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Abstract

In [18], Kronheimer and Mrowka defined invariants of balanced
sutured manifolds using monopole and instanton Floer homology.
Their invariants assign isomorphism classes of modules to balanced
sutured manifolds. In this paper, we introduce refinements of these
invariants which assign much richer algebraic objects called pro-
jectively transitive systems of modules to balanced sutured mani-
folds and isomorphisms of such systems to diffeomorphisms of bal-
anced sutured manifolds. Our work provides the foundation for
extending these sutured Floer theories to other interesting functo-
rial frameworks as well, and can be used to construct new invari-
ants of contact structures and (perhaps) of knots and bordered
3-manifolds.

1. Introduction

In [18], Kronheimer and Mrowka defined invariants of balanced su-
tured manifolds using monopole and instanton Floer homology. The
most basic versions of their monopole and instanton invariants assign
isomorphism classes of finitely generated Z- and C-modules, denoted by
SHM(M, γ) and SHI(M, γ), respectively, to a balanced sutured man-
ifold (M, γ). In this paper, we introduce refinements of Kronheimer
and Mrowka’s invariants which assign much richer algebraic objects to
balanced sutured manifolds. A similar program has recently been car-
ried out in the realm of sutured (Heegaard) Floer homology (SFH) by
Juhász and Thurston [15]. These projects are motivated by a desire to
fit these sutured Floer theories into interesting functorial frameworks
(there are no interesting morphisms between isomorphism classes of
modules). Some interesting source categories for such functors, with
balanced sutured manifolds as objects, are:

1) DiffSut, whose morphisms are isotopy classes of diffeomorphisms
of balanced sutured manifolds,

2) CobSut, whose morphisms are isomorphism classes of smooth
cobordisms of balanced sutured manifolds, in the sense of [14],
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3) ContSut, where the space of morphisms from (M, γ) to (M ′, γ′)
is empty unless the former is a sutured submanifold of the latter,
in which case the morphism space consists of all isotopy classes
of contact structures on M ′ ! int(M) for which ∂M and ∂M ′ are
convex with dividing sets γ and γ′.

One natural target category for such functors isR-Mod, the category
of R-modules for some commutative ring R. For example, the main
result of [15] is that SFH defines a functor from DiffSut to Z/2-Mod.
Similarly, Juhász [14] and Honda, Kazez and Matić [13] have shown that
SFH extends to functors from CobSut and ContSut to Z/2-Mod.

The refinements of SHM and SHI constructed in this paper define
functors from DiffSut (and certain full subcategories of DiffSut) to
categories of projectively transitive systems which are closely related to
R-Mod. We detour slightly in order to describe these categories.

1.1. G-Transitive Systems. Below, we generalize the notion of a tran-
sitive system of modules which was first introduced by Eilenberg and
Steenrod in [8]. We will assume throughout that R is a commutative
ring with 1.

Definition 1.1. Fix a subgroup G ≤ R× and suppose Mα,Mβ are
R-modules. Two homomorphisms f, g : Mα → Mβ are said to be G-
equivalent if f = u · g for some u ∈ G.

We will write f
.
= g to indicate that f and g are R×-equivalent. Ob-

serve that there is a well-defined notion of composition for G-equivalence
classes.

Definition 1.2. Fix a subgroup G ≤ R×. A G-transitive system of
R-modules consists of a set A together with:

1) a collection of R-modules {Mα}α∈A,
2) a collection of G-equivalence classes {gαβ}α,β∈A such that

a) elements of gαβ are isomorphisms from Mα to Mβ, for all α,β ∈
A,

b) idMα ∈ gαα, for all α ∈ A,

c) gβγ ◦ gαβ = gαγ , for all α,β, γ ∈ A.

We will use the term projectively transitive system to refer to an R×-
transitive system, while a transitive system, as defined in [8], is nothing
other than a {1}-transitive system.

Remark 1.3. Just as the maps in a transitive system can be thought
of as canonical isomorphisms, the G-equivalence classes in a G-transitive
system can be thought of as specifying canonical isomorphisms that are
well-defined up to multiplication by elements of G. Indeed, the point of
introducing G-transitive systems is to make the latter notion precise.
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Remark 1.4. Note that a transitive system ofR-modules (A, {Mα}, {gαβ})
canonically defines an actual R-module,

M =
∐

α∈A

Mα

/
∼,

where mα ∼ mβ iff gαβ (mα) = mβ , for mα ∈ Mα and mβ ∈ Mβ. So,
the closer G is to {1}, the closer a G-transitive system is to an actual
R-module.

Definition 1.5. Amorphism of G-transitive systems from (A, {Mα}, {gαβ})
to (B, {Nγ}, {h

γ
δ}) is a collection of G-equivalence classes {fα

γ }α∈A, γ∈B

such that:

1) elements of fα
γ are homomorphisms from Mα to Nγ , for all α ∈ A

and γ ∈ B,
2) fβ

δ ◦ gαβ = hγδ ◦ f
α
γ , for all α,β ∈ A and γ, δ ∈ B.

With a notion of morphism in place, one can talk about the category
of G-transitive systems of R-modules. In this paper, we will be con-
cerned primarily with the categories R-Sys and R-PSys of transitive
and projectively transitive systems of R-modules.

Remark 1.6. Note that the assignment of modules to transitive
systems above defines a canonical functor from R-Sys to R-Mod.

Remark 1.7. Given an R-module M , we can also think of M as
a projectively transitive system of R-modules given (in an abuse of
notation) by

M = ({⋆}, {M}, {[idM ]})

consisting of the single R-module M together with the equivalence class
of the identity map, so that it makes sense to write S ∼= M , for an object
S ∈ R-PSys.

Remark 1.8. For context, it is worth noting that what Juhász and
Thurston really prove in [15] is that SFH defines a functor fromDiffSut
to Z/2-Sys. Composing with the canonical functor from Z/2-Sys to
Z/2-Mod then produces the functor from DiffSut to Z/2-Mod de-
scribed in [15, Theorem 1.9].

As mentioned above, our refinements of SHM and SHI define func-
tors from DiffSut to R-PSys for certain rings R. We describe these
functors and rings in more detail below.

1.2. Our Refinements. Kronheimer and Mrowka’s invariants are de-
fined in terms of closures of balanced sutured manifolds. A closure of
(M, γ) is a closed 3-manifold formed by gluing some auxiliary piece to
(M, γ) and then “closing up” by identifying the remaining boundary
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components, together with a distinguished surface in this closed mani-
fold. Kronheimer and Mrowka assign modules to each such closure, de-
fined in terms of the monopole and instanton Floer groups of the closed
manifold relative to the distinguished surface, and they show that the
modules assigned to different closures are isomorphic. So, the invariant
objects they assign to (M, γ) are the isomorphism classes, SHM(M, γ)
and SHI(M, γ), of these modules.

To extract invariant modules rather than mere isomorphism classes
from Kronheimer and Mrowka’s constructions, one must show that the
modules assigned to different closures are related by canonical isomor-
phisms, meaning that they fit into a transitive system. We do not quite
go that far in this paper (see Subsection 1.4), but we prove something
similar. With our (twisted) refinements of SHM and SHI, we show, for
each theory, that the modules assigned to different closures are related
by canonical isomorphisms that are well-defined up to multiplication by
a unit, meaning that they fit into a projectively transitive system.

Our refinements of SHM and SHI start with refined notions of clo-
sure. For us, a closure of (M, γ) is a tuple, commonly denoted by D ,
which records not only the manifold obtained by closing up (M, γ) and
the distinguished surface therein, but also the embedding of M into this
manifold and a tubular neighborhood of the distinguished surface. The
genus of a closure refers to the genus of this surface. We describe these
refinements below, beginning with those of SHM .

Our primary focus in this paper is on a version of SHM with twisted
coefficients. This version and its refinement are based on a notion of
marked closure, which also keeps track of a curve on the distinguished
surface. This curve is used to define a twisted coefficient system over a
ring R, where R belongs to a particular class of rings defined below.

Definition 1.9. A Novikov-type ring is a commutative ring R with
1, equipped with a homomorphism exp : R → R× such that

1) R does not contain any Z-torsion,
2) t− t−1 is invertible, where tα := exp(α).

The prototypical example is the Novikov ring itself,
{∑

α

cαt
α

∣∣∣∣α ∈ R, cα ∈ Z, #{β < n|cβ ̸= 0} < ∞

}
,

with exp(α) = tα and (t− t−1)−1 = −t− t3 − t5 − . . . .

We will assume henceforth that R is some fixed Novikov-
type ring.

Suppose (M, γ) is a balanced sutured manifold. To every marked clo-
sure D of (M, γ), we assign an R-module SHM(D) in the isomorphism
class SHM(D) ⊗Z R following the construction of SHM with twisted
(local) coefficients in [18, Definition 4.5]. For every pair D ,D ′ of marked
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closures, we construct an isomorphism

ΨD ,D ′ : SHM(D) → SHM(D ′),

well-defined up to multiplication by a unit in R, such that the transi-
tivity

(1) ΨD ,D ′′

.
= ΨD ′,D ′′ ◦ΨD ,D ′

holds for every triple D ,D ′,D ′′. Said differently, we construct canon-
ical isomorphisms, well-defined up to multiplication by a unit in R,
relating any pair of the modules in {SHM(D)}. These modules and
isomorphisms therefore give rise to a projectively transitive system of
R-modules, which we denote by SHM(M, γ) and refer to as the twisted
sutured monopole homology of (M, γ).

Given a diffeomorphism f : (M, γ) → (M ′, γ′), we define an isomor-
phism

(2) SHM(f) : SHM(M, γ) → SHM(M ′, γ′)

of projectively transitive systems of R-modules which depends only on
the smooth isotopy class of f . Furthermore, these isomorphisms satisfy

SHM(f ′ ◦ f) = SHM(f ′) ◦ SHM(f)

for diffeomorphisms

(M, γ)
f
−→ (M ′, γ′)

f ′

−→ (M ′′, γ′′).

In particular, the mapping class group of (M, γ) acts on SHM(M, γ).
Thus, SHM defines a functor from DiffSut to R-PSys. We restate this
below in a weaker but more self-contained way which closely parallels
[15, Theorem 1.9].

Theorem 1.10. There exists a functor

SHM : DiffSut → R-PSys

such that SHM(M, γ) ∼= SHM(M, γ)⊗Z R.1

Our untwisted refinements are defined using ordinary closures. To
every genus g closure D of (M, γ), we assign a Z-module SHMg(D)
in the isomorphism class SHM(M, γ) following the construction in [18,
Definition 4.3]. For each g ≥ 2 and every pair D ,D ′ of genus g closures,
we construct an isomorphism

Ψg
D ,D ′ : SHMg(D) → SHMg(D ′),

well-defined up to sign, such that

(3) Ψg
D ,D ′′

.
= Ψg

D ′,D ′′ ◦Ψ
g
D ,D ′

1Here, we are thinking of SHM(M, γ) ⊗Z R as an isomorphism class of trivial
systems, per Remark 1.7.
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for every triple D ,D ′,D ′′. These modules and maps therefore give rise
to a projectively transitive system of Z-modules, which we denote by
SHMg(M, γ) and refer to as the untwisted sutured monopole homology
of (M, γ) in genus g.

One can assign isomorphisms of systems to diffeomorphisms of bal-
anced sutured manifolds just as in the twisted case, and so this invariant
defines a functor from DiffSutg to Z-PSys, where DiffSutg is the full
subcategory of DiffSut consisting of balanced sutured manifolds which
admit genus g closures.

Theorem 1.11. For each g ≥ 2, there exists a functor

SHMg : DiffSutg → Z-PSys

such that SHMg(M, γ) ∼= SHM(M, γ). The functor

SHMg ⊗Z R : DiffSutg → R-PSys

is naturally isomorphic to the restriction of SHM to DiffSutg.

In characteristic two, this construction produces functors SHMg(−;Z/2)
from DiffSutg to Z/2-Sys. Composition with the canonical functor
from Z/2-Sys to Z/2-Mod then produces functors from DiffSutg to
Z/2-Mod which, in an abuse of notation, we will also denote by SHMg(−;Z/2).
This is summarized in the corollaries below.

Corollary 1.12. For each g ≥ 2, there exists a functor

SHMg(−;Z/2) : DiffSutg → Z/2-Sys

such that SHMg(M, γ;Z/2) ∼= SHM(M, γ;Z/2).

Corollary 1.13. For each g ≥ 2, there exists a functor

SHMg(−;Z/2) : DiffSutg → Z/2-Mod

such that SHMg(M, γ;Z/2) is isomorphic to SHM(M, γ;Z/2).

At first glance, these untwisted refinements of SHM may seem prefer-
able in that they can be made to assign transitive systems and mod-
ules rather than just projectively transitive systems to balanced sutured
manifolds. On the other hand, we do not know how to naturally relate
the SHMg for different g. This is not important in practice but ex-
plains our aesthetic preference for the twisted refinement SHM, which
naturally incorporates (marked) closures of every genus.

In [18], Kronheimer and Mrowka use their sutured monopole invariant
to define an invariant of knots called monopole knot homology (KHM).
Given a knot K in a closed 3-manifold Y , they define KHM(Y,K) to
be the isomorphism class

KHM(Y,K) := SHM(Y ! ν(K),m ∪ −m),
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where ν(K) is a solid torus neighborhood of K and m and −m are
oppositely oriented meridians on ∂ν(K). We provide twisted and un-
twisted refinements of this invariant. Our refinements are invariants of
based knots, where a based knot in Y is a knot K ⊂ Y together with
a basepoint p ∈ K. These refinements take the forms of the functors
described below.

Theorem 1.14. There exists a functor

KHM : BKnot → R-PSys

such that KHM(Y,K, p) ∼= KHM(Y,K)⊗Z R.

Theorem 1.15. For each g ≥ 2, there exists a functor

KHMg : BKnot → Z-PSys

such that KHMg(Y,K, p) ∼= KHM(Y,K).

Above, BKnot is the category whose objects are based knots in 3-
manifolds, and where the morphism space from (Y,K, p) to (Y ′,K ′, p′)
consists of isotopy classes of diffeomorphisms from (Y,K, p) to (Y,K ′, p′).
One should compare Theorems 1.14 and 1.15 to [15, Theorem 1.8]. As
before, one can define untwisted invariants in characteristic two which
take the forms of functors from BKnot to Z/2-Sys and Z/2-Mod. One
can also define analogous invariants of based links, though we do not do
so here.

One can similarly define an invariant of based, closed 3-manifolds,
which assigns to a pair (Y, p) the isomorphism class of

SHM(Y (p)) := SHM(Y ! ν(p)),

where ν(p) is a tubular neighborhood of p. There are twisted and un-
twisted refinements of this invariant which, among other things, account
for the fact that Y (p) technically depends on the neighborhood ν(p)
rather than just on p. These refinements take the form of the functors
below.

Theorem 1.16. There exists a functor

HM : BMfld → R-PSys

such that HM(Y, p) ∼= SHM(Y (p))⊗Z R.

Theorem 1.17. For each g ≥ 2, there exists a functor

HMg : BMfld → Z-PSys

such that HMg(Y, p) ∼= SHM(Y (p)).

Here, BMfld is the category whose objects are based, closed 3-
manifolds, and where the morphism space from (Y, p) to (Y ′, p′) consists
of isotopy classes of diffeomorphisms from (Y, p) to (Y, p′). One should
compare Theorems 1.16 and 1.17 to [15, Theorem 1.5]. As above, one
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can also define untwisted invariants in characteristic two which take the
forms of functors from BMfld to Z/2-Sys and Z/2-Mod.

Our refinements of SHI come in untwisted and twisted flavors as
well, defined in terms of odd closures and marked odd closures. As the
basic forms of these refinements are virtually identical to those of SHM ,
we will leave a more detailed discussion to Section 9 and simply state
the analogues of Theorems 1.10 and 1.11 below.

Theorem 1.18. There exists a functor

SHI : DiffSut → C-PSys

such that SHI(M, γ) ∼= SHI(M, γ).

Theorem 1.19. For each g ≥ 2, there exists a functor

SHIg : DiffSutg → C-PSys

such that SHIg(M, γ) ∼= SHI(M, γ).

In Section 9, we also define twisted and untwisted refinements of
Kronheimer and Mrowka’s instanton knot homology (KHI). These take
the forms of functors KHI and KHIg from BKnot to C-PSys. Finally,
we define analogues HI and HIg of the functors in Theorems 1.16 and
1.17.

The key innovation in this paper is an alternative geometric interpre-
tation of the isomorphisms used by Kronheimer and Mrowka to relate
the modules assigned to different closures of the same genus. In [18],
these maps are defined in terms of certain splicing cobordisms from the
disjoint union of one closure and a mapping torus to the other closure.
Here, they are defined in terms of 2-handle cobordisms, based on the
observation that two closures of the same genus are naturally related by
surgery.

Our alternative approach has two main advantages. First, it makes
the transitivity of these isomorphisms, as expressed in (1) and (3),
transparent for closures of the same genus, and thereby enables us to
define the invariants SHMg and SHIg with ease. Second, and most
importantly, it allows us to prove, in the twisted setting, that these iso-
morphisms commute with the isomorphisms used by Kronheimer and
Mrowka to relate the modules assigned to closures whose genera differ
by one. Indeed, the latter isomorphisms are defined in terms of splic-
ing cobordisms similar to those mentioned above, and these splicing
cobordisms commute with the 2-handle cobordisms we use to define the
former isomorphisms. This commutativity is what ultimately enables
us to prove the transitivity in (1) for arbitrary triples of closures, and
thereby define the invariants SHM and SHI.



NATURALITY IN SUTURED MONOPOLE AND INSTANTON HOMOLOGY 9

1.3. Some Applications. Below, we discuss some applications of these
“naturality” results, mostly in the context of twisted sutured monopole
homology. Nearly all of what is said below applies equally well in the
untwisted context.

One application is to define stronger invariants of contact manifolds
with convex boundary. In [1], we use naturality to define such an in-
variant, which assigns to a contact structure ξ on (M, γ), for which
∂M is convex with dividing curve γ, an element of the projectively
transitive system SHM(M, γ), which can be thought of as a collection
{c(D , ξ) ∈ SHM(D)} of elements that are well-defined up to multipli-
cation by a unit in R, such that

ΨD ,D ′(c(D , ξ)) = c(D ′, ξ),

up to multiplication by a unit in R, for all marked closures D ,D ′ of
(M, γ).

Naturality makes this a much stronger invariant than it would oth-
erwise be. For example, suppose ξ and ξ′ are contact structures on
diffeomorphic manifolds (M, γ) and (M ′, γ′) with marked closures D

and D ′. To show that ξ and ξ′ are not contactomorphic, it suffices to
show that the map from SHM(D) to SHM(D ′) induced by any diffeo-
morphism from (M, γ) to (M ′, γ′) sends c(D , ξ) to an element which is
not in the orbit of c(D ′, ξ′) under the action of the mapping class group
of (M ′, γ′). By contrast, without naturality, one must to show that
there is no isomorphism from SHM(D) to SHM(D ′) sending c(D , ξ)
to c(D ′, ξ′).

In [23], Ozsváth and Stipsicz apply what is essentially the same prin-
ciple to distinguish Legendrian knots K and K′ in the same smooth knot
type K and with the same classical invariants using the Legendrian in-
variant L̂ defined in [22]. Specifically, they show that L̂(K) and L̂(K′)
are not in the same orbit under the action of the mapping class group

of (S3,K) on the knot Floer homology ĤFK(S3,K), even though the

two invariants are related by an automorphism of ĤFK(S3,K). In [3],
we use the contact invariant in [1] to define an analogous invariant of
Legendrian and transverse knots in monopole knot homology. With the
naturality results in this paper, the above reasoning is something that
would also make sense in that context.

As mentioned at the beginning, one of the primary motivations for
proving the naturality results in this paper was to set the foundation
for extending SHM and SHI to other functorial frameworks. We have
made some partial progress in this direction. In [1], we define maps
on SHM associated to contact handle attachments. To extend SHM
to a functor from ContSut to R-PSys, the only remaining step is
to show that if two compositions of handle attachments represent the
same contact cobordism, then the corresponding compositions of maps
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agree. We will do this in future work. Once we do, we will be able to
define a “minus” (or “from”) version of KHM by following a scheme
of Etnyre, Vela-Vick and Zarev for recovering the “minus” version of
knot Floer homology from SFH using bypass attachment maps [9]. In
the meantime, we use these handle attachment maps in [1] to prove a
monopole Floer analogue of Honda’s bypass exact triangle in SFH.

Once we extend SHM to a functor from ContSut to R-PSys, we
will then be able to extend it to a functor from CobSut to R-PSys fol-
lowing Juhász’s strategy in [14]. While interesting in its own right, the
latter functor will also provide a way of defining monopole Floer invari-
ants for bordered 3-manifolds. In bordered Heegaard Floer homology,
as defined by Lipshitz, Ozsváth and Thurston in [21], one assigns a dif-
ferential graded algebra A(F ) to a parametrized closed surface F and a

right A∞ module ĈFA(Y ) over A(F ) to a 3-manifold Y with an iden-
tification of ∂Y with F . In [28, 29], Zarev shows that H∗(A(F )) and

H∗(ĈFA(Y )) are naturally isomorphic to direct sums of SFH groups,
and he gives an interpretation of the algebra and module multiplica-
tions (on homology) in terms of Juhász’s sutured cobordism maps on
SFH [14]. Extending SHM to a functor from CobSut to R-PSys will
enable us to define analogous bordered invariants on the monopole side
by mimicking Zarev’s construction. Of course, this will not be sufficient
to define a full bordered theory, complete with a pairing theorem (for
that, we would also need to define the higher multiplications), but it
will represent significant progress towards such a construction.

Most of what is discussed above also applies to the sutured instanton
setting. For example, in [2], we use the naturality in this paper to define
an invariant of contact 3-manifolds with convex boundary in SHI similar
to the one discussed above.

1.4. Further Remarks. A natural question is whether one can give
refinements of Kronheimer and Mrowka’s sutured monopole and instan-
ton homology theories which take the form of transitive systems rather
than projectively transitive systems. It appears difficult to do so (in the
monopole case, for instance) for the following reason: there are several
places in our paper where we consider R-modules of the form̂

HM •(Y |R;Γη)

where Y is a mapping torus with fiber R and Γη is a local system
determined by a curve η ⊂ R (see Subsection 3.1). The fact that we
can identify ̂

HM •(Y |R;Γη) ∼= R

is used crucially both in the definition of the maps ΨD ,D ′ and the proof
that these maps are well-defined up to multiplication by a unit in R. To
construct a transitive system, one needs a canonical such identification,
and we do not know how to choose one at present. A naive strategy is



NATURALITY IN SUTURED MONOPOLE AND INSTANTON HOMOLOGY 11

to consider a Lefschetz fibration X → D2 with fiber R and boundary Y
and identify 1 ∈ R with the relative invariant of X. However, the use of
twisted (local) coefficients makes this impossible: to define the relative
invariant, one needs a 2-chain ν ⊂ X with ∂ν = η, and no such ν exists
in general. We are hopeful that a slightly different approach, which
involves enlarging the indexing set for our systems, will ultimately allow
us to define transitive systems, but we do not elaborate further here.
It is worth mentioning that practically all applications of naturality
that we have in mind will work just as well with projectively transitive
systems as with transitive systems.

Another natural question is whether one can define a projectively
transitive system across closures of different genera in the untwisted
case. In the instanton case, the answer is “yes” given the natural iso-
morphism between SHIg and SHIg described in Theorem 9.22. How-
ever, as one still needs twisted coefficients to relate the Floer groups
associated to closures of different genera, this point is hardly worth em-
phasizing. The question is more interesting in the monopole case, and
we do not know the answer. Theorem 1.11 implies that there is a natural
isomorphism

SHMg ⊗Z R ∼= (SHMg+1 ⊗Z R)|DiffSutg .

Yet, it is not at all clear how to construct from this a natural isomor-
phism

SHMg ∼= (SHMg+1)|DiffSutg

which could then be used to extend the untwisted theory to a projec-
tively transitive system of Z-modules across all genera.

1.5. Organization. Most of this paper is devoted to constructing the
maps ΨD ,D ′ , proving their well-definedness up to multiplication by a
unit in R, and showing that they satisfy the transitivity in (1).

In Section 2, we introduce our refined notions of closure and marked
closure. In Section 3, we provide the necessary background on monopole
Floer homology and define the untwisted and twisted sutured monopole
homology modules associated to closures and marked closures, essen-
tially rehashing [18, Definitions 4.3 and 4.5]. Section 4 develops the
tools we will use to show that the maps ΨD ,D ′ are independent of the
choices in their constructions. In Section 5, we define these maps, first
for marked closures of the same genus (Subsection 5.1); then, for marked
closures whose genera differ by one (Subsection 5.2); and finally, for ar-
bitrary marked closures (Subsection 5.3). In the same section, we prove
that the maps ΨD ,D ′ are well-defined and that they satisfy the tran-
sitivity in (1). In Section 6, we construct the isomorphisms SHM(f)
described in (2) and prove that SHM defines a functor from DiffSut to
R-PSys. Section 7 deals with untwisted theory. There, we define the
maps Ψg

D ,D ′ and the functors SHMg, and we describe the relationship
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between the twisted and untwisted monopole invariants. In Section 8,
we define the monopole knot homology functors KHM, KHMg, HM,
and HMg. In Section 9, we adapt the above results to the instanton
context, defining the functors SHI and SHIg and describing the re-
lationship between the two. There, we also define the instanton knot
homology functors KHI, KHIg, HI, and HIg.

We end with two appendices. In Appendix A, we collect results about
the diffeomorphism group of a surface times an interval relative to its
boundary. A key topological operation used in this paper is that of
cutting a 3-manifold open along a surface and regluing by a diffeomor-
phism. As explained in Section 4, one can realize this operation via
Dehn surgery. The results of Appendix A provide a canonical (up to
isotopy) identification of the cut-open-and-reglued manifold with the
corresponding Dehn-surgered manifold, which then provides a canoni-
cal identification of their Floer homologies. The results of Appendix A,
applied to the case of a torus times an interval, are also important in
our refinement of monopole knot homology. In Appendix B, we prove
a non-vanishing result for the (monopole Floer) relative invariants of
Lefschetz fibrations over a disk, which we will use to relate the cobor-
dism maps corresponding to the above Dehn surgeries to the splicing
cobordisms used by Kronheimer and Mrowka in [18].

1.6. Acknowledgements. We thank Jon Bloom, Ryan Budney, András
Juhász, Peter Kronheimer and Tom Mrowka for helpful conversations.
We also thank the anonymous referee for many helpful suggestions.

2. Closures of Sutured Manifolds

In this section, we describe refinements of Kronheimer and Mrowka’s
notion of closure for balanced sutured manifolds. We will work explicitly
in the smooth category throughout. In particular, for us, balanced
sutured manifolds come with smooth structures.

Definition 2.1. A balanced sutured manifold (M, γ) consists of a
compact, oriented, smooth 3-manifold M and a union γ of disjoint,
oriented, smooth curves in ∂M called sutures. Let R(γ) = ∂M ! γ,
oriented as a subsurface of ∂M . We require that

1) neither M nor R(γ) has closed components,
2) R(γ) = R+(γ) -R−(γ) with ∂R+(γ) = −∂R−(γ) = γ,
3) χ(R+(γ)) = χ(R−(γ)).

Suppose A(γ) is a closed tubular neighborhood of γ in ∂M . Let F
be a compact, connected, oriented surface with g(F ) > 0 and π0(∂F ) ∼=
π0(γ). Let

h : ∂F × [−1, 1] → A(γ)
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be an orientation-reversing homeomorphism sending ∂F×{±1} to ∂(R±(γ)!
A(γ)). Consider the manifold

M ′ = M ∪h F × [−1, 1]

formed by gluing F×[−1, 1] to M according to h and then rounding cor-
ners. Figure 1 shows a portion of M ′. The fact that (M, γ) is balanced
ensures that M ′ has two homeomorphic boundary components, ∂+M ′

and ∂−M ′. One can then glue ∂+M ′ to ∂−M to form a closed manifold
Y containing a distinguished surface R := ∂+M = ∂−M . In [18], Kro-
nheimer and Mrowka define a closure of (M, γ) to be any pair (Y,R)
obtained in this way.

+ +

− −

γ γ F × [−1, 1]

F × {1}

Figure 1. Left, a portion of M . The annulus A(γ) is
shown in gray and the regions marked ± are R±(γ) !
A(γ). Right, a portion of M ′, showing part of F× [−1, 1]
glued to M along A(γ) after rounding corners.

Our notion of closure is somewhat more ambient. Rather than build-
ing (Y,R) from (M, γ) by the process described above, we start with
a smooth manifold Y into which M and R × [−1, 1] embed appropri-
ately. Keeping track of these embeddings is what will allow us to define
canonical isomorphisms (up to multiplication by a unit) between the
monopole Floer invariants associated to different closures.

Definition 2.2. A closure of (M, γ) is a tuple D = (Y,R, r,m) con-
sisting of:

1) a closed, oriented, smooth 3-manifold Y ,
2) a closed, oriented, smooth surface R with g(R) ≥ 2,
3) a smooth, orientation-preserving embedding r : R× [−1, 1] ↪→ Y ,
4) a smooth, orientation-preserving embeddingm : M ↪→ Y!int(Im(r))

such that
a) m extends to a diffeomorphism

M ∪h F × [−1, 1] → Y ! int(Im(r))
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for some A(γ), F , h, as above, and some smooth structure on
M ∪h F × [−1, 1] which restricts to the given smooth structure
on M ,

b) m restricts to an orientation-preserving embedding

R+(γ)!A(γ) ↪→ r(R× {−1}).

The genus g(D) refers to the genus of R.

Note that, for a closure (Y,R, r,m) of (M, γ), the pair (Y, r(R×{t}))
is a closure in the sense of Kronheimer and Mrowka, for any t ∈ [−1, 1].

Definition 2.3. A marked closure of (M, γ) is a tuple (Y,R, r,m, η),
where (Y,R, r,m) is a closure of (M, γ), as defined above, and η is an
oriented, homologically essential, smoothly embedded curve in R.

Marked closures are needed to define the twisted sutured monopole
invariants that will be the focus of this paper.

3. Sutured Monopole Homology

In this section, we define the sutured monopole homology of a closure,
closely following Kronheimer and Mrowka’s definition in [18, Definitions
4.3 and 4.4]. We begin with some background on monopole Floer ho-
mology for closed 3-manifolds. See [17, 18] for more details.

3.1. Monopole Floer Homology. Monopole Floer homology assigns
to a closed, oriented, connected, smooth 3-manifold Y a Z-module,̂

HM •(Y ) =
⊕

s∈Spinc(Y )

̂

HM •(Y, s).

More generally,

̂

HM • is a functor from Cob to Z-Mod, where the ob-
jects of Cob are 3-manifolds as above and the morphisms are isomor-
phism classes of connected cobordisms with homology orientations (we
will henceforth omit any mention of homology orientations, as we are
only interested in cobordism maps up to sign). Here, a cobordism from
Y1 to Y2 is a compact, oriented, smooth 4-manifold W with boundary
∂W = −∂−W - ∂+W , together with orientation-preserving diffeomor-
phisms

φ− : ∂−W → Y1 and φ+ : ∂+W → Y2.

Two cobordisms (W,φ±) and (W ′,φ′±) are isomorphic if there is an
orientation-preserving diffeomorphism from W to W ′ which intertwines
the maps φ± and φ′±. We will generally omit the diffeomorphisms φ±
from our notation and usê

HM •(W ) :

̂

HM •(Y1) →

̂

HM •(Y2)

to denote the map induced by W . As this notation indicates, we will
also blur the distinction between a cobordism and its isomorphism class.
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Given cobordisms W1 from Y1 to Y2 and W2 from Y2 to Y3, the com-
posite W3 = W2◦W1 from Y1 to Y3 is formed as the quotient of W1-W2

by the map

(φ2)
−1
− ◦ (φ1)+ : ∂+W1 → ∂−W2,

and is endowed with the natural boundary identifications (φ3)− = (φ1)−
and (φ3)+ = (φ2)+. The statement that

̂

HM • is a functor implies that

(4)

̂

HM •(W3) =

̂

HM •(W2) ◦

̂

HM •(W1).

Given a smooth 1-cycle η ⊂ Y , Kronheimer and Mrowka define a
version of monopole Floer homology with twisted (local) coefficients
which takes the form of an R-module,̂

HM •(Y ;Γη) =
⊕

s∈Spinc(Y )

̂

HM •(Y, s;Γη).

Suppose η1 ⊂ Y1 and η2 ⊂ Y2 are smooth 1-cycles. A cobordism from
(Y1, η1) to (Y2, η2) is a cobordism W as above together with a smooth
relative 2-cycle ν ⊂ W such that ∂ν = η2 − η1 under the identifications
φ±. Such a cobordism (W, ν) induces a map̂

HM •(W ;Γν) :

̂

HM •(Y1;Γη1) →

̂

HM •(Y2;Γη2)

which depends only on the homology class [ν] ⊂ H2(W, ∂W ;R) and the
isomorphism class of (W, ν), where (W, ν) and (W ′, ν ′) are isomorphic if
there is a diffeomorphism from one pair to the other which intertwines
the maps φ± and φ′±. Composition of cobordisms is defined in the
obvious way and the analogue of (4) holds in this setting as well.

The functoriality of

̂

HM • can be used to assign isomorphisms on Floer
homology to diffeomorphisms between 3-manifolds as follows. Suppose
ψ is an orientation-preserving diffeomorphism from Y to Y ′ which sends
a smooth 1-cycle η ⊂ Y to η′ ⊂ Y ′. Consider the cobordism (W, ν) =
(Y × [0, 1], η× [0, 1]) from (Y, η) to (Y ′, η′) with boundary identifications

φ− = id : Y × {0} → Y and φ+ = ψ : Y × {1} → Y ′.

Then, the induced mapŝ

HM •(ψ) :=

̂

HM •(W ) :

̂

HM •(Y ) →

̂

HM •(Y
′)̂

HM •(ψ) :=

̂

HM •(W ;Γν) :

̂

HM •(Y ;Γη) →

̂

HM •(Y
′;Γη′)

are isomorphisms which depend only on the smooth isotopy class of
ψ (rel η in the twisted case). Moreover, for diffeomorphisms ψ1 from
(Y1, η1) to (Y2, η2) and ψ2 from (Y2, η2) to (Y3, η3), we have that̂

HM •(ψ2 ◦ ψ1) =

̂

HM •(ψ2) ◦

̂

HM •(ψ1).

As a special case, these maps define actions of the mapping class groups
of Y and (Y, η) on

̂

HM •(Y ) and

̂

HM •(Y ;Γη).
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When defining monopole Floer invariants of sutured manifolds, we
will be particularly interested in certain summands of

̂

HM •. In general,
the summands

̂

HM •(Y, s) ⊂

̂

HM •(Y ) are constrained by an adjunction
inequality, which states that if R ⊂ Y is a connected, oriented, smoothly
embedded surface with g(R) > 0 and

̂

HM •(Y, s) is nonzero, then

|⟨c1(s), [R]⟩| ≤ 2g(R)− 2.

For R ⊂ Y as above, Kronheimer and Mrowka define the submodulê

HM •(Y |R) ⊂

̂

HM •(Y ) to be the direct sum over “top” Spinc structures,̂

HM •(Y |R) :=
⊕

⟨c1(s),[R]⟩=2g(R)−2

̂

HM •(Y, s).

The submodule

̂

HM •(Y |R;Γη) ⊂

̂

HM •(Y ;Γη) is defined analogously.

Notation 3.1. Given a 3-manifold Y , a surface R, a curve η ⊂ R
and an embedding r : R× [−1, 1] ↪→ Y , we will use the shorthand̂

HM •(Y |R) for

̂

HM •(Y |r(R× {0}))̂

HM •(Y |R;Γη) for

̂

HM •(Y |r(R× {0});Γr(η×{0})).

Example 3.2. Suppose R is a smooth surface with g(R) ≥ 2, φ is
an orientation-preserving diffeomorphism of R, and η is an oriented,
homologically essential, smoothly embedded curve in R. Consider the
mapping torus

R×φ S1 := R× [−1, 1]/((x, 1) = (φ(x),−1)).

In [18, Lemma 4.7], Kronheimer and Mrowka prove that̂

HM •(R×φ S1|R) ∼= Z and

̂

HM •(R×φ S1|R;Γη) ∼= R.

The maps induced by cobordisms decompose along Spinc structures
as well. For example, suppose R1 ⊂ Y1 and R2 ⊂ Y2 are embedded
surfaces as above, W is a cobordism from Y1 to Y2 and RW ⊂ W is a
smoothly embedded surface containing R1 and R2 as components, such
that every component of RW has positive genus. Then, by summing the
maps

̂

HM •(W, s) over all s ∈ Spinc(W ) for which

⟨c1(s), F ⟩ = 2g(F )− 2

for every component F ⊂ RW , one obtains a map̂

HM •(W |RW ) :

̂

HM •(Y1|R1) →

̂

HM •(Y2|R2).

Given a cobordism (W, ν) from (Y1, η1) to (Y2, η2) and R1, R2, RW as
before, the map̂

HM •(W |RW ;Γν) :

̂

HM •(Y1|R1;Γη1) →

̂

HM •(Y2|R2;Γη2)
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is defined analogously. Note that when R1 and R2 are homologous in
W and g(R1) = g(R2), we have that̂

HM •(W |R1 -R2) =

̂

HM •(W |R1) =

̂

HM •(W |R2),

and likewise in the twisted setting. We will commonly use one of the
latter two expressions in place of the former.

Remark 3.3. When studying the submodules

̂

HM •(Y |R) and the

maps

̂

HM •(W |RW ), we can relax the requirement that our 3-manifolds
and cobordisms be connected (and likewise for the twisted versions of
these submodules and maps). The discussion above carries over nat-
urally to this more general setting. See [18, Sections 2.5 and 2.6] for
details.

3.2. Sutured Monopole Homology. Suppose (M, γ) is a balanced
sutured manifold. Below, we define modules SHM(D) and SHM(D)
described in the introduction, closely following Kronheimer and Mrowka’s
constructions in [18, Definitions 4.3 and 4.5].

Definition 3.4. Given a closure D = (Y,R, r,m) of (M, γ), the un-
twisted sutured monopole homology of D is the Z-module

SHM(D) :=

̂

HM •(Y |R) :=

̂

HM •(Y |r(R× {0}).

Definition 3.5. Given a marked closure D = (Y,R, r,m, η) of (M, γ),
the twisted sutured monopole homology of D is the R-module

SHM(D) :=

̂

HM •(Y |R;Γη) :=

̂

HM •(Y |r(R× {0});Γr(η×{0})).

We will use SHMg(D) and SHMg(D) in place of SHM(D) and
SHM(D) when we wish to emphasize that D has genus g. While the
definitions of these modules do not really depend on the maps m or
r (except to specify the homology class [r(R × {0})] ∈ H2(Y ;Z)), the
canonical isomorphisms we construct between them will.

Before defining these isomorphisms, we establish some preliminary
results in the next section that will be crucial in proving that these
isomorphisms are well-defined up to multiplication by the appropriate
units. If the reader prefers, she can skip ahead to Sections 5 and 7 for
the definitions of these canonical isomorphisms and refer back to Section
4 as needed.

4. Preliminary Results

In this section, we establish the tools that will be used in Section
5 to construct the canonical isomorphisms ΨD ,D ′ , to show that they
are well-defined up to multiplication by a unit in R, and to prove that
they satisfy the required transitivity. We will also use these tools in
Section 7 to prove the analogous results in the untwisted case. Although
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the results below make no explicit mention of sutured manifolds, there
are obvious similarities between the objects studied here and marked
closures.

Suppose Y is a closed, oriented, smooth 3-manifold; R is a closed,
oriented smooth surface of genus at least two; η is an oriented, homolog-
ically essential, smoothly embedded curve in R; and r : R× [−1, 1] ↪→ Y
is an embedding. Let r± denote the restriction

r± := r|R×{±1}.

In an abuse of notation, we will also think of r± as a map from R to Y
via the canonical identification R ∼= R× {±1}. We will make extensive
use of the shorthand̂

HM •(Y |R;Γη) for

̂

HM •(Y |r(R× {0});Γr(η×{0}))

described in Notation 3.1.
Let Au and Bu be diffeomorphisms of R, for u = 1, 2, such that

A1 ◦B1 and A2 ◦B2 are isotopic and

(B2 ◦ (B1)−1)(η) = η.

The goal of this section is to define an isomorphism for each u = 1, 2
from

̂

HM •(Y |R;Γη) to the monopole Floer homology of the manifold
obtained by cutting Y open along the surfaces r(R×{t}) and r(R×{t′})
for some t < 0 < t′ and regluing along these surfaces by

r ◦ (Bu × id) ◦ r−1 and r ◦ (Au × id) ◦ r−1,

respectively. To define these isomorphisms, we start by choosing factor-
izations of Au and Bu into Dehn twists. This allows us to think of the
reglued manifolds as having been obtained from Y via ±1 surgeries on
curves in r(R × [−1, 1]). Our maps are then induced by the associated
2-handle cobordisms.

Interlude 4.1. For the reader’s benefit, we make this relationship
between cutting/regluing and Dehn surgery more precise below, by con-
sidering the case of a single Dehn twist. Let c be an embedded curve in
the surface r(R×{t}) ⊂ Y . Let Y ′ be the manifold obtained by cutting
Y open along r(R× {t}), so that

∂Y ′ = S+ ∪ −S−,

where both S+ and S− are copies of r(R×{t}). Let Y ′′ be the manifold
obtained from Y ′ by gluing S+ to S− by a positive (i.e. right-handed)
Dehn twist around c; that is, we identify each x ∈ S+ with Dc(x) ∈ S−.
Alternatively, let Y+ be the manifold obtained from Y by performing
−1 surgery on c, according to the framing induced by r(R× {t}). Both
the cutting/regluing and the Dehn surgery are local operations, so there
is a canonical diffeomorphism

(5) Y ′′ ! r(R× (t− ϵ, t+ ϵ)) → Y+ ! r(R× (t− ϵ, t+ ϵ))
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which we will refer to as the “identity map.” Moreover, this identity map
extends to a diffeomorphism from Y ′′ to Y+. The primary importance of
Appendix A lies in Proposition A.1 and its Corollary A.2, which implies
that any two such extensions are isotopic through such extensions. The
story is similar for negative (i.e. left-handed) Dehn twists, the only
difference being that they correspond to +1 surgeries rather than −1
surgeries.

The main result of this section is Theorem 4.3, which states that the
R×-equivalence classes of these isomorphisms “agree” for u = 1, 2, and
are therefore independent of the choices made in their constructions.
We will use these maps in Subsection 5.1 to construct the isomorphisms
ΨD ,D ′ for closures of the same genus, and Theorem 4.3 will serve as our
main tool for proving that these maps are well-defined up to multipli-
cation by a unit in R.

Suppose Au and Bu are isotopic to the following compositions of Dehn
twists,

Au ∼ D
eu1
au1

◦ · · · ◦D
eunu

au
nu
,(6)

Bu ∼ D
eunu+1
au
nu+1

◦ · · · ◦D
eumu

au
mu

,(7)

where the aui are smoothly embedded curves inR and the eui are elements
of {−1, 1}. Let

P
u = {i | eui = +1}

N
u = {i | eui = −1},

and choose real numbers

(8) − 3/4 < tumu < · · · < tunu+1 < −1/4 < 1/4 < tunu < · · · < tu1 < 3/4.

Pick some tu′i between tui and the next greatest number in the list (8)
for each i ∈ N u.

Let Y u
− be the 3-manifold obtained from Y by performing +1 surgeries

on the curves r(aui × {tui }) for i ∈ N u, with respect to the framings
induced by the surfaces r(R×{tui }). Let X

u
− be the 4-manifold obtained

from Y u
− × [0, 1] by attaching −1 framed 2-handles along the curves

r(aui ×{tu′i })×{1} ⊂ Y u
−×{1} for all i ∈ N u. One boundary component

of Xu
− is −Y u

− . The other is diffeomorphic to Y by a map which restricts
to the identity outside of a small neighborhood of

⋃

i∈N u

r(R× [tui , t
u′
i ])

(the +1 and −1 surgeries above cancel in pairs, up to isotopy; see Re-
mark 4.6 for an explanation of why we go through this trouble). Since
g(R) ≥ 2, it follows from Corollary A.2 that there is a unique isotopy
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class of such diffeomorphisms, so Xu
− naturally induces a map̂

HM •(X
u
−|R;Γν) :

̂

HM (Y u
− |R;Γη) →

̂

HM (Y |R; Γη),

where ν is the cylinder r(η × {0})× [0, 1] ⊂ Xu
−.

We similarly define Xu
+ to be the 4-manifold obtained from Y u

−× [0, 1]
by attaching −1 framed 2-handles along the curves r(aui ×{tui })×{1} ⊂
Y u
− ×{1} for all i ∈ Pu. The boundary of Xu

+ is the union of −Y u
− with

the 3-manifold Y u
+ obtained from Y u

− by performing −1 surgeries on the
curves r(aui × {tui }) for all i ∈ Pu. In particular, Y u

+ is obtained from
Y by performing −eui surgeries on the curves r(aui × {tui }) for all i, and
is therefore diffeomorphic to the manifold obtained from Y by cutting
and regluing by

r ◦ (Bu × id) ◦ r−1 and r ◦ (Au × id) ◦ r−1,

as described at the top. The cobordism Xu
+ induces a map̂

HM •(X
u
+|R;Γν) :

̂

HM (Y u
− |R;Γη) →

̂

HM (Y u
+ |R;Γη),

where, in this case, ν is the cylinder r(η×{0})× [0, 1] ⊂ Xu
+ (we will use

the letter ν to denote cylinders of this form for many cobordisms; the
particular cylinder we have in mind should be clear from the context).

By Corollary A.2, there is a unique isotopy class of diffeomorphisms

(9) Y 1
+ → Y 2

+

which restrict to the identity on Y ! int(Im(r)) and to r◦(B2 ◦(B1)−1×
id) ◦ r−1 in a neighborhood of r(R× {0}). Let

ΘY 1
+Y 2

+
:

̂

HM •(Y
1
+|R;Γη) →

̂

HM •(Y
2
+|R;Γη)

be the isomorphism associated to this isotopy class, as described in
Subsection 3.1.

Remark 4.2. The condition that the diffeomorphisms from Y 1
+ to

Y 2
+ restrict to r◦(B2◦(B1)−1×id)◦r−1 in a neighborhood of r(R×{0})

might seem superfluous. Indeed, any two diffeomorphisms restricting to
the identity on Y ! int(Im(r)) are already isotopic. The point of this
condition is that it ensures that these diffeomorphisms send r(η×{0}) ⊂
Y 1
+ to r(η × {0}) ⊂ Y 2

+, which is necessary for the map ΘY 1
+Y 2

+
to make

sense.

The following is the main theorem of this section.

Theorem 4.3. The maps

̂

HM •(Xu
−|R;Γν) are invertible. Moreover,

the maps

ΘY 1
+Y 2

+
◦

̂

HM •(X
1
+|R;Γν) ◦

̂

HM •(X
1
−|R;Γν)

−1(10) ̂

HM •(X
2
+|R;Γν) ◦

̂

HM •(X
2
−|R;Γν)

−1(11)
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from

̂

HM •(Y |R;Γη) to

̂

HM •(Y 2
+|R;Γη) are R×-equivalent and are iso-

morphisms.

We first prove the following special case of Theorem 4.3.

Proposition 4.4. Suppose N u = ∅; that is, the Dehn twists in the
factorizations of Au and Bu are positive. In this case, Y u

− = Y and the
maps

ΘY 1
+Y 2

+
◦

̂

HM •(X
1
+|R;Γν)̂

HM •(X
2
+|R;Γν)

from

̂

HM •(Y |R;Γη) to

̂

HM •(Y 2
+|R;Γη) are R×-equivalent and are iso-

morphisms.

Remark 4.5. The positivity assumption in Proposition 4.4 is not
very restrictive in that any orientation-preserving diffeomorphism of
a closed surface is isotopic to a composition of positive Dehn twists.
However, we will need to allow for negative Dehn twists for some of the
applications of Theorem 4.3 in Section 5. For example, in proving that
ΨD ,D ′ is well-defined in Theorems 5.2 and 5.14, we will need to express
a diffeomorphism of a closed surface which is the identity outside of a
compact subsurface as a composition of Dehn twists around curves in
the subsurface. One needs both positive and negative Dehn twists to
do so in general.

Remark 4.6. The reader might think the maps in Theorem 4.3 are
overly complicated; why treat the positive and negative Dehn twists in
the factorizations (6) and (7) so differently? One answer is that we want
these maps to be defined exclusively in terms of 2-handle cobordisms
associated to −1 surgeries so that we can think of these cobordisms
as obtained from the splicing cobordisms of Kronheimer and Mrowka
via capping by Lefschetz fibrations (see the proof of Lemma 4.9). This
relationship is critical for the proof of Theorem 4.3. Defining these
maps strictly in terms of −1 surgeries will also be convenient for our
construction of contact invariants in sutured monopole and instanton
homology in [1, 2].

Finally, it is worth mentioning that if one attempts the more obvious
strategy – to define these maps as compositions of maps associated
to −1 and +1 surgeries (corresponding to the positive and negative
Dehn twists) – then it will not in general be true that the maps are
isomorphisms. For instance, the composition of the map induced by −1
surgery on a knot with the map induced by +1 surgery on a parallel
copy of the knot is identically zero as the composite cobordism contains
an embedded 2-sphere with self-intersection 0 (see [19, Lemma 7.1]).
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Proof of Proposition 4.4. To show that

(12) ΘY 1
+Y 2

+
◦

̂

HM •(X
1
+|R;Γν)

.
=

̂

HM •(X
2
+|R;Γν),

we will prove that the two sides are R×-equivalent after pre- and post-
composing with isomorphisms induced by certain merge-type and split-
type cobordisms, M and S. For this, we will show that it suffices (by
an excision argument) to prove (12) in the case that Y ! int(Im(r)) is
also diffeomorphic to a product R× I. In this case, both Y and Y u

+ are
mapping tori and it is enough to demonstrate that both sides of (12) are
isomorphisms since the relevant Floer homology groups are isomorphic
to R. We will prove this by an argument involving relative invariants
of Lefschetz fibrations.

We first describe the cobordisms M and S. Both are examples of
what we referred to in the introduction as splicing cobordisms. Let S
denote the 2-dimensional saddle on the left in Figure 2. Its boundary
is a union of horizontal and vertical edges, H1, . . . , H4 and V1, . . . , V4.
For convenience, we pick identifications of the horizontal edges with the
interval [0, 1] and identifications of the vertical edges with intervals,

V1 ∼ [−1, 1],(13)

V2 ∼ [3/4,−3/4],(14)

V3 ∼ [−1,−3/4],(15)

V4 ∼ [3/4, 1],(16)

where [3/4,−3/4] is thought of as a subinterval of the circle S1 :=
[−1, 1]/(−1 = 1). The merge-type cobordism M is built by gluing to-
gether three 4-manifolds with corners,

M1 = (Y ! int(Im(r)))× [0, 1],

M2 = R× S,

M3 = R× [−3/4, 3/4]× [0, 1],

along the horizontal portions of their boundaries. Specifically, we glue
M2 to M1 according to the maps

r− × id : R×H1 → Y × [0, 1],

r+ × id : R×H2 → Y × [0, 1],

and then glue M3 to M1 ∪M2 according to

id× id : (R× {−3/4})× [0, 1] → R×H3,

id× id : (R× {+3/4})× [0, 1] → R×H4.

Let ν be the cylinder η × {0}× [0, 1] ⊂ M3 ⊂ M. See the right side of
Figure 2 for a schematic of M, ν and these gluings.
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M1
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M3

M1

r+ × id

r− × id

id × id

id × id

0 1

− 3
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1

−1

1

3
4

− 3
4

ν

S

H1

H2

H3

H4

V1

V2

V3 V4

Figure 2. Left, the 2-dimensional saddle S and identi-
fications of the horizontal and vertical edges of ∂S with
intervals. Right, a schematic of the cobordism M. The
dashed line represents the cylinder ν.

The 4-manifold M has boundary ∂M = −M1 - −M2 -M3, where

M1 = Y ! int(Im(r)) ∪ R× V1,

M2 = R× V2 ∪ R× [−3/4, 3/4],

M3 = Y ! int(Im(r)) ∪ R× V3 ∪ R× [−3/4, 3/4] ∪ R× V4.

Note that there are canonical isotopy classes of diffeomorphisms

(M1, R× {0}) → (Y, r(R× {0}))(17)

(M2, R× {0}, η × {0}) → (R× S1, R× {0}, η × {0})(18)

(M3, R× {0}, η × {0}) → (Y, r(R× {0}), r(η × {0}))(19)

given the identifications in (13)-(16). Thus, (M, ν) naturally gives rise
to a map
(20)̂

HM •(M|R;Γν) :

̂

HM •(Y |R)⊗Z

̂

HM •(R× S1|R;Γη) →

̂

HM •(Y |R;Γη),

which is shown in [18] to be an isomorphism.

Remark 4.7. Technically, in order to define a smooth structure on
M, one must specify collar neighborhoods of the horizontal boundary
components of M1, M2 and M3. However, the map in (20) does not
depend on this choice of collars. To see this, suppose (M, c) and (M, c′)
are the smooth 4-manifolds formed according to the gluing instructions
above and two choices c and c′ of such collars. Then (M, c) is diffeomor-
phic to (M, c′) by a map which is the identity outside of some tubular
neighborhood of the gluing regions (cf. [24, Theorem 3.5]). The restric-
tion of such a map to ∂(M, c) is therefore a diffeomorphism which is
the identity outside of tubular neighborhoods of surfaces of genus at
least two. By Corollary A.2, any two such diffeomorphisms are isotopic.
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Hence, the gluing instructions alone specify a canonical isomorphism
class of cobordisms from Y - (R × S1, η × {0}) to (Y, r(η × {0})). One
can think of (M, ν) as denoting a representative of this isomorphism
class or the isomorphism class itself. In either case, the map (20) makes
sense without reference to collars.

The same reasoning applies to the maps induced by the splicing cobor-
disms S and P defined later in this section. We will thus omit any
discussion of collars until Subsection 5.2; there, we are gluing along tori
and need to be more careful.

The split-type splicing cobordism S is built by gluing together the
cornered 4-manifolds

S1 = (Y ! int(Im(r)))× [0, 1],

S2 = R× S′,

S3 = (R× [−3/4, 3/4])2+ × [0, 1],

where S′ is the saddle gotten by “turning S around,” as indicated in
Figure 3, and (R × [−3/4, 3/4])u+ is the manifold obtained from R ×
[−3/4, 3/4] by performing −eui (= −1 since we are assuming that N u =
∅) surgeries on the curves aui × {tui } for all i. We label the edges of S′

as shown in Figure 3 and choose the same edge identifications as before
with respect to this new labeling. In forming S, we glue S2 to S1

according to the maps

r− × id : R×H1 → Y × [0, 1],

r+ × id : R×H2 → Y × [0, 1].

We then glue S3 to S1 ∪ S2 according to

id× id : (R× {−3/4})× [0, 1] → R×H3,

id× id : (R× {+3/4})× [0, 1] → R×H4,

as indicated in Figure 3. Let ν denote the cylinder η × {0} × [0, 1] ⊂
S3 ⊂ S.

The 4-manifold S has boundary ∂S = −S1 - S2 - S3, where

S1 = Y ! int(Im(r)) ∪ R× V3 ∪ (R× [−3/4, 3/4])2+ ∪ R× V4,

S2 = R× V2 ∪ (R× [−3/4, 3/4])2+,

S3 = Y ! int(Im(r)) ∪ R× V1.

As before, there are canonical isotopy classes of diffeomorphisms,

(S1, R× {0}, η × {0}) → (Y 2
+, r(R× {0}), r(η × {0}))(21)

(S2, R× {0}, η × {0})) → ((R× S1)2+, R× {0}, η × {0})(22)

(S3, R× {0}) → (Y, r(R× {0})),(23)
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Figure 3. Left, the 2-dimensional saddle S′. Right, a
schematic of the cobordism S. The dashed line repre-
sents the cylinder ν.

where (R × S1)u+ is the manifold obtained from R × S1 by performing
−eui (= −1) surgeries along the curves aui × {tui } for all i. Note that
(R × S1)2+ is diffeomorphic to the mapping torus of the map A2 ◦ B2.
Thus, (S, ν) gives rise to a map
(24)̂
HM •(S|R;Γν) :

̂
HM •(Y

2
+|R;Γη) →̂ HM •(Y |R)⊗Z

̂
HM •((R×S1)2+|R;Γη),

which is shown in [18] to be an isomorphism.
To prove the equality in (12), it therefore suffices to show that the

maps ̂

HM •(S|R;Γν) ◦ΘY 1
+Y 2

+
◦

̂

HM •(X
1
+|R;Γν) ◦

̂

HM •(M|R;Γν)(25) ̂

HM •(S|R;Γν) ◦

̂

HM •(X
2
+|R;Γν) ◦

̂

HM •(M|R;Γν)(26)

from̂

HM •(Y |R)⊗Z

̂

HM •(R×S1|R;Γη) →

̂

HM •(Y |R)⊗Z

̂

HM •((R×S1)2+|R;Γη)

are R×-equivalent. As alluded to earlier, the proof of this fact begins
with an excision argument very similar to that employed by Kronheimer
and Mrowka to show that the maps in (20) and (24) are isomorphisms.

Let W u be the composite cobordism S ◦Xu
+ ◦M. Here, Xu

+ is glued
to M via the identification in (19). For u = 1, we glue S to X1

+ ◦ M
via the identification in (21) together with a diffeomorphism

Y 1
+ → Y 2

+

as in (9). For u = 2, we glue S to X2
+ ◦ M via the identification in

(21). Let ν = η × {0} × [0, 3] ⊂ W u be the composite of the cylinders
labeled ν in M, Xu

+ and S. The compositions in (25) and (26) are then
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R×-equivalent to the maps ̂

HM •(W
u|R;Γν)

for u = 1 and 2, respectively. Let c be a smoothly embedded arc in S
with boundary on V3 and V4 at the points identified with −7/8 and 7/8,
respectively, and let c′ be the corresponding arc in S′. Let T u be the
3-dimensional submanifold of W u given by

T u = R× c ∪ R× {−7/8, 7/8}× [0, 1] ∪ R× c′,

where R× {−7/8, 7/8}× [0, 1] ⊂ Xu
+. Note that T u is diffeomorphic to

a product R× S1. See Figure 4 below for a schematic.

SXu
+M

Tu

∼=21 or
21,9

∼=19

ν νν

ν

Figure 4. Top, a schematic of the identifications used
to form W u. Bottom, the cobordism W u and the 3-
manifold T u ∼= R× S1 depicted in red.

Let W
u
be the 4-manifold obtained by cutting W u open along T u

and capping off the two newly introduced boundary components, each
of the form R × S1, with copies of R × D2. The cobordism W

u
is

isomorphic to the disjoint union of the cylindrical cobordism Y × [0, 3]
with another cobordism Uu from R× S1 to (R× S1)2+. Here, U

u is the
composite ((R × S1)2+ × [2, 3]) ◦ V u, where V u is the cobordism from
R × S1 to (R × S1)u+ obtained from R × S1 × [0, 2] by attaching −eui
(= −1) framed 2-handles along the curves aui ×{tui }×{2} ⊂ R×S1×{2}
for all i. In forming U1, we glue (R × S1)2+ × [2, 3] to V 1 according to
a diffeomorphism

(27) (R× S1)1+ → (R× S1)2+
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which restricts to the identity outside of a small neighborhood of (R ×
[−3/4, 3/4])1+ and to B2 ◦ (B1)−1 × id in a neighborhood of R× {0}. In
forming U2, we glue (R × S1)2+ × [2, 3] to V 2 according to the identity
map. See Figure 5 for a schematic of Uu.

(R× S1)2+ × [2, 3]V u

∼=27 or
id

ν ν

Figure 5. A schematic of the identifications used to
form Uu.

Let ν ⊂ W
u
denote the image of the cylinder ν ⊂ W u. Note that

ν ⊂ W
u
is the union of the cylinder η × {0} × [0, 2] ⊂ V u with η ×

{0} × [2, 3] ⊂ (R × S1)2+ × [2, 3], both also denoted by ν. Kronheimer
and Mrowka prove in [18] that̂

HM •(W
u|R;Γν)

.
=

̂

HM •(W
u
|R;Γν)

=

̂

HM •(Y × [0, 3]|R)⊗

̂

HM •(U
u|R;Γν)

= id⊗

̂

HM •(U
u|R;Γν)

as maps from̂

HM •(Y |R)⊗Z

̂

HM •(R×S1|R;Γη) →

̂

HM •(Y |R)⊗Z

̂

HM •((R×S1)2+|R;Γη).

So, to establish (12), we need only show that the mapŝ

HM •(U
u|R;Γν) :

̂

HM •(R× S1|R;Γη) →

̂

HM •((R× S1)2+|R;Γη)

are R×-equivalent for u = 1, 2. It suffices to prove that both maps are
isomorphisms sincê

HM •(R× S1|R;Γη) ∼=

̂

HM •((R× S1)2+|R;Γη) ∼= R,

by Example 3.2. Since the cylindrical cobordism ((R× S1)2+ × [2, 3], ν)
induces the identity map, it is enough to prove the following.

Proposition 4.8. The mapŝ

HM •(V
u|R;Γν) :

̂

HM •(R× S1|R;Γη) →

̂

HM •((R× S1)u+|R;Γη)

are isomorphisms for u = 1, 2.

Proof. Let φ be an orientation-preserving diffeomorphism of R and
suppose γ is a homologically essential, smoothly embedded curve in R.
Performing −1 surgery along γ × {t} ⊂ R ×φ S1 (we will assume that
t ̸= 0) results in a manifold diffeomorphic to R×φ◦Dγ S

1. Let X denote
the cobordism obtained from R×φ S1 × [0, 1] by attaching a −1 framed
2-handle along γ × {t} × {1} ⊂ R ×φ S1 × {1}. Let η be an oriented,
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homologically essential, smoothly embedded curve in R and let ν denote
the cylinder η × {0}× [0, 1] ⊂ X.

Lemma 4.9. The induced map̂

HM •(X|R;Γν) :

̂

HM •(R×φ S1|R;Γη) →

̂

HM •(R×φ◦Dγ S1|R;Γη)

is an isomorphism.

Note that Proposition 4.8 follows from this lemma since

̂

HM •(V u|R;Γν)

is a composition of maps of the form

̂

HM •(X|R;Γν).

Proof of Lemma 4.9. Below, we show that (X, ν) can alternately be ob-
tained from a merge-type splicing cobordism (P, ν) from (R×φ S1, η ×
{0}) - R×Dγ S

1 to (R×φ◦Dγ S
1, η× {0}) by filling the boundary com-

ponent R ×Dγ S1 with a Lefschetz fibration over D2 with fibers diffeo-

morphic to R and vanishing cycle γ in some fiber. That

̂

HM •(X|R;Γν)
is an isomorphism then follows from the facts that the induced map
(28)̂

HM •(P|R;Γν) :

̂

HM •(R×φS
1|R;Γη)⊗Z

̂

HM •(R×DγS
1|R) →

̂

HM •(R×φ◦DγS
1|R;Γη)

is an isomorphism, that

̂

HM •(X|R;Γν) is the map obtained from

̂

HM •(P|R;Γν)
by plugging the relative invariant of the Lefschetz fibration into the sec-
ond factor, and that this relative invariant is a unit in

̂
HM •(R ×Dγ

S1|R) ∼= Z. We provide more details below.
The construction of (P, ν) is very similar to that of (M, ν) from

Section 4. Let S denote the 2-dimensional saddle used to define M.
The cobordism P is built by gluing together the cornered 4-manifolds

P1 = R× [−1/2, 1/2]× [0, 1],

P2 = R× S,

P3 = R× [−1/2, 1/2]× [0, 1],

along the horizontal portions of their boundaries. We glue P2 to P1

according to the maps

id× id : R×H1 → (R× {+1/2})× [0, 1],

φ× id : R×H2 → (R× {−1/2})× [0, 1],

and then glue P3 to P1 ∪ P2 according to

id× id : (R× {−1/2})× [0, 1] → R×H3,

Dγ × id : (R× {+1/2})× [0, 1] → R×H4.

Let ν be the cylinder η × [0, 1] ⊂ P1 ⊂ P. See the right side of Figure
6 for a schematic of P, ν and these gluings.
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Figure 6. Left, the 2-dimensional saddle S. Right, a
schematic of the cobordism (P, ν).

The 4-manifold P has boundary ∂P = −P1 - −P2 - P3, where

P1 = R× [−1/2, 1/2] ∪ R× V1,

P2 = R× [−1/2, 1/2] ∪ R× V2

P3 = R× [−1/2, 1/2] ∪ R× V3 ∪ R× [−1/2, 1/2] ∪ R× V4.

There are unique isotopy classes of diffeomorphisms

(P1, R× {0}, η × {0}) → (R×φ S1, R× {0}, η × {0})

(P2, R× {0}) → (R×Dγ S1, R× {0})

(P3, R× {0}, η × {0}) → (R×φ◦Dγ S1, R× {0}, η × {0})(29)

which restrict to the identity in a small neighborhood of R×{0} in each
case. (There are two surfaces of the form R × {0} in P3; above, we are
referring to the one contained in P1.) The cobordism (P, ν) thus gives
rise to the map in (28), which is shown to be an isomorphism in [18].

Let L be the 4-manifold obtained from R × D2 by attaching a −1
framed 2-handle along

γ × {s} ⊂ R× S1 = R× ∂D2,

for some s ∈ [−1/2, 1/2]. Then L is the total space of a relatively min-
imal Lefschetz fibration as described above. There is a unique isotopy
class of diffeomorphisms

(30) ∂L → P2

which restrict to the identity on a small neighborhood of R × {0}. We
may therefore view L as a cobordism from the empty manifold to P2.
As such, L gives rise to a map̂

HM •(L|R) : Z →

̂

HM •(P2|R),
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and the relative invariant of L refers to the element

ΨL :=

̂

HM •(L|R)(1) ∈

̂

HM •(P2|R) ∼= Z.

Consider the composite P ◦ L formed by gluing L to P by the iden-
tification in (30). Figure 7 shows a schematic of this composite. The
induced map̂

HM •(P ◦ L|R;Γν) :

̂

HM •(R×φ S1|R;Γη) →

̂

HM •(R×φ◦Dγ S1|R;Γη)

is therefore given bŷ

HM •(P ◦ L|R;Γν)(−) =

̂

HM •(P|R;Γν)(−⊗ΨL).

Since

̂

HM •(P|R;Γν) is an isomorphism and ΨL = ±1 by Proposition

B.1, the map

̂

HM •(P ◦ L|R;Γν) is an isomorphism.

L P P ◦ L

P3

P1
φ × id

id × id

id × id

Dγ × id

φ × id

id × id

id × id

Dγ × id

∼=30

ν ν

Figure 7. Left, schematics of L and P. The Lefschetz
fibration L is obtained from R ×D2 by attaching a −1
framed 2-handle along the curve γ×{s} in its boundary.
The black dot in the schematic represents this 2-handle.
Right, the composite P ◦ L.

Lemma 4.9 then follows from the observation that (P ◦ L, ν) is iso-
morphic to (X, ν) in the case that t > 0. The case t < 0 is virtually
identical. Figure 8 provides another view of (P ◦ L, ν) which better
illustrates the fact that this composite is isomorphic to (X, ν). q.e.d.

As mentioned above, this completes the proof of Proposition 4.8. q.e.d.

This also completes the proof of Proposition 4.4. q.e.d.

We may now prove Theorem 4.3.

Proof of Theorem 4.3. That

̂

HM •(Xu
−|R;Γν) is an isomorphism follows

from Proposition 4.4 since the cobordism (Xu
−, ν) is of exactly the same

form as (Xu
+, ν). Indeed, both are 2-handle cobordisms associated to −1

surgeries on curves of the form γ × {t} in a product region R × [−1, 1]
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LP1 P3

(P1 × I) ∪ h P3 × I

∼=

φ × id

id × id

id × id

Dγ × id

φ × id

id × id

id × id

Dγ × id

Figure 8. Another view of (P ◦ L, ν) which makes it
clear that P ◦ L is isomorphic to the composition of
P3 × [0, 1] with the cobordism obtained from P1 × [0, 1]
by attaching a −1 framed 2-handle h along γ×{t}×{1}.
The latter cobordism is isomorphic to the cobordism
from P1 to P3 obtained by attaching a −1 framed 2-
handle along γ×{t}, which is then obviously isomorphic
to (X, ν).

of a 3-manifold. We prove next that the inverse

̂

HM •(Xu
−|R;Γν)−1 is

equal to the map induced by a cobordism of this form as well.
We start by writing each negative Dehn twist appearing in the fac-

torizations (6) and (7) as a composition of positive Dehn twists. Specif-
ically, for i ∈ N u, choose a factorization

(31) D−1
aui

∼ Dau1,i
◦ · · · ◦Dau

nu
i
,i

and real numbers
tunu

i ,i
< · · · < tu1,i

contained in the interval (tu′i+1, t
u′
i ).

Let Xu+2
+ be the 4-manifold obtained from Y × [0, 1] by attaching −1

framed 2-handles along the curves r(auj,i × {tuj,i}) × {1} ⊂ Y × {1} for

all i ∈ N u and j = 1, . . . , nu
i . One boundary component of Xu+2

+ is
−Y . The other is diffeomorphic to Y u

− by a map which restricts to the
identity on Y !int(Im(r)) and on a small neighborhood of r(R×{0}). As
there is a unique isotopy class of such diffeomorphisms, Xu+2

+ naturally
induces a map̂

HM •(X
u+2
+ |R;Γν) :

̂

HM (Y |R;Γη) →

̂

HM (Y u
− |R; Γη).

Our goal is to show that this map is R×-equivalent to the inverse of̂

HM •(Xu
−|R;Γν).

Let Xu+4
+ be the 4-manifold obtained from Y × [0, 1] by attach-

ing −1 framed 2-handles along the curves r(aui × {tu′i }) × {1} and
r(auj,i × {tuj,i}) × {1} in Y × {1} for all i ∈ N u and j = 1, . . . , nu

i .

One boundary component of Xu+4
+ is −Y . The other is diffeomorphic

to Y by a map which restricts to the identity on Y ! int(Im(r)) and
on a small neighborhood of r(R × {0}). With the boundary identifi-
cations above, the cobordism (Xu+4

+ , ν) is isomorphic to the composite
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(Xu
−, ν) ◦ (X

u+2
+ , ν). It follows that map̂

HM •(X
u+4
+ |R;Γν) :

̂

HM (Y |R;Γη) →

̂

HM (Y |R;Γη)

is equal to ̂

HM •(X
u
−|R;Γν) ◦

̂

HM •(X
u+2
+ |R;Γν).

On the other hand, (Xu+4
+ , ν) is the cobordism associated to compo-

sitions of Dehn twists like those in (6) and (7), but where each com-
position consists solely of positive Dehn twists and is isotopic to the
identity. Proposition 4.4 therefore implies that

̂

HM •(X
u+4
+ |R;Γν) is

R×-equivalent to the identity map. It follows that̂

HM •(X
u
−|R;Γν)

−1 .
=

̂

HM •(X
u+2
+ |R;Γν).

To finish the proof of Theorem 4.3, it therefore suffices to show that
the maps

ΘY 1
+Y 2

+
◦

̂

HM •(X
1
+|R;Γν) ◦

̂

HM •(X
3
+|R;Γν)(32) ̂

HM •(X
2
+|R;Γν) ◦

̂

HM •(X
4
+|R;Γν)(33)

from

̂

HM (Y |R;Γη) to

̂

HM (Y 2
+|R;Γη) are R×-equivalent. Let Xu+6

+ be
the 4-manifold obtained from Y×[0, 1] by attaching−1 framed 2-handles
along the curves r(aui × {tui }) × {1} ⊂ Y × {1} for all i ∈ Pu and
r(auj,i × {tuj,i}) × {1} ⊂ Y × {1} for all i ∈ N u and j = 1, . . . , nu

i . One

boundary component of Xu+6
+ is −Y . The other is diffeomorphic to Y u

+
by a map which restricts to the identity on Y !int(Im(r)) and on a small
neighborhood of r(R × {0}). With these boundary identifications, the
cobordism (Xu+6

+ , ν) is isomorphic to the composite (Xu
+, ν)◦(X

u+2
+ , ν).

Proposition 4.4 implies that

ΘY 1
+Y 2

+
◦

̂

HM •(X
7
+|R;Γν)

.
=

̂

HM •(X
8
+|R;Γν),

and, hence, that the compositions in (32) and (33) are R×-equivalent.
q.e.d.

5. The Maps ΨD ,D ′

In this section, we define the canonical isomorphisms

ΨD ,D ′ : SHM(D) → SHM(D ′)

described in the introduction. We will first define these maps for marked
closures of the same genus (Subsection 5.1) and then for marked closures
whose genera differ by one (Subsection 5.2) before defining ΨD ,D ′ for
arbitrary marked closures (Subsection 5.3).
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5.1. Same Genus. Suppose D and D ′ are marked closures of (M, γ)
with g(D ′) = g(D) = g. Below, we define the isomorphism

ΨD ,D ′ = Ψg
D ,D ′ : SHMg(D) → SHMg(D ′).

For the sake of exposition, let us write

D = D1 = (Y1, R1, r1,m1, η1)

D
′ = D2 = (Y2, R2, r2,m2, η2).

To define Ψg
D ,D ′ = Ψg

D1,D2
, we start by noting that the complements

Y1 ! int(Im(r1)) and Y2 ! int(Im(r2)) are diffeomorphic by a map

(34) C : Y1 ! int(Im(r1)) → Y2 ! int(Im(r2))

which restricts to m2 ◦m
−1
1 on m1(M !N(γ)), for some tubular neigh-

borhoodN(γ) of γ ⊂ M . Let ϕC
± and ϕC be the diffeomorphisms defined

by

ϕC
± := (r±2 )

−1 ◦ C ◦ r±1 : R1 → R2

ϕC := (ϕC
+)

−1 ◦ ϕC
− : R1 → R1.

Finally, choose any diffeomorphism

ψC : R1 → R1

such that

(ϕC
− ◦ ψC)(η1) = (η2).

Note that ϕC and ϕC
± are determined by C whereas ψC is not.

The maps ϕC and ψC are defined so that the triple

(Y2, r2(R2 × {0}), r2(η2 × {0}))

is diffeomorphic to the triple obtained from

(Y1, r1(R1 × {0}), r1(η1 × {0}))

by cutting Y1 open along the surfaces r1(R1×{t}) and r1(R1×{t′}) for
some t < 0 < t′ and regluing by

r1 ◦ ((ψ
C)−1 × id) ◦ r−1

1 and r1 ◦ ((ϕ
C ◦ ψC)× id) ◦ r−1

1 ,

respectively. We may therefore define the map Ψg
D1,D2

using the con-

struction in Section 4, with ϕC ◦ψC and (ψC)−1 playing the roles of Au

and Bu (for a single value of u, say). This is made precise below.
Suppose ϕC ◦ ψC and (ψC)−1 are isotopic to the following composi-

tions of Dehn twists,

ϕC ◦ ψC ∼ De1
a1 ◦ · · · ◦D

en
an ,

(ψC)−1 ∼ Den+1
an+1

◦ · · · ◦Dem
am ,
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where each ai is a smoothly embedded curve in R1 and each ei is an
element of {−1, 1}. Let

P = {i | ei = +1}

N = {i | ei = −1},

choose real numbers

−3/4 < tm < · · · < tn+1 < −1/4 < 1/4 < tn < · · · < t1 < 3/4,

and pick some t′i between ti and the next greatest number in this list
for each i ∈ N .

Let (Y1)− denote the 3-manifold obtained from Y1 by performing +1
surgeries on the curves r1(ai × {ti}) for i ∈ N . Let X− be the 4-
manifold obtained from (Y1)−× [0, 1] by attaching −1 framed 2-handles
along r1(ai × {t′i}) × {1} ⊂ (Y1)− × {1} for all i ∈ N . One boundary
component of X− is −(Y1)−. The other is diffeomorphic to Y1 by a map
which restricts to the identity outside of a small neighborhood of

⋃

i∈N

R1 × [ti, t
′
i].

As there is a unique isotopy class of such diffeomorphisms, X− naturally
induces a map̂

HM •(X−|R1;Γν) :

̂
HM ((Y1)−|R1;Γη1) →

̂
HM (Y1|R1;Γη1),

where ν is the cylinder r1(η1×{0})×[0, 1] ⊂ X−. It follows immediately
from Theorem 4.3 that this map is an isomorphism.

We similarly define X+ to be the 4-manifold obtained from (Y1)− ×
[0, 1] by attaching −1 framed 2-handles along the curves r1(ai × {ti})×
{1} ⊂ (Y1)− × {1} for all i ∈ P. The boundary of X+ is the union of
−(Y1)− with the 3-manifold (Y1)+ obtained from (Y1)− by performing
−1 surgeries on the curves r1(ai × {ti}) × {1} for all i ∈ P. The
cobordism X+ thus induces a map̂

HM •(X+|R1;Γν) :

̂

HM ((Y1)−|R1;Γη1) →

̂

HM ((Y1)+|R1;Γη1),

where ν is the cylinder r1(η1 × {0}) × [0, 1] ⊂ X+ in this case (as in
Section 4, we will use the same letter ν to denote cylinders of this form
for many cobordisms).

By construction, (Y1)+ is diffeomorphic to Y2 by a map which re-
stricts to C on Y1 ! int(Im(r1)) and to r2 ◦ ((ϕC

− ◦ ψC)× id) ◦ r−1
1 on a

neighborhood of r1(R1 × {0}). Let

ΘC
(Y1)+Y2

:

̂

HM •((Y1)+|R1;Γη1) →

̂

HM •(Y2|R2;Γη2)

denote the isomorphism associated to the isotopy class of such diffeo-
morphisms. We now have everything we need to define the map Ψg

D ,D ′ .
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Definition 5.1. The map Ψg
D ,D ′ is given by

Ψg
D ,D ′ = Ψg

D1,D2
:= ΘC

(Y1)+Y2
◦

̂

HM •(X+|R1;Γν) ◦

̂

HM •(X−|R1;Γν)
−1.

Next, we prove that the R×-equivalence class of this map is well-
defined.

Theorem 5.2. The map Ψg
D ,D ′ is independent of the choices made

in its construction, up to multiplication by a unit in R.

Proof. The choices we made in defining Ψg
D ,D ′ were those of:

1) the diffeomorphism C,
2) the diffeomorphism ψC ,
3) the factorizations of ϕC ◦ ψC and (ψC)−1 into Dehn twists,
4) the ti, t′i.

It follows from Theorem 4.3 that Ψg
D ,D ′ is independent of the choices

in (2)-(4). To see this, suppose we have fixed C and let ψC
1 and ψC

2
be two diffeomorphisms satisfying (5.1). Let A1 = ϕC ◦ ψC

1 , A2 =
ϕC ◦ ψC

2 , B1 = (ψC
1 )

−1 and B2 = (ψC
2 )

−1 and choose factorizations
of these diffeomorphisms into Dehn twists. Let (Y1)u±, Xu

+ and Xu
−

be the surgered manifolds and 2-handle cobordisms associated to these
factorizations of Au and Bu for u = 1, 2, as defined above and in the
previous section. It suffices to show that the maps

ΘC
(Y1)1+Y2

◦

̂

HM •(X
1
+|R1;Γν) ◦

̂

HM •(X
1
−|R1;Γν)

−1(35)

ΘC
(Y1)2+Y2

◦

̂

HM •(X
2
+|R1;Γν) ◦

̂

HM •(X
2
−|R1;Γν)

−1(36)

are R×-equivalent. Note that

ΘC
(Y1)1+Y2

= ΘC
(Y1)2+Y2

◦Θ(Y1)1+(Y1)2+
,

where

Θ(Y1)1+(Y1)2+
:

̂

HM •((Y1)
1
+|R1;Γη1) →

̂

HM •((Y1)
2
+|R1;Γη1)

is the map associated to the unique isotopy class of diffeomorphisms
from (Y1)1+ to (Y1)2+ which restrict to the identity on Y1 ! int(Im(r1))
and to

r1 ◦ ((ψ
C
2 )

−1 ◦ ψC
1 × id) ◦ r−1

1 = r1 ◦ (B
2 ◦ (B1)−1 × id) ◦ r−1

1

in a neighborhood of r1(R1 × {0}), as defined in the previous section.
But Theorem 4.3 implies that the maps

Θ(Y1)1+(Y1)2+
◦

̂

HM •(X
1
+|R1;Γν) ◦

̂

HM •(X
1
−|R1;Γν)

−1

̂

HM •(X
2
+|R1;Γν) ◦

̂

HM •(X
2
−|R1;Γν)

−1

are R×-equivalent. Composing both with ΘC
(Y1)2+Y2

, it follows that the

maps in (35) and (36) are R×-equivalent as well.
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It remains to show that Ψg
D ,D ′ does not depend on the choice of C.

Suppose C1 and C2 are two such choices. Then C2 = C1 ◦D, where D
is a diffeomorphism of Y1! int(Im(r1)) which is equal to the identity on
m1(M ! N(γ)), for some tubular neighborhood N(γ) of γ ⊂ M . The
first step in relating the constructions of Ψg

D ,D ′ for the different choices

C1 and C2 is to relate ϕC1
± , ϕC1 and ψC1 with the maps ϕC2

± , ϕC2 and
ψC2 . Let

ϕD
± := (r±1 )

−1 ◦D ◦ r±1

ψD := (ϕD
−)

−1.

Note that
ϕC2
± = ϕC1

± ◦ ϕD
± ,

and that we may choose ψC2 to be

ψC2 = ψD ◦ ψC1

since
ϕC2
− ◦ ψC2 = ϕC1

− ◦ ψC1

both send η1 to η2 in this case. Then, we have

ϕC2 ◦ ψC2 = (ϕD
+)

−1 ◦ ϕC1 ◦ ψC1(37)

(ψC2)−1 = (ψC1)−1 ◦ ϕD
− .(38)

Suppose (ϕD
+)

−1, ϕC1◦ψC1 , (ψC1)−1 and ϕD
− are isotopic to the following

compositions of Dehn twists,

(ϕD
+)

−1 ∼ De1
a1 ◦ · · · ◦D

en
an ,(39)

ϕC1 ◦ ψC1 ∼ Den+1
an+1

◦ · · · ◦Dem
am ,(40)

(ψC1)−1 ∼ Dem+1
am+1

◦ · · · ◦Del
al
,(41)

ϕD
− ∼ D

el+1
al+1 ◦ · · · ◦D

ek
ak
,(42)

Let

P = {i | ei = +1}

N = {i | ei = −1},

and define

P
1 = P ∩ {n+ 1, . . . , l}

N
1 = N ∩ {n+ 1, . . . , l}

P
2 = P

N
2 = N

P
3 = P ∩ {1, . . . , n, l + 1, . . . , k}

N
3 = N ∩ {1, . . . , n, l + 1, . . . , k}
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Choose real numbers

−3/4 < tk < · · · < tm+1 < −1/4 < 1/4 < tm < · · · < t1 < 3/4,

and pick some t′i between ti and the next greatest number in this list
for each i ∈ N .

For u = 1, 2, 3, we will denote by (Y1)u− the 3-manifold obtained from
Y1 by performing +1 surgeries on the curves r1(ai×{ti}) for all i ∈ N u,
and by Xu

− the 4-manifold obtained from (Y1)u−× [0, 1] by attaching −1
framed 2-handles along the curves r1(ai × {t′i})× {1} ⊂ (Y1)u− × {1} for
all i ∈ N u. As usual, Xu

− induces a map̂

HM •(X
u
−|R1;Γν) :

̂

HM ((Y1)
u
−|R1;Γη1) →

̂

HM (Y1|R1; Γη1).

We will likewise denote byXu
+ the 4-manifold obtained from (Y1)u−×[0, 1]

by attaching −1 framed 2-handles along the curves r1(ai×{ti})×{1} ⊂
(Y1)u− × {1} for all i ∈ Pu and by (Y1)u+ the 3-manifold obtained from
(Y1)u− by performing −1 surgeries on the curves r1(ai × {ti}) for all
i ∈ Pu. Then, Xu

+ induces a map̂

HM •(X
u
+|R1;Γν) :

̂

HM ((Y1)
u
−|R1;Γη1) →

̂

HM ((Y1)
u
+|R1;Γη1).

To complete the proof of Theorem 5.2, it suffices to show that the
maps

ΘC1

(Y1)1+Y2
◦

̂
HM •(X

1
+|R1;Γν) ◦

̂
HM •(X

1
−|R1;Γν)

−1(43)

ΘC2

(Y1)2+Y2
◦

̂

HM •(X
2
+|R1;Γν) ◦

̂

HM •(X
2
−|R1;Γν)

−1(44)

are R×-equivalent. Indeed, (43) is Ψg
D ,D ′ as defined with respect to C1

and (44) is Ψg
D ,D ′ as defined with respect to C2. We will prove that

the maps in (43) and (44) agree using two lemmas, starting with the
following.

Lemma 5.3. The map in (44) is R×-equivalent to

ΘC1

(Y1)1+Y2
◦

̂

HM •(X
1
+|R1;Γν) ◦

̂

HM •(X
1
−|R1;Γν)

−1

◦ΘD
(Y1)3+Y1

◦

̂

HM •(X
3
+|R1;Γν) ◦

̂

HM •(X
3
−|R1;Γν)

−1,

where

ΘD
(Y1)3+Y1

:

̂

HM •((Y1)
3
+|R1;Γη1) →

̂

HM •(Y1|R1;Γη1)

is the map associated to the unique isotopy class of diffeomorphisms
from (Y1)3+ to Y1 which restrict to D on Y1 ! int(Im(r1)) and to

r1 ◦ ((ϕ
D
− ◦ ψD)× id) ◦ r−1

1 = id

on a neighborhood of r1(R1 × {0}).

Once this is established, we need only show the following.
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Lemma 5.4. The map

ΘD
(Y1)3+Y1

◦

̂

HM •(X
3
+|R1;Γν) ◦

̂

HM •(X
3
−|R1;Γν)

−1

is R×-equivalent to the identity on

̂

HM •(Y1|R1;Γη1).

Proof of Lemma 5.3. By Theorem 4.3, we are free to assume that N =
∅. Our task is then to show that

ΘC2

(Y1)2+Y2
◦

̂

HM •(X
2
+|R1;Γν)

.
= ΘC1

(Y1)1+Y2
◦

̂

HM •(X
1
+|R1;Γν)

(45)

◦ΘD
(Y1)3+Y1

◦

̂

HM •(X
3
+|R1;Γν).

Consider the composite (X1
+, ν)◦(X

3
+, ν) formed by gluing along (Y1)3+ ∼=

Y1 via a diffeomorphism in the isotopy class used to define ΘD
(Y1)3+Y1

and suppose we identify the boundary component (Y1)1+ with Y2 via a

diffeomorphism in the isotopy class used to define ΘC1

(Y1)1+Y2
. Likewise,

consider the cobordism (X2
+, ν) with boundary identification (Y1)2+ ∼= Y2

given by a diffeomorphism in the isotopy class used to define ΘC2

(Y1)2+Y2
.

It is not hard to see that, with these boundary identifications, (X1
+, ν)◦

(X3
+, ν) is isomorphic to (X2

+, ν) since C2 = C1 ◦ D. The desired R×-
equivalence follows. q.e.d.

Proof of Lemma 5.4. Up to isotopy, we can assume that D is the iden-
tity on a small neighborhood N of m1(M) ⊂ Y1 ! int(Im(r1)). By
Definition 2.2, Y1 ! int(Im(r1)) ! int(Im(m1)) is homeomorphic to a
product F × [−1, 1], where F is a compact surface with boundary. We
can therefore assume that the complement Y1 ! int(Im(r1))!N is dif-
feomorphic to a product F ′× [−1, 1], where F ′ is a compact surface with
boundary homeomorphic to F . Let

f : F ′ × [−1, 1] → Y1 ! int(Im(r1))!N

be a diffeomorphism such that the image of f± is contained in the image
of r∓1 , where, as usual, f

± refers to the composition

F ′ id×{±1}
−−−−−→ F ′ × {±1}

f
−→ Y1 ! int(Im(r1))!N.

Our assumption about D implies that g−1
+ and g− restrict to the identity

outside of compact subsurfaces F ′
+ and F ′

− of R1, respectively, where

F ′
± := (r±1 )

−1(f∓(F ′)).

We may therefore assume that the curves ai × {ti}, ai × {t′i} for i ∈
P3∪N3 are contained in F ′

+×(1/4, 1/2) or F ′
−×(−1/2,−1/4) depending

on whether i is in {1, . . . , n} or {l + 1, . . . , k}, respectively.
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Remark 5.5. We cannot make this last assumption about ai × {ti},
ai × {t′i} without allowing for both positive and negative Dehn twists
in the factorizations of g−1

+ and g− since the surfaces F ′
+ and F ′

− have
boundary, as alluded to in Remark 4.5.

Let Q be the union

Q := r1(R1×[−1/8, 1/8])∪r1(F
′
+×[1/8, 1])∪f(F ′×[−1, 1])∪r1(F

′
−×[−1,−1/4]),

as depicted in Figure 9. Observe that Q is diffeomorphic to a product
of R1 with an interval, after rounding corners. By design, this product
contains a neighborhood of r1(η1×{0}) as well as the curves r1(ai×{ti}),
r1(ai × {t′i}) used to define the map̂

HM •(X
3
+|R1;Γν) ◦

̂

HM •(X
3
−|R1;Γν)

−1.

By construction, there is a unique isotopy class of diffeomorphisms
from (Y1)3+ to Y1 which restricts to D on f(F ′ × [−1, 1]) and to the
identity outside of

F ′
+ × (1/4, 1] ∪ f(F ′ × [−1, 1]) ∪ F ′

− × [−1,−1/4)

(in particular, outside of Q), and to the identity in a neighborhood of
r1(R1×{0}). The point is that the Dehn surgeries defining (Y1)3+, which
are supported in the regions F ′

+×(1/4, 1] and F ′
−×[−1,−1/4), effectively

“cancel out” the diffeomorphismD, which is supported in f(F ′×[−1, 1]).
One can then apply Theorem 4.3, noting that a diffeomorphism in this
isotopy class is also in the isotopy class used to define ΘD

(Y1)3+Y1
, to show

that

ΘD
(Y1)3+Y1

◦

̂

HM •(X
3
+|R1;Γν) ◦

̂

HM •(X
3
−|R1;Γν)

−1

is R×-equivalent to the identity map on

̂

HM •(Y1|R1;Γη1).
To make this argument a bit more precise, let

r : R1 × [−1, 1] → Y1

be an embedding whose image contains Q and is contained in a small
neighborhood ofQ. We can arrange that r sends R1×{0} to r1(R1×{0})
by the map r1 and sends bi×{si}, bi×{s′i} to r1(ai×{ti}), r1(ai×{t′i}),
where the bi are curves in R1 and

1/4 < sk < · · · < sl+1 < sn < · · · < s1 < 3/4

with s′i between si and the next greatest number in this list. We can,
moreover, assume that r sends the standard framings on bi × {si}, bi ×
{s′i} to those on r1(ai × {ti}), r1(ai × {t′i}). The fact that there exists a
diffeomorphism from (Y1)3+ to Y1 which restricts to the identity outside
of the image r(R1 × [−1, 1]) implies that the composition

(46) De1
b1

◦ · · · ◦Den
bn

◦D
el+1

bl+1
◦ · · · ◦Dek

bk
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−1

1
2

− 1
2

1

0

0

Figure 9. Left, a portion of Y1 with the pieces Im(m1)
and r1(R1 × [−1, 1]) shown in dark gray and white,
respectively. The light gray region represents a piece
homeomorphic to F × [−1, 1]. The dots represent
m1(γ). The middle diagram shows Q with the pieces
r1(R1×[−1/8, 1/8]), r1(F ′

+×[1/8, 1]), f(F ′×[−1, 1]) and
r1(F ′

− × [−1,−1/4]) shaded in very light, light, medium
and dark gray, respectively. The rightmost picture shows
the image r(R1 × [−1, 1]) in very light gray. We have
drawn some of the fibers r(R1 × {t}).

is isotopic to the identity. Since (Y3)−, (Y3)+, X3
− and X3

+ are the 3-
and 4-manifolds associated to surgeries and 2-handle attachments along
these r(bi × {si}), r(bi × {s′i}), Theorem 4.3 implies that

(47) ΘD
(Y1)3+Y1

◦

̂

HM •(X
3
+|R1;Γν) ◦

̂

HM •(X
3
−|R1;Γν)

−1

is R×-equivalent to the identity map on

̂

HM •(Y1|R1;Γη1), as desired.
q.e.d.

The proof of Theorem 5.2 is now complete. q.e.d.

Below, we show that these maps satisfy the following transitivity.

Theorem 5.6. Suppose D ,D ′,D ′′ are genus g marked closures of
(M, γ). Then

Ψg
D ,D ′′ = Ψg

D ′,D ′′ ◦Ψ
g
D ,D ′ ,

up to multiplication by a unit in R.

Proof. For the sake of exposition, let us write

D = D1 = (Y1, R1, r1,m1, η1)

D
′ = D2 = (Y2, R2, r2,m2, η2)

D
′′ = D3 = (Y3, R3, r3,m3, η3).

We must then show that

Ψg
D1,D3

.
= Ψg

D2,D3
◦Ψg

D1,D2
.
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To define Ψg
D1,D2

and Ψg
D2,D3

, we start by choosing diffeomorphisms

C1 : Y1 ! int(Im(r1)) → Y2 ! int(Im(r2))

C2 : Y2 ! int(Im(r2)) → Y3 ! int(Im(r3))

which satisfy the conditions described at the beginning of this subsec-
tion. We may then use the diffeomorphism

C3 : Y1 ! int(Im(r1)) → Y3 ! int(Im(r3)),

given by C3 = C2 ◦ C1, to define the map Ψg
D1,D3

. To compare the

maps Ψg
D1,D2

, Ψg
D2,D3

, Ψg
D1,D3

, we must first understand the relationships

between the diffeomorphisms ϕCi
± , ϕCi , ψCi for i = 1, 2, 3. Note that

(48) ϕC3
± = ϕC2

± ◦ ϕC1
± .

Pick ψC1 and ψC2 which satisfy

ϕC1
− ◦ ψC1(η1) = η2

ϕC2
− ◦ ψC2(η2) = η3.

Let us then define ψC3 by

ψC3 := (ϕC1
− )−1 ◦ ψC2 ◦ ϕC1

− ◦ ψC1 .

We may do so since this ψC3 satisfies

ϕC3
− ◦ ψC3(η1) = η3.

Finally, a quick substitution shows that

ϕC3 ◦ ψC3 = ϕC1 ◦ ψC1 ◦ g

(ψC3)−1 = h ◦ (ψC1)−1,

where

g = (ϕC1
− ◦ ψC1)−1 ◦ (ϕC2 ◦ ψC2) ◦ (ϕC1

− ◦ ψC1)

h = (ϕC1
− ◦ ψC1)−1 ◦ (ψC2)−1 ◦ (ϕC1

− ◦ ψC1).

To define Ψg
D1,D2

, Ψg
D2,D3

, Ψg
D1,D3

, let us suppose that ϕC1 ◦ψC1 , g, h

and (ψC1)−1 are isotopic to the following compositions of positive Dehn
twists,

ϕC1 ◦ ψC1 ∼ Da1 ◦ · · · ◦Dan

g ∼ Dan+1 ◦ · · · ◦Dam

h ∼ Dam+1 ◦ · · · ◦Dal

(ψC1)−1 ∼ Dal+1 ◦ · · · ◦Dak
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around curves ai in R1. Define

P
1 = {1, . . . , n, l + 1, . . . , k}

P
2 = {n+ 1, . . . , l}

P
3 = {1, . . . , k},

and set N i = ∅ for i = 1, 2, 3. Choose real numbers

−3/4 < tk < · · · < tm+1 < −1/4 < 1/4 < tm < · · · < t1 < 3/4.

For i ∈ P2, let bi be the curve in R2 given by

bi := ϕC1
− ◦ ψC1(ai),

and note that

ϕC2 ◦ ψC2 = (ϕC1
− ◦ ψC1) ◦ g ◦ (ϕC1

− ◦ ψC1)−1 ∼ Dbn+1 ◦ · · · ◦Dbm ,

(ψC2)−1 = (ϕC1
− ◦ ψC1) ◦ h ◦ (ϕC1

− ◦ ψC1)−1 ∼ Dbm+1 ◦ · · · ◦Dbl .

This follows from the well-known relation

Df(a) = f ◦Da ◦ f
−1,

which holds for any smoothly embedded curve a ⊂ R1 and any diffeo-
morphism f : R1 → R2.

For u = 1, 3, we will denote by (Y1)u+ the 3-manifold obtained from
Y1 by performing −1 surgeries on the curves r1(ai× {ti}) for all i ∈ Pu

and by Xu
+ the corresponding 2-handle cobordism from Y1 to (Y1)u+. We

will denote by (Y2)2+ the 3-manifold obtained from Y2 by performing −1
surgeries on the curves r2(bi × {ti}) for all i ∈ P2 and by X2

+ the
corresponding 2-handle cobordism from Y2 to (Y2)2+. Our task is then
to show that the map

Ψg
D1,D3

= ΘC3

(Y1)3+Y3
◦

̂

HM •(X
3
+|R1;Γν)

is R×-equivalent to the composition

Ψg
D2,D3

◦Ψg
D1,D2

= ΘC2

(Y2)2+Y3
◦

̂

HM •(X
2
+|R2;Γν)◦Θ

C1

(Y1)1+Y2
◦

̂

HM •(X
1
+|R1;Γν).

Consider the composite (X2
+, ν)◦(X

1
+, ν) formed by gluing along (Y1)1+ ∼=

Y2 via a diffeomorphism in the isotopy class used to define ΘC1

(Y1)1+Y2

and suppose we identify the boundary component (Y2)2+ with Y3 via a

diffeomorphism in the isotopy class used to define ΘC2

(Y2)2+Y3
. Likewise,

consider the decorated cobordism (X3
+, ν) with boundary identification

(Y1)3+ ∼= Y3 given by a diffeomorphism in the isotopy class used to define

ΘC3

(Y1)3+Y3
. It is not hard to see that, with these boundary identifications,

(X2
+, ν) ◦ (X1

+, ν) is isomorphic to (X3
+, ν). This is because ϕC1

− ◦ ψC1

sends each ai to bi (preserving framings) and because

r3 ◦ (ϕ
C3
− ◦ ψC3) ◦ r−1

1 = r3 ◦ (ϕ
C2
− ◦ ψC2) ◦ r−1

2 ◦ r2 ◦ (ϕ
C1
− ◦ ψC1) ◦ r−1

1 ,
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which follows from (48) and the definition of ψC3 above. It follows that
Ψg

D1,D3

.
= Ψg

D2,D3
◦Ψg

D1,D2
, as desired, completing the proof of Theorem

5.6. q.e.d.

Remark 5.7. For a genus g marked closure D of (M, γ), the map

Ψg
D ,D : SHMg(D) → SHMg(D)

is R×-equivalent to the identity.

The modules in {SHMg(D)} and maps in {Ψg
D ,D ′} therefore define

a projectively transitive system of R-modules.2

Definition 5.8. The twisted sutured monopole homology of (M, γ)
in genus g is the projectively transitive system of R-modules defined by
{SHMg(D)} and {Ψg

D ,D ′}. We will denote this system by SHMg(M, γ).

5.2. Genera Differ by One. Now, suppose D and D ′ are marked
closures of (M, γ) with g(D ′) = g(D) + 1 = g + 1. Below, we define the
maps

ΨD ,D ′ = Ψg,g+1
D ,D ′ : SHMg(D) → SHMg+1(D ′)

ΨD ′,D = Ψg+1,g
D ′,D : SHMg+1(D ′) → SHMg(D).

For the sake of exposition, let

D = D1 = (Y1, R1, r1,m1, η1)

D
′ = D4 = (Y4, R4, r4,m4, η4).

To define Ψg,g+1
D ,D ′ = Ψg,g+1

D1,D4
, we start by choosing an auxiliary marked

closure
D3 = (Y3, R3, r3,m3, η3),

with g(D3) = g(D4) = g + 1, which satisfies the following conditions:

1) there exist disjoint, oriented, embedded tori T1, T2 ⊂ Y3! Im(m3)
which cut Y3 into two pieces whose closures Y 1

3 , Y
2
3 satisfy

∂Y 1
3 = T1 ∪ T2 = −∂Y 2

3 and m3(M) ⊂ Y 1
3 ;

2) each Ti intersects r3(R3 × [−1, 1]) in an oriented annulus r3(ci ×
[−1, 1]), where c1, c2 ⊂ R3 are oriented, embedded curves which
cut R3 into two pieces whose closures R1

3, R
2
3 satisfy

∂R1
3 = c1 ∪ c2 = −∂R2

3 and R2
3
∼= Σ1,2,

where Σ1,2 is a genus one surface with two boundary components;
3) η3 intersects each Ri

3 in an oriented, non-boundary-parallel, prop-
erly embedded arc ηi3.

2The collection of marked closures, even of a fixed genus, is a proper class rather
than a set and so cannot technically serve as the indexing object for a projectively
transitive system. One can remedy this by requiring that Y and R be submanifolds
of Euclidean space. We will not worry about such issues in any case.
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Figure 10 shows a portion of Y3 near some r3(R3×{t}). It is not difficult
to construct such a closure; we leave this as an exercise for the reader.
We will refer to a marked closure D3 satisfying the above conditions as
a cut-ready closure with respect to the tori T1, T2.

Y 2
3

Y 1
3

T1

T2

η1
3

η2
3

R1
3

R2
3

c1

c2

Figure 10. Left, a portion of Y3 and T1, T2 near some
r3(R3×{t}). Right, portions of the manifolds Y 1

3 , Y
2
3 ob-

tained by cutting Y3 open along T1, T2. We have labeled
r3(Ri

3 × {t}) and r3(ηi3 × {t}) simply by Ri
3 and ηi3.

The following lemma will be important in a bit.

Lemma 5.9. The piece Y 2
3 is diffeomorphic to the mapping torus of

some diffeomorphism of the surface R2
3
∼= Σ1,2.

Proof. Y 2
3 is the union of r3(R2

3 × [−1, 1]) with a portion of Y3 !

int(Im(r3))! Im(m3). We can assume the latter portion is contained in
Y3!int(Im(r3))!N for some neighborhood N of Im(m3). By Definition
2.2,

Y3 ! int(Im(r3))! int(Im(m3))

is homeomorphic to F× [−1, 1] for some compact surface F with bound-
ary. As in the proof of Lemma 5.4, we may therefore assume that
Y3 ! int(Im(r3))!N is diffeomorphic to F ′ × [−1, 1], where F ′ is some
compact surface with boundary, homeomorphic to F . Let

f : F ′ × [−1, 1] → Y3 ! int(Im(r3))!N

be such a diffeomorphism. Each Ti intersects f(F ′ × [−1, 1]) in an
annulus Ai with boundary on both f(F ′ × {+1}) and f(F ′ × {−1}). In
fact, note that

∂Ai = f(γi × {+1}) ∪ f(γ′i × {−1}),

where γi × {+1} = f−1(r3(ci × {−1})) and γ′i × {−1} = f−1(r3(ci ×
{+1})). Using the annulus f−1(Ai) we see that γ′i and γi are freely ho-
motopic, hence they are isotopic by a theorem of Baer (see [10, Propo-
sition 1.10]) and so we can assume (by changing f if necessary) that
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γi = γ′i. We can then assume, as in the proof of Proposition A.3, that
Ai is the vertical annulus Ai = f(γi × [−1, 1]). It follows that

Y 2
3 ∩ (Y3 ! int(Im(r3))! Im(m3)) = f(Σ1,2 × [−1, 1]),

where Σ1,2 is the genus one, two boundary component subsurface of F ′

given by

Σ2,1 = f−1(r3(R
2
3 × {−1})).

So, Y 2
3 is the union

Y 2
3 = f(Σ1,2 × [−1, 1]) ∪ r3(R

2
3 × [−1, 1]),

which is diffeomorphic to a mapping torus as claimed. q.e.d.

Next, we will form a marked closure D2 = (Y2, R2, r2,m2, η2) from
D3 with g(D2) = g(D1) = g, where Y2 is the manifold obtained from
Y 1
3 by gluing its boundary components T1, T2 together. We will then

construct an isomorphism

(49) Ψg,g+1
D2,D3

: SHMg(D2) → SHMg+1(D3),

and define Ψg,g+1
D1,D4

to be the composition

Ψg,g+1
D1,D4

:= Ψg+1
D3,D4

◦Ψg,g+1
D2,D3

◦Ψg
D1,D2

.

We describe the construction of D2 below.
Let p1 = c1 ∩ η3 and p2 = c2 ∩ η3 and choose an orientation-reversing

diffeomorphism

f : c1 → c2

which sends p1 to p2. Next, choose an orientation-reversing diffeomor-
phism

F : T1 → T2

which restricts to r3◦(f×id)◦r−1
3 on r3(c1×[−1, 1]). For i = 1, 2, let Ȳ i

3
be the manifold obtained from Y i

3 by gluing its boundary components
together by F . Similarly, let R̄i

3 be the surface obtained from Ri
3 by

gluing its boundary components together by f and let η̄i3 ⊂ R̄i
3 be the

oriented curve obtained from ηi3 in this gluing. For the latter gluing,
we use collar neighborhoods of c1, c2 ⊂ ∂Ri

3 which come from tubular
neighborhoods

n1 : c1 × [−ϵ, ϵ] → R3

n2 : c2 × [−ϵ, ϵ] → R3

of c1, c2 ⊂ R3 such that ni sends each x× {0} to x and maps pi× [−ϵ, ϵ]
into η3. This ensures that η̄i3 is a smooth curve in R̄i

3. Note that r3
naturally induces maps

r̄i3 : R̄
i
3 × [−1, 1] → Ȳ i

3 .
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To ensure that each r̄i3 is smooth, we perform the initial gluing using
collar neighborhoods of T1, T2 ⊂ ∂Y i

3 which come from tubular neigh-
borhoods

N1 : T1 × [−ϵ, ϵ] → Y3

N2 : T2 × [−ϵ, ϵ] → Y3

of T1, T2 ⊂ Y3 that sends each x × {0} to x and are compatible with
n1, n2. For this compatibility, we require that r−1

3 ◦Ni◦(r3×id) restricts
to a map

ci × [−1, 1]× [−ϵ, ϵ] → R3 × [−1, 1]

and sends each (x, t, s) to ni(x, s)× {t}.
Note that η̄i3 is a homologically essential curve in R̄i

3 and g(R̄1
3) =

g(R3) − 1 = g. Moreover, it follows from Lemma 5.9 that Ȳ 2
3 is dif-

feomorphic to the mapping torus of some diffeomorphism of the closed
genus two surface R̄2

3. Let

Y2 = Ȳ 1
3 , R2 = R̄1

3, η2 = η̄13, r2 = r̄13,

and note that m3 induces an embedding

m2 : M ↪→ Y2.

These define a marked closure D2 = (Y2, R2, r2,m2, η2) of (M, γ) with
g(D2) = g(D1) = g, as promised above. We will refer to D2 as the
cut-open closure associated to D3. Below, we define the isomorphism
Ψg,g+1

D2,D3
mentioned in (49), following Kronheimer and Mrowka’s approach

in [18].
Let S be the 2-dimensional saddle used to define M in Section 4.

The map Ψg,g+1
D2,D3

is defined in terms of a merge-type splicing cobordism
W which is built by gluing together the cornered 4-manifolds

W1 = Y 1
3 × [0, 1],

W2 = T1 × S,

W3 = Y 2
3 × [0, 1],

along the horizontal portions of their boundaries. Specifically, we glue
W2 to W1 according to the maps

F × id : T1 ×H1 → T2 × [0, 1],

id× id : T1 ×H2 → T1 × [0, 1],

and then glue W3 to W1 ∪W2 according to

F−1 × id : T2 × [0, 1] → T1 ×H3,

id× id : T1 × [0, 1] → T1 ×H4,

as depicted schematically in Figure 11.



NATURALITY IN SUTURED MONOPOLE AND INSTANTON HOMOLOGY 47

W2

W3

W1

W2

W3

W1

id × id

F × id

F−1 × id

id × id

0 1

S

H1

H2

H3

H4

V1

V2

V3 V4

Figure 11. Left, the 2-dimensional saddle S. Right, a
schematic of W.

Note that ∂W = −W1 - −W2 -W3, where

W1 = Y 1
3 ∪ T1 × V1,

W2 = Y 2
3 ∪ T1 × V2,

W3 = Y 1
3 ∪ T1 × V3 ∪ Y 2

3 ∪ T1 × V4.

For ease of exposition, let us write

Si
3 = r3(R

i
3 × {0})

θi3 = r3(η
i
3 × {0})

d1 = r3(c1 × {0})

q1 = r3(p1 × {0}).

Let S̄1
3 , S̄

2
3 , S3 be the closed surfaces in W1,W2,W3 given by

S̄1
3 = S1

3 ∪ d1 × V1,

S̄2
3 = S2

3 ∪ d1 × V2,

S3 = S1
3 ∪ d1 × V3 ∪ S2

3 ∪ d1 × V4,

and let θ̄13, θ̄
2
3, θ3 be the closed curves in S̄1

3 , S̄
2
3 , S3 given by

θ̄13 = θ13 ∪ {q1}× V1,

θ̄23 = θ23 ∪ {q1}× V2,

θ3 = θ13 ∪ {q1}× V3 ∪ θ23 ∪ {q1}× V4.

Finally, let ν be the 2-dimensional cobordism in W from θ̄13 - θ̄
2
3 to θ3

given by

ν = θ13 × [0, 1] ∪ {q1}× S ∪ θ23 × [0, 1].
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Note that there are canonical isotopy classes of diffeomorphisms

(W1, S̄
1
3 , θ̄

1
3) → (Ȳ 1

3 , r̄
1
3(R̄

1
3 × {0}), r̄13(η̄

1
3 × {0})) = (Y2, r2(R2 × {0}), r2(η2 × {0}))

(50)

(W2, S̄
2
3 , θ̄

2
3) → (Ȳ 2

3 , r̄
2
3(R̄

2
3 × {0}), r̄23(η̄

2
3 × {0}))

(51)

(W3, S3, θ3) → (Y3, r3(R3 × {0}), r3(η3 × {0})).
(52)

Moreover, S3 is cobordant to S̄1
3 - S̄2

3 in W via the cobordism

S1
3 × [0, 1] ∪ d1 × S ∪ S2

3 × [0, 1]

and

2g(S3)− 2 = 2g(S̄1
3)− 2 + 2g(S̄2

3)− 2.

Therefore, W gives rise to a map̂

HM •(W|S3;Γν) :

̂

HM •(Y2|R2;Γη2)⊗R

̂

HM •(Ȳ
2
3 |R̄

2
3;Γη̄23

) →

̂

HM •(Y3|R3;Γη3),

which is shown to be an isomorphism in [18]. Since Ȳ 2
3 is the mapping

torus of some diffeomorphism of a genus two surface, r̄23(R̄
2
3 × {0}) is a

fiber in this mapping torus, and r̄23(η̄
2
3×{0}) is a homologically essential

curve in this fiber, we have that

(53)

̂

HM •(Ȳ
2
3 |R̄

2
3;Γη̄23

) ∼= R,

as explained in Example 3.2. Choose any such identification, and define

Ψg,g+1
D2,D3

(−) :=

̂

HM •(W|S3;Γν)(−⊗ 1).

Note that this map is only well-defined up to multiplication by a unit
in R since we do not pin down the identification in (53).

Remark 5.10. In constructing the smooth 4-manifold W, we use the
collar neighborhoods of the horizontal boundary components of W1 and
W3 naturally induced by the collars of ∂Y 1

3 and ∂Y 2
3 . For the horizontal

boundary components of W2, we use collars induced by collars of the
horizontal boundary components of S. So, the only choice involved in
defining W is that of the collars of H1, . . . , H4. But, for any two sets
of such collars, there is a unique isotopy class of diffeomorphisms of S
which sends one to the other. It follows that the isomorphism class of
(W, ν) as a cobordism from (Y2, r2(η2 × {0})) - (Ȳ 2

3 , r3(η̄
2
3 × {0})) to

(Y3, r3(η3 × {0})) is independent of the choice of collar neighborhoods
of H1, . . . , H4. The map Ψg,g+1

D2,D3
is therefore also independent of this

choice, up to multiplication by a unit in R.

We now define the maps Ψg,g+1
D ,D ′ and Ψg+1,g

D ′,D as follows.
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Definition 5.11. The map Ψg,g+1
D ,D ′ is given by

Ψg,g+1
D ,D ′ = Ψg,g+1

D1,D4
:= Ψg+1

D3,D4
◦Ψg,g+1

D2,D3
◦Ψg

D1,D2
.

Definition 5.12. The map Ψg+1,g
D ′,D is given by

Ψg+1,g
D ′,D := (Ψg,g+1

D ,D ′ )
−1.

Remark 5.13. It follows immediately from these definitions and
Theorem 5.6 that if D ,D ′,D ′′ are marked closures of (M, γ) with g(D ′′) =
g(D ′) = g(D) + 1 = g + 1, then

Ψg,g+1
D ,D ′′

.
= Ψg+1

D ′,D ′′ ◦Ψ
g,g+1
D ,D ′

Ψg+1,g
D ′′,D

.
= Ψg+1,g

D ′,D ◦Ψg+1
D ′′,D ′ .

Next, we prove that the R×-equivalence classes of the maps Ψg,g+1
D ,D ′

and Ψg+1,g
D ′,D are well-defined. This follows from the theorem below.

Theorem 5.14. The map Ψg,g+1
D ,D ′ is independent of the choices made

in its construction, up to multiplication by a unit in R.

Proof. The choices we made in the construction of Ψg,g+1
D ,D ′ were those

of:

1) the cut-ready closure D3,
2) the tori T1, T2,
3) the tubular neighborhoods N1, N2,
4) The diffeomorphism F : T1 → T2.

Let

D3 = (Y3, R3, r3,m3, η3)

D
′
3 = (Y ′

3 , R
′
3, r

′
3,m

′
3, η

′
3)

be cut-ready closures of (M, γ) with respect to tori T1, T2 ⊂ Y3 and
T ′
1, T

′
2 ⊂ Y ′

3 which satisfy

g(D3) = g(D4) = g(D ′
3).

Define the curves c1, c2 ⊂ R3 and c′1, c
′
2 ⊂ R′

3 accordingly. Let D2

and D ′
2 be the cut-open closures associated to D3 and D ′

3, respectively,
for tubular neighborhoods N1, N2 and N ′

1, N
′
2 of the above tori and

diffeomorphisms F : T1 → T2 and F ′ : T ′
1 → T ′

2. We must show that

Ψg+1
D3,D4

◦Ψg,g+1
D2,D3

◦Ψg
D1,D2

.
= Ψg+1

D ′
3,D4

◦Ψg,g+1
D ′

2,D
′
3
◦Ψg

D1,D ′
2
.

By Theorem 5.6, the right hand side is R×-equivalent to

Ψg+1
D3,D4

◦Ψg+1
D ′

3,D3
◦Ψg,g+1

D ′
2,D

′
3
◦Ψg

D2,D ′
2
◦Ψg

D1,D2
.

It therefore suffices to show that

Ψg,g+1
D2,D3

.
= Ψg+1

D ′
3,D3

◦Ψg,g+1
D ′

2,D
′
3
◦Ψg

D2,D ′
2
,
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which is equivalent to saying that the diagram

(54) SHMg(D2)
Ψg,g+1

D2,D3 !!

Ψg

D2,D
′
2

""

SHMg+1(D3)

Ψg+1

D3,D
′
3

""

SHMg(D ′
2)

Ψg,g+1

D′
2,D

′
3

!! SHMg+1(D ′
3)

commutes up to multiplication by a unit in R. This commutativity is
ultimately a consequence of the fact that the maps Ψg

D2,D ′
2
and Ψg+1

D3,D ′
3

can be defined in terms of 2-handle cobordisms where the 2-handles are
attached along curves that are disjoint from the tori T1, T2, T ′

1, T
′
2 used

to construct the splicing cobordisms which go into the definitions of
Ψg,g+1

D2,D3
and Ψg,g+1

D ′
2,D

′
3
.

To prove the commutativity of the diagram in (54), we start by
making careful choices in the constructions of Ψg+1

D3,D ′
3
and Ψg

D2,D ′
2
. For

Ψg+1
D3,D ′

3
, we choose a diffeomorphism

C : Y3 ! int(Im(r3)) → Y ′
3 ! int(Im(r′3))

as in Subsection 5.1, but with some additional requirements. Let Ai, A′
i

be the annuli

Ai = Ti ∩ Y3 ! int(Im(r3))

A′
i = T ′

i ∩ Y ′
3 ! int(Im(r′3)),

for i = 1, 2. We require that C sends each Ai to A′
i and the diagrams

(55) A1
F !!

C

""

A2

C

""

A′
1 F ′

!! A′
2

(56) Ai × [−ϵ, ϵ]
Ni !!

C×id

""

Y3 ! int(Im(r3))

C

""

A′
i × [−ϵ, ϵ]

N ′
i

!! Y ′
3 ! int(Im(r′3))
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commute. These requirements will guarantee that C naturally induces
diffeomorphisms

C1 : Ȳ 1
3 ! int(Im(r̄13)) → Ȳ 1′

3 ! int(Im(r̄1′3 ))

C2 : Ȳ 2
3 ! int(Im(r̄23)) → Ȳ 2′

3 ! int(Im(r̄2′3 )).

Lemma 5.15. There exists a diffeomorphism C satisfying the re-
quirements above.

Proof. Start with any diffeomorphism

C0 : Y3 ! int(Im(r3)) → Y ′
3 ! int(Im(r′3))

satisfying the conditions described in Subsection 5.1. Then C−1
0 (A′

1)
and C−1

0 (A′
2) are disjoint annuli in Y ! int(Im(r3))!N for some neigh-

borhood N of Im(m1). By the discussion in the proof of Lemma 5.9,
there are diffeomorphisms

f, g : F ′ × [−1, 1] → Y3 ! int(Im(r3))!N

such that the Ai and C−1
0 (A′

i) are vertical annuli of the form

Ai = f(γi × [−1, 1]),

C−1
0 (A′

i) = g(γ′i × [−1, 1]).

The pairs γ1, γ2 and γ′1, γ
′
2 each separate F ′ into two pieces, one of which

is a genus one surface with two boundary components. There is thus a
diffeomorphism of F ′ which restricts to the identity on ∂F ′ and sends
each γi to γ′i. It follows that there is a diffeomorphism of F ′ × [−1, 1]
which restricts to the identity on ∂F ′×[−1, 1] and sends each γi×[−1, 1]
to γ′i× [−1, 1], and, hence, a diffeomorphism D of Y ! int(Im(r3)) which
restricts to the identity on N and sends each Ai to C−1

0 (A′
i). We can,

moreover, force the restriction

D|A1 : A1 → C−1
0 (A′

1)

to be whatever diffeomorphism of annuli we like: the above descrip-
tion only requires the image of A1 to be C−1

0 (A′
1) as a set, so we are

free to change D by composing with any diffeomorphism supported on
a neighborhood of C−1

0 (A′
1) which fixes the image of A1 setwise. By

choosing this restriction carefully, we can arrange that the diagram in
(55) commutes, where C = C0 ◦D. We can also arrange, by altering D
near the Ai if necessary, that (56) commutes, where C = C0 ◦D. This
is because there exists a diffeomorphism of Y3 ! int(Im(r3))!N which
restricts to the identity outside of a neighborhood of each Ai and sends
any tubular neighborhood of Ai to any other. So, the map C = C0 ◦D
satisfies the requirements above. q.e.d.

Note that the diffeomorphisms

ϕC
± : R3 → R′

3
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send each ci to c′i (and each pi to p′i). It follows that

ϕC : R3 → R3

sends each ci (and pi) to itself, and we can pick

ψC : R3 → R3

with the same property. This allows us to choose factorizations

ϕC ◦ ψC ∼ De1
a1 ◦ · · · ◦D

en
an ,(57)

(ψC)−1 ∼ Den+1
an+1

◦ · · · ◦Dem
am ,(58)

where the curves ai are contained in R3 ! (c1 ∪ c2).

Remark 5.16. In general, one cannot choose the curves ai to be
disjoint from c1 ∪ c2 without allowing for both positive and negative
Dehn twists in the factorizations (57) and (58).

Note that the associated maps

ϕC1

± : R̄1
3 → R̄1′

3

ϕC1
: R̄1

3 → R̄1
3

are the diffeomorphisms naturally induced by the restrictions of ϕC
± and

ϕC to R1
3, and we likewise may choose

ψC1
: R̄1

3 → R̄1
3

to be the diffeomorphism induced by the restriction of ψC to R1
3. Let

ϕC2

± : R̄2
3 → R̄2′

3

ϕC2
: R̄2

3 → R̄2
3

ψC2
: R̄2

3 → R̄2
3

be the diffeomorphisms induced by the restrictions of ϕC
±, ϕ

C and ψC

to R2
3. Since the curves ai are disjoint from c1 ∪ c2, each is contained

in either R1
3 or R2

3 and therefore corresponds naturally to a curve in

either R̄1
3 or R̄2

3. This means we can choose factorizations for ϕC1
◦

ψC1
and (ψC1

)−1 that are obtained from those in (57) and (58) by
omitting the Dehn twists around the curves in R2

3. We can likewise

choose factorizations for ϕC2
◦ψC2

and (ψC2
)−1 obtained from those in

(57) and (58) by omitting the Dehn twists around the curves in R1
3.

To define Ψg+1
D3,D ′

3
and Ψg

D2,D ′
2
, we now proceed in the usual way. Let

P = {i | ei = +1}

N = {i | ei = −1}

and choose real numbers

−3/4 < tm < · · · < tn+1 < −1/4 < 1/4 < tn < · · · < t1 < 3/4.
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Pick some t′i between ti and the next greatest number in this list for
each i ∈ N . Let

P
1 = P ∩ {i | ai ⊂ R1

3}

N
1 = N ∩ {i | ai ⊂ R1

3},

P
2 = P ∩ {i | ai ⊂ R2

3},

N
2 = N ∩ {i | ai ⊂ R2

3}.

As usual, we denote by (Y3)− the manifold obtained from Y3 by per-
forming +1 surgeries on the curves r3(ai×{ti}) for i ∈ N and by (Y3)+
the manifold obtained from (Y3)− by performing −1 surgeries on the
curves r3(ai × {ti}) for i ∈ P. We then have the usual cobordisms X−

and X+ which induce mapŝ

HM •(X−|R3;Γν) :

̂

HM •((Y3)−|R3;Γη3) →

̂

HM •(Y3|R3;Γη3)̂

HM •(X+|R3;Γν) :

̂

HM •((Y3)−|R3;Γη3) →

̂

HM •((Y3)+|R3;Γη3).

Recall that Ψg+1
D3,D ′

3
is given by

Ψg+1
D3,D ′

3
= ΘC

(Y3)+Y ′
3
◦

̂

HM •(X+|R3;Γν) ◦

̂

HM •(X−|R3;Γν)
−1.

Remark 5.17. Observe that the curves r3(ai × {ti}), r3(ai × {t′i})
are disjoint from the tori T1, T2 since the ai are disjoint from c1∪ c2. As
alluded to earlier, this will play a key role in proving the commutativity
of (54).

Similarly, for each j = 1, 2, we denote by (Ȳ j
3 )− the manifold obtained

from Ȳ j
3 by performing +1 surgeries on the curves r̄j3(ai × {ti}) for

i ∈ N j and by (Ȳ j
3 )+ the manifold obtained from Ȳ j

3 by performing −1

surgeries on the curves r̄j3(ai × {ti}) for i ∈ Pj . As usual, we define

cobordisms Xj
− and Xj

+ which induce mapŝ

HM •(X
j
−|R̄

j
3;Γν) :

̂

HM •((Ȳ
j
3 )−|R̄

j
3;Γη̄j3

) →

̂

HM •(Ȳ
j
3 |R̄

j
3;Γη̄j3

)̂

HM •(X
j
+|R̄

j
3;Γν) :

̂

HM •((Ȳ
j
3 )−|R̄

j
3;Γη̄j3

) →

̂

HM •((Ȳ
j
3 )+|R̄

j
3;Γη̄j3

).

We then define a map from

(59)

̂

HM •(Ȳ
j
3 |R̄

j
3;Γη̄j3

) →

̂

HM •(Ȳ
j′
3 |R̄j′

3 ;Γη̄j′3
)

by

ΘCj

(Ȳ j
3 )+Ȳ j′

3
◦

̂

HM •(X
j
+|R̄

j
3;Γν) ◦

̂

HM •(X
j
−|R̄

j
3;Γν)

−1,

where

ΘCj

(Ȳ j
3 )+Ȳ j′

3
:

̂

HM •((Ȳ
j
3 )+|R̄

j
3;Γη̄j3

) →

̂

HM •(Ȳ
j′
3 |R̄j′

3 ;Γη̄j′3
)
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is the isomorphism associated to the unique isotopy class of diffeomor-
phisms from (Ȳ j

3 )+ to Ȳ j′
3 which restrict to Cj on Ȳ j

3 ! int(Im(r̄j3)) and

to r̄j′3 ◦ ((ϕCj

− ◦ ψCj
)× id) ◦ (r̄j3)

−1 on a neighborhood of r̄j3(R̄
j
3 × {0}).

For j = 1, the map in (59) is equal to Ψg
D2,D ′

2
. For j = 2, it is also an

isomorphism, essentially by Proposition 4.8. For notational convenience,
let us write

Ȳ 1,2
3 := Ȳ 1

3 - Ȳ 2
3

Ȳ 1,2′
3 := Ȳ 1′

3 - Ȳ 2′
3

(Ȳ 1,2
3 )± := (Ȳ 1

3 )± - (Ȳ 2
3 )±

R̄1,2
3 := R̄1

3 - R̄2
3

R̄1,2′
3 := R̄1′

3 - R̄2′
3

η̄1,23 := η̄13 - η̄
2
3

η̄1,2′3 := η̄1′3 - η̄2′3

X1,2
− := X1

− -X2
−

X1,2
+ := X1

+ -X2
+.

Then ̂
HM •(Ȳ

1,2
3 |R̄1,2

3 ;Γ
η̄1,23

) ∼=
̂

HM •(Ȳ
1
3 |R̄

1
3;Γη̄13

)⊗R
̂

HM •(Ȳ
2
3 |R̄

2
3;Γη̄23

),

and likewise for the modules associated to Ȳ 1,2′
3 and (Ȳ 1,2

3 )±. In each
case, the second module in the tensor product on the right is isomorphic
to R. The map

Ψg
D2,D ′

2
⊗ id :

̂

HM •(Ȳ
1,2
3 |R̄1,2

3 ;Γ
η̄1,23

) →

̂

HM •(Ȳ
1,2′
3 |R̄1,2′

3 ;Γ
η̄1,2′3

)

is therefore R×-equivalent to the composition

ΘC1,2

(Ȳ 1,2
3 )+Ȳ 1,2′

3
◦

̂

HM •(X
1,2
+ |R̄1,2

3 ;Γν) ◦

̂

HM •(X
1,2
− |R̄1,2

3 ;Γν)
−1,

where ν refers to the appropriate disjoint union of cylinders, and

ΘC1,2

(Ȳ 1,2
3 )+Ȳ 1,2′

3
:= ΘC1

(Ȳ 1
3 )+Ȳ 1′

3
⊗ ΘC2

(Ȳ 2
3 )+Ȳ 2′

3
.

Let W and W ′ denote the splicing cobordisms from Ȳ 1,2
3 to Y3 and

Ȳ 1,2′
3 to Y ′

3 constructed according to the procedure described earlier in

this section. We can define splicing cobordisms W± from (Ȳ 1,2
3 )± to

(Y3)± in the same way since the curves r3(ai × {ti}), r3(ai × {t′i}) are
disjoint from the tori T1, T2. The commutativity of the diagram in (54)
then follows from the commutativity of the three diagrams below (up to
multiplication by a unit in R, of course). In these diagrams, the arrows
labeled by cobordisms represent the corresponding maps.
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̂

HM •(Ȳ
1,2
3 |R̄1,2

3 ;Γ
η̄1,23

)
W !!

̂

HM •(Y3|R3;Γη3)

̂

HM •((Ȳ
1,2
3 )−|R̄

1,2
3 ;Γ

η̄1,23
)

W−

!!

X1,2
−

##

̂

HM •((Y3)−|R3;Γη3)

X−

##

̂

HM •((Ȳ
1,2
3 )−|R̄

1,2
3 ;Γ

η̄1,23
)

W− !!

X1,2
+

""

̂

HM •((Y3)−|R3;Γη3)

X+

""̂

HM •((Ȳ
1,2
3 )+|R̄

1,2
3 ;Γ

η̄1,23
)

W+

!!

̂

HM •((Y3)+|R3;Γη3)

̂

HM •((Ȳ
1,2
3 )+|R̄

1,2
3 ;Γ

η̄1,23
)

W+ !!

ΘC1,2

(Ȳ
1,2
3 )+Ȳ

1,2′
3

""

̂

HM •((Y3)+|R3;Γη3)

ΘC
(Y ′

3)+Y ′
3

""̂

HM •(Ȳ
1,2′
3 |R̄1,2′

3 ;Γ
η̄1,2′3

)
W ′

!!

̂

HM •(Y ′
3 |R

′
3;Γη′3

)

That the first of these diagrams commutes follows from the observa-
tion that the composites (X−, ν) ◦ (W−, ν) and (W, ν) ◦ (X1,2

− , ν) are
isomorphic. To see this, note once more that the 2-handles used to
form X− and X1,2

− are attached along curves in regions of Y3 and Ȳ 1,2
3

that are disjoint from the tori T1 and T2. The cobordisms W and W−

therefore contain pieces diffeomorphic to the products of these regions
with the interval [0, 1]. The above observation follows immediately from
this fact. The commutativity of the second and third diagrams above
follows from very similar considerations. q.e.d.

5.3. The General Case. Here, we define the map

ΨD ,D ′ : SHM(D) → SHM(D ′)

for an arbitrary pair D ,D ′ of marked closures of (M, γ). For this, we
choose a sequence

{Di = (Yi, Ri, ri,mi, ηi)}
n
i=1

of marked closures of (M, γ), where D = D1, D ′ = Dn and

|g(Di)− g(Di+1)| ≤ 1
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for i = 1, . . . , n− 1. Let Ψ◦
Di,Di+1

denote Ψg
Di,Di+1

, Ψg,g+1
Di,Di+1

or Ψg+1,g
Di,Di+1

,
as appropriate. We define ΨD ,D ′ as follows.

Definition 5.18. The map ΨD ,D ′ is given by

ΨD ,D ′ = ΨD1,Dn
:= Ψ◦

Dn−1,Dn
◦ · · · ◦Ψ◦

D1,D2
.

Next, we prove that the R×-equivalence class of this map is well-
defined.

Theorem 5.19. The map ΨD ,D ′ is independent of the choices made
in its construction, up to multiplication by a unit in R.

Proof. The one choice we made in defining ΨD ,D ′ was the sequence
of marked closures interpolating between D and D ′ as above. Let

{D1
i = (Y 1

i , R
1
i , r

1
i ,m

1
i , η

1
i )}

ℓ
i=1

{D2
i = (Y 2

i , R
2
i , r

2
i ,m

2
i , η

2
i )}

m
i=1

be two such sequences. We must show that

Ψ◦
D1

ℓ−1,D
1
ℓ
◦ · · · ◦Ψ◦

D1
1 ,D

1
2

.
= Ψ◦

D2
m−1,D

2
m
◦ · · · ◦Ψ◦

D2
1 ,D

2
2

as maps from SHM(D) to SHM(D ′). This is equivalent to showing
that

Ψ◦
D2

2 ,D
2
1
◦ · · · ◦Ψ◦

D2
m,D2

m−1
◦Ψ◦

D1
ℓ−1,D

1
ℓ
◦ · · · ◦Ψ◦

D1
1 ,D

1
2

isR×-equivalent to the identity map on SHM(D). Let {Di = (Yi, Ri, ri,mi, ηi)}ni=1
be any sequence of marked closures of the kind used to define ΨD ,D ′ in
the case that D = D ′. It suffices to show that

(60) Ψ◦
Dn−1,Dn

◦ · · · ◦Ψ◦
D1,D2

is R×-equivalent to the identity map on SHM(D).
If n = 2, then this composition is just Ψ◦

D1,D2
= Ψg

D ,D , where g =

g(D), which is R×-equivalent the identity map.
If n > 2, then this composition is R×-equivalent to another compo-

sition of the same kind but with fewer terms. For example, if g(Di) =
g(Di+1) = g for some i, then we can either replace Ψg

Di,Di+1
◦ Ψ◦

Di−1,Di

with Ψ◦
Di−1,Di+1

or Ψ◦
Di+1,Di+2

◦ Ψg
Di,Di+1

with Ψ◦
Di,Di+2

, as follows from

Theorem 5.6 or from Remark 5.13. On the other hand, if g(Di) ̸=
g(Di+1) for any i, then, since g(D1) = g(Dn), there is some 1 < i < n
such that either

g(Di) = g(Di−1) + 1 = g(Di+1) + 1 = g + 1

or
g(Di) = g(Di−1)− 1 = g(Di+1)− 1 = g − 1.

In the first case, we can replace Ψg+1,g
Di,Di+1

◦Ψg,g+1
Di−1,Di

with

Ψg+1,g
Di,Di+1

◦Ψg,g+1
Di+1,Di

◦Ψg
Di−1,Di+1

.
= Ψg

Di−1,Di+1
,
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by Remark 5.13. The second case is treated almost identically. That
the map in (60) is the identity now follows by induction on n. q.e.d.

The maps ΨD ,D ′ satisfy the following transitivity.

Theorem 5.20. Suppose D ,D ′,D ′′ are marked closures of (M, γ).
Then

ΨD ,D ′′ = ΨD ′,D ′′ ◦ΨD ,D ′ ,

up to multiplication by a unit in R.

Proof. This follows immediately from the definitions of these maps
and the fact that they are well-defined up to multiplication by a unit in
R. q.e.d.

The modules in {SHM(D)} and maps in {ΨD ,D ′} therefore define a
projectively transitive system of R-modules.

Definition 5.21. The twisted sutured monopole homology of (M, γ) is
the projectively transitive system of R-modules defined by {SHM(D)}
and {ΨD ,D ′}. We will denote this system by SHM(M, γ).

6. Maps Induced by Diffeomorphisms

We start with the following definition.

Definition 6.1. A diffeomorphism of balanced sutured manifolds from
(M, γ) to (M ′, γ′) is an orientation-preserving diffeomorphism of pairs,
f : (M, γ) → (M ′, γ′).

In this short section, we explain how to associate to a diffeomorphism
f as in the definition above the isomorphism

SHM(f) : SHM(M, γ) → SHM(M ′, γ′)

of projectively transitive systems of R-modules described in the intro-
duction. To define such a map, it suffices to construct isomorphisms

Ψf,D ,D ′ : SHM(D) → SHM(D ′)

for every pair of marked closures D ,D ′ of (M, γ) and (M ′, γ′), such that

(61) ΨD ′,D ′′′ ◦Ψf,D ,D ′

.
= Ψf,D ′′,D ′′′ ◦ΨD ,D ′′

for all marked closures D ,D ′′ of (M, γ) and all marked closures D ′,D ′′′

of (M ′, γ′).

Definition 6.2. The map SHM(f) is the isomorphism of projec-
tively transitive systems ofR-modules defined by the collection {Ψf,D ,D ′}.

Below, we define the maps Ψf,D ,D ′ . Let D = (Y,R, r,m, η) and D ′ =
(Y ′, R′, r′,m′, η′) be marked closures of (M, γ) and (M ′, γ′), and let

D
′
f = (Y ′, R′, r′,m′ ◦ f, η′).
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We define
Ψf,D ,D ′ := ΘD ′

f ,D
′ ◦ΨD ,D ′

f
,

where
ΘD ′

f ,D
′ : SHM(D ′

f ) → SHM(D ′)

is defined to be the identity map from

̂

HM •(Y ′|R′;Γη′) to

̂

HM •(Y ′|R′;Γη′).
For the identity in (61), note that

ΨD ′,D ′′′ ◦Ψf,D ,D ′

.
= ΨD ′,D ′′′ ◦ΘD ′

f ,D
′ ◦ΨD ,D ′

f

.
= ΨD ′,D ′′′ ◦ΘD ′

f ,D
′ ◦ΨD ′′′

f ,D ′
f
◦ΨD ,D ′′′

f

.
= ΨD ′,D ′′′ ◦ΨD ′′′,D ′ ◦ΘD ′′′

f ,D ′′′ ◦ΨD ,D ′′′
f

.
= ΨD ′,D ′′′ ◦ΨD ′′′,D ′ ◦ΘD ′′′

f ,D ′′′ ◦ΨD ′′,D ′′′
f
◦ΨD ,D ′′

.
= ΨD ′,D ′′′ ◦ΨD ′′′,D ′ ◦Ψf,D ′′,D ′′′ ◦ΨD ,D ′′

.
= Ψf,D ′′,D ′′′ ◦ΨD ,D ′′ ,

where the second and fourth and sixth equalities follow from Theorem
5.20 and the third follows from the easy fact that the diagram

(62) SHM(D ′′′
f )

Ψ
D′′′

f
,D′

f !!

Θ
D′′′

f
,D′′′

""

SHM(D ′
f )

Θ
D′

f
,D′

""

SHM(D ′′′)
ΨD′′′,D′

!! SHM(D ′)

commutes.
We close this section with the following theorem.

Theorem 6.3. The isomorphism SHM(f) is an invariant of the
smooth isotopy class of f . Moreover, these maps satisfy

SHM(f ′ ◦ f) = SHM(f ′) ◦ SHM(f)

for diffeomorphisms

(M, γ)
f
−→ (M ′, γ′)

f ′

−→ (M ′′, γ′′).

In particular, the mapping class group of (M, γ) acts on SHM(M, γ).

The following corollary proves Theorem 1.10.

Corollary 6.4. SHM defines a functor from DiffSut to R-PSys.

Proof of Theorem 6.3. That SHM(f) is an invariant of the smooth iso-
topy class of f follows from the fact that each Ψf,D ,D ′ is, which itself
follows directly from the construction of the maps ΨD ,D ′

f
. To show that

SHM(f ′ ◦ f) = SHM(f ′) ◦ SHM(f),
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it is enough to show that

Ψf ′◦f,D ,D ′′ = Ψf ′,D ′,D ′′ ◦Ψf,D ,D ′ ,

for all marked closures D ,D ′,D ′′ of (M, γ), (M ′, γ′), (M ′′, γ′′), respec-
tively. But

Ψf ′◦f,D ,D ′′

.
= ΘD ′′

f ′◦f
,D ′′ ◦ΨD ,D ′′

f ′◦f

.
= ΘD ′′

f ′
,D ′′ ◦ΘD ′′

f ′◦f
,D ′′

f ′
◦ΨD ,D ′′

f ′◦f

.
= ΘD ′′

f ′
,D ′′ ◦ΘD ′′

f ′◦f
,D ′′

f ′
◦ΨD ′

f ,D
′′

f ′◦f
◦ΨD ,D ′

f

.
= ΘD ′′

f ′
,D ′′ ◦ΨD ′,D ′′

f ′
◦ΘD ′

f ,D
′ ◦ΨD ,D ′

f

.
= Ψf ′,D ′,D ′′ ◦Ψf,D ,D ′ ,

as desired, where the third equality above follows from Theorem 5.20
and the fourth follows from the commutativity of the diagram in (62).
q.e.d.

7. The Untwisted Theory

Recall that the untwisted sutured monopole homology groups asso-
ciated to (M, γ) are defined in terms of ordinary rather than marked
closures. Suppose D and D ′ are (ordinary) closures of (M, γ) with
g(D) = g(D ′) = g. In this section, we construct the canonical isomor-
phisms

Ψg
D ,D ′ : SHMg(D) → SHMg(D ′)

described in the introduction. In addition, we will describe the rela-
tionship between these untwisted invariants of (M, γ) and the twisted
invariants defined in previous sections.

The maps Ψg
D ,D ′ are constructed in almost exactly the same way as

are the canonical isomorphisms in the twisted setting for closures of the
same genus. We briefly spell out the modified construction below. For
the sake of exposition, let us write

D = D1 = (Y1, R1, r1,m1)

D
′ = D2 = (Y2, R2, r2,m2).

We first choose a diffeomorphism

C : Y1 ! int(Im(r1)) → Y2 ! int(Im(r2))

and define the map ϕC exactly as in Subsection 5.1 (we do not need
the map ψC in the untwisted setting). Suppose ϕC is isotopic to the
following compositions of Dehn twists,

ϕC ∼ De1
a1 ◦ · · · ◦D

en
an ,
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and let

P = {i | ei = +1}

N = {i | ei = −1}.

Choose real numbers

−3/4 < tn < · · · < t1 < 3/4,

and pick some t′i between ti and the next greatest number in this list
for each i ∈ N .

We then define the 3-manifolds (Y1)± and the 2-handle cobordisms
X± exactly as in Subsection 5.1. In particular, (Y1)− is the manifold
obtained from Y1 by performing +1 surgeries on the curves r1(ai ×
{ti}) for i ∈ N , while (Y1)+ is the manifold obtained from (Y1)− by
performing −1 surgeries on the curves r1(ai × {ti})× {1} for all i ∈ P.
The cobordisms X± give rise to mapŝ

HM •(X−|R1) :

̂

HM ((Y1)−|R1) →

̂

HM (Y1|R1),̂

HM •(X+|R1) :

̂

HM ((Y1)−|R1) →

̂

HM ((Y1)+|R1),

which are isomorphisms by the untwisted analogues of the results in
Section 4. Let

ΘC
(Y1)+Y2

:

̂

HM •((Y1)+|R1) →

̂

HM •(Y2|R2)

denote the isomorphism associated to the isotopy class of diffeomor-
phisms from (Y1)+ to Y2 which restrict to C on Y1 ! int(Im(r1)).

Definition 7.1. The map Ψg
D ,D ′ is given by

Ψg
D ,D ′ = Ψg

D1,D2
:= ΘC

(Y1)+Y2
◦

̂

HM •(X+|R1) ◦

̂

HM •(X−|R1)
−1.

Theorem 7.2. The map Ψg
D ,D ′ is independent of the choices made

in its construction, up to sign. Furthermore, if D ,D ′,D ′′ are genus g
closures of (M, γ), then

Ψg
D ,D ′′ = Ψg

D ′,D ′′ ◦Ψ
g
D ,D ′ ,

up to sign.

Proof. This is proved in the same way that Theorems 5.2 and 5.6 are
proved. We just use the untwisted analogues of the results in Section 4
where needed. q.e.d.

Definition 7.3. The untwisted sutured monopole homology of (M, γ)
in genus g is the projectively transitive system of Z-modules defined by
{SHMg(D)} and {Ψg

D ,D ′}. We will denote this system by SHMg(M, γ).
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Given a diffeomorphism f : (M, γ) → (M ′, γ′) of balanced sutured
manifolds and genus g closures D = (Y,R, r,m) and D ′ = (Y ′, R′, r′,m′)
of (M, γ) and (M ′, γ′), we define an isomorphism

Ψg
f,D ,D ′ : SHMg(D) → SHM(D ′)

exactly as in Section 6. That is, we let

Ψg
f,D ,D ′ = ΘD ′

f ,D
′ ◦Ψg

D ,D ′
f
,

where D ′
f = (Y ′, R′, r′,m′ ◦ f) and

ΘD ′
f ,D

′ : SHMg(D ′
f ) → SHMg(D ′)

is the identity map on

̂

HM •(Y ′|R′). As in Section 6, these maps satisfy

(63) Ψg
D ′,D ′′′ ◦Ψ

g
f,D ,D ′

.
= Ψg

f,D ′′,D ′′′ ◦Ψ
g
D ,D ′′

for all genus g closures D ,D ′′ of (M, γ) and all genus g closures D ′,D ′′′

of (M ′, γ′).

Definition 7.4. The map

SHMg(f) : SHMg(M, γ) → SHMg(M ′, γ′)

is the isomorphism of projectively transitive systems of Z-modules de-
fined by the collection {Ψg

f,D ,D ′}.

The following are untwisted analogues of Theorem 6.3 and Corollary
6.4. Recall that DiffSutg is the full subcategory of DiffSut whose
objects are balanced sutured manifolds admitting genus g closures.

Theorem 7.5. The isomorphism SHMg(f) is an invariant of the
smooth isotopy class of f . Moreover, these maps satisfy

SHMg(f ′ ◦ f) = SHMg(f ′) ◦ SHMg(f)

for diffeomorphisms

(M, γ)
f
−→ (M ′, γ′)

f ′

−→ (M ′′, γ′′).

In particular, the mapping class group of (M, γ) acts on SHMg(M, γ).
q.e.d.

Corollary 7.6. SHMg defines a functor from DiffSutg to Z-PSys.

In particular, this corollary proves Theorem 1.11.
The rest of this section is devoted to clarifying the relationship be-

tween the untwisted invariants defined in this section and the twisted
invariants defined earlier. This relationship may be stated as below.
Let SHMg(M, γ)⊗Z R denote the projectively transitive system of R-
modules defined by of the modules in {SHMg(D) ⊗Z R} and maps in
{Ψg

D ,D ′ ⊗ id}.
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Theorem 7.7. SHMg(M, γ)⊗ZR and SHMg(M, γ) are isomorphic
as projectively transitive systems of R-modules.

Proof. To define an isomorphism from SHMg(M, γ)⊗ZR to SHMg(M, γ),
it suffices to define isomorphisms

Ξg
D ,D ′ : SHMg(D)⊗Z R → SHMg(D ′)

for all genus g closures D and genus g marked closures D ′ of (M, γ)
such that

(64) Ψg
D ′,D ′′′ ◦ Ξ

g
D ,D ′

.
= Ξg

D ′′,D ′′′ ◦ (Ψ
g
D ,D ′′ ⊗ id)

for all genus g closures D ,D ′′ and all genus g marked closures D ′,D ′′′

of (M, γ).
Suppose D = (Y,R, r,m) is a closure of (M, γ) and η is an oriented,

homologically essential, smoothly embedded curve in R. We will denote
by Dη the marked closure given by

D
n = (Y,R, r,m, η).

We first define an isomorphism

Ξg
D ,Dη : SHMg(D)⊗Z R → SHMg(Dη)

using the merge-type cobordism M introduced in Section 4. Recall that
M is built by gluing together the cornered 4-manifolds

M1 = (Y ! int(Im(r)))× [0, 1],

M2 = R× S,

M3 = R× [−3/4, 3/4]× [0, 1],

along the horizontal portions of their boundaries, as depicted in Figure
2, and that

ν := η × {0}× [0, 1].

Here, we will denote ν by νη to keep track of η and we will denote M
by M(D) to keep track of D . As discussed in Section 4, (M(D), νη)
defines a cobordism from Y - (R × S1, η × {0}) to (Y, r(η × {0})), and
thus gives rise to an isomorphism̂

HM •(M(D)|R;Γνη) :

̂

HM •(Y |R)⊗Z R →

̂

HM •(Y |R;Γη)

after choosing an identification

̂

HM •(R× S1|R;Γη) ∼= R. We define

Ξg
D ,Dη :=

̂

HM •(M(D)|R;Γνη).

The following proposition is the key to defining the maps Ξg
D ,D ′ in

general and to proving the commutativity in (64).
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Proposition 7.8. Suppose D1 = (Y1, R1, r1,m1) and D2 = (Y2, R2, r2,m2)
are two genus g closures of (M, γ), and let η1 and η2 be curves in R1

and R2 as above. Then the maps

(Ξg

D2,D
η2
2
)−1 ◦Ψg

D
η1
1 ,D

η2
2

◦ Ξg

D1,D
η1
1

and Ψg
D1,D2

⊗ id

from
SHMg(D1)⊗Z R → SHMg(D2)⊗Z R

are R×-equivalent.

Let us postpone the proof of Proposition 7.8 to the end this section
and first see how this proposition is used to define the maps Ξg

D ,D ′ and

prove that (64) holds. To define the isomorphism Ξg
D ,D ′ , we choose any

η as above and set

Ξg
D ,D ′ := Ψg

Dη ,D ′ ◦ Ξ
g
D ,Dη .

Lemma 7.9. The map Ξg
D ,D ′ is well-defined (i.e. does not depend on

η) up to multiplication by a unit in R.

Proof. We must show that

Ψg
Dη1 ,D ′ ◦ Ξ

g
D ,Dη1

.
= Ψg

Dη2 ,D ′ ◦ Ξ
g
D ,Dη2

for any η1 and η2. But this is equivalent to showing that

(Ξg
D ,Dη2 )

−1 ◦Ψg
Dη1 ,Dη2 ◦ Ξg

D ,Dη1

is R×-equivalent to the identity map from SHMg(D) ⊗Z R to itself,
which is just a special case of Proposition 7.8 where D1 = D2 = D .
q.e.d.

The following lemma establishes the commutativity in (64).

Lemma 7.10. Suppose D1,D2 are genus g closures of (M, γ) and
D3,D4 are genus g marked closures of (M, γ). Then

Ψg
D3,D4

◦ Ξg
D1,D3

= Ξg
D2,D4

◦ (Ψg
D1,D2

⊗ id),

up to multiplication by a unit in R.

Proof. We must show that

(65) (Ξg
D2,D4

)−1 ◦Ψg
D3,D4

◦ Ξg
D1,D3

.
= Ψg

D1,D2
⊗ id.

Let η1 and η2 be oriented, homologically essential, smoothly embedded
curves inR1 andR2 as above. The left hand side of (65) isR×-equivalent
to

(Ψg

D
η2
2 ,D4

◦ Ξg

D2,D
η2
2
)−1 ◦Ψg

D
η2
2 ,D4

◦Ψg

D3,D
η2
2

◦Ψg

D
η1
1 ,D3

◦ Ξg

D1,D
η1
1

.
= (Ξg

D2,D
η2
2
)−1(Ψg

D
η2
2 ,D4

)−1 ◦Ψg

D
η2
2 ,D4

◦Ψg

D
η1
1 ,D

η2
2

◦ Ξg

D1,D
η1
1

.
= (Ξg

D2,D
η2
2
)−1 ◦Ψg

D
η1
1 ,D

η2
2

◦ Ξg

D1,D
η1
1
,

so (65) just follows from Proposition 7.8. q.e.d.



64 JOHN A. BALDWIN & STEVEN SIVEK

All that remains is to prove Proposition 7.8.

Proof of Proposition 7.8. Recall that to define Ψg

D
η2
1 ,D

η2
2
, we start by

choosing a diffeomorphism

C : Y1 ! int(Im(r1)) → Y2 ! int(Im(r2))

as in Subsection 5.1. We then define ϕC
±, ϕ

C and ψC as usual, pick
factorizations of ϕC ◦ ψC and (ψC)−1 into positive Dehn twists,3

ϕC ◦ ψC ∼ Da1 ◦ · · · ◦Dan ,

(ψC)−1 ∼ Dan+1 ◦ · · · ◦Dam ,

and choose real numbers

−1 < tm < · · · < tn+1 < −7/8 < 7/8 < tn < · · · < t1 < 1

(normally, we choose these numbers in the intervals [−3/4,−1/4] and
[1/4, 3/4] but this change will not affect the resulting map). Let (Y1)+
be the 3-manifold obtained from Y1 by performing −1 surgeries on the
curves r1(ai × {ti}) for all i, and let X+ be the associated 2-handle
cobordism from Y1 to (Y1)+. As usual, X+ induces a map̂

HM •(X+|R1;Γν) :

̂

HM •(Y1|R1;Γη1) →

̂

HM •((Y1)+|R1;Γη1).

Then,

Ψg

D
η1
1 ,D

η2
2

:= ΘC
(Y1)+Y2

◦
̂

HM •(X+|R1;Γν).

As above, the maps Ξg

D1,D
η1
1

and Ξg

D2,D
η2
2

are defined in terms of the

merge-type cobordisms (M(D1), νη1) and (M(D2), νη2). Kronheimer
and Mrowka use an excision argument in [18] to prove that the inverse
map (Ξg

D2,D
η2
2
)−1 is R×-equivalent to the map induced by the split-

type cobordism (−M(D2),−νη2) from (Y2, r2(η2 × {0})) to Y2 - (R2 ×
S1, η2×{0}). We will think of (−M(D2),−νη2) as having been obtained
by gluing together the cornered 4-manifolds

−M(D2)1 = (Y2 ! int(Im(r2)))× [0, 1],

−M(D2)2 = R2 × S′,

−M(D2)3 = R2 × [−3/4, 3/4]× [0, 1],

where S′ is the saddle cobordism used to define the split-type cobordism
S in Section 4. Here, we glue −M(D2)2 to −M(D2)1 according to the
maps

r−2 × id : R2 ×H1 → Y2 × [0, 1],

r+2 × id : R2 ×H2 → Y2 × [0, 1],

3In Subsection 5.1 we had to allow negative Dehn twists in order to prepare for
the maps Ψg,g+1

D,D′ of Subsection 5.2, but we can avoid them here since we are not

planning to compare SHM
g(M, γ) for different values of g.
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and we glue −M(D2)3 to −M(D2)2 ∪ −M(D2)1 according to

id× id : (R2 × {−3/4})× [0, 1] → R2 ×H3,

id× id : (R2 × {+3/4})× [0, 1] → R2 ×H4.

In this case, −νη2 corresponds to the cylinder η2×{0}×[0, 1] ⊂ −M(D2)3 ⊂
−M(D2).

The map

(Ξg

D2,D
η2
2
)−1◦Ψg

D
η1
1 ,D

η2
2
◦Ξg

D1,D
η1
1

:

̂

HM •(Y1|R1)⊗ZR →

̂

HM •(Y2|R2)⊗ZR

is then R×-equivalent to the map
(66)̂

HM •(−M(D2)|R2;Γ−νη2 )◦Θ
C
(Y1)+Y2

◦

̂

HM •(X+|R1;Γν)◦

̂

HM •(M(D1)|R1;Γνη1 )

from̂

HM •(Y1|R1)⊗Z

̂

HM •(R1×S1|R1;Γη1) →

̂

HM •(Y2|R2)⊗Z

̂

HM •(R2×S1|R2;Γη2)

after choosing identifications of

̂

HM •(R1 × S1|R1;Γη1) and

̂

HM •(R2 ×
S1|R2;Γη2) with R. So, to prove Proposition 7.8, we just need to show
that this composition in (66) is R×-equivalent to Ψg

D1,D2
⊗ f, for some

isomorphism

f :

̂

HM •(R1 × S1|R1;Γη1) →

̂

HM •(R2 × S1|R2;Γη2).

For this, consider the composite cobordism

(W, ν) = (−M(D2),−ν
η2) ◦ (X+, ν) ◦ (M(D1), ν

η1),

where −M(D2) is glued to X+ along (Y1)+ ∼= Y2 by a map which re-
stricts to C on Y1!int(Im(r1)) and to r2◦((ϕC

−◦ψ
C)×id)◦r−1

1 on a neigh-

borhood of r1(R1 × [−7/8, 7/8]). The induced map

̂

HM •(W |R1;Γν) is
equal to the map in (66). To show that̂

HM •(W |R1;Γν)
.
= Ψg

D1,D2
⊗ f,

for some isomorphism f as above, we use an excision argument nearly
identical to that in the proof of Proposition 4.4. Namely, we consider
the submanifold T ⊂ W given by

T = R1 × c ∪ R1 × {−7/8, 7/8}× [0, 1] ∪ R2 × c′.

Recall that c is a smoothly embedded arc in S with boundary on V3 and
V4 at the points identified with−7/8 and 7/8, and c′ is the corresponding
arc in S′, so that R1×c and R2×c′ are properly embedded submanifolds
of M(D1) and M(D2). The middle piece R1 × {−7/8, 7/8}× [0, 1] is a
properly embedded submanifold of X+, where X+ is viewed as a union
of Y1×[0, 1] with 2-handles and Y1 is viewed as the boundary component

Y1 ! int(Im(r1)) ∪R1 × V3 ∪ R1 × [−3/4, 3/4] ∪ R1 × V4

of M(D1).
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We form a new 4-manifold manifold W by cutting W open along
T ∼= R1×S1 and capping off the new boundary components with copies
of R×D2. The resulting cobordism (W, ν) is isomorphic to the disjoint
union

X ′
+ - ((R1 × S1)× [0, 3], η1 × [0, 3]),

where X ′
+ is a cobordism from Y1 to Y2 of the sort used to define the

map Ψg
D1,D2

and ((R1 × S1) × [0, 3], η1 × [0, 3]) is the cobordism from

(R1 × S1, η1) to (R2 × S1, η2) with boundary identification

((R1 × S1)× {3}, η1 × {3}) ∼= (R2 × S1, η2)

induced by the map

(67) ϕC
− ◦ ψC : R1 → R2.

By excision, we have that̂

HM •(W |R1;Γν)
.
=

̂

HM •(W |R1;Γν)

=

̂

HM •(X
′
+|R1)⊗

̂

HM •((R1 × S1)× [0, 3]|R1;Γη1×[0,3])

= Ψg
D1,D2

⊗ f,

where

f :

̂

HM •(R1 × S1|R1;Γη1) →

̂

HM •(R2 × S1|R2;Γη2)

is the isomorphism induced by the identification in (67). This completes
the proof of Proposition 7.8. q.e.d.

The above results show that the maps in {Ξg
D ,D ′} define an isomor-

phism of projectively transitive systems as desired, completing the proof
of Theorem 7.7. q.e.d.

One can easily adapt the above proof to show the following.

Theorem 7.11. The functors SHMg⊗ZR and SHMg from DiffSutg

to R-PSys are naturally isomorphic. q.e.d.

8. Monopole Knot Homology

In this section, we define the functors KHM and KHMg mentioned
in the introduction. At the end, we define the functors HM and HMg

by a simpler version of the same construction.
Suppose (K, p) is a based knot in Y . Let D2 be the unit disk in the

complex plane, let S1 = ∂D2, and suppose

(68) ϕ : S1 ×D2 → Y

is an embedding such that ϕ(S1 × {0}) = K and ϕ({1}× {0}) = p. Let
Y (ϕ) be the balanced sutured manifold given by

Y (ϕ) := (Y ! int(Im(ϕ)),m+
ϕ ∪ −m−

ϕ ),
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where m±
ϕ is the oriented meridian ϕ({±1} × ∂D2) on ∂Y (ϕ). The

monopole knot homology KHM(Y,K, p) is defined, roughly speaking,
as SHM(Y (ϕ)). Of course, this does not make complete sense since
the latter depends on ϕ rather than just on (Y,K, p). However, given
embeddings ϕ and ϕ′ of K as above, we will construct a canonical
isomorphism

Ψϕ,ϕ′ : SHM(Y (ϕ)) → SHM(Y (ϕ′)).

These isomorphisms will then allow us to define KHM(Y,K, p) without
ambiguity (see Definition 8.4). We describe the construction of these
isomorphisms below.

Let us first consider the case in which Im(ϕ′) ⊂ Im(ϕ).
Let N be a solid torus neighborhood of K with Im(ϕ) ⊂ int(N).

Recall that any two closed tubular neighborhoods of K are related by
an ambient isotopy of Y fixing K pointwise (cf. [16, Theorem 3.5]). A
slight extension of this result provides an ambient isotopy ft : Y → Y ,
t ∈ [0, 1], such that:

1) each ft fixes p,
2) each ft restricts to the identity outside of N ,
3) Im(f1 ◦ ϕ) = Im(ϕ′),
4) f1 sends the meridional disks ϕ({±1}×D2) to the meridional disks

ϕ′({±1}×D2).

Conditions (3) and (4) imply that f1 restricts to a diffeomorphism of
sutured manifolds,

f̄1 : Y (ϕ) → Y (ϕ′).

We define Ψϕ,ϕ′ in this case by

Ψϕ,ϕ′ := SHM(f̄1) : SHM(Y (ϕ)) → SHM(Y (ϕ′)).

Remark 8.1. We could just as easily require that the isotopy ft
fixes (K, p) and sends every meridional disk to a meridional disk. Not
requiring that ft fixes (K, p) will be convenient for our construction of
transverse knot invariants in [3].

Let us now consider the case of arbitrary embeddings ϕ,ϕ′.
Fix a third embedding ϕ′′ with Im(ϕ′′) ⊂ Im(ϕ) and Im(ϕ′′) ⊂

Im(ϕ′). We define

(69) Ψϕ,ϕ′ := (Ψϕ′,ϕ′′)−1 ◦Ψϕ,ϕ′′ : SHM(Y (ϕ)) → SHM(Y (ϕ′)),

where the maps Ψϕ′,ϕ′′ and Ψϕ,ϕ′′ are defined as described previously.
We prove below that this map is well-defined.

Proposition 8.2. The map Ψϕ,ϕ′ is independent of the choices made
in its construction.

Proof. We first consider the case in which Im(ϕ′) ⊂ Im(ϕ) and show
that the map Ψϕ,ϕ′ is independent of the choices in its construction,
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namely N and ft. First, we fix N and show that Ψϕ,ϕ′ is independent
of ft. Suppose ft and f ′

t are two isotopies as above. It suffices to show
that the induced maps

f̄1, f̄
′
1 : Y (ϕ) → Y (ϕ′)

are isotopic (as diffeomorphisms of sutured manifolds) and therefore
give rise to the same maps, SHM(f̄1) = SHM(f̄ ′

1), by Theorem 6.3.
We will show, equivalently, that the diffeomorphism g = (f̄ ′

1)
−1 ◦ f̄1 is

isotopic to the identity.
Recall that g is the identity outside of N . Let us consider the re-

striction of g to N ∩ Y (ϕ) = N ! Im(ϕ), which we will identify with
a thickened torus T 2 × [0, 1], where T 2 × {0} corresponds to ∂(Im(ϕ))
and T 2×{1} corresponds to ∂N . First, note that the restriction of g to
T 2 × {0} is isotopic to the identity through an isotopy which preserves
the meridians m±

ϕ . This is because g preserves these meridians to start
with and sends any longitude to an isotopic longitude. (For the latter
statement, first observe that any diffeomorphism of T 2 sending meridi-
ans to meridians must send longitudes to longitudes. Second, suppose
there is a diffeomorphism of T 2× [0, 1] which restricts to the identity on
T 2 × {1}, preserves a meridian µ on T 2 × {0}, and sends a longitude λ
to a curve homologous to λ+ kµ. Then one could show that n-surgery
on a knot K is homeomorphic to (n+kr)-surgery on K for any integers
n, r and any knot K. This can only happen if k = 0.) We can realize
this isotopy on T 2 × {0} as the restriction of an isotopy on T 2 × [0, 1]
which is the identity on T 2 × {1}. We may therefore assume that the
original sutured diffeomorphism

g : Y (ϕ) → Y (ϕ)

restricts to the identity on ∂(T 2 × [0, 1]). From here, our aim is to
show that g is isotopic to the identity on T 2 × [0, 1] by an isotopy
which restricts to the identity on T 2 × {1} and preserves the meridians
m±

ϕ ⊂ T 2 × {0}. According to Proposition A.1, the natural map

π1(Diff(T 2)) → π0(Diff(T 2 × [0, 1] rel ∂(T 2 × [0, 1])))

is surjective (in fact, it is known that this map is an isomorphism).
Moreover, π1(Diff(T 2)) ∼= Z× Z, where the first and second factors are
generated by full rotations along a meridional direction (specified by
m±

ϕ ) and a longitudinal direction, respectively (see [7]). The fact that
g extends to a diffeomorphism of N which is isotopic to the identity
through an isotopy (namely, (f ′

t)
−1 ◦ ft) which fixes p and restricts to

the identity on ∂N implies that the class

[g] ∈ π0(Diff(T 2 × [0, 1] rel ∂(T 2 × [0, 1])))

is in the image of the subgroup Z × {0} ⊂ π1(Diff(T 2)) under the sur-
jection above. (To see this, let D be a meridional disk in N such that
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D ∩ Im(ϕ) = ϕ({1}×D2). Then, by the above fact about g, the disks
D and g(D) are isotopic by an isotopy stationary on p and ∂N . But
g(D) ∩ Im(ϕ) = ϕ({1} × D2) as well, by the conditions on ft and f ′

t .
This implies, without much difficulty, that the annuli D ∩ (T 2 × [0, 1])
and g(D) ∩ (T 2 × [0, 1]) are isotopic in T 2 × [0, 1] by an isotopy which
preserves their boundaries. It follows easily that [g] cannot come from a
loop in Diff(T 2) with any longitudinal rotation.) But any such g is then
isotopic to the identity on T 2× [0, 1] by an isotopy which restricts to the
identity on T 2× {1} and traces out some number of full rotations along
the meridional direction on T 2 × {0}. Such an isotopy can be assumed
to preserve the meridians m±

ϕ , as desired.
ThatΨϕ,ϕ′ is independent ofN follows because given two suchN1, N2,

we can find a third N3 such that Im(ϕ) ⊂ int(N3) and N3 ⊂ N2 ∩ N1.
An ambient isotopy ft supported in N3 therefore also has support in
N1, N2. It then follows from the independence of Ψft on ft that the
maps defined using N1, N2 agree with the map defined using N3 and,
therefore, with one another.

Note that if we have three embeddings with Im(ϕ′′) ⊂ Im(ϕ′) ⊂
Im(ϕ), then it follows easily from the definitions that

(70) Ψϕ,ϕ′′ = Ψϕ′,ϕ′′ ◦Ψϕ,ϕ′ .

Let us now consider the case of arbitrary embeddings ϕ,ϕ′. We must
show that the map Ψϕ,ϕ′ defined in (69) is independent of ϕ′′. Suppose
ϕ′′
1 and ϕ′′

2 are embeddings such that Im(ϕ′′
i ) ⊂ Im(ϕ) and Im(ϕ′′

i ) ⊂
Im(ϕ′) for i = 1, 2. Let ϕ′′

3 be an embedding with Im(ϕ′′
3) ⊂ Im(ϕ′′

1) and
Im(ϕ′′

3) ⊂ Im(ϕ′′
2). Then it follows from (70) that

(Ψϕ′,ϕ′′
1
)−1 ◦Ψϕ,ϕ′′

1
= (Ψϕ′,ϕ′′

3
)−1 ◦Ψϕ,ϕ′′

3
= (Ψϕ′,ϕ′′

2
)−1 ◦Ψϕ,ϕ′′

2
,

completing the proof. q.e.d.

Proposition 8.3. The isomorphisms constructed above satisfy the
transitivity relation

Ψϕ,ϕ′′ = Ψϕ′,ϕ′′ ◦Ψϕ,ϕ′

for any three ϕ,ϕ′,ϕ′′.

Proof. This follows easily from the definitions of these isomorphisms.
q.e.d.

The projectively transitive systems in {SHM(Y (ϕ))}ϕ and the iso-
morphisms in {Ψϕ,ϕ′}ϕ,ϕ′ thus form what we call a transitive system of
projectively transitive systems of R-modules. Note that this system of
systems defines an actual projectively transitive system of R-modules;
we simply take the union of the R-modules in the systems SHM(Y (ϕ))
and the union of the R×-equivalence classes of R-modules homomor-
phisms comprising these systems and the morphisms Ψϕ,ϕ′ .
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Definition 8.4. We define KHM(Y,K, p) to be the projectively
transitive system of R-modules determined, in the manner described
above, by the transitive system of systems given by {SHM(Y (ϕ))}ϕ
and and {Ψϕ,ϕ′}ϕ,ϕ′ .

Suppose f is a diffeomorphism from (Y,K, p) to (Y ′,K ′, p′). For each
neighborhood ϕ of K as in (68), f defines a diffeomorphism of balanced
sutured manifolds,

fϕ : Y (ϕ) → Y ′(ϕ′),

where ϕ′ = f ◦ ϕ. The map fϕ then induces an isomorphism

SHM(fϕ) : KHM(Y (ϕ)) → KHM(Y ′(ϕ′)),

and it is not hard to show that the collection {SHM(fϕ)}ϕ gives rise
to an isomorphism

KHM(f) : KHM(Y,K, p) → KHM(Y ′,K ′, p′)

of projectively transitive systems of R-modules. Moreover, it is not
hard to show that these isomorphisms are invariants of isotopy classes
of based diffeomorphisms and respect composition in such a way that
KHM defines a functor. We record this in the theorem below, which,
in particular, implies Theorem 1.14 from the introduction.

Theorem 8.5. KHM defines a functor from BKnot to R-PSys.
q.e.d.

We define the untwisted functor KHMg from BKnot to Z-PSys
described in Theorem 1.15 in exactly the same way, replacing SHM
with SHMg everywhere. We are able to define this functor for each
g ≥ 2 since the balanced sutured manifolds Y (ϕ) admit closures of
every genus g ≥ 2. One can also define a twisted functor KHMg in each
genus, replacing SHM with SHMg everywhere in the construction. The
following analogue of Theorem 7.11 describes the relationship between
the twisted and untwisted monopole knot homology invariants defined
above.

Theorem 8.6. The functors KHMg⊗ZR and KHMg from BKnot
to R-PSys are naturally isomorphic. q.e.d.

We may now define the functors HM and HMg very similarly.
Suppose (Y, p) is a based, closed 3-manifold. Let B3 be the unit ball

in R3, let S1 denote the equator given by

S1 = {(x, y, z) ∈ ∂B3 | z = 0},

oriented as the boundary of the upper hemisphere

D2 = {(x, y, z) ∈ ∂B3 | z ≥ 0}.

Suppose
ϕ : p×B3 → Y
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is an embedding such that ϕ(p × {0}) = p. Let Y (ϕ) be the balanced
sutured manifold given by

Y (ϕ) := (Y ! int(Im(ϕ)),mϕ),

where mϕ is the oriented equator ϕ(S1) on ∂Y (ϕ). Given tubular neigh-
borhoods ϕ and ϕ′ as above, we define a canonical isomorphism

Ψϕ,ϕ′ : SHM(Y (ϕ)) → SHM(Y (ϕ′)),

very closely mimicking our earlier construction for knots.
We first consider the case in which Im(ϕ′) ⊂ Im(ϕ). Let N be a

regular neighborhood of p with Im(ϕ) ⊂ int(N). Choose an ambient
isotopy ft : Y → Y , t ∈ [0, 1], such that:

1) each ft fixes p,
2) each ft restricts the identity outside of N ,
3) Im(f1 ◦ ϕ) = Im(ϕ′),
4) f1 sends mϕ to mϕ′ .

As before, f1 restricts to a diffeomorphism of sutured manifolds,

f̄1 : Y (ϕ) → Y (ϕ′),

and we define Ψϕ,ϕ′ by

Ψϕ,ϕ′ := SHM(f̄1).

For the case of arbitrary embeddings ϕ,ϕ′, we fix a third embedding ϕ′′

with Im(ϕ′′) ⊂ Im(ϕ) and Im(ϕ′′) ⊂ Im(ϕ′), and we define

(71) Ψϕ,ϕ′ := (Ψϕ′,ϕ′′)−1 ◦Ψϕ,ϕ′′ .

The propositions below are direct analogues of Propositions 8.2 and
8.3.

Proposition 8.7. The map Ψϕ,ϕ′ is independent of the choices made
in its construction.

Proof. This proof is almost word-for-word the same as that of Propo-
sition 8.2. Adopting the notation of that proof, we must show that
g = (f̄ ′

1)
−1 ◦ f̄1 is isotopic to the identity. The only difference in this

case is that we identify N ∩Y (ϕ) with S2× [0, 1] rather than T 2× [0, 1],
with S2×{0} corresponding to ∂(Im(ϕ)) and S2×{1} corresponding to
∂N , so that g restricts to a map which is the identity on S2×{1}. It fol-
lows from Hatcher’s proof of the Smale Conjecture (see [11, Appendix])
that the natural map

π1(Diff(S2)) → π0(Diff(S2 × [0, 1] rel ∂(S2 × [0, 1])))

is an isomorphism, where π1(Diff(S2)) ∼= π1(SO(3)) ∼= Z/2Z is gener-
ated by a full rotation of S2 about some axis, preserving a chosen equa-
tor (when we write Diff, we are talking about orientation-preserving dif-
feomorphisms). It follows that g is isotopic to the identity on S2× [0, 1]
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by an isotopy which restricts to the identity on S2 × {1} and preserves
the equator mϕ ⊂ S2 × {0}.

The rest of the proof is identical to that of Proposition 8.2. q.e.d.

Proposition 8.8. The isomorphisms constructed above satisfy the
transitivity relation

Ψϕ,ϕ′′ = Ψϕ′,ϕ′′ ◦Ψϕ,ϕ′

for any three ϕ,ϕ′,ϕ′′. q.e.d.

These propositions motivate the following definition.

Definition 8.9. We defineHM(Y, p) to be the projectively transitive
system of R-modules determined by the transitive system of systems
given by {SHM(Y (ϕ))}ϕ and {Ψϕ,ϕ′}ϕ,ϕ′ .

A diffeomorphism f : (Y, p) → (Y ′, p′) naturally gives rise to an
isomorphism

HM(f) : HM(Y, p) → HM(Y ′, p′),

essentially in the manner outlined above for knots, such that:

Theorem 8.10. HM defines a functor from BMfld to R-PSys.
q.e.d.

We define the untwisted functor HMg described in the introduction
in the analogous way, for each g ≥ 2. As usual, one can also define
a twisted functor HMg in each genus, and the following relationship
holds.

Theorem 8.11. The functors HMg ⊗Z R and HMg from BMfld
to R-PSys are naturally isomorphic. q.e.d.

9. Naturality in Sutured Instanton Homology

Here, we adapt the constructions of the previous sections to the in-
stanton setting using the notions of odd and marked odd closure. In
particular, given a marked odd closure D of (M, γ), we will define a
projectively transitive system of C-modules SHI(D) following the con-
struction in [18]. For every pair D ,D ′, we will construct a canonical
isomorphism of systems

ΨD ,D ′ : SHI(D) → SHI(D ′)

such that the systems in {SHI(D)} and maps in {ΨD ,D ′} form a transi-
tive systems of projectively transitive systems, and, hence, a larger pro-
jectively transitive system of C-modules (as in the construction ofKHM
in Section 8), which we denote by SHI(M, γ). As in the monopole set-
ting, diffeomorphisms of balanced sutured manifolds induce maps on
SHI in such a way that SHI defines a functor from DiffSut to C-PSys,
as promised in Theorem 1.18.
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Likewise, given a genus g odd closure D , we will define a projectively
transitive system of C-modules SHIg(D) as in [18], and, for every pair
D ,D ′ of such closures, we will construct a canonical isomorphism

Ψg
D ,D ′ : SHIg(D) → SHIg(D ′)

such that the systems in {SHIg(D)} and maps in {Ψg
D ,D ′} form a

larger projectively transitive system of C-modules, which we denote by
SHIg(M, γ). As in Theorem 1.19, SHIg defines a functor fromDiffSutg

to C-PSys.
Below, we explain the constructions of these twisted and untwisted

instanton invariants. As in the monopole case, we will focus on the con-
struction of the map ΨD ,D ′ . We will not say anything more about the
maps on SHI and SHIg induced by diffeomorphisms as the construc-
tions of these maps and proofs of their various properties are formally
identical to the constructions and proofs found in Section 6.

9.1. Odd Closures of Sutured Manifolds. First, we describe the
odd and marked odd closures used to define the untwisted and twisted
sutured monopole homology systems associated to a balanced sutured
manifold (M, γ).

Definition 9.1. An odd closure of (M, γ) is a tuple (Y,R, r,m,α),
where (Y,R, r,m) is a closure of (M, γ) in the sense of Definition 2.2,
and α is an oriented, smoothly embedded curve in Y such that:

1) α is disjoint from Im(m),
2) α intersects r(R × [−1, 1]) in an arc of the form r({p} × [−1, 1])

for some point p ∈ R.

Definition 9.2. Amarked odd closure of (M, γ) is a tuple (Y,R, r,m, η,α)
where (Y,R, r,m,α) is an odd closure of (M, γ), as defined above, and
(Y,R, r,m, η) is a marked closure of (M, γ) in the sense of Definition
2.3.

Remark 9.3. The adjective “odd” before “closure” is meant to re-
flect the fact that

⟨c1(w), r(R× {0})⟩ = α · r(R× {0}) = 1

is odd for D as above. This will be important in the definition of sutured
instanton homology below.

Remark 9.4. Given an odd closure (Y,R, r,m,α), the pair (Y, r(R×
{t})), together with the bundle w → Y , is a closure in the sense of Kro-
nheimer and Mrowka, for any t ∈ [−1, 1]. The curve α in our notation
corresponds to the circle through the marked point t0 in theirs. One
slight difference between our approach and theirs is that we require that
g(R) ≥ 2 while they allow closures in which g(R) = 1.
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9.2. Sutured Instanton Homology. Here, we recall the construction
of Kronheimer and Mrowka’s instanton invariants of sutured manifolds,
starting with a very brief review of instanton Floer homology for closed
3-manifolds. For more details, see [5, 18].

Suppose Y is a closed, oriented, smooth 3-manifold and w → Y is
a Hermitian line bundle such that c1(w) has odd pairing with some
class in H2(Y ;Z). Let E → Y be a U(2) bundle with an isomorphism
θ : Λ2E → w. Let C be the space of SO(3) connections on ad(E) and
let G be the group of determinant-1 gauge transformations of E (the
automorphisms of E that respect θ). The associated instanton Floer
homology group, which Kronheimer and Mrowka denote by I∗(Y )w,
is the Z/8Z-graded C-module arising from the Morse homology of the
Chern-Simons functional on C/G (cf. [5]). Given any closed, embedded
surface R ⊂ Y there is a natural operator

µ(R) : I∗(Y )w → I∗(Y )w

of degree −2. When R has genus at least 2, Kronheimer and Mrowka
define the submodule

I∗(Y |R)w ⊂ I∗(Y )w

to be the eigenspace of µ(R) with eigenvalue 2g(R)− 2.

Example 9.5. If Y ∼= R×S1 and the line bundle w is chosen so that
⟨c1(w), R× {0}⟩ is odd, then

I∗(Y |R× {0})w ∼= C,

as shown in [18, Proposition 7.4].

Suppose α is an oriented, smooth 1-cycle in Y which intersects a
closed, embedded surface in an odd number of points. One can associate
to (Y,α) an instanton Floer group after first choosing bundles w, E, and
an isomorphism θ as above, where the first Chern class is Poincaré dual
to α. This Floer group itself is not an invariant of (Y,α) as it depends on
these auxiliary choices. However, given a pair (Y,α), the Floer groups
associated to any two sets of auxiliary choices are related by a canonical
isomorphism which is well-defined up to sign (cf. [20, Section 4]). In
particular, the pair (Y,α) defines a projectively transitive system of C-
modules, which we will denote by I∗(Y )α. The canonical isomorphisms
respect the eigenspace decompositions and, so, for a closed embedded
surface R ⊂ Y , we may also define the projectively transitive system of
C-modules I∗(Y |R)α.

Suppose R1 and R2 are embedded surfaces in Y1 and Y2 as above. A
cobordism (W, ν) from (Y1,α1) to (Y1,α2) together with an embedded
surface RW ⊂ W containing R1 and R2 as components gives rise to a
map of projectively transitive systems

I∗(W |RW )ν : I∗(Y1|R1)α1 → I∗(Y2|R2)α2
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as in the monopole Floer homology setting. This map depends only
on the homology class [ν] ⊂ H2(W, ∂W ;Z) and the isomorphism class
of (W, ν) (again, cf. [20, Section 4]). These cobordism maps can also
be used, just as in Subsection 3.1, to define maps on instanton Floer
homology associated to diffeomorphisms.

We assign projectively transitive systems of C-modules to marked
(odd) closures of balanced sutured manifolds as follows (cf. [18, Section
7.4]).

Definition 9.6. Given an odd closure D = (Y,R, r,m,α) of (M, γ),
the untwisted sutured instanton homology of D is the projectively tran-
sitive system of C-modules

SHI(D) := I∗(Y |r(R× {0}))α.

Definition 9.7. Given a marked odd closure D = (Y,R, r,m, η,α) of
(M, γ), the twisted sutured instanton homology of D is the projectively
transitive system of C-modules

SHI(D) := I∗(Y |r(R× {0}))α+ η.

Remark 9.8. If w and u are line bundles over Y with first Chern
classes represented by α and η, then the line bundle w ⊗ u has first
Chern class represented by α - η.

As in the monopole setting, we will use SHIg(D) and SHIg(D) in
place of SHI(D) and SHI(D) when we wish to emphasize that D has
genus g.
9.3. The Maps ΨD ,D ′. Here, we define the isomorphisms

ΨD ,D ′ : SHI(D) → SHI(D ′)

alluded to above. As in the monopole case, we will first define these
maps for marked odd closures of the same genus and then for marked
odd closures whose genera differ by one before defining ΨD ,D ′ for arbi-
trary marked odd closures. Before defining any of these isomorphisms,
however, we establish an analogue of Theorem 4.3.

Suppose Y is a closed, oriented, smooth 3-manifold; R is a closed,
oriented smooth surface of genus at least two; η is an oriented, homolog-
ically essential, smoothly embedded curve in R; and r : R× [−1, 1] ↪→ Y
is an embedding. Suppose α ⊂ Y is an oriented, smoothly embedded
curve in Y such that α∩ Im(r) = r({p}× [−1, 1]) for some point p ∈ R.

Suppose Au and Bu are diffeomorphisms of R, for u = 1, 2, such that
A1◦B1 is isotopic to A2◦B2, (B2◦(B1)−1)(η) = η and Au(p) = Bu(p) =
p. Just as in Section 4, we factor Au and Bu into compositions of Dehn
twists around curves which avoid p, and use the corresponding 2-handle
cobordisms to construct maps

I∗(X
u
−|R)(α+ η)×[0,1] : I∗(Y

u
− |R)α+ η → I∗(Y |R)α+ η

I∗(X
u
+|R)(α+ η)×[0,1] : I∗(Y

u
− |R)α+ η → I∗(Y

u
+ |R)α+ η.
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The isotopy class (9) of diffeomorphisms Y 1
+ → Y 2

+ induces an isomor-
phism

ΘY 1
+Y 2

+
: I∗(Y

1
+|R)α+ η → I∗(Y

2
+|R)α+ η,

and we have the following.

Theorem 9.9 (cf. Theorem 4.3). The maps I∗(Xu
−|R)(α+ η)×[0,1] are

invertible, and the maps

ΘY 1
+Y 2

+
◦ I∗(X

1
+|R)(α+ η)×[0,1] ◦ (I∗(X

1
−|R)(α+ η)×[0,1])

−1

I∗(X
2
+|R)(α+ η)×[0,1] ◦ (I∗(X

2
−|R)(α+ η)×[0,1])

−1

from I∗(Y |R)α+ η to I∗(Y 2
+|R)α+ η are equal and are isomorphisms.4

Proof. The proof of Theorem 9.9 is almost exactly the same as that
of Theorem 4.3. Essentially, we just use Kronheimer and Mrowka’s
excision theorem for instanton Floer homology (cf. [18, Section 7.3])
in place of excision for monopole Floer homology. The one thing that
requires care is the modification of the proof of Proposition 4.8. In
the instanton setting, we have a relatively minimal Lefschetz fibration
X → D2 with fiber R and monodromy map which fixes p, and we need
to know that X has nonzero relative invariant

I∗(X|R){p}×D2(1) ∈ I∗(∂X|R){p}×S1 ∼= C.

But this is exactly Proposition 8.2 of [25], so we are done. q.e.d.

9.3.1. Same Genus. Suppose

D = D1 = (Y1, R1, r1,m1, η1,α1)

D
′ = D2 = (Y2, R2, r2,m2, η2,α2)

are marked odd closures of (M, γ) with g(D ′) = g(D) = g. Below, we
define the isomorphism

ΨD ,D ′ = Ψg
D ,D ′ : SHIg(D) → SHIg(D ′)

almost exactly as in Subsection 5.1.
To start, we choose a diffeomorphism

C : Y1 ! int(Im(r1)) → Y2 ! int(Im(r2))

as in Subsection 5.1, with the additional condition that C sends α1 ∩
(Y1 ! int(Im(r1))) to α2 ∩ (Y2 ! int(Im(r2))). We define the maps ϕC

±

and ϕC in the usual way, and choose a diffeomorphism

ψC : R1 → R1

4Note that we may say that these maps are equal rather than C×-equivalent as
in the analogous Theorem 4.3 since we are talking about maps between projectively
transitive systems in this case.
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such that

(ϕC
− ◦ ψC)(η1) = η2,

(ϕC
− ◦ ψC)(p1) = p2,

where the points pi ∈ Ri are defined by αi ∩ r(R × [−1, 1]) = r({pi} ×
[−1, 1]).

We now repeat the construction ofΨg
D ,D ′ from Subsection 5.1. Namely,

we express ϕC ◦ψC and (ψC)−1 as compositions of Dehn twists, and we
use these compositions to construct cobordisms X− from (Y1)− to Y1
and X+ from Y1 to (Y1)+. As before, there is a preferred isotopy class of
diffeomorphisms from (Y1)+ to Y2, which gives rise to an isomorphism

ΘC
(Y1)+Y2

: I∗((Y1)+|R1)α1 + η1 → I∗(Y2|R2)α2 + η2 .

Definition 9.10. The map Ψg
D ,D ′ is given by

Ψg
D ,D ′ = Ψg

D1,D2
:= ΘC

(Y1)+Y2
◦I∗(X+|R1)(α1 + η1)×[0,1]◦(I∗(X−|R1)(α1 + η1)×[0,1])

−1.

These maps are well- and satisfy the required transitivity, as stated
below.

Theorem 9.11. The map ΨD ,D ′ is independent of the choices made
in its construction. Furthermore, if D ,D ′,D ′′ are genus g marked odd
closures of (M, γ), then

Ψg
D ,D ′′ = Ψg

D ′,D ′′ ◦Ψ
g
D ,D ′ .

Proof. The proofs of Theorems 5.2 and 5.6 rely entirely on topological
arguments together with several applications of Theorem 4.3. We repeat
these arguments verbatim to prove Theorem 9.11, using Theorem 9.9 in
place of Theorem 4.3. q.e.d.

Definition 9.12. The twisted sutured instanton homology of (M, γ)
in genus g is the projectively transitive system of C-modules defined by
{SHIg(D)} and {Ψg

D ,D ′}. We will denote this system by SHIg(M, γ).

9.3.2. Genera Differ by One. Now, suppose

D = D1 = (Y1, R1, r1,m1, η1,α1)

D
′ = D4 = (Y4, R4, r4,m4, η4,α4).

are marked odd closures of (M, γ) with g(D ′) = g(D) + 1 = g + 1.
Below, we define the maps

ΨD ,D ′ = Ψg,g+1
D ,D ′ : SHIg(D) → SHIg+1(D ′)

ΨD ′,D = Ψg+1,g
D ′,D : SHIg+1(D ′) → SHIg(D).

To define Ψg,g+1
D ,D ′ = Ψg,g+1

D1,D4
, we choose an auxiliary marked odd closure

D3 = (Y3, R3, r3,m3, η3,α3),
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with g(D3) = g(D4) = g+1, such that (Y3, R3, r3,m3, η3) is a cut-ready
marked closure with respect to tori T1, T2 ⊂ Y3 as in Subsection 5.2.
We further require that the curve α3 be contained in the piece int(Y 1

3 ).
We may then form the corresponding cut-open tuple

D2 = (Y2, R2, r2,m2, η2,α2),

with g(D2) = g(D1) = g, where

Y2 = Ȳ 1
3 , R2 = R̄1

3, η2 = η̄13, r2 = r̄13

and α2 is the image of α3 ⊂ Y 1
3 inside Ȳ 1

3 .
We now construct a merge-type cobordism (W,β-ν), where (W, ν) is

defined exactly as in Subsection 5.2 and β is the product cobordism α2×
[0, 1] ⊂ Y 1

3 × [0, 1] = W1. With respect to the boundary identifications
in (50)-(51), β is a cylindrical cobordism from α2 ⊂ Y2 to α3 ⊂ Y3.
Kronheimer and Mrowka show in [18] that the induced map

I∗(W|S3)β + ν : I∗(Y2|R2)α2 + η2 ⊗C I∗(Y
2
3 |R

2
3)η̄23 → I∗(Y3|R3)α3 + η3

is an isomorphism. By [18, Proposition 7.8], we have that

I∗(Y
2
3 |R

2
3)η̄23

∼= C.

We choose any such identification and define

Ψg,g+1
D2,D3

(−) := I∗(W|S3)β + ν(−⊗ 1).

We now define the maps Ψg,g+1
D ,D ′ and Ψg+1,g

D ′,D exactly as in Subsection
5.2.

Definition 9.13. The map Ψg,g+1
D ,D ′ is given by

Ψg,g+1
D ,D ′ = Ψg,g+1

D1,D4
:= Ψg+1

D3,D4
◦Ψg,g+1

D2,D3
◦Ψg

D1,D2
.

Definition 9.14. The map Ψg+1,g
D ′,D is given by

Ψg+1,g
D ′,D := (Ψg,g+1

D ,D ′ )
−1.

We have the following analogue of Theorem 5.14.

Theorem 9.15. The map Ψg,g+1
D ,D ′ is independent of the choices made

in its construction.

Proof. The proof of this theorem is virtually identical to that of The-
orem 5.14. q.e.d.
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9.3.3. The General Case. We now define the map

ΨD ,D ′ : SHI(D) → SHI(D ′)

for an arbitrary pair D ,D ′ of marked odd closures of (M, γ) exactly as
in Subsection 5.3. Namely, we choose a sequence

{Di = (Yi, Ri, ri,mi, ηi,αi)}
n
i=1

of marked odd closures of (M, γ), where D = D1, D ′ = Dn and

|g(Di)− g(Di+1)| ≤ 1

for i = 1, . . . , n− 1, and define ΨD ,D ′ as follows.

Definition 9.16. The map ΨD ,D ′ is given by

ΨD ,D ′ = ΨD1,Dn
:= Ψ◦

Dn−1,Dn
◦ · · · ◦Ψ◦

D1,D2
.

Theorem 9.17. The map ΨD ,D ′ is independent of the choices made
in its construction. Furthermore, if D ,D ′,D ′′ are marked odd closures
of (M, γ), then

ΨD ,D ′′ = ΨD ′,D ′′ ◦ΨD ,D ′ .

Proof. The proof of this theorem is virtually identical to those of
Theorems 5.19 and 5.20. We therefore omit it. q.e.d.

Definition 9.18. The twisted sutured instanton homology of (M, γ)
is the projectively transitive system of C-modules defined by {SHI(D)}
and {ΨD ,D ′}. We will denote this system by SHI(M, γ).

9.4. The Untwisted Theory. Given genus g odd closures D ,D ′ of
(M, γ), we define the canonical isomorphism

Ψg
D ,D ′ : SHI(D) → SHI(D ′)

by simply adapting the construction in Section 7 to the instanton set-
ting.

Theorem 9.19. The map Ψg
D ,D ′ is independent of the choices made

in its construction. Furthermore, if D ,D ′,D ′′ are genus g odd closures
of (M, γ), then

Ψg
D ,D ′′ = Ψg

D ′,D ′′ ◦Ψ
g
D ,D ′ .q.e.d.

Definition 9.20. The untwisted sutured instanton homology of (M, γ)
in genus g is the projectively transitive system of C-modules defined by
{SHIg(D)} and {Ψg

D ,D ′}. We will denote this system by SHIg(M, γ).

The following theorem describes the relationship between the twisted
and untwisted sutured instanton invariants.

Theorem 9.21. SHIg(M, γ) and SHIg(M, γ) are isomorphic as pro-
jectively transitive systems of C-modules.
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Proof. To define an isomorphism from SHIg(M, γ) to SHIg(M, γ),
it suffices to define isomorphisms

Ξg
D ,D ′ : SHIg(D) → SHIg(D ′)

for all genus g odd closures D and genus g marked odd closures D ′ of
(M, γ) such that

(72) Ψg
D ′,D ′′′ ◦ Ξ

g
D ,D ′ = Ξg

D ′′,D ′′′ ◦Ψ
g
D ,D ′′

for all genus g odd closures D ,D ′′ and all genus g marked odd closures
D ′,D ′′′ of (M, γ). We describe below how the maps Ξg

D ,D ′ are con-
structed and omit the rest of the proof as it is virtually identical to the
proof of Theorem 7.7.

As in the monopole setting, the map Ξg
D ,D ′ is defined in terms of

the merge-type cobordisms M constructed in Section 4. Given an odd
closure D = (Y,R, r,m,α) of (M, γ) and an oriented, homologically
essential, smoothly embedded curve η ⊂ R, we let

D
η = (Y,R, r,m, η,α)

denote the corresponding marked odd closure, and let p ∈ R be the point
satisfying α∩ r(R× [−1, 1]) = r({p}× [−1, 1]). We define a merge-type
cobordism (M, νη - β), where (M, νη) is exactly as in Section 7 and β
is the cobordism from α - p× S1 to α defined by

β ∩M1 = (α! r({p}× (−1, 1)))× [0, 1],

β ∩M2 = {p}× S,

β ∩M3 = {p}× [−3/4, 3/4]× [0, 1].

This cobordism gives rise to an isomorphism

I∗(M|R)νη +β : I∗(Y |R)α ⊗C I∗(R× S1|R){p}×S1 + η → I∗(Y |R)α+ η.

We define

Ξg
D ,Dη := I∗(M|R)νη +β(−⊗ 1),

and we define

Ξg
D ,D ′ := Ψg

Dη ,D ′ ◦ Ξ
g
D ,Dη .

As alluded to above, the proof that this map is well-defined and satisfies
the commutativity in (72) follows from the same reasoning used to prove
the analogous results in the monopole setting. q.e.d.

One can also prove the following analogue of Theorem 7.11.

Theorem 9.22. The functors SHIg and SHIg from DiffSutg to
C-PSys are naturally isomorphic. q.e.d.
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9.5. Instanton Knot Homology. We may define twisted and un-
twisted functors KHI and KHIg from BKnot to C-PSys in exactly
the same way that we defined KHM and KHMg in Section 8, replacing
SHM and SHMg with SHI and SHIg everywhere in the constructions.
We may similarly define a twisted functor KHIg for every genus g ≥ 2
exactly as we defined KHMg, replacing SHMg with SHIg everywhere.
The twisted and untwisted instanton knot homology invariants are then
related as follows.

Theorem 9.23. The functors KHIg and KHIg from BKnot to
C-PSys are naturally isomorphic. q.e.d.

Finally, one defines the functors HI and HIg promised in the intro-
duction in perfect analogy with the constructions of HM and HMg.

Appendix A. Diffeomorphisms of Σ× I rel ∂(Σ× I)

In this section, Σ will denote a smooth, compact, oriented surface,
possibly with boundary. We denote by

Diff(Σ× I rel ∂(Σ× I))

the group of orientation-preserving diffeomorphisms of Σ× I which re-
strict to the identity near ∂(Σ× I). Consider the natural map

(73) π1(Diff(Σ rel ∂Σ), idΣ) → π0(Diff(Σ× I rel ∂(Σ× I)))

which sends a loop

γ : S1 = [0, 1]/(0 ∼ 1) → Diff(Σ rel ∂Σ)

to the diffeomorphism (x, t) 3→ (γ(t)(x), t).
Our main result is the following.

Proposition A.1. If Σ is not a 2-sphere, then the map in (73) is
surjective.

Proof. For any diffeomorphism φ ∈ Diff(Σ × I rel ∂(Σ × I)), Wald-
hausen [27, Lemma 3.5] shows that φ is isotopic rel ∂(Σ× I) to a level-
preserving diffeomorphism φ′ as long as Σ is not a sphere, where level-
preserving means that φ′(x, t) ∈ Σ×{t} for all (x, t). In particular, each
φ′(·, t) is a diffeomorphism of Σ. Then the map t 3→ φ′(·, t) determines
a class in π1(Diff(Σ rel ∂Σ), idΣ) whose image under the map in (73) is
[φ′] = [φ] ∈ π0(Diff(Σ× I rel ∂(Σ× I))), completing the proof. q.e.d.

Corollary A.2. If Σ is not a 2-sphere or a torus, then Diff(Σ ×
I rel ∂(Σ× I)) is connected.

Proof. This follows immediately from Proposition A.1 together with
the fact that Diff(Σ rel ∂Σ) has contractible components as long as Σ
is not the sphere or the torus [6, 7]. q.e.d.
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These results are used throughout our paper, mostly in the following
context. Suppose Y1 and Y2 are 3-manifolds and N1 ⊂ Y1 and N2 ⊂ Y2
are the images of smooth embeddings

r1 : R× I → Y1

r2 : R× I → Y2,

for R a closed, oriented, smooth surface with g(R) ≥ 2. If F is a
diffeomorphism from Y1 to Y2 which maps N1 onto N2, then Corollary
A.2 implies that there is a unique isotopy class of diffeomorphisms from
Y1 to Y2 which restrict to F outside of N1. This reasoning is used in
Section 4, for example, to argue that the gluing instructions for M, S
and P determine isomorphism classes of cobordisms and therefore give
rise to well-defined maps, without having to specify collar neighborhoods
of the gluing regions.

We also use Proposition A.1 in Section 8, in the case that Σ is a torus,
in our refinement of monopole knot homology.

The following is a corollary of Corollary A.2.

Proposition A.3. If R is a closed, oriented, smooth surface with
g(R) ≥ 2, then Diff(R× I rel ∂(R× I)) is contractible.

Proposition A.3 is well-known to topologists but we could not find
its proof in the literature, so we have included one below following an
outline suggested by Ryan Budney on MathOverflow [4] and elaborated
on by Budney in private correspondence with us. We make no claim
of originality. Aspects of this proof are used the proof of Lemma 5.9,
which is key in defining the maps Ψg,g+1

D ,D ′ in Subsection 5.2.

Proof. Suppose Σ is not the sphere or the torus. Let c ⊂ Σ be a
simple closed curve which does not bound a disk. By Corollary A.2,
Diff(Σ× I rel ∂(Σ× I)) is connected. In particular, if we let A = c× I
and let E(A,Σ× I rel ∂A) denote the space of embeddings A ↪→ Σ× I
which agree on ∂A with the inclusion, then there is a natural map

(74) Diff(Σ× I rel ∂(Σ× I)) → E(A,Σ× I rel ∂A)

whose image is connected since the source is. Hatcher shows in [12,
Theorem 1(b)] that πi(E(A,Σ×I rel ∂A)) = 0 for all i > 0, so letting E0

be the component hit by the map in (74) (i.e., the component containing
the inclusion A = c × I ↪→ Σ × I), we have that E0 is contractible.
Moreover, the induced map to E0 is surjective by the isotopy extension
theorem, and so we have a fibration

Diff(Σ× I rel (∂(Σ× I) ∪A)) → Diff(Σ× I rel ∂(Σ× I)) → E0

with contractible base. It follows that Diff(Σ × I rel ∂(Σ × I)) is ho-
motopy equivalent to Diff(Σ × I rel (∂(Σ × I) ∪ A)). The latter space
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can be identified with Diff(Σ′ × I rel ∂(Σ′ × I)), where Σ′ is the sur-
face obtained by cutting Σ open along c, and so we have a homotopy
equivalence

Diff(Σ× I rel ∂(Σ× I)) ≃ Diff(Σ′ × I rel ∂(Σ′ × I)).

In particular, if R is a closed, oriented, smooth surface with g(R) ≥ 2,
and c1, c2, . . . , c3g−3 ⊂ R are simple closed curves which cut R into
2g − 2 pairs of pants, then we can apply the above reasoning to each
Ai = ci × I ⊂ R× I in turn to conclude that

Diff(R× I rel ∂(R× I)) ≃
2g−2∏

i=1

Diff(P × I rel ∂(P × I))

where P is a pair of pants. To prove Proposition A.3, it therefore suffices
to show that Diff(P × I rel ∂(P × I)) is contractible.

Let a1, a2 ⊂ P be a pair of disjoint, properly embedded arcs which cut
P into a disk. The papers of Waldhausen and Hatcher cited above also
show that the space of embeddings of the union of disks a1 × I - a2 × I
into P × I rel boundary is contractible. Then, by the same argument
as above, we may conclude that Diff(P × I rel ∂(P × I)) is homotopy
equivalent to Diff(D2 × I rel ∂(D2 × I)) ∼= Diff(B3 rel ∂B3). But the
latter is contractible by Hatcher’s proof of the Smale Conjecture [11].
This completes the proof of Proposition A.3. q.e.d.

Appendix B. Relative Invariants of Lefschetz Fibrations

In the proof of Proposition 4.8, we used the fact that the relative
invariant of a certain Lefschetz fibration is a unit in the Floer homology
of its boundary. We justify this below.

Proposition B.1. Let L denote the total space of a relatively min-
imal Lefschetz fibration π : L → D2 of fiber genus at least 2, with
boundary Y = ∂L, and let R be a generic fiber. Then the relative in-
variant

ΨL :=

̂

HM •(L|R)(1) ∈

̂

HM •(Y |R) ∼= Z

is equal to ±1.

Proof. Let Z → D2 be another relatively minimal Lefschetz fibration
of the same genus, with boundary −Y and b+(Z) ≥ 2, and extend π
to a Lefschetz fibration on the closed 4-manifold X = L ∪Y Z. Let sω

denote the canonical spinc structure on X, and fix a spinc structure s0

on X such that s0|Z = sω|Z . Following Sections 3.6 and 41.4 of [17], we
define

m
′
s0
(X) =

∑′

s

m(X, s)
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where m(X, s) is the Seiberg-Witten invariant of (X, s) and the sum runs
over isomorphism classes of spinc structures on X satisfying s|L = s0|L
and s|Z = s0|Z = sω|Z . Note that sω is the unique spinc structure on
X satisfying m(X, s) ̸= 0 (in fact, m(X, sω) = ±1) and ⟨c1(s), R⟩ =
2g(R)− 2 by [26] and [25, Theorem 1.3], respectively. In particular, for
any s in the sum we have

⟨c1(s), R⟩ = ⟨c1(sω), R⟩ = 2g(R)− 2,

since we can realize R as a surface in Z and s|Z = sω|Z . Therefore we
have m(X, s) = 0 unless s = sω, and so

m
′
s0
(X) =

{
±1 s0|L = sω|L
0 otherwise.

The pairing formula for relative invariants now says that if W1 : S3 →
Y and W2 : Y → S3 are the cobordisms obtained by removing a ball
from each of L and Z respectively, then

m
′
s0
(X) = ⟨ĤM

′
•(W1)(1),

−−→
HM ′

•(W2)(1̌)⟩

where ĤM
′
•(W ) and

−−→
HM ′

•(W ) denote the contributions to ĤM•(W )

and
−−→
HM•(W ) from the spinc structures s0|L and s0|Z = sω|Z respec-

tively. We will let ψs0|L denote the element ĤM
′
•(W1)(1) of ĤM•(Y, s0|Y ) =

ĤM•(Y, sω|Y ) for convenience, and remark that
−−→
HM ′

•(W2)(1̌) does not
depend on s0 because it is defined in terms of s0|Z = sω|Z .

When s0 = sω, we have observed that ⟨ψs0|L ,
−−→
HM ′

•(W2)(1̌)⟩ = ±1.
In particular, ψs0|L must be a primitive element of the nonzero group

ĤM•(Y, sω|Y ) ∼=

̂

HM •(Y, sω|Y ) ⊂

̂

HM •(Y |R) ∼= Z

where the first isomorphism comes from the map j∗ :

̂

HM •(Y, sω|Y ) →
ĤM•(Y, sω|Y ), which is an isomorphism since sω|Y is nontorsion. It fol-

lows that ĤM•(Y, sω|Y ) ∼= Z and ψsω |L = ±1, and also that
−−→
HM ′

•(W2)(1̌) =

±1 and the above pairing on ĤM(Y, sω|Y ) ∼= Z is nondegenerate. But
then we must have ψs0|L = 0 whenever s0|L ̸= sω|L, since m′

s0
= 0.

Finally, since

̂

HM •(Y |R) ∼= ĤM•(Y, sω|Y ), we can identify the rela-

tive invariants ψs as elements of

̂

HM •(Y |R) ∼= Z and write

ΨL =
∑

s

ψs

over all spinc structures s on L such that s|Y = sω|Y . We have shown
that ψs is ±1 if s = sω|L and zero otherwise, so we conclude that
ΨL = ±1 as desired. q.e.d.
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