Since n is a unit normal then α is the distance. From Fig.
3.14, a square cell of sides c1 × c2 in the (x, y) plane is cut by the straight line EH, with
a normal vector n.
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Here, one needs to find the area below EH line that is included within the square
cell, given by ABFGD area. Assuming the normals nx and ny are positive, if one of the
two vanishes then the area computation is straight forward. Note, the normals sign can
be manipulated accordingly from basic coordinate transformation [24][103]. The linear
interface denoted by EH cuts the (x,y) plane at (α/nx, α/ny), respectively [24][103]. Thus,
the desired area Aliq = φ∆x∆y to be computed, is the one enclosed in the ABCD and
under the EH line, which in two dimensional form reads:

φ∆x∆y =
α2

2nxny

[
1−H(α− nxc1)

(
α− nxc1

α

)2

−H(α− nyc2)

(
α− nyc2

α

)2
]

(3.22)

Here, the AEH area is denoted by α2/2nxny andH is the common Heaviside step function,
Eqn. (2.3). This method can be generalised in three dimensional space, Fig. 3.14, right,
but it will not be further analysed.

To summarise, the normal n to the surface is similarly obtained as nxx+ nyy + nzz = α
and the cut-volume, V = Vliq, now reads:

φ∆x∆y∆z = 1
6nxnynz

[
α3 −

∑3
j=1 H(α− njcj)(α− njcj)3+

∑3
j=1 H(α− αmax + njcj)(α− αmax + njcj)

3
] (3.23)

where αmax = nxc1 + nyc2 + nzc3.

Note Eqn. (3.23) is a continuous, one-to-one, monotonically increasing function, relating
the volume contained within the ABCDEFGH parallelepiped below the interfacial plane,
with α, enabling full plane characterisation [24][103]. To validate the method, a liquid
drop of various R/∆ = (4, 8, 16, 32, 64) was employed in a 2D fixed mesh of [128×128].
Figures 3.15 and 3.16, show the errors for area (perimeter in two-dimensions) εA% and
mass εM% with R/∆.

Considering the area error withR/∆, interesting behaviours are observed. In Fig. 3.15, for
R/∆ = 16 an ’off’ point occurs in comparison with the remainder R/∆ values. Computing
area values demands accurate approach of the interface location. Here, this ’off-point’
could be possibly liable to the interface locating method for measuring area errors. In
contrast, for the mass error, a converging behaviour is observed with R/∆, Fig. 3.16.
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Fig. 3.15: Area (perimeter) error εA% with R/∆ for a fixed liquid drop in a uniform mesh
of 1282 in 2D.

Fig. 3.16: Mass error εM% with R/∆ for a fixed liquid drop in a uniform mesh of 1282 in
2D.
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As discussed, interface reconstruction in that manner requires both the ’forward’ prob-
lem, φ = φ(α) and the ’inverse’ problem, α = α(φ). Thus, one can obtain the correct
value in terms of the cut area/volume and normal vector to the computational cell. The
’forward’ problem is rather straightforward as presented above and ~n is explicit. Note,
this φ is not a smooth function on the mesh size (unlike φS) and should be a second order
approximation to the volume O(∆2).

However, if one is solving for the ’inverse’ problem, α = α(φ), here a specified volume
fraction with a set normal is denoted by α. This is more complex due to the need of
fast convergence and easy calculations of the function derivatives. The solution to the
’inverse’ problem will only be presented briefly.

At first, one can obtain the two lines intersection between ~n and HE, Fig. 3.14. The
Liquid/Gas interface is assumed to be a line within the cell and passing through HE, that
reads as Eqn. (3.21) and can be rearranged to solve for y. Similarly, by basic geometry,
the equation of a line given a parallel vector ~n and a point (xo, yo), which is the position
of vector P, is taken as (x, y) = (xo, yo) + (nx, ny). The latter is the parametric equation
passing through P and can also be rearranged to solve for y. One can then solve for
the intersection by equating the two. Next, the Level Set distance between (xI , yI) and
(xo, yo) reads as:

(yI − yo)2 + (xI − xo)2 = ψ2 (3.24)

Which here, one solution of α is liquid and the other is gas. After some relative ma-
nipulations we obtain an expression for α = f−1(ψ). Since level set (ψ) by definition is
the distance from the cell centre towards the interface, by computing this distance the
constant α can be determined. The solutions of α will correspond to a cell filed with
liquid or gas.
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3.3.5 Validation

As in pure LS, the CMLS method developed here, employs 5th WENO and RG methods
for the LS evolution. Recalling the classic shear vortex, the CMLS solution is presented in
Fig. 3.17. The solution appears smooth with good capturing of the interface. The lack of
numerical blobs at the liquid tail, demonstrates good mass conservation properties. Note,
the method of the LS normal calculations, can significantly affect the numerical break-up
zone and thus the solution.

Fig. 3.17: Plot of the shear vortex of a liquid drop at t=T in a 1282 mesh with CMLS.
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3.3.6 CPU run time as a function of Mesh Size

In the context of multiphase fluid flows, CPU run times are highly important, by defining
the computational cost. High order of CPU hours is required for even a few seconds of
flow computations. Adding on that, the choice of explicitly or implicitly solving the NS
equations also affects the CPU run times. Here, the NS equations are explicitly solved.
In the literature [20][128], it was noted that implicit solutions provide smaller CPU run
times, apart from increasing processor numbers. Thus, CPU run times are mainly affected
by the NS solution choice, the number of processors and ∆x choice, which in turn is a
function of ∆t, whilst higher meshes denote higher CPU run times. Note, if the mesh
size is increased the time step should be decreased, to preserve the CFL criteria and thus
system stability.

Figure 3.18 shows the CPU run time as a function of number of cells (N), for two- and
three- dimensional cases, using 16 processors. Here, the CPU times increase with the
mesh size.

Fig. 3.18: CPU run time at each mesh size with 16 processors.

The previous work by Reynolds et al. [33], presented the effects on the CPU times, by
implicitly and explicitly solving the NS equations. It was shown, that implicit methods
do in fact decrease CPU run time by almost one oder, whilst for the explicit cases, CPU
results were similar to the ones presented here. Meanwhile, in Zaleski et al. [132] spray
formation studies, a range of ∆x was employed with a minimum of 32 processors. Their
computer set up and processor type were very different than the ones employed in this
work. However, the present CPU run times are comparable to the ones in Zaleski et al.
[132], that could potentially reflect on the interface modelling method capabilities, (i.e.
CMLS).
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3.4 Comparison of VOF, LS and CMLS in 2D

3.4.1 Liquid Disc in a Single Shear Vortex

After exploring the VOF, LS and CMLS methods individually, the three are compared
based on the same liquid disc deformation case. The methods were tested in three mesh
sizes of [64 × 64], [128 × 128] and [256 × 256]. For a more quantitive analysis, the mass
error of each method has been computed and summarised in Table 3.2, at t = T . Looking
at Table 3.2 and Fig. 3.19, the mass error difference between VOF and CMLS in compar-
ison with LS is significant. Both VOF and CMLS methods are considerably more mass
conservative from LS. With mesh refinement, mass conservation properties improve, even
in the case of LS. The CMLS method, in all mesh sizes appears to conserve mass well and
maintains errors in the order of ∼ 10−2.

Fig. 3.19: Mass error εM% with ∆ for VOF, LS and CMLS.

Method εM%
Mesh VOF LS CMLS
642 2.1 94.1 7.1 ×10−2

1282 3.2 ×10−2 39.5 5.4×10−2

2562 3.1×10−2 4.8 1.4×10−2

Table 3.2: Mass error εM(%) for a single liquid vortex at t = T for different mesh size.
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Additionally, a relative qualitative analysis is presented in Fig. 3.20 of the same liq-
uid disc deformation test case. Comparing the three methods, the CMLS is the most
accurate in capturing the interface, however in the refined mesh cases all three methods
present good results, Fig. 3.20. In the VOF case the tail of the vortex is captured more
accurately, in comparison with LS and CMLS. Note, in the VOF [128 × 128] solution,
Fig. 3.20, numerical blobs are observed at the liquid mass tail. This can be denoted to
the inaccuracy of the CDS approximation for the normals. In the CMLS case, although
some mass is lost in the tail, the mass is till conserved and redistributed everywhere else.

To further validate the performance of this novel CMLS method, we compare our results
with the works by Desjardins et al.[84], Herrmann et al. [54], Xiao et al. [130] and Sabel-
nikov et al. [122], both qualitative and quantitative. A relative table summarising the
mass error εM(%) of each work, for [128 × 128] is demonstrated in Tab. 3.3. The mass
errors presented here are based on the mass loss computed for a full run at t = T .

In comparison with Desjardins et al.[84], the present study demonstrates better interface
topology and good mass conservation properties. In Herrmann et al. [54], a high reso-
lution equidistant Cartesian grid was employed and a refined LS method was developed.
They demonstrated good mass conservation properties in more refined meshes. However,
considering the results for [128×128] and [256×256], the present work demonstrates bet-
ter mass conservation and interface topology properties, in both pure LS and particularly
with the CMLS method.

In Xiao et al. [130] work, similar test cases were employed with VOF, LS and their
CLSVOF version, for [128 × 128] mesh size. In the case of VOF and LS, Xiao’s result
are highly more mass conservative, however the actual capturing of the interface in this
work is more accurate in the VOF case, but not in the LS. In the case of CMLS, the mass
conservation is similar to the CLSVOF work in Xiao [130], with the latter one being in
the order of 10−4.

However, the CMLS interface topology results are better, in comparison with Xiao [130],
where their shear vortex tail demonstrates some break-up at t = T . Finally, Sabelnikov
et al. [122] presented good mass conservation properties in the order of 10−3, thus slightly
more conservative than the CMLS method. However, the interface topology properties
were not as accurate as the present CMLS.

1282 Xiao[130] Desjardin[84] Herrmann[54] Sabelnikov[122] CMLS

εM% 5× 10−4 < 4 < 30.86 5.7× 10−3 1.4× 10−2

Table 3.3: Comparison of liquid disc shear vortex mass error εM(%) with other studies,
for [128× 128].
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To summarise, the in-house CMLS developed here, overall denotes very good interface
topology properties, with quite accurate interface capturing and curvature computations,
whilst maintaining good mass conservation properties even in very coarse meshes.

Fig. 3.20: Liquid drop in a shear vortex in a 1282 (left) and 2562 (right) meshes, with
VOF, LS and CMLS at t = T .
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3.4.2 Sloshing Test

The sloshing of a liquid wave, of low amplitude under gravity effects is typically employed
to evaluate the interface capturing properties of interface modelling methods [47]. Here,
a typical sloshing case is tested in a two-dimensional tank. Gravity was applied on the
liquid wave and the surface was assigned to one halved cosine wave of amplitude 0.005,
described by:

y = 0.017 + 0.005 cos
(πx
L

)
(3.25)

The initial set up configuration is demonstrated in Fig. 3.21. The top of the tank is
treated with zero gradient pressure and the remaining borders with wall conditions. The
mesh size follows [160 × 104] with time step ∆t = 2 × 10−4 and c = 0.2. Note, the
liquids are inviscid (µL,G = 0), whilst the densities were chosen at ρL = 100kg/m3 and
ρG = 1kg/m3. The interface position was recorded for six periods of oscillation. In Fig.
3.21, the computational interface position is demonstrated with respect to the theoretical
one, for VOF, LS and CMLS.

In all cases, the interface position is located quite well to match the theoretical one, for all
periods of oscillation. Observing Fig. 3.21, it is notable, that for every second oscillation
period, the computed interface position is slightly off, in comparison with the theoretical
one. In the case of VOF, this is expected due to method limitations of accurately captur-
ing the interface. Meanwhile, for LS and CMLS this can be liable to the lack of viscosity,
creating some ’wiggling’ when interface is present, that can not be avoided.

Fig. 3.21: Sloshing case of (a) initial set up arrangement and (b) computational and
theoretical interface position as a function of time for six periods of oscillation with VOF,
LS and CMLS.
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3.4.3 Rayleigh-Taylor Instability

A common test case for both method validation purposes and ’smaller’ jet-integrated phe-
nomena, is the Rayleigh-Taylor instability, first presented in Rudman et al. [97]. Here,
a high density liquid is placed at the top half of the domain and is deposited over a low
density liquid. The domain is a rectangular shape of 1m × 4m and mesh size 64 × 256.
The set up parameters are employed from Gopala et al. [47]. The viscosity for both fluids
is µ = 3.13 × 103kg/m/s and the densities of liquid and gas are ρL = 1.225kg/m3 and
ρG = 0.169kg/m3, respectively. A constant time step ∆t = 2× 10−4 was chosen denoting
c = 0.06. A perturbation is applied at the interface given by y = 0.05cos(2πx).

For the boundary conditions at the domain wall, no-slip boundary conditions where ap-
plied. The simulations for all three methods are presented in Figures 3.22 - 3.24. With
respect to all three methods, good mass conservations properties are observed with the
RT tip captured sufficiently in all. The CMLS method does show better accuracy prop-
erties from all three, however some asymmetry is noted, possibly liable to to the level set
normals.

Fig. 3.22: Rayleigh-Taylor Instability with VOF-CICSAM at t = [0, T ], with red denoting
the φ = 0.5 -contour.

75



Fig. 3.23: Rayleigh-Taylor Instability with LS at t = [0, T ], with green denoting the ψ = 0
-contour.

Fig. 3.24: Rayleigh-Taylor Instability with CMLS, with green and red contours denoting
the ψn+1 and φn+1 at t = [0, T ].
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3.5 Evaluation of CMLS in 3D

In the previous sections, the 2D CMLS presented the optimum results in comparison
with VOF-CICSAM and pure LS methods. To further investigate the capabilities of this
in-house CMLS, the latter was extended in 3D, using the numerical methods described
earlier. To validate the 3D CMLS performance two test cases were employed; (i) a liquid
sphere diagonal translation in a uniform gas flow and (ii) the liquid disc in a single shear
vortex.

3.5.1 Liquid Sphere Diagonal Translation in Uniform Gas Flow

A liquid sphere moving in the diagonal direction of a uniform gas flow, is placed in
a [128 × 128 × 128] for R/∆ = 8, 16, 24. The 3D velocity field is uniform with
[u = v = w = 10]. The liquid sphere presented here, crosses the boundaries ten times and
returns to its original position.

Figure 3.25, shows the initial and final positions of the liquid sphere, for all R/∆. At
R/∆ = 8, 16 the sphere is slightly distorted whereas for R/∆ = 24 the sphere preserves
its shape. Note, the normal computation during the diagonal translation of the sphere is
more complex, possibly leading to this distortion present. Increasing R in a fixed domain,
means the cell number across the sphere diameter is increased, thus spherical shape is
retained.

Table 3.4 shows the area and volume errors ε(%) for the two R/∆. The 3D CMLS captures
the interface quite accurately as it crosses the BC over and over in time, despite the small
distortion in R∆ = 8, 16. To compliment the discussion, all errors for A, M and κ were
plotted with time t∗, Figures 3.26 - 3.28. In all cases, the results are satisfactory and all
properties of the sphere are well preserved, with R/∆ = 8 demonstrating the least mass
conservation. However, the results are still satisfactory considering the coarse properties
for this specific point. In the area and curvature computations, all cases present similar
results. Meanwhile, regarding the volume behaviour, as we increase the grid points in the
radius diameter, the mass is better conserved.

R/∆ εA% εM%
8 6.43 0.16
16 5.02 4.49 ×10−2

24 4.21 3.27 ×10−2

Table 3.4: Area and Volume errors for a liquid sphere in a diagonal translation with 3D
CMLS for [128× 128× 128] mesh size at t = 0 (left) and t = 10T (right).
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Fig. 3.25: Liquid sphere in the diagonal direction for R/∆ = 8, 16, 24 in a 1283 mesh, at
t = [0, 10T ].
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Fig. 3.26: Area error εA% with t∗ for R/∆ = 8, 16, 24.

Fig. 3.27: Mass error εM% with t∗ for R/∆ = 8, 16, 24.
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Fig. 3.28: Curvature error εκ% with t∗ for R/∆ = 8, 16, 24.

3.5.2 Liquid Sphere in a Single Shear Vortex

To further validate the CMLS performance in 3D, we employ the shear vortex case.
Here, the liquid sphere stretches within a single vortex velocity field, into a thin film. The
stretched sphere reaches maximum deformation by t = T/2 before it reverts to the original
sphere shape. The sphere radius is R = 0.15, placed in a uniform sized domain with initial
position at (0.35, 0.35, 0.35). The sphere is tested in two meshes of [80 × 80 × 80] and
[164× 164× 164], with a velocity field of:

u(x, y, z, t) = 2sin2(πx)sin(2πy)sin(2πz)cos(πt/T )

v(x, y, z, t) = −sin(πx)sin2(πy)sin(2πz)cos(πt/T )

w(x, y, z, t) = −sin(πx)sin(2πy)sin2(πz)cos(πt/T )

(3.26)

where the period is taken as T = 3s.

Relative snapshots at different times are presented in Fig 3.29. The CMLS method cap-
tures the deformation process well, with some distortion present at t = T , when the sphere
has reverted back to its original position. Conclusively, the CMLS method demonstrates
good properties, suggesting its implementation in the sections to follow.
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Fig. 3.29: Snapshots of the liquid sphere in a single shear vortex with CMLS, at initial
position t = 0 (left), at maximum deformation t = T/2 (middle) and reversed back
position t = T (right), in (a) [80× 80× 80] and (b) [164× 164× 164] mesh sizes.
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3.6 Summary

This section has investigated the interface capturing capabilities of VOF-CICSAM, LS
and our novel CMLS, where all three were validated and compared. The VOF-CICSAM
method presented good mass conservation properties, which is in agreement with the liter-
ature. However, interface information extraction, such as normals, interface location and
curvature computations are lacking due to the VOF function discontinuity, particularly
in the three-dimensional space. The LS method, provides better interface topology but
mass loss is a major drawback during interface evolution.

The novel CMLS method, appears to be superior to both VOF and LS methods, with
the lower mass loss and good interface topology properties. Even in coarse meshes of
R/∆ ≤ 8, the relative mass errors were limited to 0.1%, whilst with mesh refinement the
error dropped below 10−2 consistently, regardless of the test case. The CMLS indicated
comparable properties to previous studies successfully, whilst in some cases showed better
accuracy from other VOF-LS coupling methods.

Employing 5th WENO for the LS advection/reinitialisation in the CMLS numerics, en-
abled a high order accuracy whilst any oscillatory transitions of discontinuous solutions
were limited. Consequently, some of the mass loss present was also reduced. The use
of GFM method provided sharp treatment of the interface along with robust expression
of the surface tension forces. The curvature computations demonstrated acceptable con-
vergence, with some limitations from the 5th WENO, as a function of the stencil points.
Moreover, as the CMLS equations are solved explicitly, some limitations for the time step
∆t choice, still remain, with CPU run times increasing, that could be reduced by solving
the NS equations implicitly.

Finally, the CMLS method extended in the three-dimensional space, similarly exhibited
good results. Conclusively, this novel CMLS was chosen as the optimum method for more
complex two-phase fluid flow cases, such as droplet break-up and liquid-gas jet break-up
modelling, presented in next chapters.
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Chapter 4

Liquid Drop Break-Up

4.1 Introduction

In the previous chapter, the most common interface capturing methods for multiphase
fluid flow simulations were presented. An optimum choice was the in-house novel CMLS,
which is employed for the remainder of this thesis. Single drop break-up processes provide
a good foundation for liquid spray atomisation studies.

Faeth et al. [38] showed that the dense spray mixing rates can be partially controlled by
secondary break-up, similar to drop vaporisation processes controlling the dilute spray
mixing rates. Wu et al. [89], determined that drops formed in the primary break-up, are
unstable near the secondary break-up regions. With their work as motivation, here the
break-up process of a single liquid drop in a uniform gas flow is investigated.

Such phenomena are in terms of the dimensionless Weber and Reynolds numbers. Both Re
and We numbers are expressed as a function of the Ohnesorge number, Re =

√
We/Oh.

Doing so, the magnitudes of inertia, viscous and capillary effects are obtained conveniently,
as Oh is independent of the external dynamic forces acting on a drop [53][76]. Employing
these parameters, one can obtain a better understanding of the dynamics controlling the
break-up processes and the formed droplet shape and size [49]. Here, the effective Weber
parameter is in terms of the gas velocity whereas in liquid jet break-up is a function of
air.

This section, studies the single drop break-up process under a range of We for a fixed
Oh. Provided fixed fluid properties, Oh changes with the drop diameter. This approach
enables simulations primarily driven by the increasing velocity flow [49], denoting the
shape of the steady drop, the inner/outer flow field and the necessary body forces.
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4.2 Break-up modes with various Weber number

Faeth et al. [57] developed a break-up mode map of drop deformation for We−Oh, Fig.
4.1. As the Weber number increases, five different modes are denoted, bag break-up, bag-
stamen break-up, multimode break-up, sheet or shear thinning break-up and catastrophic
break-up. Liquid jet break-up is mostly governed by various size droplets that undergo
break-up and deformation.

Fig. 4.1: Map denoting the break-up modes with drop deformation by Faeth et al. [57].
The red-marked areas denote the regions in present work.

Considering the red-marked areas in Fig. 4.1, our work develops at approximately
Oh ≈ 10−3 with We ranging between 101 − 102. Note, these values are linked to the
computer power available for this work, whilst due to the viscosity presence extra limita-
tions were imposed, (see Section 2.4.2.3). Consequently, the current results should present
modes such as oscillatory deformation, bag/bag-stamen, multimode and shear break-up.
Here, it should be noted that according to the break-up mode map, at low Oh values,
(i.e. Oh < 10−1), an ’independent’ relationship exists between the break-up mode and
the Ohnesorge number, denoting We as the major effective parameter.
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In a single liquid drop break-up, the interface topology is less complex, whilst instabil-
ity mechanisms typically integrated in liquid jet break-up, can also be found. Increasing
We denotes a decrease in the stabilising surface tension forces, resulting to drops being
more prone to break-up. In Theofanous et al. [118], a focused study on single liquid drop
break-up and deformation was developed under the effects of different We numbers. In
their experimental set up, the liquid drop breaks/deforms due to gas entering from the
right inlet. Snapshots of each mode recorded are summarised in Fig. 4.2. A similar figure
of various break-up modes was denoted in Pilch et al. [87], Fig. 4.3.

Both studies [87][118] discussed below were based on experimental data. However, in
cases, the modes observed for specific We ranges, are not in full agreement with each
other. In Theofanous et al. [118], the flow field was generated in a pulsed supersonic
wind tunnel, consisting of a converging-diverging nozzle, for the flow channel connecting
two tanks. In Pilch et al. [87], the experiments took place in a liquid-metal cooled fast
breeder reactor and the break-up process was based on liquid drops being exposed to
high-velocity flow of less density that the drops.

Fig. 4.2: Figure from Theofanous [118] illustrating various single drop break-up modes as
a function of We for Oh < 0.1.
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Fig. 4.3: Figure from Pilch et al. [87] illustrating various single drop break-up modes as
a function of We for Oh < 0.1.

Considering Figures 4.2 and 4.3, at low We the destabilising aerodynamic force are
balanced by the stabilising surface tension force. However, just under We < 11, results
to more oscillatory drop deformation. For We increment over the critical number ∼ 11,
bag break-up is observed. Note, in Theofanous et al. [118] bag break-up is denoted for
We = 7, whilst Pilch et al. [87] suggests bag break-up for 12 ≤ We ≤ 50. In bag break-
up, the drop is primarily deformed into a liquid disc and is then followed by a downstream
blow at the disc centre. This finally results into a hollow bag that is attached to a toroidal
ring, Fig. 4.2. The gas flow present creates further disturbances that lead to a bag burst
into a large number of small scale droplets. Meanwhile, the toroidal ring undergoes a
Plateau-Rayleigh instability that results in further break-up into large drops.
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Moving a bit higher on the scale of 16 < We < 28, bag-stamen break-up is usually
observed, which is not explicitly demonstrated in Fig. 4.2. On the contrary, Pilch et al.
[87] denotes bag-stamen break-up within 50 ≤ We ≤ 100, Fig. 4.3. This break-up type is
similar to bag break-up with only difference the formation of a stamen at the bag centre.
Increasing We up to 30 < We < 80 , leads to multimode break-up that in return results
in numerous bags formation. In this mode, the dual bag effect can be described as a
multimode sub-regime. Previous studies, by Zhao et al. [48] and Theofanous et al. [118],
suggest that the phenomena described above for low We (i.e. < 80), are primarily driven
by the Rayleigh-Taylor instability mechanism, (see Section 3.4.3). In such cases, mainly
RT controls the drop break-up morphology.

Going up the scale to We > 80, shear-stripping is the first mode observed by Theofanous
et al. [118]. Here, the shear stress effects due to gas flow, lead to a liquid boundary layer
formation, adjacent to the drop inner interface. With time, the adjacent boundary layer
grwoth creates instabilities resulting into liquid mass being stripped off from the drop
perimeter, Fig. 4.3. In the literature, a range of conclusions have being established with
respect to drop deformation for 80 < We < 350, that widely vary, particularly between
computational and experimental work. The shear-stripping is generally considered to be
a function of Re, however numerous studies are not in full agreement, [92][115].

Finally, at very large values of We > 350, catastrophic break-up is considered, concluded
both in Theofanous et al. [118] and Pilch et al. [87], but also from Reinecke et al. [96]. In
this mode, the ’windward’ surface is primarily occupied by small wavelength waves whilst
small droplets at the drop perimeter are slowly ’detached’. As time progresses, larger
waves are formed that lead to drop flattening. These large wavelength waves fully pene-
trate the flat drop, resulting into large fragments formation, that break-up into droplets.
During catastrophic break-up, large gas flow acceleration is acting on the drops. Rei-
necke et al. [96] concluded that catastrophic breakup is directly linked to the surface
front waves growing in an unstable manner due to the rapid drop acceleration by the air
stream. It was also noted, that these surface waves grow until they reach an amplitude
size comparable to the drop dimensions, at this point, the drop is completely torn.

Theofanous et al. [117],[119], captured well a single liquid droplet under the effects of
high airstream flow. The images demonstrated a partially smooth region at the front
whilst small wavelengths waves were developed at the periphery, under the effects of the
velocity gradient (typical phenomena of Kelvin-Helmholtz instability). Their experimen-
tal work showed that the liquid sheets develop under very large radial velocity. Contrary
the shear-stripping mechanism does not justify such behaviour. They concluded that
Kelvin-Helmholtz instability is the principal controlling mechanism of the break-up rate.
Finally, their work suggests that for We > 100, shear forces effects are significant on the
break-up along with the Rayleigh-Taylor instability, whilst for We > 1000 , shear forces
become dominant.
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The Rayleigh-Taylor instabilities are typical in drop break-up processes. In such cases,
the liquid drop front pressure is larger than the one at the back of the drop, forming a
large pressure difference. Consequently, the low density gas flow present, considerably
accelerates the high density liquid drop, forming RT instabilities. Note, in this section,
the simulations are obtained at relatively low density ratios, which in cases denote slightly
different conclusions with the theory.

Joseph et al. [27] studied experimentally the liquid drop break-up process at sudden
exposure into a high-speed airstream. They noted that at high We, the break-up process is
controlled by RT instabilities at very early times. Next it was stated that due to the shear
gas flow from the high pressure stagnation point, the front drop corrugations are headed
towards the drop equator. They finally suggested that the shear flow presence, could be
liable to the Kelvin-Helmholz instability, since the stagnation point tangential velocity is
zero there and minimal near it [27]. This in turn, results to negligible interactions with
the RT instability.
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4.3 Single Drop break-up in a Gas Flow

To begin our investigations we tested a liquid drop under the effects ofWe = 10, 15, 22, 96,
with density ratio ρL/ρG = 10. The dynamic viscosities were taken as µG = 1.56×10−3Pa·
s and µL = 7.81 × 10−3Pa · s. The liquid drop diameter was D = 0.2. The equivalent
free stream gas velocities were UG = 7.85m/s, 15.7m/s, 41.8m/s. The domain size was
chosen as 5D × 2.5D. This mesh spacing is strategically applied, based on the WeG∆x
criteria, Eqn. 2.38, by Pitsch et al. [17]. A uniform domain of 1024× 1024 is employed,
with periodic boundary conditions. Doing so, the drops are well resolved whilst WeG∆x < 1
is satisfied. The time step chosen is ∆t = 2.5× 10−5 with a courant c = 0.2. The relative
set up parameters are detailed presented in Tab. 4.1. Note the surface tension σ and the
Oh number values are obtained as a function of We.

UG We OhL σ WeG∆x

7.8
10 5× 10−3 1.23 0.09
15 6.1× 10−3 0.82 0.15

15.7 22 7.4× 10−3 2.24 0.22
41.8 96 15.5× 10−3 3.64 0.48

Table 4.1: Drop break-up set up parameters for all We cases.

In the literature, a number of studies have denoted a time-dependence relationship
for the analysis of drop deformation and break-up. In the previous works, of Chou et al.
[19][129] and Faeth et al. [26], extensive investigations were carried out with respect to
bag, multimode and shear break-up modes, respectively. In their studies, they were able
to obtain time-breakup relationships for each mode. Recalling Pilch et al. [87] work, a
characteristic break-up time derivation can be introduced by considering the forces acting
on the droplet, thus pressure and inertial forces. One can relate these two as:

ρG
2
U2
GA ∼ ρLV

UG
t

(4.1)

where A is the drop cross-area and V is the drop volume. Here, A and V are proportional
to D2 and D3 respectively [87]. Now, one can approximate UG as:

UG ≈ 2D
ρL
ρG
· t (4.2)

where C2 is a constant. Thus UG has an inversely proportional relationship with time,
yielding a characteristic (convective) time scale as:

tC ≈
2D

UG

√
ρL
ρG

(4.3)

The above equation has been previously used in [19][26][129].
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Pilch et al. [87] suggested that Eqn. (4.3) is a drop break-up dimensionless charac-
teristic time due to RT or KH instabilities. Here, the general dimensionless time for this
section is defined as T = t/tC . In the two-dimensional framework, at first we consider
the lowest Weber cases of We = 10 and We = 15, where the gas velocity is the same in
both. Looking at Fig. 4.4, despite the small We variation, the break-up process is slightly
different. From Theofanous et al. [118] and Figures 4.1 - 4.2, for We = 10, an oscillatory
deformation is expected due to the stabilising surface tension force.

In our case, the We chosen is almost at the border between oscillatory and bag break-
up, with our results clearly denoting oscillatory deformation, Fig. 4.4. The drop after
reaching maximum oscillatory deformation, starts disintegrating into large ligaments and
droplets. In the literature [118], for 11 < We < 16 bag break-up has been recorded and
for 16 < We < 28 bag-stamen break-up. However, the latter one has not been fully
presented in Fig. 4.2[118]. Here, at We = 15 the deformation starts similar to a bag-type
mode, but with time it deforms with a more bag-stamen behaviour, with the main body
presenting a ’light’ bag-type mode with helix-type ligaments developing at the top and
bottom of the drop.

Note, the selected Weber numbers here are close to the critical Wecr, with respect to the
break-up mode recorded in the literature. Consequently, the expected modes according
to the maps presented above could vary from the computational ones. Figure 4.5 shows
2D sample snapshots of the ligaments formed for We = 15, showing that the drops are
well resolved and any flow scales involved are well captured.

Fig. 4.4: Snapshots of drop deformation process, at the same computational times, for
(a) We = 10 and (b) We = 15 in two dimensions.
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Fig. 4.5: Focused snapshots of drop deformation process for We = 15 at T = 3.173,
demonstrating the captured resolution.

In the case of We = 22, Fig 4.6, similar behaviour is observed. The gas flow creates
a bag deformation at the front of the drop, which slowly deforms at the top and bottom
ends into very thin helix-type ligaments, finally resulting into multimode break-up. In
theory for 16 < We < 28 bag-stamen mode has been observed whilst for 30 < We < 80
multimode [118]. However, previous data from Theofanous et al. [118] captured multi-
mode break-up for We = 27.

Fig. 4.6: Snapshots of drop deformation process for We = 22.
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For We = 96, the drop stretches in both directions with small ligaments forming at the
front of the deformed drop Fig. 4.7, denoting shear-stripping mode. As discussed, Pilch
[87] presented shear stripping at 100 ≤ We ≤ 350, whilst Theofanous [118] suggested
shear-stripping occurs at We > 80. In this work, shear-stripping was captured at early
computational times, for We falling higher than the Theofanous [118] range and lower
than Pilch [87]. Figure 4.8 shows comparison snapshots with some of Theofanous [118]
previous results.

Fig. 4.7: Snapshots of drop deformation process for We = 96.

Fig. 4.8: Snapshots of each computational drop break-up in comparison with Theofanous
et al. [118] results, for (a) [We = 15, T = 1.596] bag-stamen, (b) [We = 22, T = 3.173]
multimode and (c) [We = 96 T = 3.34] shear-stripping.
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In the three-dimensional space, most cases show different break-up modes than the
ones in two-dimensional framework. Figure 4.9 shows We = 10 and 15. In We = 10, bag
break-up mode was recorded and for We = 15 bag-stamen. In Fig. 4.2, bag break-up was
captured at We = 7, whilst in Fig. 4.3 at We ≥ 12. Meanwhile, bag-stamen occurs at
16 < We < 28 and 50 ≤ We ≤ 100, from Figures 4.2 and 4.3, respectively. The present
work, appears to be comparable with Theofanous et al. [118].

For We = 22, Fig. 4.10, multimode break-up was recorded, also captured in the two-
dimensional space earlier. Finally at We = 96, the break-up mode is very similar to
catastrophic behaviour, Fig. 4.10, rather than shear stripping as in the two-dimensional
space. This is of particular interest, since literature [87][118] suggests much higher We
numbers for such break-up to occur.

Here, we should mention that during the drop break-up investigations, a larger scale of
We was tested, particularly within the range of 22 to 96. However, our findings showed
large instabilities, with solutions failing to converge. In fact, as previously shown in Fig.
4.10, some noise in the solution is noted for We = 96, despite the density ratio being
small. Due to the explicitly solved NS equations, requiring very small time steps and
the need to resolve all scales (i.e. Re ≤ 2 and We < 1∆x), the CMLS was incapable of
producing sufficient solutions in cases.

Although density ratios were kept low, due to the presence of viscosity, the ’physics’ and
in turn the ’stability’ limitations in the present CMLS were not overcome (see Section
2.4.2.3). Therefore, the previously discussed numerical-difficulties in computational ap-
proaches of such processes was in fact encountered. Consequently, the results presented
in the following sections regard the original parameter selection (i.e. We = 10, 15, 22, 96).
However, with respect to the literature, the presented We allowed us to investigate the
present CMLS capabilities in comparison with other current methods, for two-phase flow
simulations.

In droplet break-up processes, there is a range of characteristic parameters, usually distin-
guished between deformation followed by break-up. Generally speaking and regardless the
Weber number, the drop will initially deform to a maximum cross-stream diameter due
to the unbalanced pressure field acting from the gas flow field. From there, the deformed
liquid cylinder accelerates and Rayleigh-Taylor instabilities should form, that lead to the
different break-up modes. In most cases, the liquid cylinder will finally break-up into
ligaments and droplets. In the following sections, we investigate some of the important
parameters affecting the break-up process.
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Fig. 4.9: Snapshots of drop deformation process, at the same computational times, for
(a) We = 10 and (b) We = 15 in three dimensions.

Fig. 4.10: Snapshots of drop deformation process, at the same computational times, for
(a) We = 22 and (b) We = 96 in three dimensions.
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4.3.1 Velocity and Pressure field effects

To further understand the drop break-up mechanism, the gas velocity and pressure field
are analysed. The highest Weber, We = 96 was chosen at T = 0.036. Fig. 4.11 shows
the predicted velocity and normalised pressure field, where the drop is still cylindrical
and little velocity is present. Note, the pressure is normalised as P ∗ = P/Pd, where
Pd = 0.5ρGU

2
G. As expected, at the back and front stagnation points, the gas velocity is

decreased almost to zero, introducing high pressure in the gas phase. The lowest pressure
points are located at the top and bottom drop periphery. The pressure field in Fig. 4.11
is consistent with the flow around a cylinder.

Fig. 4.11: Velocity and pressure field for We = 96 at T = 0.036.

As the drop is still cylindrical, the interfacial liquid pressure is denoted by the sum of
the local gas pressure and the pressure jump due to surface tension, which for T = 0.036 is
quasi-constant. Consequently, the gas pressure directly denotes the liquid phase pressure
distribution. In Fig. 4.12, similarly the velocity and pressure fields are demonstrated
for We = 96 at T = 6.3, where the drop has really deformed into a shear-stripping
mechanism. Opposingly to T = 0.036, here the lowest pressure in the gas phase is located
at the front of the drop, with the surrounding gas phase being occupied by the highest
pressure.
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Fig. 4.12: Velocity and pressure field for We = 96 at T = 6.3.

At T = 0.036 the liquid velocity vector field follows the same direction with the
pressure gradient at the front of the drop. Opposingly, at T = 6.3, Fig. 4.12, in some
small areas at the drop front, the gas flow velocity field is almost in opposite direction
than the flow surrounding the drop, thus the pressure gradient. Now, in a shear-stripping
mechanism, it has been noted that due to the shear gas flow effects, an adjacent liquid
boundary layer should form at the interface, which here is not the case.
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4.3.2 Parent drop diameter and break-up initiation time

The break-up initiation time is directly related to the parent drop diameter. In any drop
break-up case, the drop starts with a spherical shape of original diameter D0. With time,
the liquid drop starts evolving into a liquid disc that keeps stretching. At some point,
a maximum cross-stream dimension is reached, Dmax, before break-up occurs. The TIN
denotes the elapsed time of the drop deformation prior to any break-up. It is obtained
manually, from the relative drop snapshots at maximum deformation before break-up
process occurs. Figure 4.13 shows the initiation time definition as a function of Dmax/D0,
for T just before and after TIN ∼ Dmax/D0. Amongst others, Faeth et al. [57] and Zhao
et al. [48] investigated this correlation as a function of We.

Fig. 4.13: Initiation time definition as a function of the maximum cross-stream Dmax/D0,
Zhao et al. [48] sample image (top) and present work (bottom), for We = 15.

Figure 4.14 shows the normalised cross stream dimension, Dmax/D0, as a function of
We, in comparison with the data extracted from Faeth et al. [57] and Xiao et al. [130].
Note, Xiao et al. [130] similarly compared their results with the previous works by Zhao
et al. [48] and Dai et al. [26], where analogours trends with Fig. 4.14 were found. Theory
suggests that increasing We should follow a small increase in Dmax/D0, [26][48][57], also
observed in Figure 4.14. During drop deformation, a decrease in the aerodynamic force
occurs acting on the drop, leading to either a finite break-up or deformation. Figure 4.15,
shows the TIN obtained at Dmax/D0 as a function of We is plotted. To compliment our
study, we also employ the equivalent values from Xiao et al. [130], along with the fit
presented in Pilch et al. [87] and Hsiang et al. [57].
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Fig. 4.14: Maximum cross stream dimension Dmax obtained from TIN as a function of
We, in comparison with Faeth et al. [58] and Xiao et al. [130].

The results show high similarities to Xiao et al. [130] work and they fall close to the
fit by Pilch et al. [87], with We = 22, falling slightly ’off’ the fit trend. The results
denote that as We increases, the computational deformation period reduces, as proposed
by Pilch et al. [87] fit from experimental data. Note, as the drop is accelerated to the
freestream velocity, the aerodynamic force exerted on the drop is decreasing. Therefore,
the drop either breaks up in a finite time or only undergoes deformation. However, Pilch
et al. [87] work for We ≈ Wecr suggests a possible infinite TIN . More data on that topic
has not been available in the literature yet.

Fig. 4.15: Initiation time TIN obtained at Dmax/D0 as a function of We, including Xiao
et al. [130] with Hsiang et al. [57] and Pilch et al. [87] experimental data.

98



Following this, we examine the complete break-up time, TB, for each We drop. To do
so, we recorded the computational times of complete break-up from each case snapshots
and translate it with respect to T . Pilch et al. [87] proposed a TB −We correlation, for
Oh < 0.1, as:

TB = 6(We− 12)−0.25 12 < We < 18,

TB = 2.45(We− 12)0.25 18 < We < 45,

TB = 14.1(We− 12)−0.25 45 < We < 351,

TB = 0.766(We− 12)0.25 351 < We < 2670

TB = 5.5 2670 < We <∼ 105

(4.4)

To compliment our findings, we employed the data from Xiao et al. [130] along with the
experimental data from Hassler et al. [52]. Note, due to lack of data, we only present TB
in the range of 10 < We < 25. The results are demonstrated in Fig. 4.16, along with the
fitted lines for 12 < We < 18 and 18 < We < 45 by Pilch et al. [87].

Fig. 4.16: Liquid drop complete break-up time TB with We, in comparison with Xiao et
al. [130] and Hassler et al. [52] experimental data along with correlations from Eqn. 4.4.

It is apparent, that the data falls closer to Xiao et al. [130], with Hassler et al. [52]
data being slightly higher. Reasons for that, could be different density ratio choice or
lower gas velocities, delaying a full break-up. With respect to Pilch et al. [87] correlation,
the present We = 15 data falls slightly off the relative TB −We trend, however We = 22
is in good agreement. A parent drop denotes the total liquid (drop mass) to break further
with time, whose velocity is recorded whilst the drop is still whole. Once break-up process
begins, the parent drop velocity is defined at the edge of the leading drop (i.e. furthest
point of the drop front) [26].
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During break-up, the parent drop acceleration is very large, due to the on growing
cross-stream dimension D/D0 and the increasing drag coefficient CD of the deformed
drop. Typically, this high acceleration decreases post break-up, due to the instant large
pressure difference. Deformed/break-up drops are usually much larger in comparison
with the parent drop velocity [26][57]. With respect to the previous discussions, it can
be stated that the drop behaviour during deformation/break-up is directly related to the
initial properties of the ’injected’ parent drop. The drag coefficient of a deformed drop
during acceleration is simply computed with:

CD =
FD

1
2
ρGU2

G
π
4
D2

(4.5)

Where FD is the drag force acting on the drop, (Newton’s motion second law), usually
applying on a sphere or cylinder type cases. For a nearly spherical drop, D/Do → 1. In
the literature, extended investigations have been recorded with respect to CD and relative
conclusions vary in cases [26][52][53][57][130].

Here, the velocity decay rate is based on the assumption that drag forces acting on the
drop are comparable to those of a solid sphere. Thus, one can use the Stokes law, where
CD is a function of Reynolds and is typically considered in laminar flows, as:

CD =
24

Re
(4.6)

Considering the Weber range employed here, Eqn. (4.6) is sufficient for our analysis and
Fig. 4.17 shows CD as a function of Re. In Fig. 4.17, the points denote the actual CD
values along with the ’fit’ line from Stokes law. The results are in agreement with the
theory as CD = f(Re) should exponentially decay, suggesting that the droplets follow
Stoke’s Law and the liquid/gas interaction is correct.

Fig. 4.17: Drop drag coefficient CD as a function of Re computed with Eqn. (4.6).
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4.3.3 Ohnesorge number effects on a single drop breakup

With respect to the break-up mode map by Faeth et al. [57], (Section 4.2), the liquid
viscosity can significantly affect the drop deformation process inhibiting any break-up or
deformation. Consequently, the liquid viscosity affects the critical Weber number Wecr,
by distinguishing between deformation and break-up modes. Pilch et al. [87] and Gelfand
et al. [45] provided empirical correlations for the critical Weber (Wecr) with Oh, from
experimental data. Note, the correlations between the two works are quite different.

Later, Cohen et al. [21] presented a semi-empirical correlation, based on the secondary
break-up energy transfer. Their focus was based on extracting information for the ex-
ternal flow conditions effects on Wecr, where the latter essentially denotes the minimum
energy/force required for liquid drop primary break-up [21]. Their work suggested that
as the drop viscosity increases, so does the Weber, due to the additional energy amount
required to overcome the internal viscous depletion. The latter is true during during drop
deformation and liquid phase mixing.

In such processes, the required break-up energy for a viscous drop of Do, must be equal to
the break-up energy at zero viscosity limits [21]. Based on this, they obtained a Wecr-Oh
empirical correlation. The present thesis employs the empirical correlation, as originally
proposed in Faeth et al. [57] and later in Brodkey et al. [14], denoted with:

Wecr = 12(1 + 1.077Oh) (4.7)

Figure 4.18 shows the computational Weber with OhL, for a fitted line denoting Wecr as
a function of Oh.

Fig. 4.18: Plot of computational Weber with OhL number, fitted with Wecr line from
Eqn. (4.7).
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Brodkey et al. [14] suggested that (4.7) is restricted to (Oh < 5,We < 60), whilst
Faeth et al. [57] noted its application for (Oh < 5,We < 200). These restrictions for
Oh < 4 rise from the fact that not enough data is available in those ranges. Xiao et
al. [130] employed a similar correlation, based on their simulation results, as Wecr =
12.3(1 + 1.1Oh).

In Pilch et al. [87], a further empirical correlation was proposed for the break-up initiation
time TIN with Oh, based on experimental data, reading:

TIN = 1.9(We− 12)−0.25(1 + 2.2Oh1.6) (4.8)

Meanwhile, Faeth et al. [58] proposed a different correlation for TIN , also from their
experimental measurements, reading:

TIN =
1.6

1−Oh/7
, [ We < 103, Oh < 3.5 ] (4.9)

Finally, Gelfand et al. [45], specifically recorded the bag break-up charactertistic time,
for Wecr and suggested that Eqn. (4.8) holds for Wecr. In this work, the We numbers
chosen are extremely close to the Wecr, apart from We = 96, so we employ Gelfand et
al. [45] correlation as:

TIN =
1.6

1−Oh/7
, [ We ≈ Wecr ] (4.10)

Figure 4.19 shows TIN in comparison with results from Pilch et al. [87] and Xiao et al.
[130], for the fit line of Gelfand et al. [45]. Note, here TIN is normalised with T . The
present results are in good agreement with [45][87][130], where only TIN for Oh ≈ 0.016
falls ’off’ the fit line. This is due to the We = 96 choice, not considered within the Wecr
values.

Fig. 4.19: Break-up initiation time TIN with Oh, in comparison with previous works, [87],
[130], [45].
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4.3.4 Surface density evolution with various Weber numbers

To better understand liquid drop or jet break-up processes, the generation and destruction
of Surface Density (area) is commonly employed. A family of methods exist to characterise
spray regions evenly, the Σ−Y model by Vallet et al. [4], currently known as the Eulerian-
Lagrangian Spray Atomization (ELSA) model [80]. The Σ− Y model computes both the
liquid phase dispersion and the characteristic size of any fragments produced.

In the ELSA approach, a more general framework is used, solving the mean liquid surface
density evolution, instead of individual ’atomization’ phenomena [80][120]. The Σ − Y
approach is essentially a two-phase Eulerian model for turbulent flows, establishing a
transport equation for the liquid-gas interface average area (the surface density). A second
transport equation is used for the liquid mass fraction Y , to track its transport and model
the liquid mix turbulence. Here, Σ is defined as the ’mean interfacial area per unit of
volume’ [4]. An increase in Weber is relative to a decrease in surface tension, resulting in
drops being more prone to break-up and Σ increasing.

A transport equation is employed for the surface tension density Σ̄ generation rate. The
surface area transport equation, by Vallet et al. [4] reads:

∂Σ̄

∂t
+
∂ujΣ̄

∂xj
=

∂

∂xj

(
DΣ

∂Σ̄

∂xj

)
+ (A+ α)Σ̄− VsΣ̄2 (4.11)

where D is a diffusion coefficient due to turbulent eddy viscosity. The A and α are inverse
time scales denoting the surface area production rate and Vs is the characteristic velocity
scale denoting the surface area destruction rate through collision and coalescence. In
particular, A accounts for the surface density due to interface stretching by the mean
velocity gradients, [4][120]. The α terms denotes the inverse time scale of processes
where interface generation mechanism is due to turbulence or equivalently, due to droplet
collision/break-up. Finally, Vs occurs from a Vs solution provided an equilibrium Σeq is
set by the equilibrium radius of a droplet, where this surface density equilibrium can be
expressed [120], as:

Σ̄eq =
τprod
τdest

(4.12)

where τprod and τdest are the characteristic time rates for surface density production and
destruction, respectively.

In the literature, numerous formulations have been proposed. However, in all approaches,
the general aim is to obtain an equilibrium droplet diameter along with an atomisation
process characteristic time scale [4][120]. Based on this, here we employ the transport
equation as proposed in Trask et al. [120], reading:

∂Σ̄

∂t
+
∂ujΣ̄

∂xj
=

∂

∂xj
(DΣ) +

Σ

τ

(
1− Σ

Σeq

)
(4.13)

where the last term on the RHS denotes the Σ evolution for a characteristic time τ .
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Note, expressions (4.11) and (4.13) are the same, with a slight variation in the terms,
according to the case in which the model is employed. Here, Σeq implies the surface
density value at the end of a generation/destruction process, as the system reaches equi-
librium. With respect to τ term, not enough data is provided in the literature suggesting
the nature of τ as a growth or relaxation characteristic time scale. In cases, such as Trask
et al. [120], τ is employed as a characteristic growth rate time. In this section, we treat
τ as a relaxation/destruction time scale.

Figure 4.20 presents the normalised computational surface density evolution as a function
of T . In all cases, we can see an initial transient growth, followed by a short peak and
then a relatively constant Σ behaviour as the system reaches equilibrium. The transient
region is the elapsed time during the drop deformation, prior to any actual break-up,
denoted by TIN on Fig. 4.20. For (We = 10, 15 , 96) the TIN appears relatively early,
whilst for We = 22 later, almost half way through the surface density evolution. It should
be noted, that for all We cases with the exception of We = 22, the system reaches equi-
librium around the same time.

Fig. 4.20: Surface density evolution with T , for different We along with the TIN positions
denoted by dark red marks.

Figure 4.21 shows the surface area at the time of complete drop break-up, (i.e. Σeq).
The Σeq is taken since the break-up process reaches a maximum before it goes to ’infinity’,
suggesting no more break-up occurs and the system reaches an ’equilibrium’. The single
points in Fig. 4.21 occur from the Σeq at the equivalent We range from Figures 4.4, 4.6
and 4.7. For We = 10, 15, 96 the complete break-up surface area slightly increases as
We increases, whilst We = 22 appears lower from all.
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In principle, as We increases, the surface tension stabilising effects reduce, leading to
less stable drop break-up processes. Considering now the results shown in both Figures
4.20 and 4.21, it appears that for larger We the system takes longer to reach equilibrium,
whilst Σ slightly increases. Here, higher We denotes more break-up, Fig. 4.20. As the sys-
tem reaches equilibrium (i.e. Σ→ 0), surface tension effects prevent any further break-up.

Fig. 4.21: Surface density at complete break-up Σeq as a function of We with a fitted line.

Assuming Σ is homogeneous in space, then any spatial variation in Eqn. (4.13) is
negligible and for ∂Σ/∂x = 0, one gets:

dΣ

dt
=

Σ

τ

(
1− Σ

Σeq

)
(4.14)

following that as t→∞, then dΣ/dt→ 0, denoting Σ→ 0 or Σ→ Σeq. Now, Σeq and τ
are assumed constant and independent of Σ. Setting a = 1/τ and b = α/Σeq, yields:

dΣ

dt
= aΣ− bΣ2 (4.15)

which after integration and simple manipulations, denotes:

t = −
log
(∣∣ Σ
bΣ−a

∣∣)
a

+ C (4.16)

where C is a constant obtained from Eqn. (4.16), as t = 0 → Σ = 1, since everything
is normalised to initial conditions. Thus, one obtains a surface density expression as a
function of time, reading:

Σ =
Σeqexp(t/τ)

(Σeq − 1) + exp(t/τ)
(4.17)
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Figure 4.22, shows the fit from (4.17) based on the previous results from Fig. 4.20.
The constants values of Σeq and τ , are obtained from Fig. 4.21.

Fig. 4.22: Comparison of computational Σ evolution in time T with the fitted Σ from
(4.17).

The behaviour of Σ(t) shows a good fit until Σmax is reached, suggesting that the
characteristic time in Eqn. (4.13), strictly denotes the surface density growth. However,
as the flow is non-homogeneous and as t → ∞, then τ ∼ dU/dy. Meanwhile, the local
shear gradient decrease with time, explaining the misfit behaviour after Σmax (i.e. τ
changes for T > 3). Conclusively, it could be proposed that (4.17) holds for t < TIN but
not for t > TB, where the flow is non-homogeneous.
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4.4 Summary

This chapter studied the break-up process in a single drop at various Weber numbers.
The two-dimensional break-up modes recorded were oscillatory deformation (We = 10),
bag-stamen (We = 15), multimode (We = 22) and shear-stripping (We = 96). However,
in three dimensions, for We = 10 and We = 15, bag- and bag-stamen modes were
captured instead. For We = 22 multimode was noted again, whilst We = 96 showed
a more catastrophic break-up behaviour, usually noted in much higher Weber numbers.
Experimental data suggests that for 16 < We < 28 bag-stamen break-up occurs whilst
for 30 < We < 80 multimode. The present results, appeared to be in good agreement
with the literature, particularly in comparison with Theofanous et. al [118]. However,
previous studies on break-up modes for various We−Oh, both by Theofanous et. al [118]
and Pilch et al. [87], were not in agreement with each other. This was liable primarily
to the experimental set up employed in each study. The present results showed that for
Oh < 10−1, an almost ’independent’ relationship exists with We, not typically discussed
in the literature. Therefore, the originally proposed break-up mode map in Faeth et al.
[57] should be revised in cases.

Here, a key time-scale parameter was the initiation time TIN , denoting the maximum
drop deformation prior to break-up along with the complete break-up time, TB. In TIN ,
the main effective parameter is the drop maximum cross-stream dimension reached before
break-up. Results showed that TIN increases with Oh, which is expected by definition.
Opposingly, TB was found to increase with We, which was also noted in previous studies.
Such behaviour was of particular interest, since theory suggests at higher We, surface
tension effects are negligible. Therefore, one should expect that TB should in fact decrease
as We becomes larger. The maximum cross-stream dimension Dmax/Do slightly increases
with We. The drop drag coefficient CD was obtained as function of Reynolds, with CD
exponentially decaying as Re increases, following Stoke’s law. The surface density Σ
evolution with time was examined for all We cases. Here, Σ showed an initial transient
growth, followed by a short peak before reaching equilibrium. In the case of We = 22
however a more unstable behaviour was observed with Σ being much lower than all.

The equivalent TIN times were noted and for We = 10, 15, 96, TIN appeared at much
earlier computational times than for We = 22. Meanwhile, the equilibrium Σeq showed a
small increase with We, where We = 22 was much less from all. However, Σ was larger at
higher We with all systems reaching the same Σeq at different times, with the exception
of We = 22 being lower. Such behaviour could be liable to the employed set up of fixed
density ratios and increasing velocities with We, whilst the surface tension was computed
directly from We. Due to the lack of quantitative literature data and strictly based in this
work, a quasi-independent relationship is proposed between Σ and We. To summarise,
the results were overall in good agreement with previous works, although the present
We choices were close to critical Weber numbers, that are still under investigation. The
drop break-up processes were well resolved using the novel CMLS method and important
results were obtained, directly linked to liquid jet break-up processes following up.
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Chapter 5

Planar Liquid Jet break-up

5.1 Introduction

Liquid jet break-up processes found in industrial applications, are highly complex to model
due to the range of flow scales involved, making the computationally expensive. Detailed
visualisations are required to study any instability mechanisms present, as fundamental
questions regarding the physical scales integrated are still obscure [132].

This section, thoroughly investigates the destabilisation of a liquid jet in a quasi-planar
set up, by a co-flowing gas injection. The quasi-planar choice is contradictory to industrial
applications that use coaxial round jets. However, such set up provides better foundations
for detailed investigations with respect to accurate measurements and visualisation of
droplet formation processes. Quasi-planar set ups also provide clear capturing of any
instabilities involved, such as the Rayleigh-Taylor and Kelvin-Helmholtz.

In this chapter, the configurations are based on the previous works by Tomar et al. [43]
and Zaleski et al. [132]. The main effective parameters here are the Weber and Reynolds
numbers, based on the liquid-to-gas Momentum/Dynamic pressure ratio M , with M < 1
denoting a Diesel-type injector and M > 1 typical Air-Blast atomisers. The results
capture a range of flow scales such as large ligaments and droplets along with typical
instability mechanisms. Both the Rayleigh-Taylor and Kelvin-Helmholtz instabilities were
visualised along with hole formations within the waves, prior to any ligament generation,
also noted in Zaleski et al. [132] previous studies.
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5.2 Liquid Jet break-up Morphologies

In a typical liquid jet break-up onset growth process, the driving mechanisms are strictly
linked to the liquid/gas interaction, creating small disturbances across the liquid interface.
Parameters such as aerodynamic and viscous forces, liquid inertia and surface tension af-
fect the break-up growth and morphology [90]. Although driving mechanisms have been
extensively investigated, limitations are still present in understanding and measuring flow
properties, particularly in the dense spray region. During industrial processes the actual
break-up atomisation regime is of particular interest. However, to better predict these
spray regions, the primary break-up conditions must first be studied. Properties such as
nozzle outlet, liquid amount present, gas and liquid velocities, can significantly affect the
break-up process behaviour, that in turn affect the Re and We parameters.

In Faeth et al. [89] studies, the fundamental spray features in a non-evaporation pressure-
atomised jet were recorded, Fig. 5.1. Two main liquid phase regions were noted; (i) the
liquid core defined by a continuously extended liquid phase at the nozzle outlet, and (ii)
the dispersed flow extending beyond the liquid core surface that is sub-divided into two
regimes. The multiphase mixing layer forms near the nozzle outlet and the dilute spray
region develops far away from it. The latter is initiated by the ligaments and large blobs
present, which in time breaks into smaller blobs and various scale droplets [58][90]. The
primary jet break-up is strictly controlled by the liquid core, which is irregularly occupied
with ligaments and large drops that during the secondary region entry are very unstable.
The dense and dilute spray regions are significantly related to the primary liquid core
properties, such as vorticities, disturbances and turbulence levels, fluids velocities and
various scale structures present [58][89].

Fig. 5.1: Near-injector region morphology of a pressure-atomised spray by Faeth et al.
[89].

Note, body forces are usually neglected in the primary regions, whilst the most influ-
entials are that of capillary, inertial and viscous forces, [90]. At smaller scales, capillary
forces tend to dominate, whilst at larger ones, the inertial effects take over [58], Fig. 5.1.
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5.2.1 Driving Mechanisms in Liquid Jet break-up

Reitz et al. [67] studies in a round liquid jet configuration, presented the corresponding
break-up regimes based on the jet break-up length with the jet velocity, Fig. 5.2. The
A−B area corresponds to the Rayleigh regime were capillary effects are the driving forces.
The formed droplets diameter is much larger than the jet diameter, with the liquid jet
break-up process taking place many jet diameters along the plane [67][90]. The B − C
area is defined by Weber’s theory, where the capillary forces are over powered by the
aerodynamic forces, leading to break-up length reduction and droplet formation of jet
diameter size.

The C−D area is characterised by liquid core droplets being stripped off, along with small
turbulence behaviour present [67]. Here aerodynamic forces are still overruling, resulting
to ligament formation along the liquid core surface, which in turn break into smaller than
jet diameter droplets. Finally, D → area denotes the full atomisation region where the jet
is under full turbulence, producing liquid phase perturbation that are intensified due to
the aerodynamic forces [90]. Here drop formation originates at the nozzle outlet of much
smaller size than the jet diameter. At the injection area, cavitation are produced that in
cases promote turbulence or jet laminarisation, by reducing the passage wall friction (i.e.
turbulent boundary layer removal) [67][90].

Fig. 5.2: break-up length with jet velocity plot (left) along with corresponding jet snap-
shots of each regime (right), for (i) Rayleigh regime ReL = 790, WeG = 0.06, (ii) first-wind
regime ReL = 5500, WeG = 2.7, (iii) second-wind regime ReL = 16500, WeG = 24, (iv)
Rayleigh regime ReL = 28000, WeG = 70, by Reitz et al. [67].
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Based on this discussion and in a typical coaxial liquid jets framework, the effective
parameters are We, Re and Oh numbers. In the literature [39][67][90], a set of criteria
were proposed for the cylindrical liquid jet break-up regimes evaluation, summarised in
Tab. 5.1.

break-up Regime Criteria

Rayleigh
WeL < 8

WeL > 8, WeG < 0.4

First-Wind Induced 0.4 < WeG < 13

Second-Wind Induced 13 < WeG < 40.3

Atomisation 40.3 < WeG

Table 5.1: Summarised criteria for cylindrical liquid jet break-up regimes evaluation
[67][90].

Meanwhile, in Farago et al. [39] work on air-assisted atomisation, five break-up regimes
were noted, Axisymmetric Rayleigh, Non-Axisymmetric Rayleigh, Membrane, Fibre and
Super pulsating. To better understand the Weber and Reynolds effects, they presented a
regimes map as a function of WeG and ReL, Fig. 5.3. Meanwhile, Lasheras et al. [65], by
employing an atomiser of different geometrical set up (i.e. liquid diameter and liquid/gas
diameter ratio), concluded on a different break-up regime map. The main difference in
comparison with Farago et al. [39] was in the break-up boundaries identified, Fig. 5.3.
They also presented relative snapshots of each mode observed, Fig. 5.4, at various ReL
and WeG numbers. In their work, they noted the high influence of the M ratio, on top
of the We and Re effects.

Despite the boundaries difference in the WeG − ReL maps between Lasheras et al. [65]
and Farago et al. [39], the actual regimes classifications, Fig. 5.3, were in agreement for
both studies, with respect to the morphology. In the sections to follow, we investigate
the theories presented above through a series of simulations. The M −WeG effects are
extensively investigated along with any integrated instability mechanisms involved. Both
qualitative and quantitative analysis are developed for different set up parameters, of the
quasi-planar jets employed. With respect to Tab. 5.1 this work develops within the First-
and Second-wind induced regimes.
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Fig. 5.3: Atomisation regimes map classification for WeG − ReL, by Farago et al. [39]
(top) and Lasheras et al. [65] (bottom).
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Fig. 5.4: Sample snapshots of break-up morphology in air-assisted atomisation, by
Lasheras et al. [65].
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5.3 Quasi-Planar Jet in Coaxial Gas Flow

5.3.1 Domain Set Up

The computational set up configuration is of a liquid jet in a canonical spray injection,
introduced both in Tomar et al. [43] and Zaleski et al. [132]. Here, liquid is placed at
the bottom of the domain along with a plate separating any premixing of liquid and gas.
Figure 5.5 is the original three-dimensional set up with same properties applying for the
two-dimensional simulations. The boundary conditions applied are airflow velocity both
at the top and bottom of the domain, whilst the outlet is treated with convective flow.
The simulations were run at different mesh sizes in two dimensional space of 512 × 256
and 1024 × 512, whilst in three dimensions a 512 × 256 × 64 mesh was employed. The
thickness of both the liquid hL and the gas hG were fixed at hL = hG = 0.2.

Fig. 5.5: Initial set up configuration of the spatially evolved planar jet along with the
domain boundary conditions applied in three dimensional space.

For the velocity inlet conditions, two different profiles were employed for investigation.
In the first approach a piecewise constant profile of UL − UG was applied, denoting no
incoming boundary layer, (i.e. δG = 0). Here, δG is simply based on the gas Reynolds as

δG = 6.05Re
−1/2
G hG [43] and for easier comparisons later, we shall name this Jet-1. The

second velocity profile was based on the previous studies by Zaleski et al. [132], reading:

u|x=0 =


Uo,Gerf((y −H − e)δG)erf((2H − y)δG), if y < H

Uo,Lerf((H − y)δG) if H < y < 2H
0 if y > 2H

(5.1)

where Uo,G and Uo,L are the maximum gas and liquid inlet velocities, respectively. The
erf error function mimics the δG and δL boundary layer thickness in gas and liquid (i.e.
δG 6= 0).
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The remainder boundary velocity was set to zero [132] and we shall name this Jet-2.
The inlet velocity conditions applied and in turn the boundary layer, have shown to con-
siderably affect the break-up process. Meanwhile studies [43][132][131] suggest that δG is
more relevant and thus the present study is developed based on δG = δL.

5.3.2 Physical Parameters

Throughout the investigations, the main effective parameters considered are the dynamic
pressure ratio M , the gas Weber WeG and Reynolds ReG numbers. Here WeG and
ReG are based on the inlet gas boundary layer thickness δG, as WeG,δ = ρGU

2
GδG/σ and

ReG,δ = ρGUGδG/µG. Generally speaking, the two-phase layer mixing is strictly con-
trolled by the vorticity thickness of the gas. Provided δG is of the order of the separating
plate thickness, the flow behind the separator plate strongly defines the most unstable
frequency [131]. Thus WeG,δ and ReG,δ are critical for the interface instability behaviour.
In this work, δG/e = 9. The general We and Re can be similarly expressed based on hL
with WeG,h = WeG,δhL/δ and ReG,h = ReG,δhL/δ.

The smallest grid size simulated is hL/1024 = 1.95µm. The time step was chosen as
∆t = 2.5 × 10−4 for a courant number of c = 0.05. The density ratio was kept constant
for all simulations at ρL/ρG = 20 along with Uair = 1m/s. For the most part of this
work, the Reynolds numbers were fixed as ReL = 50 and ReG = 1000, enabling visuali-
sations strictly based on the M −WeG choices. Next, the gas Reynolds was increased to
ReG = 4000 and compared with the lower ReG, to investigate the effects in changing the
boundary layer thickness. The gas velocity is strictly fixed at UG = 2m/s. Doing so we
can visualise the jet behaviours under smaller and higher Re and We effects at different
M ratios. The remainder physical parameters were computed based on the M and WeG
choices in each case. The relative set up parameters for all cases are summarised in Tab.
5.2. To ensure good resolution properties of the computations, we employed Pitsch et al.
[17] criteria from Eqn. (2.38) suggesting WeG∆x < 1. Note, WeG = 40 appears to fall
within Menard et al. [112] proposed criteria, of WeG∆x ≤ 10. The results are presented
for a dimensionless time T = t/t∗, where t∗ = hL/Uair.

M WeG WeG∆x

UG = 2m/s, Uair = 1m/s
ReL = 50, ReG = 1000

4
10 0.39
20 0.78
40 1.56

8
10 0.39
20 0.78
40 1.56

16
10 0.39
20 0.78
40 1.56

0.002 1 3e× 10−2 UG = 5m/s, UL = 1m/s
ReL = 5000, ReG = 1000

Table 5.2: Summarised Weber and Reynolds based set up parameters for all M cases.
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5.3.3 Liquid-Assisted break-up

This work mainly focuses in air-blast assisted jet break-up, however strictly in this section
a case of ’diesel’ type injectors is examined. Liquid-assisted jets provide good sampling
foundations with respect to free-surface motion and singularity formation resulting to
drop break-up. They can also give information on surface tension and viscosity effects,
both very effective parameters in jet break-up processes [36]. Consequently, M << 1 jet
types are more predominant in the relative literature [10][36]. In theory M ≈ 1 denotes
’quasi-laminar’ jets and no break-up should occur. Consequently, here we study liquid-
assisted break-up for M << 1 = 0.002 and compare it with M = 1, with δG 6= 0.

Figure 5.6 shows snapshots in the two-dimensional space. For M = 1, the gas and liquid
Reynolds are taken from Tab. 5.2. For M << 1, a ’diesel’ type injector is used where
liquid is the driving force. Thus, WeG << WeL with WeG = 1 and WeL = 500, whilst for
the Reynolds parameters we used ReL = 5000 and ReG = 1000. In M = 1, the jet appears
’quasi-laminar’ as expected, with no break-up present. Liquid-assisted jets are strongly
linked to the Kelvin-Helmholtz instability modelling, that enable the primary break-up
prediction of the diesel liquid core [10]. In M << 1 the interface is fully characterised by
wave accumulation under the KH instability. These waves develop into interfacial ’finger-
like’ ligaments along with minor holes trapped within.

Fig. 5.6: Snapshots of liquid jets for M = 1 (left) and M << 1 (right) for 512× 256 mesh
size, with δG 6= 0, in two-dimensions.
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Figure 5.7, shows the hole formation process due to waves accumulation, with time. As
the wavelength (λ) decreases and the waves accumulate closer together (i.e. δλ reduces),
hole formation occurs within the waves. Theory [10][56] suggests that at high Re, which
is also the case here, potential droplet size during secondary break-up should scale with
δL.

Fig. 5.7: Hole formation as wavelength δλ decreases with time.

Figure 5.23 shows the surface density evolution with time T , for both M ratios, where
the Σ(t) expression from Eqn. (4.17) is fitted. The Σ evolution for M = 1 clearly shows
no significant interface ’activity’, characterised by a minimal peak throughout its linear
behaviour. On the contrary M << 1, initially shows a constant (transient) growth,
followed by a small peak. Within short time the peak grows even further, denoting the
previously captured wave formation and KH instabilities at the liquid interface. Here,
Σ(t) fits the trend but not the actual data, possibly suggesting that in this case 1/τ ∼
∂UL/∂y ≈ ∆U/δ.

Fig. 5.8: Surface density evolution with time for M = 1 and M << 1, fitted with Σ(t)
from Eqn. (4.17).
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5.3.4 Air Blast Assisted - Coarse Mesh

In this section, we examine the break-up process of air-blast assisted jets, for δG = 0.
The results are shown for all M ratios, Tab. 5.2, at WeG = 10 and 40. Figure 5.9
shows snapshots for WeG = 10 and WeG = 40 for all dynamic ratios at T = 6.25.
Generally at M = 4 and 8, for WeG = 10, ’quasi-laminar’ behaviour is captured with some
small interface disturbances, whilst M = 16 shows a weak break-up with small ligament
formation near the inlet. Meanwhile, at WeG = 40 strong break-up is observed in all M
cases. Here, for M = 4, large ligament formation is developed across the interface, with
some minor droplets present. Away from the jet inlet, the area is occupied by large-sized
ligaments forming near the domain boundaries, creating high instabilities and filaments
formation. However, the high viscosity ratio present limits any further break-up. Finally,
for M = 8, 16 a more similar behaviour is captured between them.

Fig. 5.9: Snapshots of liquid jet for WeG = 10, 40 at different dynamic ratios of M =
4, 8, 16, for 512× 256 mesh size, at T = 6.25, with Jet-1 [43] set up.
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Both jets present strong surface disturbances, with ligaments being stripped off from
the liquid core along with small droplets and hole formation. In M = 8 the higher
break-up is developed in the middle part of the liquid core, whereas for M = 16 strong
break-up is captured at the jet inlet. In comparison with M = 4, the break-up is mostly
occupied by structures forming near the liquid core length, occupied both by drops and
smaller filaments. It could be said that M = 8, 16 is more unstable than M = 4, also
seen in other studies [39][65][90]. Overall, as M increases, the jet behaviour goes from a
multiphase mixing layer towards a more dispersed flow. However for the computational
time used, strong atomisation was not recorded.

At this point, it could be proposed that within the range of 8 < M < 16 and 10 < WeG <
40 a critical M and WeG exists, respectively, within which break-up behaviour will be
developed. Thus lower WeG−M denote more stable systems of no break-up and possibly
some disturbances. However if one individually increases M or WeG, break-up behaviour
will be captured. To further validate this assumption, we present a series of snapshots
strictly at WeG = 20 for all M ratios, Fig. 5.10. It is clear that all jets demonstrate very
similar break-up behaviours.

Fig. 5.10: Snapshots of liquid jet forWeG = 20 at different dynamic ratios ofM = 4, 8, 16
for 512× 256 mesh size, with Jet-1 [43] set up.

At lowest M , strong interface disturbances are noted with some ligament formation
and small droplets away from the liquid core. In M = 8, the jet shows droplet formation
from early times with particularly strong break-up at the jet inlet. For M = 16, ligaments
are developed early and break into smaller ligaments and droplets with time. Comparing
Figures 5.9 and 5.10, strong break-up behaviour is captured for WeG = 20, whilst for
WeG = 40 the break-up process increases with M .
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In Fig. 5.10, a key behaviour is noted at M = 16, where a non-linear wave is formed
that grows into a thin ligament with time, despite the small ∆UL,G difference. This
non-linear wave appears almost as an ’obstacle’ to the gas flow direction, with a large
’liquid-empty’ area forming at the front of the wave, Fig. 5.10. With time this wave
grows higher than the gas jet height, resulting into a larger almost-empty liquid area
formation at the front and a smaller break-up area at the back. Consequently an almost
’negative’ drag at the back of the wave is developed, resulting into a violent local break-up
near the jet inlet. Finally, the non linear wave stretches to its maximum and detaches
from the liquid core into ligament and drops.

Note, this ’liquid-empty’ behaviour was captured in all M cases for WeG = 20 at some
scale, and was also observed for M = 16 at WeG = 10, 40. Figure 5.11 shows a break-up
correlation map of M with WeG, for strictly ReL = 50; with the points representing
all the M −WeG combinations employed. Here, the ’quasi-laminar’ regime regards low
M −WeG combinations, where no break-up occurs, UL controlled regime. At higher M
but small WeG, the stable regime is considered, where some break-up is present, with
small interface disturbances and liquid core attached ligaments. Next follows the break-
up regime, denoting the break-up process occupied by various flow scales yet remains
’stable’, UG controlled regime. Finally for high WeG the system becomes unstable and
almost a ’quasi-independent’ relationship was noted with M .

Fig. 5.11: Break-up map of Dynamic Pressure ratio as a function of the gas Weber,
denoting the corresponding system break-up regimes (two-dimensional).

Note, the break-up correlation map shown in Figure 5.11 is strictly based on the
present results. However, similar relationships were noted in previous studies [132][131].
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5.3.5 Boundary Layer Effects in Air-Assisted Jets

Based on the M −WeG map in Fig. 5.11, this section develops for M = 16 at WeG = 20,
focusing on the effects of the boundary layer in the jet break-up behaviour (i.e. δG = 0
and δG 6= 0). The study is developed in a refined mesh of 1024 × 512. Figures 5.12 and
5.13 show snapshots for ReG = 1000 and 4000, respectively. As the mesh is refined and
ReL,G changes, the boundary layer effects can be further examined, that significantly af-
fect the formation of any instabilities and driving mechanisms present. In both δG cases,
the liquid break-up process is characterised by a range of interface disturbances, including
holes, large ligaments and small droplets present.

Fig. 5.12: Snapshots of liquid jet break-up for [M = 16, WeG = 20, ReG = 1000], in a
1024× 512 mesh size for (a) δG = 0 and (b) δG 6= 0.
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For δG = 0 we notice a strong presence of the unstable wave ’phenomena’ as previ-
ously noted for the coarser cases. Similarly here, it grows much higher than the gas height
into a large ligament before it breaks into smaller ligaments and droplets. Meanwhile, at
the front an almost empty liquid area is formed. For δG 6= 0, it could be said that the
break-up process is slightly more ’stable’. The unstable wave phenomena is also noted,
where it grows higher than the gas height but not as much. It also appears to form and
break into ligaments faster and less violently. Furthermore, the back area of the unstable
wave shows much higher break-up for δG = 0 than δG 6= 0.

Fig. 5.13: Snapshots of liquid jet break-up for [M = 16, WeG = 20, ReG = 4000], in a
1024× 512 mesh size for (a) δG = 0 and (b) δG 6= 0.
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At higher gas Reynolds numbers, various sized structures are still present, such as
holes, ligaments and drop formation, along with the ’unstable’ wave phenomena. For
δG = 0, numerous wave formations are observed with holes captured within. Here, the
unstable wave similarly grows higher than the gas height but forms and breaks much
faster. The related ’liquid-empty’ area noted earlier, is not observed here. Looking at
Jet-2 [132] (i.e. δG 6= 0), the liquid core throughout can be defined as ’quasi-laminar’
with no presence of holes or surface disturbances. Note, at ReG = 4000, for δG 6= 0, less
snapshots are shown with respect to the unstable wave phenomena. This is strictly due
to the faster growth and break-up of the wave, than for δG = 0, which here it grows much
higher than the gas height and breaks into multiple ligaments. Within short time the
broken ligament moves away from the liquid core and further breaks into various sized
droplets and smaller ligaments.

It could be noted, that for higher Reynolds the total break-up process appears less vig-
orous as a function of a fixed WeG throughout, hinting that possibly a ’quasi-dependent’
relationship exists. In addition, for δG = 0 the total jet behaviour is highly more unstable,
with larger interface instabilities presents than in δG 6= 0. Meanwhile as ReG increases δG
decreases, resulting into more break-up throughout the jet. Figure 5.14 shows the velocity
profile of the ’unstable’ wave for ReG = 1000, in both δG cases.

Fig. 5.14: Velocity profile for [M = 16, WeG = 20, ReG = 1000], in a 1024 × 512 mesh
size for (a) δG = 0 and (b) δG 6= 0.
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The velocity profiles between the two is rather vast, as expected. In δG = 0, the highest
velocity component (i.e. gas) is almost equally distributed throughout the non-liquid areas
of the domain, whilst δG 6= 0, is distributed just above the gas/liquid interface. Here,
the velocity at the wave front is positive and under the large liquid-attached ligament
is negative for both δG cases. Consequently, that almost liquid-empty area forma at the
front and the growth of the wave is much higher than the gas height. Adding to that,
the gas/liquid velocities employed here, are considerably smaller than in typical industrial
jets. However the break-up process recorded in both, is rather excessive, possibly denoting
the significance of both the Reynolds and the Weber numbers.

Figures 5.15 and 5.16 show snapshots in the three-dimensional space for δG = 0 and
δG 6= 0, at [M = 16, WeG = 20, ReG = 1000]. Note, the snapshots are taken at the same
T time for comparison purposes. Both δG cases show quite similar behaviours at same T ,
opposingly to the two-dimensional ones (i.e. Figures 5.12-5.13). At early computational
flow times, the KH instability is recorded in both, with the ’unstable’ wave phenomena
developing in a larger scale for δG = 0. From there, the RT instability takes over, resulting
into large ligaments and droplets of much larger size then the jet inlet, near the front of
the ’unstable’ waves. Note, in δG = 0, more interface perturbations and relative various
sized fragments are formed, of larger size.
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Fig. 5.15: Snapshots of liquid jet break-up in a 512× 256× 64 mesh size with δG = 0, for
[M = 16, WeG = 20, ReG = 1000].
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Fig. 5.16: Snapshots of liquid jet break-up in a 512× 256× 64 mesh size with δG 6= 0, for
[M = 16, WeG = 20, ReG = 1000].
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Figure 5.17 shows the velocity profile snapshots for M = 4 at WeG = 40, in the two-
and three- dimensional space. It appears, that the coarse mesh velocity profile is in fact
very similar to the three three-dimensional one, as expected. In both cases, primarily a
small Kelvin-Helmholtz instability wave is noted across the interface. However, in the
two-dimensional case, the wave shows higher roll up formation. Here, the coaxial gas
velocity acts at the top of any interface perturbations present and reaches its maximum
value during the KH wave formation and under the RT instability.

Based on the various phenomena observed a more quantitative analysis follows. Note,
since the two- and three- dimensional results demonstrate very similar behaviours, the
following sections are developed with respect to the two-dimensional framework.

Fig. 5.17: Velocity field for [M = 4, WeG = 40, ReG = 1000], for δG 6= 0, in (a) three-
and (b) two- dimensional space.
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5.3.6 Driving Mechanisms in Jet break-up

The previous results showed a range of interface perturbations with various size fragments
present. This sections focuses strictly on the jet break-up driving mechanisms, such as the
Kelvin-Helmholtz and Rayleigh-Taylor instabilities. Experimental work [73][124] suggests
that jet break-up initially occurs from the shear instability, when the boundary layer in-
teracts with the liquid at the nozzle exit, resulting into longitudinal wave formation along
the liquid/gas interface [28][124].

This process is analogous to the Kelvin-Helmholtz instability, whose most unstable lon-
gitudinal wavelength λKH is directly linked and ’controlled’ by δG. The secondary driv-
ing break-up mechanism occurs from the acceleration of the longitudinal waves by the
gas stream, resulting into wave crests that give rise to the Rayleigh-Taylor instability
[1][28]. The RT instability essentially controls the growth of any present ligaments and
its break-up into droplets. Fig. 5.18 shows the principle growth mechanism of KH and
RT instabilities. It should be noted that λKH is always larger than λRT .

Fig. 5.18: Principle schematic of Kelvin-Helmholtz and Rayleigh-Taylor instabilities in
liquid jet primary break-up mechanisms in three-dimensional space.
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In cases of large Weber numbers, Villermaux et al. [124] suggested that the most
unstable wavelength can be estimated with:

λKH ≈ CKH

√(
ρL
ρG

)
δG (5.2)

where CKH = 2, in coaxial air-blast atomizers, [124]. Meanwhile, the largest Rayleigh-
Taylor instability wavelength can be computed [28] as:

λRT = 2π

√
3σ

ρLαL
(5.3)

with αL denoting the liquid acceleration, which from the literature [31][73], can be esti-
mated using:

α =
1

2

CDρG(UG − Uc)2

ρLhL
(5.4)

where hL is the liquid inlet height and CD is a constant denoted as CD = 2 in Marmottant
et al. [73]. The Uc parameter accounts for the interface convection velocity, originally
proposed by Dimotakis et al. [31] as:

Uc =

√
ρGUG +

√
ρLUL√

ρG +
√
ρL

(5.5)

Previous results showed the KH instability is the driving mechanisms of the ’unstable’
wave phenomena, which by the end of the simulations takes the form of the RT instability.
As KH is δG dependent, it could be suggested that the ’unstable’ wave is ’quasi-dependent’
on δG and thus ReG. Small Reynolds suggest that the jet break-up process is viscous
dominated, resulting in large fragments and droplet formation. At slightly larger Re, jet
oscillations are expected as a function of the jet axis, leading to some jet disintegration
under the aerodynamic forces.

In Figures 5.12 and 5.13, as Re increases, the KH-RT instabilities behaviour varies, with
the ’unstable’ wave phenomena showing relatively distinct behaviours at different Re.
Figure 5.19 shows the computational growth rate ωRT as a function of T , for varying δG
and ReG. The ωRT values, were manually obtained from the jet snapshots and are shown
in the two-dimensional space. Each ωRT ’data-point’ is approximately estimated with
∼ (λ2 − λ1/t2 − t1). In Fig. 5.19, the time axes are employed to show at which instant
the ’unstable’ wave occurs, during the simulations. Here, λ0 and λRT points, denote the
wavelengths at first occurrence and at maximum deformation, respectively, prior to any
break-up into ligaments/droplets.
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Fig. 5.19: Computational Rayleigh-Taylor wavelength growth rate as a function of T and
δG, in the two-dimensional framework. Here λ0 denotes the initial wavelength when it
first occurs and λRT is the largest computational wavelength reached before it breaks into
smaller scaled fragments.

Comparing ωRT for different δG, the ’unstable’ wave grows for a longer period of
time in δG = 0, regardless of ReG. The λRT is also much larger in δG = 0 than in
δG 6= 0. This suggests that the boundary layer presence both significantly delays the
formation of the ’unstable’ wave phenomena and reduces its growth rate. Here, we also
employed Eqn. (5.3) to compute the equivalent theoretical largest wavelength in each
case. The theoretical values for ReG = 1000 and ReG = 4000, denoted λRT = 0.004 and
λRT = 0.05, respectively. In both cases, the theoretical λRT , are significantly smaller than
the computational ones. This is somewhat expected, as Eqn. (5.18) is strictly proposed
for coaxial round jets, whilst here a quasi-planar set up is used.

Previous experimental work in Raynal et al. [95] and Marmottant et al. [74], suggested the
wavelength frequency f , can be derived from Dimotakis velocity expression, Eqn. (5.5).
They showed that f is comparable to the velocity where the liquid/gas dynamic pressures
are balanced, thus f ∼ Ucλ. However, for high M ratios of ≥ 4, the the frequency
scaling becomes of f ∼

√
ρG/ρLUGλ, [23][74][95]. Figure 5.20 shows the frequency f ∼√

ρG/ρLUGλ as a function of the separating plate to the gas boundary layer thickness
ratio, e/δG. The results are shown for M = 16 at WeG = 20, for both δG = 0 and δG 6= 0.
Here λ accounts for the wavelength at the first instant of the unstable wave formation
(i.e. λ0).
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Fig. 5.20: Computational frequency as a function of e/δG ratio for M = 16 at WeG = 20,
for δG = 0 and δG 6= 0.

Figure 5.20 shows that for δG = 0 the unstable wave frequency increases, validating
the earlier results where δG 6= 0 limits the wave presence and growth. It is also noted that
the frequency decreases as e/δG ratio increases. This behaviour was previously denoted
in Zaleski et al. [23]. It is proposed that an e/δG ratio larger than the threshold value
∼ 1, significantly influences the frequency. Provided δG is of the order of e thickness, the
most unstable f is strongly characterised by the flow [94].

As previously introduced, the gas/liquid velocity difference across the interface results
in the KH wave formation which propagates downstream. Zaleski et al. [132] suggested
that as the interfacial KH wave develops more, the curvature radius decreases, resulting
to liquid sheet formation. It is considered, that liquid sheets form post the KH wave
and prior to the RT instability, with transverse instabilities developing at the liquid sheet
edge. Thus it could be characterised as an in-between ’wave’ from KH to RT, Fig. 5.22;
that defines the RT instability growth behaviour and in turn the jet break-up process.

In such cases and provided the liquid viscosity effects are small (i.e. almost negligible),
the Ohnesorge number is employed [126], whose characteristic length is the liquid sheet
thickness `s. With time this liquid sheet stretches under the gas stream effect and `s
decreases. A capillary time scale of the liquid sheet growth can be defined as:

τca =

√
ρL`3

s

σ
(5.6)
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Fig. 5.21: Liquid sheet formation in (a) two-dimensional and (b) three-dimensional space,
post KH and prior to RT driven instabilities.

Here, Eqn. (5.6) could be defined as a growth measurement of these liquid sheets, how-
ever, is usually employed in capillary driven jet break-up processes. Literature suggests
[36][126], that these liquid sheet instabilities are less noted at higher We, whose wave-
length is independent of the density and velocity of the liquid [36]. Figure 5.22 shows the
τca behaviour as a function of WeG and Oh, for all M ratios with δG = 0, where `s was
manually estimated from the jet snapshots.

Here τca shows to exponentially decay with increasing WeG, validating that such insta-
bilities are reduced at larger We. However, τca linearly increases with Oh, independently
of M . Although the Oh values are relatively small, they are finite. This hints that the
liquid motion is affected by the viscosity, opposing to the literature suggesting that these
liquid sheets form at almost negligible viscosity [36][126]. Thus it can be proposed that
an Oh−WeG correlation exists for the liquid sheets formation, with Oh being inversely
proportional to WeG.

Such analysis is typical of high surface tension driven break-up cases, such as oils burn-
ers and ink-jet printing. However, based on the latter discussion, it could be of some
significance even in typical industrial injectors (i.e. GT and IC engines).
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Fig. 5.22: Plots showing the capillary time scale τca with WeG (top) and Oh (bottom),
at different M ratios, for δG = 0.
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5.3.7 Surface Density Evolution

In this section we study the surface density evolution at a range of M−WeG as a function
of time T . Figure 5.23 shows the Σ evolution in all coarse jets at ReG = 1000 for δG = 0.
Note, in this section the Σ evolution is examined strictly as a function of time, opposingly
to most studies that show the spatial surface density variations. Doing so, Σ remains just
a quantity measurement enabling observations of the total jet behaviours as a function of
other parameters, such as We, Re and δG.

Fig. 5.23: Surface density evolution for different M −WeG combinations with time T , at
(a) M = 4, (b) M = 8, (c) M = 16, (d) WeG = 10, (e) WeG = 20 and (f) WeG = 40.
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For M = 4, Σ increases with WeG, showing a more constant behaviour at lower WeG
and large peaks at higher WeG. Stronger break-up is shown for M = 8 with Σ evolving in
a less stable manner, independent of WeG. At WeG = 40, a higher peak is recorded at the
end of the simulation, suggesting further break-up is following. Meanwhile, for M = 16
all jets show a rather unstable Σ evolution of similar manner, defined by an early peak
followed by a large decrease. With respect to the fixed WeG cases and varying M , as WeG
increases, the surface density peaks become more often and at earlier times, denoting the
amount of instabilities and fragments present is increased. Lower M−WeG combinations
show a more settle growth, such as M = 4, WeG = 10 that reach equilibrium early. In
Fig. 5.23, most cases show a ’negative’ Σ behaviour (i.e. Σ < Σmax = 1), possibly liable
to the recurring ’liquid-empty’ areas. A sample snapshot of a ’liquid-empty’ case is shown
for validation purposes, at M = 8,WeG = 40.

Figure 5.24 shows the surface density evolution for δG = 0 and δG 6= 0, with increasing
ReG, along with the fit of Σ(t) from Eqn. (4.17). Here, the dots represent the initiation
time of the ’unstable’ wave growth. The dark red dots denote the absence of δG, where b1

and b2 imply that the phenomena was captured twice during the break-up process. The
green dots denote the initiation time for δG 6= 0. Note, the a-dots are for ReG = 1000
and b-dots are for ReG = 4000. For ReG = 1000 both set ups show that the unstable
wave grows later in time throughout the break-up, in comparison with ReG = 4000. For
δG = 0 the break-up begins at earlier times than it does for δG 6= 0, regardless of the
δG thickness. All four cases show a short initial transient growth followed by increasing
peaks, as the break-up process develops. The δG = 0 case, does demonstrate a slightly
more stable growth for both Reynolds parameters. It should be noted, that for δG 6= 0
at ReG = 4000, the surface density eventually grows the most from all four cases, hinting
that for quasi-planar set ups, δG does in fact affect the break-up process.

Fig. 5.24: Surface density evolution in a 1024 × 512 mesh, with M = 16 at [ReG =
1000, 4000]; for δG = 0 and δG 6= 0. The dots represent the ’unstable’ wave initial
growth/occurance time. The fit line Σ(t) comes from Eqn. (4.17).
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Figure 5.25, shows a non typical correlation, between the break-up initiation time
for each jet along with the maximum surface density Σmax at the end of the break-up
process. It could be suggested that the presence of δG, somewhat delays the break-up
process, however it gives rise in Σmax.

Fig. 5.25: Surface density equilibrium (Σmax) as a function of the jet break-up initiation
time TB, in a 1024× 512 mesh, at [ M = 16, ReG = 1000, 4000].

The Σ(t) from Eqn. (4.17) shows a good fit with the present data, denoting a transient
growth followed by an increase as it reaches a maximum plateau. In comparison with the
liquid droplet break-up, Section 4.3.4, here Σ is considerably more consistent and Σ(t)
fits the data well. However, with time an equilibrium behaviour should be observed in the
present jets, assumed as the short plateau region at the highest Σ of each (i.e. Σeq = Σmax,
Fig. 5.25). Also, the data in Fig. 5.24, was for a fixed We of varying Re, whereas in
the droplets it was the opposite. It could be concluded that Σ(t) from Eqn. (4.17) fits
better jet-like processes rather than single droplet break-up cases, with τ strictly denoting
a characteristic growth time scale.
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5.4 Summary

The present section investigated the liquid jet break-up process in the primary region, for
a quasi-planar jet, both in the two- and three-dimensional space. To ensure all scales are
resolved, the WeG∆x criteria was used. Two velocity profiles were applied, of a piecewise
linear profile (i.e. δG = 0) and one that mimics the liquid/gas boundary layer thickness
(i.e. δG 6= 0). The study was developed as a function of the Dynamic Pressure ratio and
the gas Weber numbers. It was concluded that any jet break-up occurs strictly for M 6= 1,
whilst for 8 < M < 16 and 10 < WeG < 40 a critical M and WeG exist, respectively,
where break occurs. The latter was concluded strictly on the present results, however
previous studies have noted similar behaviours.

Two driving mechanisms were captured and analysed, the Kelvin-Helmholtz and the
Rayleigh-Taylor instabilities. Here,the effective parameters proved to be the boundary
layer and the gas Weber number. During the break-up process, a key phenomena was
recorded, the ’unstable’ wave resulting from the KH instability which then grows higher
than the gas inlet height. In many cases, a ’liquid-empty’ areas was captured that formed
at the front of the ’unstable’ wave. The presence of the gas boundary layer (i.e. δG 6= 0),
showed to both reduce and delay the formation of the ’unstable’ wave.

Another interface perturbation captured was the liquid sheet, that forms post the KH
and prior to the RT instabilities. The capillary time scale τca, denoting the growth of
these sheets, showed to exponentially decay as WeG increased, suggesting that the liquid
sheets are overpowered at higher Weber numbers. However, τca linearly increased with
Oh, denoting that liquid sheet formation is in fact influenced by the viscosity, although
the latter is considered almost negligible in such cases. In all cases τca showed to be
independent of the M ratio.

The surface density evolution was examined for both δG = 0 and δG 6= 0. For δG = 0,
the surface density was slightly higher than for δG 6= 0. Here, Σ was able to capture the
equivalent ’liquid-empty’ areas due to the ’unstable’ wave phenomena, by reaching values
< 1. The jet Σ was considerably more consistent with time, in comparison to the droplet
break-up case. This is of particular interest, as the liquid/gas velocities here, were in fact
much smaller than the ones in the droplets. Consequently, from the present investigations,
it could be proposed that Σ is ’quasi-dependent’ on UL − UG, but ’quasi-independent’ of
Re, hence of δG and We.
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Chapter 6

Conclusions and Future Work

6.1 Major Remarks

In GT and IC engines, liquid droplet and jet break-up processes of spray atomizers can
significantly affect the performance of such systems and in return the environmental pol-
lution. The focus of this work is to study and understand such processes with the aid
of CFD tools. A novel two-phase flow applicable method, the CMLS method, was devel-
oped and extensively validated both in single liquid droplet break-up and in the primary
break-up of liquid jets. The relative working procedures were acquired as follow:

• DNS Modelling
Due to the complexities in representing multiphase fluid flows, a modelling method
of both accurate and good mass conservation properties is required. Here, two pre-
vious available methods were considered, the Volume of Fluid and the Level Set
method. Based on the capabilities and drawbacks, an in-house novel conservative
Level Set (CMLS) method was developed. This CMLS overcame some of the limi-
tations previously found in VOF and LS, by denoting sharp and accurate solutions
of minimal mass loss.

The novelty in the present interface modelling approach was based on the LS-VOF
coupling, that was strictly processed only when necessary according to the current
mass properties. The interface reconstruction was developed with particular atten-
tion, since the LS was directly linked to the area computation. The CMLS solutions
were mass accurate, even in very coarse meshes, (i.e. droplets of R/∆ ≤ 4), with
mass errors limited to 0.1% and for R/∆ > 8 errors were dropped down to 10−2,
consistently.

High order accuracy and sharp interfaces were obtained using 5th WENO and the
GFM method, respectively. Doing so, numerical oscillations in the presence of dis-
continuous solutions were overcome. Due to the stencil points using 5th WENO, the
convergence rate of the curvature computations was limited. To capture both the
viscous and capillary effects along with the smallest scales size present (i.e. We < 1
and Re ≤ 2 in a local cell), some limitations are imposed in choosing the appropri-
ate time steps and mesh size. However, all integrated flow scales considered in this
work, were well resolved both in the two- and three-dimensional space.
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The CMLS method obtained sharp interfaces due to the presence of LS. In the LES
context, the mesh size essentially defines the resolved scales size, whilst in DNS,
restrictions on the Reynolds number occur for a fixed mesh size. Thus, perovided
the interfaces are well defined to account for the Re ≤ 2 restrictions, the CMLS
method could be extended in the LES framework. However, the We limitations
would still be an issue and the smallest size captured would be limited to 20µm.

• Droplet Break-Up:
Liquid droplet break-up processes were investigated under the Weber number effects,
both in the two- and three-dimensional space. A range of break-up modes were
recorded, that in cases were in disagreement with the available literature. It was
concluded that the droplet liquid viscosity significantly affects the critical Weber
number (Wecr), which in turn distinguishes between the different deformation and
break-up modes.

As in previous studies, the present break-up modes at Wecr, remained inconclusive.
In cases, the break-up modes captured were not of the same We range typically
suggested in the literature. In particular, at We = 22, results were inconsistent both
in the qualitative and quantitative context. Also, the three-dimensional results of
We = 96, showed a break-up behaviour that is typically registered at much higher
We.

Based on the present results an independent relationship was noted between the
We and Oh numbers, for Oh < 10−1 that was also confirmed in previous studies.
However final conclusions on the the drop deformation/break-up modes as a function
of We−Oh are still under investigation. It was also concluded that the liquid/gas
interactions in the droplets are a function of Re, by following Stoke’s Law. Note,
this is valid by definition strictly for low Reynolds numbers, such as in this work.

The droplets break-up initiation time was strictly related to the drop maximum
cross-stream dimension, prior to any break-up. It also showed to increase with Oh,
which is expected by definition. On the contrary, the times of complete break-up
showed to increase with We. Such behaviour opposes the theory that at higher
We surface tension becomes negligible and break-up should occur faster. Current
studies work on high We numbers by focusing more on catastrophic break-up cases.

• Jet Break-Up:
Planar liquid jet break-up processes were studied based on the dynamic pressure
ratio M and the gas We numbers, both in the two- and three-dimensional space.
All various sized scales involved were resolved by employing mesh sizes that satisfy
the We∆x criteria. The focus was mainly on Air-Blast assisted jets (i.e. M > 1),
not typically found in the literature.

It was concluded that any break-up/atomisation occurs for M << 1 and M > 1,
with M ≈ 1 showing light ’atomizing’ behaviours. From all M−WeG combinations
employed, it was concluded that break up occurs for a critical M and WeG, in the
ranges of 8 < M < 16 and 10 < WeG < 40, respectively.
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Based on that, a relative M−WeG break-up correlation map was proposed and was
in good agreement with some previous studies, where relative relationships were
examined. The gas boundary layer effects where examined. In any case, a range
of fragments and instabilities were captured. A key phenomena observed was the
’unstable’ wave, resulting from the KH instability, which under the RT instability
grew higher than the gas inlet, with time. The gas boundary layer presence (i.e.
δG 6= 0), showed to both reduce and delay the ’unstable’ wave phenomena, but not
remove it completely.

Increasing the gas Reynolds number showed no significant effects on the growth rate
(ωRT ) of the ’unstable’ wave, suggesting a ’quasi-independent’ relationship exists
between the Re considered here and ωRT . Finally, the ’unstable’ wave frequency
appeared to decrease as the δG/e ratio increased. Liquid sheet formation was also
captured, post the KH instability and prior to the RT growth. A capillary time scale
τca, characterising the growth of these sheets, decayed exponentially with increasing
gas Weber, as it was overpowered at higher We values.

However, τca linearly increased with the Ohneshorge number, suggesting that the
liquid viscosity is an influential parameter in the liquid sheet formation, opposingly
to the theory (i.e. almost negligible viscosity). This was of particular interest, as
such approach is commonly found in high surface tension driven break-up processes,
(i.e. oil burners). However, it could be applicable, to some extend, in industrial
injectors.

• Surface Density:
The surface density evolution was investigated, both in the droplet and jet break
up processes. The Σ − Y model was employed, from which a Σ(t) expression was
extracted and fitted in both two-phase flow processes. Assuming homogeneous flow,
the actual Σ(t) behaviour was characterised by an initial constant behaviour, fol-
lowed by a transient growth before it reached a peak/plateau.

In the droplet break-up cases, the total Σ behaviour was relatively inconsistent
amongst the various We choices. Meanwhile, Σ(t) fitted the data until Σmax was
reached, but showed to be invalid for times after complete break-up, where the flow
was non-homogeneous. It was there suggested, that the characteristic time scale (τ)
is strictly denotes the Σ growth and after Σmax, τ scales with dU/dy. The present
results showed that Σ is ’quasi-independent’ on We.

In the jet break-up cases, Σ was slightly higher in δG = 0 than in δG 6= 0. However,
for all jet-cases simulated, Σ showed similar behaviours as a function of time, op-
posingly to the droplets case. Such behaviour raised some questions with respect to
the liquid/gas velocities applied in both processes. As the jet velocities were much
smaller than the droplet ones, it was proposed that Σ could be ’quasi-dependent’
on UL−UG. Similarly to the droplets case, in this work Σ is ’quasi-independent’ of
both Re and We.
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6.2 Future Work

• The CMLS curvature computations using the implicit function with the LS, over-
comes some of the convergence rate limitations and large spurious velocities present.
However, due to the stencil points integrated in the 5th WENO method and in cases
where interfaces are near the domain boundaries, generates poor results. A differ-
ent approach could be to alternate between curvature computational approaches,
available in the literature [130][134], according to current needs.

• In the present LS, integrated in the CMLS method, the use of a numerically smeared
sign function during reinitialisation provides accurate distance profile reconstruc-
tion, however creates CFL limitations. The hyperbolic tangent function in [75][84]
should be examined.

• The present droplet deformation/break-up investigations, were within critical Weber
numbers, whilst most studies in the literature operate within comparable We values,
amongst each other. A good approach would be to employ ’new’We, both away from
critical ones and under gas velocities typically found in industrial jet applications.
Another suggestion would be the study of more than one droplets within the same
domain, of different initial size with each other, also typical of jets.

• The liquid jet break-up processes were developed in a quasi-planar framework, op-
posingly to typical industrial cylindrical jets. However, studies have shown that such
set ups provide fundamental answers to any remaining questions, thus more relative
investigations should be developed. Also, any available quantitative analysis mod-
els, must be further validated and accordingly extended in quasi-planar applications.
Further investigations should be carried out with respect to the driving mechanisms
in jet morphologies, such as the RT and KH instabilities. Existent relationships
partially fail to account for other possible effective parameters involved.

• In view of the current Σ−Y models available in the literature, more work is required.
Particularly in the droplet break-up processes that are directly linked and affect the
potential jet break-up behaviour, new closures in the source terms must be examined
for non-homogeneous break-up processes.
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Appendix A

Basic Equations

The basic principles of mass, momentum and energy conservation can be expressed, which
can yield the fluid flow governing equations.

A.1 Mass Conservation

Consider a volume V, fixed in space, where any mass changes within the volume occurs
if mass flows in/out through the boundary S, Fig. A.1. Mass conservation states that
inflow should balance outflow volume and can be described by:

d

dt

∫
V

ρ dv = −
∮
S

ρu · n ds (A.1)

which is the mass conservation equation in integral form, for incompressible flows. The
mass flow out of the volume, through surface element ds is ρu ·nds, where ρ is the density,
u the velocity and n the outward normal. Hence, the mass conservation principle is:

∂ρ

∂t
+∇ · (ρu) = 0 (A.2)

Where the left-hand side is the rate of mass change in V and right-hand side the net flow
through S. Then, by employing the divergence theorem for the fluxes through S and the
derivative within the integral, one obtains:

Fig. A.1: Fixed control volume V, showing surface S and flow passing through it.
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A.2 Momentum Conservation

Employing the momentum conservation, one can obtain the motion equation. The mo-
mentum conservation states that in a fixed control volume V, the fluid momentum change
rate is the difference in the flux momentum across S along with the net forces acting on
V, as follow:

∂

∂t

∫
V

ρudv = −
∮
S

ρu(u · n)ds+

∫
V

fdv +

∮
S

n ·Tds (A.3)

In (A.3) the first term in the right is the flux momentum through S [102]. The first term
in the left-hand side is the total body force n V and the last term is the total surface
force. Note, f is the force per unit V and is usually the gravitational force so that f = ρg.
Recalling the argument from (A.2) then (A.3) must hold for every point in the fluid flow
[102]. Therefore:

∂ρ

∂t
= −∇ · (ρuu) + f +∇ · T (A.4)

Then by combining the substantial derivative definition and continuity equation one ob-
tains:

ρ
Du

Dt
= f +∇ · T (A.5)

Also known as the Cauchy’s equation of motion. Note, (A.5) is true for any continuous
medium. Here, T is the stress, p is the pressure, I is the unit tensor and µ the viscosity.
Note, S is the strain rate and is S = 1

2
(∇u +∇uT ) [102]. Finally, λ is viscosity’s second

coefficient. Combining T expression with (A.5), one gets:

ρ
Du

Dt
= f −∇p+∇(λ∇ · u) +∇ · (2µS) (A.6)

Also known as the NS equation for Fluid Flow.
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A.3 Interface Motion

Considering the interface location of a curve in 2D, reading x(α) = (x(α), y(α)), separating
two fluids Fig. A.2, then dx/du returns a vector tangent to the curve with ds2 = dx2+dy2.
As a result, t = dx/ds is the unit tangent and |dx/ds| = 1. Finally, the unit normal n is
perpendicular to the curve, so that t · n = 0. Note, the normal orientation is arbitrary
[102].

Fig. A.2: Demonstration of (a) the Heaviside step function separating two fluids and (b)
a portion of the interface S in a control volume (CV) with its boundary (δS).

A.4 Convective and Diffusive Term

• Convective Term: Regarding for instance the x-momentum, the Convective Term
is of:

CONV =
∂ρu2

∂x
+
∂ρuv

∂y
+
∂ρuw

∂z
(A.7)

Which regards the normal plus the cross terms. With respect to Fig. ??, in the
x-direction one gets:

∂ρuu

∂x
≈ ρrurur − ρlulul

∆xP
=
ρrur
∆xP

(
uP + uR

2

)
− ρlul

∆xP

(
uP + uL

2

)
(A.8)

• Diffusive Term: The Diffusive term on x-momentum is:

DIFF =
∂

∂x

(
Γ
∂φ

∂x

)
(A.9)
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Appendix B

Finite Volume Methods (FV)

Consider the generic conservation equation for φ, where all fluid properties and the velocity
field are known. In FV the integral form of the conservation equation is initially employed
as: ∫

S

ρφu · ndS =

∫
S

Γgradφ · ndS +

∫
Ω

qφdΩ (B.1)

Note, the solution domain for FV is subdivided to a finite number of small CVs. For this
analysis one can consider the Staggered grid demonstrated in Chapter 3. FV methods
hence approximate the values at the CV face centre.

B.1 Upwind Difference Scheme (UDS)

Considering the φe approximation, at the node ’e’, it can be compared to employing
backward or forward difference approximation, see Chapter 3, for the 1st derivative, with
respect to the flow direction. So, in UDS, φe approximation is:{

φP if (u · v)e > 0
φE if (u · v)e < 0

(B.2)

This approximation satisfies strictly the boundedness criteria unconditionally, thus none
oscillatory solution [40]. However, it is numerically diffusive. Now, considering Taylor
series expansion with respect to P, one gets:

φe = φP + (xe − xP )

(
∂Φ

∂x

)
P

+
(xe − xP )2

2

(
∂2Φ

∂x2

)
P

+H (B.3)

with H representing higher-order terms. Note, UDS approximation detains the first terms
on the RHS, only, hence UDS is a first order scheme and its truncation error term is
diffusive, featuring a diffusive flux [40].
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Appendix C

Staggered Arrangement

There are two main grid arrangements employed by discretisation methods, the Colocated
and the Staggered arrangement. In the Colocated, all the variables are stored in the cell
nodes. This results to pressure oscillations in the order of ∆x, which requires the use of
a smoothing function. The Staggered arrangement, initially introduced by Harlow and
Welch (1965) [102], begins by choosing a CV around the pressure points, Fig. C.1.

In incompressible flows, the pressure is employed to enforce the velocity field divergence
to zero. If net inflow is increased in the CV, the pressure must be increased and vice versa
in case of net outflow. Here, the CV centre stores the scalars, thus pressure, density and
viscosity. Meanwhile, the velocity components required for the diffusive terms, are stored
at the middle of the CV faces. The x-velocity is displaced on the right by half a grid cell
and similarly the y-velocity by half a grid cell upwards. The mass fluxes computation in
the continuity equation can be done directly.

Fig. C.1: Staggered grid arrangement in three-dimensions (left), along with the grid
locations of the stored scalars and velocities, in two-dimensions (right).
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Appendix D

Boundary Conditions

The Boundary Conditions (BC) implemented are of crucial importance as they can sig-
nificantly effect each case under investigation. In this in-house code, the main boundary
conditions employed are Inflow, Outflow (or Convective), Air Flow, Slip Wall/Symmetry
Line, Non-Slip and Periodic and applied in a Staggered grid.

Inflow
For both single- and multi- phase flow, the literature has shown that the inlet conditions
can majorly affect the predicted flow development. In incompressible flows, the velocity
inlet and the pressure inlet/outlet, are the most crucial to permit the flow to enter and
exit the domain appropriately. This results from the disturbance of a fixed mean velocity
field at the inlet. In a Staggered grid, the normal velocities and the pressure BC are rather
simple. In staggered grids the boundaries coincide with the normal velocities location.
The tangential velocity however needs to be treated with extra care as its located half a
grid space from the walls. To overcome this, ghost points are employed and given a wall
velocity, the tangential velocity is described by linear interpolation [102].

Outflow
The outflow boundary can significantly affect the computational solution in cases where
the outflow varies a lot. It is usually desirable to use a long domain so that the outflow
BC shall not affect the flow region under investigation. In this work, the outflow BC is
mostly treated with Convective outflow, using

∂u∗

∂t
+ UCON

∂u∗

∂n
= 0 (D.1)

where UCON is an advection velocity and n denotes the normal direction to the outer
boundary.
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Wall
At the Wall the BC can be classified between slip or non-slip wall. Generally speaking,
staggered grids enable easy treatment of the pressure and normal velocity conditions,
however the tangential velocity must be treated more carefully. So considering point
vi,j+1/2, then the left node velocity (vi−1,j+1/2) must be obtained. However, the latter
node is not included in the boundary, hence ghost points method must be employed.
In cases of incompressible viscous fluids, it is important for the fluid to stick to the
wall, thus one needs the fluid velocity to match the wall velocity. To obtain Slip Wall
boundary, the ghost point velocity must equal the domain velocity. As a result, and by
employing CDS approximation, the tangential velocity will then be zero and the boundary
will read vi−1,j+1/2 = vi,j+1/2. For Non-slip the ghost point velocity (as described for
inflow BC). In this case must equal the wall velocity (u = UWALL) which now reads
vi−1,j+1/2 = 2vB,j+1/2 − vi,j+1/2. Here, vB,j+1/2 is the tangential wall velocity obtained by
linear interpolation applied at the ghost points.

Periodic
In many cases, periodic boundary conditions are employed for simplicity. Considering for
example the x-direction then the periodic BC will simply read u(x, y, z) = u(x+L, y, z),
where L is the period length and the formula can easily be applied for y and z directions
accordingly.
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Appendix E

Runge Kutta 3rd Order Scheme

The RG method in principle solves the form of ψt = L(ψ, t), where L(ψ, t) is a spatial
discretisation operator; denoting L(ψ, t) = ~u · ∇ψ. One should note, the operator is not
usually linear nor has to be. To advance the solution for ψ at time step tn+1, the process
is achieved in three steps as:

ψ1 = ψn + ∆t L(ψn, tn)

ψ2 = 3
4
ψn + 1

4
ψ1 + 1

4
∆t L(ψ1, tn)

ψn+1 = 1
3
ψn + 2

3
ψ1 + 2

3
∆t L(ψ2, tn)

(E.1)

where ψn is at tn and ∆t is the time step.
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Appendix F

Hamilton-Jacobi Equations in Level
Set Context

In principle, Hamilton-Jacobi systems refer to non-linear hyperbolic partial differential
equations. In principle context, the simplest non-linear PDE is the nonlinear transport
equation reading:

ut + uux = 0 (F.1)

Here the wave velocity c = u depends on the disturbance size and is independent of the x
position. Smaller waves are overruled by larger faster waves. For depression waves u < 0
(left direction motion) and for elevation waves u > 0 (right direction motion) [133]. One
can denote a characteristic curve to (F.1); as the solution of an ODE defined as:

dx

dt
= u(t, x) (F.2)

whose characteristic curve is u solution dependent which is characteristic variable based;
resulting in a circular ’system’. Now, similarly in the Level Set context, solution of the
reinitialisation equation results in discontinuous derivatives integrated in a continuous
solution [133]. The two-dimensional HJ equation, Eqn. (2.65) discretisation yields:

ψn+1
i,j = ψni,j −∆tS(ψ0

i,j)G(ψ)i,j (F.3)

with

G(ψ)i,j =

{√
max(α2

+, b
2
−) +max(c2

+, d
2
−)− 1 if ψ0

i,j > 0√
max(α2

−, b
2
+) +max(c2

−, d
2
+)− 1 if ψ0

i,j < 0
(F.4)

Where the nearby grid point gradients read:

α = D−x ψi,j =
ψi,j−ψi−1,j

∆x
, b = D+

x ψi,j =
ψi+1,j−ψi,j

∆x

c = D−y ψi,j =
ψi,j−ψi,j−1

∆y
, d = D+

y ψi,j =
ψi,j+1−ψi,j

∆y

(F.5)
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Appendix G

Implicit Function Theorem

In an implicit planar curves formulation, the curvature is of second order; denoting that
the first and second derivatives appear [46]. Curvature is only gradient ~∇F and hessian
H(F ) dependent, in implicit planar curves F (x, y) = 0; the relative notation in two-
dimensions reads:

~∇F =
(
∂F
∂x

∂F
∂y

)
= (Fx Fy),

H(F ) =

(
∂2F
∂x2

∂2F
∂x∂y

∂2F
∂x∂y

∂2F
∂y2

)
=
( Fxx Fxy

Fyx Fyy

)
= ∇( ~∇F )

(G.1)

Here, F (x, y) gradient is perpendicular to the level curves, F (x, y) = c, whilst the ~∇F
gradient is parallel to the F (x, y) = 0 normal [46]. Thus ~∇F = (Fx, Fy) and the unit
normal is:

n =
∇F
|∇F |

=
(Fx, Fy)√
F 2
x + F 2

y

(G.2)

Meanwhile the tangent reads t(F ) = κ×∇F = (−Fy, Fx) and the unit tangent yields:

t(F ) =
tan(F )

| tan(F )|
=

(−Fy, Fx)√
F 2
x + F 2

y

(G.3)

Thus the implicit planar curvature [46] reads:

κ = −T (F ) ∗H(F ) ∗ T (F )T

| ~∇F |
= −

(−Fy, Fx) ∗
( Fxx Fxy

Fyx Fyy

)
∗
( −Fy

Fx

)
(F 2

x + F 2
y )3/2

(G.4)

160


	Introduction
	Multiphase Flows
	Scope
	Liquid-Gas Interactions in Jets

	Modelling Complexities and Tools
	Interface Capturing Methods
	Surface-Tracking Methods
	Volume-Tracking Methods

	Thesis Objectives and Outline
	Thesis Objectives
	Thesis Outline


	Numerical Solutions of Two-Phase Fluid Flows
	Incompressible Fluid Flows
	Interfacial Fluid Mechanics
	Numerical Discretisation Tools
	Finite Difference (FD)
	Finite Element (FE)
	Finite Volume (FV)

	Finite Volume Discretisation
	Convective and Diffusion Terms Discretisation
	Temporal Discretisation
	Pressure-Velocity Correction Method

	Interface Modelling
	The Volume of Fluid Method
	The Level Set Method
	Comparison of VOF-CICSAM and LS

	Summary

	Conservative Mass Level Set (CMLS) Method
	Introduction
	Philosophy
	CMLS Numerical Tools
	Mass and Momentum Coupling
	Compute cell density and viscosity
	Surface Tension Treatment
	Interface Reconstruction
	Validation
	CPU run time as a function of Mesh Size

	Comparison of VOF, LS and CMLS in 2D
	Liquid Disc in a Single Shear Vortex
	Sloshing Test
	Rayleigh-Taylor Instability

	Evaluation of CMLS in 3D
	Liquid Sphere Diagonal Translation in Uniform Gas Flow
	Liquid Sphere in a Single Shear Vortex

	Summary

	Liquid Drop Break-Up
	Introduction
	Break-up modes with various Weber number
	Single Drop break-up in a Gas Flow
	Velocity and Pressure field effects
	Parent drop diameter and break-up initiation time
	Ohnesorge number effects on a single drop breakup
	Surface density evolution with various Weber numbers

	Summary

	Planar Liquid Jet break-up
	Introduction
	Liquid Jet break-up Morphologies
	Driving Mechanisms in Liquid Jet break-up

	Quasi-Planar Jet in Coaxial Gas Flow
	Domain Set Up
	Physical Parameters
	Liquid-Assisted break-up
	Air Blast Assisted - Coarse Mesh
	Boundary Layer Effects in Air-Assisted Jets
	Driving Mechanisms in Jet break-up
	Surface Density Evolution

	Summary

	Conclusions and Future Work
	Major Remarks
	Future Work

	Basic Equations
	Mass Conservation
	Momentum Conservation
	Interface Motion
	Convective and Diffusive Term

	Finite Volume Methods (FV)
	Upwind Difference Scheme (UDS)

	Staggered Arrangement
	Boundary Conditions
	Runge Kutta 3rd Order Scheme
	Hamilton-Jacobi Equations in Level Set Context
	Implicit Function Theorem

