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Abstract

In [18], Kronheimer and Mrowka defined invariants of balanced
sutured manifolds using monopole and instanton Floer homology.
Their invariants assign isomorphism classes of modules to balanced
sutured manifolds. In this paper, we introduce refinements of these
invariants which assign much richer algebraic objects called pro-
jectively transitive systems of modules to balanced sutured mani-
folds and isomorphisms of such systems to diffeomorphisms of bal-
anced sutured manifolds. Our work provides the foundation for
extending these sutured Floer theories to other interesting functo-
rial frameworks as well, and can be used to construct new invari-
ants of contact structures and (perhaps) of knots and bordered
3-manifolds.

1. Introduction

In [18], Kronheimer and Mrowka defined invariants of balanced su-
tured manifolds using monopole and instanton Floer homology. The
most basic versions of their monopole and instanton invariants assign
isomorphism classes of finitely generated Z- and C-modules, denoted by
SHM(M,~) and SHI(M,~), respectively, to a balanced sutured man-
ifold (M,~). In this paper, we introduce refinements of Kronheimer
and Mrowka’s invariants which assign much richer algebraic objects to
balanced sutured manifolds. A similar program has recently been car-
ried out in the realm of sutured (Heegaard) Floer homology (SFH) by
Juhdsz and Thurston [15]. These projects are motivated by a desire to
fit these sutured Floer theories into interesting functorial frameworks
(there are no interesting morphisms between isomorphism classes of
modules). Some interesting source categories for such functors, with
balanced sutured manifolds as objects, are:

1) DiffSut, whose morphisms are isotopy classes of diffeomorphisms

of balanced sutured manifolds,

2) CobSut, whose morphisms are isomorphism classes of smooth

cobordisms of balanced sutured manifolds, in the sense of [14],
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3) ContSut, where the space of morphisms from (M,~) to (M',~")
is empty unless the former is a sutured submanifold of the latter,
in which case the morphism space consists of all isotopy classes
of contact structures on M’ ~\ int(M) for which M and OM' are
convex with dividing sets v and +'.

One natural target category for such functors is R-Mod, the category
of R-modules for some commutative ring R. For example, the main
result of [15] is that SF'H defines a functor from DiffSut to Z/2-Mod.
Similarly, Juhdsz [14] and Honda, Kazez and Matié¢ [13] have shown that
SFH extends to functors from CobSut and ContSut to Z/2-Mod.

The refinements of SHM and SHI constructed in this paper define
functors from DiffSut (and certain full subcategories of DiffSut) to
categories of projectively transitive systems which are closely related to
R-Mod. We detour slightly in order to describe these categories.

1.1. G-Transitive Systems. Below, we generalize the notion of a tran-
sitive system of modules which was first introduced by Eilenberg and
Steenrod in [8]. We will assume throughout that R is a commutative
ring with 1.

Definition 1.1. Fix a subgroup ¢ < R* and suppose M,, Mg are
R-modules. Two homomorphisms f,g : M, — Mg are said to be G-
equivalent if f = u - g for some u € G.

We will write f = g to indicate that f and g are R*-equivalent. Ob-
serve that there is a well-defined notion of composition for G-equivalence
classes.

Definition 1.2. Fix a subgroup G < R*. A G-transitive system of
R-modules consists of a set A together with:

1) a collection of R-modules {My}aca,
2) a collection of G-equivalence classes {gj }a gea such that
a) elements of gg are isomorphisms from M, to Mg, for all o, B €
A,
b) idy, € g%, for all a € A,
c) gg ogg =gy, for all a, 8,7 € A.

We will use the term projectively transitive system to refer to an R*-
transitive system, while a transitive system, as defined in [8], is nothing
other than a {1}-transitive system.

Remark 1.3. Just as the maps in a transitive system can be thought
of as canonical isomorphisms, the G-equivalence classes in a G-transitive
system can be thought of as specifying canonical isomorphisms that are
well-defined up to multiplication by elements of G. Indeed, the point of
introducing G-transitive systems is to make the latter notion precise.
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Remark 1.4. Note that a transitive system of R-modules (A, {Ma},{g5})
canonically defines an actual R-module,

M= ] Ma/~,

a€A

where mqo ~ mg iff gg‘(ma) = mg, for mq € M, and mg € Mz. So,
the closer G is to {1}, the closer a G-transitive system is to an actual
R-module.

Definition 1.5. A morphism of G-transitive systems from (A, {Ma}, {95 })

to (B, {N,},{h;}) is a collection of G-equivalence classes {fS }aca,rcB
such that:

1) elements of f$ are homomorphisms from M, to N, for all a € A
and v € B,

2) f{ogg=h}of foralla,f € Aand~,d€B.

With a notion of morphism in place, one can talk about the category
of G-transitive systems of R-modules. In this paper, we will be con-
cerned primarily with the categories R-Sys and R-PSys of transitive
and projectively transitive systems of R-modules.

Remark 1.6. Note that the assignment of modules to transitive
systems above defines a canonical functor from R-Sys to R-Mod.

Remark 1.7. Given an R-module M, we can also think of M as
a projectively transitive system of R-modules given (in an abuse of
notation) by

M = ({x}, {M},{[idr]})

consisting of the single R-module M together with the equivalence class
of the identity map, so that it makes sense to write S = M, for an object
S € R-PSys.

Remark 1.8. For context, it is worth noting that what Juhdsz and
Thurston really prove in [15] is that SF'H defines a functor from DiffSut
to Z/2-Sys. Composing with the canonical functor from Z/2-Sys to
Z/2-Mod then produces the functor from DiffSut to Z/2-Mod de-
scribed in [15, Theorem 1.9].

As mentioned above, our refinements of SHM and SHI define func-
tors from DiffSut to R-PSys for certain rings R. We describe these
functors and rings in more detail below.

1.2. Our Refinements. Kronheimer and Mrowka’s invariants are de-
fined in terms of closures of balanced sutured manifolds. A closure of
(M,~) is a closed 3-manifold formed by gluing some auxiliary piece to
(M,~) and then “closing up” by identifying the remaining boundary
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components, together with a distinguished surface in this closed mani-
fold. Kronheimer and Mrowka assign modules to each such closure, de-
fined in terms of the monopole and instanton Floer groups of the closed
manifold relative to the distinguished surface, and they show that the
modules assigned to different closures are isomorphic. So, the invariant
objects they assign to (M,~) are the isomorphism classes, SHM (M, ~)
and SHI(M,~), of these modules.

To extract invariant modules rather than mere isomorphism classes
from Kronheimer and Mrowka’s constructions, one must show that the
modules assigned to different closures are related by canonical isomor-
phisms, meaning that they fit into a transitive system. We do not quite
go that far in this paper (see Subsection 1.4), but we prove something
similar. With our (twisted) refinements of SHM and SH I, we show, for
each theory, that the modules assigned to different closures are related
by canonical isomorphisms that are well-defined up to multiplication by
a unit, meaning that they fit into a projectively transitive system.

Our refinements of SHM and SHI start with refined notions of clo-
sure. For us, a closure of (M,~) is a tuple, commonly denoted by 2,
which records not only the manifold obtained by closing up (M,y) and
the distinguished surface therein, but also the embedding of M into this
manifold and a tubular neighborhood of the distinguished surface. The
genus of a closure refers to the genus of this surface. We describe these
refinements below, beginning with those of SHM.

Our primary focus in this paper is on a version of SH M with twisted
coefficients. This version and its refinement are based on a notion of
marked closure, which also keeps track of a curve on the distinguished
surface. This curve is used to define a twisted coefficient system over a
ring R, where R belongs to a particular class of rings defined below.

Definition 1.9. A Nowikov-type ring is a commutative ring R with
1, equipped with a homomorphism exp : R — R* such that
1) R does not contain any Z-torsion,

2) t —t~!is invertible, where t* := exp(«).
The prototypical example is the Novikov ring itself,

{ Z Cot®

«a

aGR,CQGZ,#{ﬁ<n\05;&O}<oo},

with exp(a) =t* and (t —t 1)t = —t -3 > — ...

We will assume henceforth that R is some fixed Novikov-
type ring.

Suppose (M, ) is a balanced sutured manifold. To every marked clo-
sure 7 of (M, ), we assign an R-module SHM (Z) in the isomorphism
class SHM (2) ®z R following the construction of SHM with twisted
(local) coefficients in [18, Definition 4.5]. For every pair 2, 2’ of marked
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closures, we construct an isomorphism

g@7@/ : SHM(.@) — SHM(.@/),
well-defined up to multiplication by a unit in R, such that the transi-
tivity
(1) Vo gn =Yg gnoVg g
holds for every triple 2, %', 2". Said differently, we construct canon-
ical isomorphisms, well-defined up to multiplication by a unit in R,
relating any pair of the modules in {SHM(Z)}. These modules and
isomorphisms therefore give rise to a projectively transitive system of
R-modules, which we denote by SHM(M, «) and refer to as the twisted
sutured monopole homology of (M, ).

Given a diffeomorphism f : (M,~) — (M’,%'), we define an isomor-
phism

(2) SHM(f) : SHM(M, ) — SHM(M’,~)

of projectively transitive systems of R-modules which depends only on
the smooth isotopy class of f. Furthermore, these isomorphisms satisfy

SHM(f o f) = SHM(f') o SHM( f)

for diffeomorphisms

(M,y) L (') L (47,

In particular, the mapping class group of (M,~) acts on SHM(M, 7).
Thus, SHM defines a functor from DiffSut to R-PSys. We restate this
below in a weaker but more self-contained way which closely parallels
[15, Theorem 1.9].

Theorem 1.10. There exists a functor
SHM : DiffSut — R-PSys
such that SHM (M, ~) = SHM (M,~) ®z R.:

Our untwisted refinements are defined using ordinary closures. To
every genus g closure 2 of (M,~), we assign a Z-module SHMY(2)
in the isomorphism class SHM (M, ~) following the construction in [18,
Definition 4.3]. For each g > 2 and every pair 2, 2’ of genus g closures,
we construct an isomorphism

Y, g SHMY(9) — SHM?(7'"),
well-defined up to sign, such that
(3) VG gn = V% g0 0 VG 4

"Here, we are thinking of SHM (M,~) ®z R as an isomorphism class of trivial
systems, per Remark 1.7.
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for every triple 2, %', 2"”. These modules and maps therefore give rise
to a projectively transitive system of Z-modules, which we denote by
SHMY(M,~) and refer to as the untwisted sutured monopole homology
of (M,~) in genus g.

One can assign isomorphisms of systems to diffeomorphisms of bal-
anced sutured manifolds just as in the twisted case, and so this invariant
defines a functor from DiffSut? to Z-PSys, where DiffSut? is the full
subcategory of DiffSut consisting of balanced sutured manifolds which
admit genus g closures.

Theorem 1.11. For each g > 2, there exists a functor
SHMY : DiffSut? — Z-PSys
such that SHMY(M,~) = SHM (M, ~). The functor
SHMY @7 R : DiffSut? — R-PSys
s naturally isomorphic to the restriction of SHM to DiffSut?.

In characteristic two, this construction produces functors SHMY(—; Z/2)
from DiffSut? to Z/2-Sys. Composition with the canonical functor
from Z/2-Sys to Z/2-Mod then produces functors from DiffSut? to
Z./2-Mod which, in an abuse of notation, we will also denote by SHMY(—;Z/2).
This is summarized in the corollaries below.

Corollary 1.12. For each g > 2, there exists a functor
SHMY(—;7Z/2) : DiffSut? — 7Z/2-Sys
such that SHMY(M,~;Z/2) = SHM (M, ~;7Z/2).
Corollary 1.13. For each g > 2, there exists a functor
SHMY(—;Z/2) : DiffSut? — Z/2-Mod
such that SHMY (M, ~;7Z/2) is isomorphic to SHM (M,~;Z/2).

At first glance, these untwisted refinements of SH M may seem prefer-
able in that they can be made to assign transitive systems and mod-
ules rather than just projectively transitive systems to balanced sutured
manifolds. On the other hand, we do not know how to naturally relate
the SHMY for different g. This is not important in practice but ex-
plains our aesthetic preference for the twisted refinement SHM, which
naturally incorporates (marked) closures of every genus.

In [18], Kronheimer and Mrowka use their sutured monopole invariant
to define an invariant of knots called monopole knot homology (K HM).
Given a knot K in a closed 3-manifold Y, they define KHM (Y, K) to
be the isomorphism class

KHM(Y,K) := SHM(Y ~ v(K),mU —m),
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where v(K) is a solid torus neighborhood of K and m and —m are
oppositely oriented meridians on dv(K). We provide twisted and un-
twisted refinements of this invariant. Our refinements are invariants of
based knots, where a based knot in Y is a knot K C Y together with
a basepoint p € K. These refinements take the forms of the functors
described below.

Theorem 1.14. There exists a functor
KHM : BKnot — R-PSys
such that KHM(Y, K,p) © KHM(Y,K) ®z R.
Theorem 1.15. For each g > 2, there exists a functor
KHMY : BKnot — Z-PSys
such that KHMY(Y, K,p) 2 KHM (Y, K).

Above, BKnot is the category whose objects are based knots in 3-
manifolds, and where the morphism space from (Y, K, p) to (Y, K',p’)
consists of isotopy classes of diffeomorphisms from (Y, K, p) to (Y, K, p').
One should compare Theorems 1.14 and 1.15 to [15, Theorem 1.8]. As
before, one can define untwisted invariants in characteristic two which
take the forms of functors from BKnot to Z/2-Sys and Z/2-Mod. One
can also define analogous invariants of based links, though we do not do
so here.

One can similarly define an invariant of based, closed 3-manifolds,
which assigns to a pair (Y, p) the isomorphism class of

SHM(Y (p)) := SHM(Y \ v(p)),

where v(p) is a tubular neighborhood of p. There are twisted and un-
twisted refinements of this invariant which, among other things, account
for the fact that Y (p) technically depends on the neighborhood v(p)
rather than just on p. These refinements take the form of the functors
below.

Theorem 1.16. There exists a functor
HM : BMfld — R-PSys
such that HM(Y,p) 2 SHM (Y (p)) ®z R.
Theorem 1.17. For each g > 2, there exists a functor
HMY : BMfld — Z-PSys
such that HMY(Y,p) = SHM (Y (p)).

Here, BMfld is the category whose objects are based, closed 3-
manifolds, and where the morphism space from (Y, p) to (Y, p’) consists
of isotopy classes of diffeomorphisms from (Y, p) to (Y,p’). One should
compare Theorems 1.16 and 1.17 to [15, Theorem 1.5]. As above, one
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can also define untwisted invariants in characteristic two which take the
forms of functors from BMfld to Z/2-Sys and Z/2-Mod.

Our refinements of SHI come in untwisted and twisted flavors as
well, defined in terms of odd closures and marked odd closures. As the
basic forms of these refinements are virtually identical to those of SH M,
we will leave a more detailed discussion to Section 9 and simply state
the analogues of Theorems 1.10 and 1.11 below.

Theorem 1.18. There exists a functor
SHI : DiffSut — C-PSys
such that SHI(M,~) = SHI(M,~).
Theorem 1.19. For each g > 2, there exists a functor
SHIY : DiffSut? — C-PSys
such that SHIY(M,~) = SHI(M,~).

In Section 9, we also define twisted and untwisted refinements of
Kronheimer and Mrowka’s instanton knot homology (K HI). These take
the forms of functors KHI and KHIY from BKnot to C-PSys. Finally,
we define analogues HI and HIY of the functors in Theorems 1.16 and
1.17.

The key innovation in this paper is an alternative geometric interpre-
tation of the isomorphisms used by Kronheimer and Mrowka to relate
the modules assigned to different closures of the same genus. In [1§],
these maps are defined in terms of certain splicing cobordisms from the
disjoint union of one closure and a mapping torus to the other closure.
Here, they are defined in terms of 2-handle cobordisms, based on the
observation that two closures of the same genus are naturally related by
surgery.

Our alternative approach has two main advantages. First, it makes
the transitivity of these isomorphisms, as expressed in (1) and (3),
transparent for closures of the same genus, and thereby enables us to
define the invariants SHMY and SHIY with ease. Second, and most
importantly, it allows us to prove, in the twisted setting, that these iso-
morphisms commute with the isomorphisms used by Kronheimer and
Mrowka to relate the modules assigned to closures whose genera differ
by one. Indeed, the latter isomorphisms are defined in terms of splic-
ing cobordisms similar to those mentioned above, and these splicing
cobordisms commute with the 2-handle cobordisms we use to define the
former isomorphisms. This commutativity is what ultimately enables
us to prove the transitivity in (1) for arbitrary triples of closures, and
thereby define the invariants SHM and SHI.
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1.3. Some Applications. Below, we discuss some applications of these
“naturality” results, mostly in the context of twisted sutured monopole
homology. Nearly all of what is said below applies equally well in the
untwisted context.

One application is to define stronger invariants of contact manifolds
with convex boundary. In [1], we use naturality to define such an in-
variant, which assigns to a contact structure £ on (M, ), for which
OM is convex with dividing curve v, an element of the projectively
transitive system SHM(M, ), which can be thought of as a collection
{c(2,8) € SHM(Z)} of elements that are well-defined up to multipli-
cation by a unit in R, such that

g@,oj’ (C(@, 5)) = 6(9,7 f)a

up to multiplication by a unit in R, for all marked closures 2, %’ of
(M, ).

Naturality makes this a much stronger invariant than it would oth-
erwise be. For example, suppose £ and & are contact structures on
diffeomorphic manifolds (M,~) and (M’,~") with marked closures &
and 2'. To show that £ and £ are not contactomorphic, it suffices to
show that the map from SHM (Z) to SHM(Z') induced by any diffeo-
morphism from (M, ) to (M’,~") sends ¢(Z,§) to an element which is
not in the orbit of ¢(2’,¢’) under the action of the mapping class group
of (M’',~"). By contrast, without naturality, one must to show that
there is no isomorphism from SHM () to SHM(Z') sending ¢(2,€)
to ¢(2',¢).

In [23], Ozsvéth and Stipsicz apply what is essentially the same prin-
ciple to distinguish Legendrian knots K and K’ in the same smooth knot
type K and with the same classical invariants using the Legendrian in-
variant £ defined in [22]. Specifically, they show that £(K) and £(K')
are not in the same orbit under the action of the mapping class group
of (83, K) on the knot Floer homology @(53, K), even though the

two invariants are related by an automorphism of HFEK (83, K). In [3],
we use the contact invariant in [1] to define an analogous invariant of
Legendrian and transverse knots in monopole knot homology. With the
naturality results in this paper, the above reasoning is something that
would also make sense in that context.

As mentioned at the beginning, one of the primary motivations for
proving the naturality results in this paper was to set the foundation
for extending SHM and SHI to other functorial frameworks. We have
made some partial progress in this direction. In [1], we define maps
on SHM associated to contact handle attachments. To extend SHM
to a functor from ContSut to R-PSys, the only remaining step is
to show that if two compositions of handle attachments represent the
same contact cobordism, then the corresponding compositions of maps
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agree. We will do this in future work. Once we do, we will be able to
define a “minus” (or “from”) version of KHM by following a scheme
of Etnyre, Vela-Vick and Zarev for recovering the “minus” version of
knot Floer homology from SF H using bypass attachment maps [9]. In
the meantime, we use these handle attachment maps in [1] to prove a
monopole Floer analogue of Honda’s bypass exact triangle in SF H.
Once we extend SHM to a functor from ContSut to R-PSys, we
will then be able to extend it to a functor from CobSut to R-PSys fol-
lowing Juhdsz’s strategy in [14]. While interesting in its own right, the
latter functor will also provide a way of defining monopole Floer invari-
ants for bordered 3-manifolds. In bordered Heegaard Floer homology,
as defined by Lipshitz, Ozsvath and Thurston in [21], one assigns a dif-
ferential graded algebra A(F') to a parametrized closed surface F' and a

right A, module Cﬂ(Y) over A(F') to a 3-manifold Y with an iden-
tification of Y with F. In [28,29], Zarev shows that H,(A(F)) and

H*(@(Y)) are naturally isomorphic to direct sums of SF'H groups,
and he gives an interpretation of the algebra and module multiplica-
tions (on homology) in terms of Juhdsz’s sutured cobordism maps on
SFH [14]. Extending SHM to a functor from CobSut to R-PSys will
enable us to define analogous bordered invariants on the monopole side
by mimicking Zarev’s construction. Of course, this will not be sufficient
to define a full bordered theory, complete with a pairing theorem (for
that, we would also need to define the higher multiplications), but it
will represent significant progress towards such a construction.

Most of what is discussed above also applies to the sutured instanton
setting. For example, in [2], we use the naturality in this paper to define
an invariant of contact 3-manifolds with convex boundary in SHI similar
to the one discussed above.

1.4. Further Remarks. A natural question is whether one can give
refinements of Kronheimer and Mrowka’s sutured monopole and instan-
ton homology theories which take the form of transitive systems rather
than projectively transitive systems. It appears difficult to do so (in the
monopole case, for instance) for the following reason: there are several
places in our paper where we consider R-modules of the form

HM.(Y|R:T)
where Y is a mapping torus with fiber R and I'j, is a local system
determined by a curve n C R (see Subsection 3.1). The fact that we
can identify v
HM (Y|R;T)) =R
is used crucially both in the definition of the maps ¥, 5 and the proof
that these maps are well-defined up to multiplication by a unit in R. To

construct a transitive system, one needs a canonical such identification,
and we do not know how to choose one at present. A naive strategy is
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to consider a Lefschetz fibration X — D? with fiber R and boundary Y
and identify 1 € R with the relative invariant of X. However, the use of
twisted (local) coefficients makes this impossible: to define the relative
invariant, one needs a 2-chain v C X with dv = 7, and no such v exists
in general. We are hopeful that a slightly different approach, which
involves enlarging the indexing set for our systems, will ultimately allow
us to define transitive systems, but we do not elaborate further here.
It is worth mentioning that practically all applications of naturality
that we have in mind will work just as well with projectively transitive
systems as with transitive systems.

Another natural question is whether one can define a projectively
transitive system across closures of different genera in the untwisted
case. In the instanton case, the answer is “yes” given the natural iso-
morphism between SHIY and SHIY described in Theorem 9.22. How-
ever, as one still needs twisted coefficients to relate the Floer groups
associated to closures of different genera, this point is hardly worth em-
phasizing. The question is more interesting in the monopole case, and
we do not know the answer. Theorem 1.11 implies that there is a natural
isomorphism

SHMY @7 R = (SHM?*! @7 R)|pigsuts-

Yet, it is not at all clear how to construct from this a natural isomor-
phism

SHMY = (SHMY™)|pigrsuts
which could then be used to extend the untwisted theory to a projec-
tively transitive system of Z-modules across all genera.

1.5. Organization. Most of this paper is devoted to constructing the
maps ¥, 4, proving their well-definedness up to multiplication by a
unit in R, and showing that they satisfy the transitivity in (1).

In Section 2, we introduce our refined notions of closure and marked
closure. In Section 3, we provide the necessary background on monopole
Floer homology and define the untwisted and twisted sutured monopole
homology modules associated to closures and marked closures, essen-
tially rehashing [18, Definitions 4.3 and 4.5]. Section 4 develops the
tools we will use to show that the maps ¥, 5 are independent of the
choices in their constructions. In Section 5, we define these maps, first
for marked closures of the same genus (Subsection 5.1); then, for marked
closures whose genera differ by one (Subsection 5.2); and finally, for ar-
bitrary marked closures (Subsection 5.3). In the same section, we prove
that the maps ¥, 5 are well-defined and that they satisfy the tran-
sitivity in (1). In Section 6, we construct the isomorphisms SHM( f)
described in (2) and prove that SHM defines a functor from DiffSut to
R-PSys. Section 7 deals with untwisted theory. There, we define the
maps \I/_g% 4 and the functors SHMY, and we describe the relationship
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between the twisted and untwisted monopole invariants. In Section 8§,
we define the monopole knot homology functors KHM, KHMY, HM,
and HMY. In Section 9, we adapt the above results to the instanton
context, defining the functors SHI and SHIY and describing the re-
lationship between the two. There, we also define the instanton knot
homology functors KHI, KHIY, HI, and HIY.

We end with two appendices. In Appendix A, we collect results about
the diffeomorphism group of a surface times an interval relative to its
boundary. A key topological operation used in this paper is that of
cutting a 3-manifold open along a surface and regluing by a diffeomor-
phism. As explained in Section 4, one can realize this operation via
Dehn surgery. The results of Appendix A provide a canonical (up to
isotopy) identification of the cut-open-and-reglued manifold with the
corresponding Dehn-surgered manifold, which then provides a canoni-
cal identification of their Floer homologies. The results of Appendix A,
applied to the case of a torus times an interval, are also important in
our refinement of monopole knot homology. In Appendix B, we prove
a non-vanishing result for the (monopole Floer) relative invariants of
Lefschetz fibrations over a disk, which we will use to relate the cobor-
dism maps corresponding to the above Dehn surgeries to the splicing
cobordisms used by Kronheimer and Mrowka in [18].

1.6. Acknowledgements. We thank Jon Bloom, Ryan Budney, Andras
Juhasz, Peter Kronheimer and Tom Mrowka for helpful conversations.
We also thank the anonymous referee for many helpful suggestions.

2. Closures of Sutured Manifolds

In this section, we describe refinements of Kronheimer and Mrowka’s
notion of closure for balanced sutured manifolds. We will work explicitly
in the smooth category throughout. In particular, for us, balanced
sutured manifolds come with smooth structures.

Definition 2.1. A balanced sutured manifold (M,~) consists of a
compact, oriented, smooth 3-manifold M and a union v of disjoint,
oriented, smooth curves in OM called sutures. Let R(y) = OM \ 7,
oriented as a subsurface of M. We require that

1) neither M nor R(7) has closed components,
2) R(y) = Ry(v) UR_(y) with OR,(y) = —0R_(7) =,
3) X(R+(7)) = x(R-(7))-

Suppose A(7) is a closed tubular neighborhood of v in M. Let F
be a compact, connected, oriented surface with g(F') > 0 and 7o (OF) =
mo(7y). Let

h:OF x [-1,1] - A(7)
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be an orientation-reversing homeomorphism sending OF x{£1} to (R4 ()~
A(7)). Consider the manifold

M'=MU, F x [-1,1]

formed by gluing F'x [—1, 1] to M according to h and then rounding cor-
ners. Figure 1 shows a portion of M’. The fact that (M,) is balanced
ensures that M’ has two homeomorphic boundary components, 94 M’
and O_M'. One can then glue 9, M’ to _M to form a closed manifold
Y containing a distinguished surface R := 04 M = 0_M. In [18], Kro-
nheimer and Mrowka define a closure of (M,) to be any pair (Y, R)
obtained in this way.

N

+ +

/ \\ : F x {1}
Nl

y v | FXELT |

Figure 1. Left, a portion of M. The annulus A(v) is
shown in gray and the regions marked + are Ri(v) \
A(7). Right, a portion of M’, showing part of F'x [—1,1]
glued to M along A(vy) after rounding corners.

Our notion of closure is somewhat more ambient. Rather than build-
ing (Y, R) from (M,~) by the process described above, we start with
a smooth manifold Y into which M and R x [—1,1] embed appropri-
ately. Keeping track of these embeddings is what will allow us to define
canonical isomorphisms (up to multiplication by a unit) between the
monopole Floer invariants associated to different closures.

Definition 2.2. A closure of (M,~) is a tuple Z = (Y, R, r, m) con-
sisting of:
1) a closed, oriented, smooth 3-manifold Y,
2) a closed, oriented, smooth surface R with g(R) > 2,
3) a smooth, orientation-preserving embedding r : R x [-1,1] <= Y,
4) asmooth, orientation-preserving embedding m : M — Y \int(Im(r))
such that
a) m extends to a diffeomorphism

MU, F x [—1,1] = Y ~ int(Im(r))



14 JOHN A. BALDWIN & STEVEN SIVEK

for some A(vy), F, h, as above, and some smooth structure on
M U, F x [—1,1] which restricts to the given smooth structure
on M,

b) m restricts to an orientation-preserving embedding

Re(1) ~ A() = (R x {-1}).
The genus g(2) refers to the genus of R.

Note that, for a closure (Y, R, 7, m) of (M, ), the pair (Y,r(R x {t}))
is a closure in the sense of Kronheimer and Mrowka, for any ¢t € [—1, 1].

Definition 2.3. A marked closure of (M,~) is a tuple (Y, R, r,m,n),
where (Y, R,7,m) is a closure of (M,~), as defined above, and 7 is an
oriented, homologically essential, smoothly embedded curve in R.

Marked closures are needed to define the twisted sutured monopole
invariants that will be the focus of this paper.

3. Sutured Monopole Homology

In this section, we define the sutured monopole homology of a closure,
closely following Kronheimer and Mrowka’s definition in [18, Definitions
4.3 and 4.4]. We begin with some background on monopole Floer ho-
mology for closed 3-manifolds. See [17,18] for more details.

3.1. Monopole Floer Homology. Monopole Floer homology assigns
to a closed, oriented, connected, smooth 3-manifold Y a Z-module,

HM.(Y)= @ HM.(Y.s).
s€Spin(Y)

More generally, HM « is a functor from Cob to Z-Mod, where the ob-
jects of Cob are 3-manifolds as above and the morphisms are isomor-
phism classes of connected cobordisms with homology orientations (we
will henceforth omit any mention of homology orientations, as we are
only interested in cobordism maps up to sign). Here, a cobordism from
Y1 to Y3 is a compact, oriented, smooth 4-manifold W with boundary
OW = —0_W U 04 W, together with orientation-preserving diffeomor-
phisms
¢p— :0_W =Y, and ¢4 :0:W = Ya.

Two cobordisms (W, ¢1) and (W', ¢/.) are isomorphic if there is an
orientation-preserving diffeomorphism from W to W’ which intertwines
the maps ¢4 and ¢/.. We will generally omit the diffecomorphisms ¢4
from our notation and use

HM (W) : HMo(Yy) — HMo(Ya)

to denote the map induced by W. As this notation indicates, we will
also blur the distinction between a cobordism and its isomorphism class.
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Given cobordisms W1 from Y7 to Yo and W5 from Y5 to Y3, the com-
posite W3 = Wyo Wy from Y; to Y3 is formed as the quotient of W7 LW,
by the map

(¢2)=" 0 (d1)4 : D W1 — O_Wh,
and is endowed with the natural boundary identifications (¢3)_ = (¢1)—
and (¢3)+ = (¢2)+. The statement that HM, is a functor implies that

(4) HM o(Ws) = HM o(W3) o HM o(W7).

Given a smooth 1-cycle n C Y, Kronheimer and Mrowka define a
version of monopole Floer homology with twisted (local) coefficients
which takes the form of an R-module,

HMJ(YiTy) = @  HMJ(Y,5Ty).
s€Spin®(Y)
Suppose 11 C Y7 and 12 C Y3 are smooth 1-cycles. A cobordism from
(Y1,m) to (Ya,12) is a cobordism W as above together with a smooth

relative 2-cycle v C W such that dv = 12 — m; under the identifications
¢+. Such a cobordism (W, v) induces a map

HMo(W:T,) : HMo(Y1;Ty,) = HMo(Y2:Ty,)
which depends only on the homology class [v] C Ha(W,0W;R) and the
isomorphism class of (W, v), where (W,v) and (W', ') are isomorphic if
there is a diffeomorphism from one pair to the other which intertwines

the maps ¢4 and ¢/.. Composition of cobordisms is defined in the
obvious way and the analogue of (4) holds in this setting as well.

The functoriality of HM o can be used to assign isomorphisms on Floer
homology to diffeomorphisms between 3-manifolds as follows. Suppose
1) is an orientation-preserving diffeomorphism from Y to Y’ which sends
a smooth 1-cycle n C Y to ' C Y’. Consider the cobordism (W,v) =
(Y x[0,1],7x[0,1]) from (Y,n) to (Y',n") with boundary identifications

¢ =id: Y x {0} =Y and ¢ =v¢:Y x {1} - Y"
Then, the induced maps

HM o(1) := HMo(W) : HMo(Y) — HM (V")

HM. () := HMo(W;T,) : HMo(YTy) — HMo(Y';Ty)

are isomorphisms which depend only on the smooth isotopy class of
¥ (rel 1 in the twisted case). Moreover, for diffeomorphisms 1; from
(Y1,m) to (Y2,72) and vy from (Y2,72) to (Y3,73), we have that

HM (13 0 1) = HM o(1b3) 0 HM o(1)1).

As a special case, these maps deﬁn@ctions of the mapping class groups
of Y and (Y,n) on HM.(Y') and HM ,(Y;T').
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When defining monopole Floer invariants of sutured manifolds, we
will be particularly interested in certain summands of HM,. In general,
the summands HM 4(Y,s) C HM 4(Y") are constrained by an adjunction
inequality, which states that if B C Y is a connected, oriented, smoothly
embedded surface with g(R) > 0 and HM (Y, s) is nonzero, then

[{c1(s), [R])| < 29(R) —2.

For R C Y as above, Kronheimer and Mrowka define the submodule
HM (Y |R) C HM 4(Y) to be the direct sum over “top” Spin® structures,

HMJ(Y|R) == D HM (Y, 5).
(c1(s),[R])=29(R)—2
The submodule HM, (Y|R;Ty) C HM «(Y;I';) is defined analogously.

Notation 3.1. Given a 3-manifold Y, a surface R, a curve n C R
and an embedding r : R x [—1,1] < Y, we will use the shorthand

HMJ(Y|R) for HM.(Y|r(R x {0}))
HMJ(Y|R;Ty) for HMa(Y|r(R x {0}); Ty fo))):

Example 3.2. Suppose R is a smooth surface with g(R) > 2, ¢ is
an orientation-preserving diffeomorphism of R, and 7 is an oriented,
homologically essential, smoothly embedded curve in R. Consider the
mapping torus

R x4 S' =R x[-1,1]/((z,1) = (¢(z), -1)).
In [18, Lemma 4.7], Kronheimer and Mrowka prove that
HMJ(R x4 S'|R)=Z and HM.(R x4 S'|R;T,) = R.

The maps induced by cobordisms decompose along Spin® structures
as well. For example, suppose Ry C Y; and Ry C Y, are embedded
surfaces as above, W is a cobordism from Y7 to Y5 and Ry C W is a
smoothly embedded surface containing Ry and Rs as components, such
that every component of Ry has positive genus. Then, by summing the
maps HM (W, s) over all s € Spin(W) for which

(c1(s), F) = 29(F) — 2
for every component F' C Ry, one obtains a map
HM o(W|Rw) : HM o(Y1|R1) — HM o(Y2|R2).

Given a cobordism (W, v) from (Y7,1m1) to (Ya,7m2) and Ry, Re, Ry as
before, the map

HMo(W|Ryw:T,) : HMW(Yi|R1: D) = HMo(Ya|RsT,)
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is defined analogously. Note that when R; and Ry are homologous in

W and g(R1) = g(R2), we have that
HMo(W|Ry U Ry) = HMo(W|Ry) = HM o(W|Ry),

and likewise in the twisted setting. We will commonly use one of the
latter two expressions in place of the former.

Remark 3.3. When studying the submodules H\/M.(Y|R) and the

maps HM (W |Ryw ), we can relax the requirement that our 3-manifolds
and cobordisms be connected (and likewise for the twisted versions of
these submodules and maps). The discussion above carries over nat-
urally to this more general setting. See [18, Sections 2.5 and 2.6] for
details.

3.2. Sutured Monopole Homology. Suppose (M,~) is a balanced

sutured manifold. Below, we define modules SHM (2) and SHM ()

described in the introduction, closely following Kronheimer and Mrowka’s
constructions in [18, Definitions 4.3 and 4.5].

Definition 3.4. Given a closure ¥ = (Y, R,r,m) of (M,~), the un-
tunsted sutured monopole homology of & is the Z-module

SHM(2) .= HMJ(Y|R) := HMJ(Y|r(R x {0}).

Definition 3.5. Given a marked closure Z = (Y, R,r,m,n) of (M,~),
the twisted sutured monopole homology of Z is the R-module

SHM(Z) := HMo(Y|R;Ty)) := HMo(Y (R x {0}); Trimc o))

We will use SHMI(Z) and SHMI(Z) in place of SHM(Z) and
SHM (%) when we wish to emphasize that & has genus g. While the
definitions of these modules do not really depend on the maps m or
r (except to specify the homology class [r(R x {0})] € Ha(Y;Z)), the
canonical isomorphisms we construct between them will.

Before defining these isomorphisms, we establish some preliminary
results in the next section that will be crucial in proving that these
isomorphisms are well-defined up to multiplication by the appropriate
units. If the reader prefers, she can skip ahead to Sections 5 and 7 for
the definitions of these canonical isomorphisms and refer back to Section
4 as needed.

4. Preliminary Results

In this section, we establish the tools that will be used in Section
5 to construct the canonical isomorphisms ¥y 5, to show that they
are well-defined up to multiplication by a unit in R, and to prove that
they satisfy the required transitivity. We will also use these tools in
Section 7 to prove the analogous results in the untwisted case. Although
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the results below make no explicit mention of sutured manifolds, there
are obvious similarities between the objects studied here and marked
closures.

Suppose Y is a closed, oriented, smooth 3-manifold; R is a closed,
oriented smooth surface of genus at least two; 7 is an oriented, homolog-
ically essential, smoothly embedded curve in R; and r : Rx[—1,1] — Y
is an embedding. Let r* denote the restriction
rt = T’\Rx{ﬂ}-

In an abuse of notation, we will also think of 7+ as a map from R to Y
via the canonical identification R = R x {£1}. We will make extensive
use of the shorthand

HM.(Y‘R, Fﬁ) for HM,(Y’T(R X {O})vFr(nX{O}))

described in Notation 3.1.
Let A" and B" be diffeomorphisms of R, for v = 1,2, such that
Al o B! and A? o B? are isotopic and

(B?o (BY) ™ )(n) =n.
The goal of this section is to define an isomorphism for each u = 1,2
from HM (Y |R;T";) to the monopole Floer homology of the manifold

obtained by cutting Y open along the surfaces r(Rx {t}) and r(Rx {t'})
for some ¢t < 0 < t' and regluing along these surfaces by

ro(BYxid)or ! and 7o (A% xid)ort,
respectively. To define these isomorphisms, we start by choosing factor-
izations of A* and B" into Dehn twists. This allows us to think of the
reglued manifolds as having been obtained from Y via £1 surgeries on

curves in (R x [—1,1]). Our maps are then induced by the associated
2-handle cobordisms.

Interlude 4.1. For the reader’s benefit, we make this relationship
between cutting/regluing and Dehn surgery more precise below, by con-
sidering the case of a single Dehn twist. Let ¢ be an embedded curve in
the surface (R x {t}) C Y. Let Y’ be the manifold obtained by cutting
Y open along (R x {t}), so that

Y'=S,u-5_,

where both S; and S_ are copies of 7(R x {t}). Let Y be the manifold
obtained from Y’ by gluing S; to S_ by a positive (i.e. right-handed)
Dehn twist around ¢; that is, we identify each = € S; with D.(z) € S_.
Alternatively, let Y, be the manifold obtained from Y by performing
—1 surgery on ¢, according to the framing induced by r(R x {t}). Both
the cutting/regluing and the Dehn surgery are local operations, so there
is a canonical diffeomorphism

(5) Y'\Nr(Rx (t—et+e) > Y. Nr(Rx(t—¢t+e))
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which we will refer to as the “identity map.” Moreover, this identity map
extends to a diffeomorphism from Y” to Y. The primary importance of
Appendix A lies in Proposition A.1 and its Corollary A.2, which implies
that any two such extensions are isotopic through such extensions. The
story is similar for negative (i.e. left-handed) Dehn twists, the only
difference being that they correspond to +1 surgeries rather than —1
surgeries.

The main result of this section is Theorem 4.3, which states that the
R*-equivalence classes of these isomorphisms “agree” for u =1, 2, and
are therefore independent of the choices made in their constructions.
We will use these maps in Subsection 5.1 to construct the isomorphisms
W o for closures of the same genus, and Theorem 4.3 will serve as our
main tool for proving that these maps are well-defined up to multipli-
cation by a unit in R.

Suppose A* and B" are isotopic to the following compositions of Dehn
twists,

(6) A% ~ D% oo D
a¥ ayy’
euu euu
(7) BY ~ D oo DI
Apuyy Amu

where the a}' are smoothly embedded curves in R and the e}’ are elements
of {—1,1}. Let

P ={i| et = +1}
N = {i] et =1},

and choose real numbers
(8) =3/4<tpu< - <thuy < -1/4<1/d<tyu < - <t} <3/4

Pick some ¢} between ¢! and the next greatest number in the list (8)
for each i € A

Let Y be the 3-manifold obtained from Y by performing +1 surgeries
on the curves r(a} x {t'}) for i € A", with respect to the framings
induced by the surfaces r(R x {t}'}). Let X" be the 4-manifold obtained
from Y x [0,1] by attaching —1 framed 2-handles along the curves
r(af x {t¥}) x {1} C Y¥x {1} for all i € 4. One boundary component
of X“ is —Y™. The other is diffeomorphic to Y by a map which restricts
to the identity outside of a small neighborhood of

U r(&x [t
i€

(the +1 and —1 surgeries above cancel in pairs, up to isotopy; see Re-
mark 4.6 for an explanation of why we go through this trouble). Since
g(R) > 2, it follows from Corollary A.2 that there is a unique isotopy
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class of such diffeomorphisms, so X* naturally induces a map
HM o(X"|R;T,) : HM(Y"“|R;T,)) — HM(Y|R; T,),
where v is the cylinder r(n x {0}) x [0,1] C X*.

We similarly define X¥ to be the 4-manifold obtained from Y™* x [0, 1]
by attaching —1 framed 2-handles along the curves r(a¥ x {t!'}) x {1} C
Y x {1} for all i € 2*. The boundary of X¥ is the union of —Y™* with
the 3-manifold Y obtained from Y* by performing —1 surgeries on the
curves r(aj x {ti'}) for all i € 2", In particular, Y}" is obtained from
Y by performing —e}" surgeries on the curves r(af x {t!'}) for all i, and

is therefore diffeomorphic to the manifold obtained from Y by cutting
and regluing by

ro(B*xid)ort and ro (A% xid)or !,
as described at the top. The cobordism XY induces a map
HMJ(X"|R;T,) : HM(Y"|R;T,) — HM(Y"|R;T,),

where, in this case, v is the cylinder r(n x {0}) x [0, 1] C XY (we will use
the letter v to denote cylinders of this form for many cobordisms; the
particular cylinder we have in mind should be clear from the context).

By Corollary A.2, there is a unique isotopy class of diffeomorphisms

9) ViV
which restrict to the identity on Y \ int(Im(r)) and to ro (B?o(B')~! x
id) o =1 in a neighborhood of (R x {0}). Let
Oy1y2 : HMJ(Y}|R;T,) — HMJ(YE|R;T))
be the isomorphism associated to this isotopy class, as described in

Subsection 3.1.

Remark 4.2. The condition that the diffeomorphisms from Yj to
Y2 restrict to ro(B?o(BY) ™! xid)or~! in a neighborhood of r(R x {0})
might seem superfluous. Indeed, any two diffeomorphisms restricting to
the identity on Y ~ int(Im(r)) are already isotopic. The point of this
condition is that it ensures that these diffeomorphisms send r(nx {0}) C
Y} to r(n x {0}) C Y2, which is necessary for the map Oy1y2 to make
sense.

The following is the main theorem of this section.

Theorem 4.3. The maps EZ_\/J.(XE\R; T',) are invertible. Moreover,
the maps

(10) Oyry2 0 HMy(XL|R;T,) o HMo(XL|R;T,)™!
(11) HMJ(X2|R;T,) 0 HM (X2 |R;T,)""
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from }TM.(Y|R; I'y) to I;]\/l.(YﬂR; I';) are R*-equivalent and are iso-
morphisms.

We first prove the following special case of Theorem 4.3.

Proposition 4.4. Suppose A% = (); that is, the Dehn twists in the
factorizations of A“ and B" are positive. In this case, Y* =Y and the
maps

Oy1y2 o HM (XL |R;T,)
HMJ(X2|R;T,)

from I}M.(Y|R; I,) to IE\/J.(YﬂR; I';) are R*-equivalent and are iso-
morphisms.

Remark 4.5. The positivity assumption in Proposition 4.4 is not
very restrictive in that any orientation-preserving diffeomorphism of
a closed surface is isotopic to a composition of positive Dehn twists.
However, we will need to allow for negative Dehn twists for some of the
applications of Theorem 4.3 in Section 5. For example, in proving that
Wy g0 is well-defined in Theorems 5.2 and 5.14, we will need to express
a diffeomorphism of a closed surface which is the identity outside of a
compact subsurface as a composition of Dehn twists around curves in
the subsurface. One needs both positive and negative Dehn twists to
do so in general.

Remark 4.6. The reader might think the maps in Theorem 4.3 are
overly complicated; why treat the positive and negative Dehn twists in
the factorizations (6) and (7) so differently? One answer is that we want
these maps to be defined exclusively in terms of 2-handle cobordisms
associated to —1 surgeries so that we can think of these cobordisms
as obtained from the splicing cobordisms of Kronheimer and Mrowka
via capping by Lefschetz fibrations (see the proof of Lemma 4.9). This
relationship is critical for the proof of Theorem 4.3. Defining these
maps strictly in terms of —1 surgeries will also be convenient for our
construction of contact invariants in sutured monopole and instanton
homology in [1,2].

Finally, it is worth mentioning that if one attempts the more obvious
strategy — to define these maps as compositions of maps associated
to —1 and +1 surgeries (corresponding to the positive and negative
Dehn twists) — then it will not in general be true that the maps are
isomorphisms. For instance, the composition of the map induced by —1
surgery on a knot with the map induced by +1 surgery on a parallel
copy of the knot is identically zero as the composite cobordism contains
an embedded 2-sphere with self-intersection 0 (see [19, Lemma 7.1]).
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Proof of Proposition 4.4. To show that
(12) eYij OHMO(XMRQ L) = HM'(XJ2r|R§ L),

we will prove that the two sides are R*-equivalent after pre- and post-
composing with isomorphisms induced by certain merge-type and split-
type cobordisms, M and S. For this, we will show that it suffices (by
an excision argument) to prove (12) in the case that Y ~ int(Im(r)) is
also diffeomorphic to a product R x I. In this case, both Y and Y* are
mapping tori and it is enough to demonstrate that both sides of (12) are
isomorphisms since the relevant Floer homology groups are isomorphic
to R. We will prove this by an argument involving relative invariants
of Lefschetz fibrations.

We first describe the cobordisms M and S. Both are examples of
what we referred to in the introduction as splicing cobordisms. Let S
denote the 2-dimensional saddle on the left in Figure 2. Its boundary
is a union of horizontal and vertical edges, Hy,..., Hy and Vq,...,Vy.
For convenience, we pick identifications of the horizontal edges with the
interval [0, 1] and identifications of the vertical edges with intervals,

(13) i~ [-1,1],
(14) Vo ~ [3/4,-3/4],
(15) Vs~ [-1,-3/4],
(16) Vi~ [3/4,1],

where [3/4,—3/4] is thought of as a subinterval of the circle S :=
[-1,1]/(—=1 = 1). The merge-type cobordism M is built by gluing to-
gether three 4-manifolds with corners,

M = (Y ~int(Im(r))) x [0, 1],

My =R X S,

Ms =R x[-3/4,3/4] x [0,1],
along the horizontal portions of their boundaries. Specifically, we glue
My to My according to the maps

r~ xid: Rx H —Y x[0,1],
r* xid: Rx Hy =Y x [0,1],
and then glue M3 to M; U My according to
id x id : (R x {—3/4}) x [0,1] = R x Hs,
id x id : (R x {+3/4}) x [0,1] — R x Hy.

Let v be the cylinder n x {0} x [0,1] C M3 C M. See the right side of
Figure 2 for a schematic of M, v and these gluings.
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Figure 2. Left, the 2-dimensional saddle S and identi-
fications of the horizontal and vertical edges of 0.5 with
intervals. Right, a schematic of the cobordism M. The
dashed line represents the cylinder v.

The 4-manifold M has boundary OM = —M; U —Ms LI M3, where
M, =Y ~int(Im(r)) U R x V4,
My =R x Vo U R x [-3/4,3/4],
Mz =Y ~int(Im(r)) U Rx V3 U R x [—-3/4,3/4] U R x Vj.
Note that there are canonical isotopy classes of diffeomorphisms
(17) (M1, R x {0}) = (Y, r(R x {0}))
(18) (M, R x {0}, x {0}) = (R x S, R x {0}, x {0})
(19) (M3, R x {0},n x {0}) = (Y, r(R x{0}),7(n x {0}))
given the identifications in (13)-(16). Thus, (M, v) naturally gives rise
to a map
(20) __ __ __
HMo(M|R;T)) : HM (Y |R) @z HM o(R X SIIR;Fn) — HM(Y|R;Ty),

which is shown in [18] to be an isomorphism.

Remark 4.7. Technically, in order to define a smooth structure on
M, one must specify collar neighborhoods of the horizontal boundary
components of M, My and M3. However, the map in (20) does not
depend on this choice of collars. To see this, suppose (M, ¢) and (M, )
are the smooth 4-manifolds formed according to the gluing instructions
above and two choices ¢ and ¢’ of such collars. Then (M, ¢) is diffeomor-
phic to (M, ') by a map which is the identity outside of some tubular
neighborhood of the gluing regions (cf. [24, Theorem 3.5]). The restric-
tion of such a map to d(M,¢) is therefore a diffeomorphism which is
the identity outside of tubular neighborhoods of surfaces of genus at
least two. By Corollary A.2, any two such diffeomorphisms are isotopic.
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Hence, the gluing instructions alone specify a canonical isomorphism
class of cobordisms from Y LI (R x S, x {0}) to (Y,r(n x {0})). One
can think of (M,v) as denoting a representative of this isomorphism
class or the isomorphism class itself. In either case, the map (20) makes
sense without reference to collars.

The same reasoning applies to the maps induced by the splicing cobor-
disms § and P defined later in this section. We will thus omit any
discussion of collars until Subsection 5.2; there, we are gluing along tori
and need to be more careful.

The split-type splicing cobordism § is built by gluing together the
cornered 4-manifolds

S1 = (Y ~int(Im(r))) x [0, 1],

52 =R X Sl,

S; = (R x [—3/4,3/4])3 x [0,1],
where S’ is the saddle gotten by “turning S around,” as indicated in
Figure 3, and (R x [-3/4,3/4])% is the manifold obtained from R x
[—3/4,3/4] by performing —e} (= —1 since we are assuming that 4™ =
() surgeries on the curves a}' x {t¥} for all i. We label the edges of S’
as shown in Figure 3 and choose the same edge identifications as before

with respect to this new labeling. In forming S, we glue Sy to &
according to the maps

r~ xid: Rx H —Y x[0,1],
r* xid: Rx Hy =Y x [0,1].
We then glue S3 to S1 U Sy according to
id x id : (R x {—3/4}) x [0,1] - R x Ha,
id x id : (R x {+3/4}) x [0,1] — R x Hy,
as indicated in Figure 3. Let v denote the cylinder n x {0} x [0,1] C

S3 CS.
The 4-manifold S has boundary 9§ = —S; U Ss U S5, where

S1 =Y ~int(Im(r)) U R x V3 U (R x [-3/4,3/4])2 U R x Vy,
Sy =RxVa U (Rx[-3/4,3/4])2,
S3 =Y ~int(Im(r)) U R x V;.
As before, there are canonical isotopy classes of diffeomorphisms,
(21) (S1, R x {0}, 1 x {0}) = (Y2, r(R x {0}),7(n x {0}))

(22) (S, Rx {0}, x {0})) = (R x )3, R x {0},n x {0})
(23) (S3, R x {0}) — (Y,r(R x {0})),
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H,y
Hy
V3 '
s’
Hj
Hy

Figure 3. Left, the 2-dimensional saddle S’. Right, a
schematic of the cobordism §. The dashed line repre-
sents the cylinder v.

where (R x S')¥ is the manifold obtained from R x S! by performing
—ep' (= —1) surgeries along the curves af x {t{} for all i. Note that
(Rx S 1)1 is diffeomorphic to the mapping torus of the map A% o B2.
Thus, (S,v) gives rise to a map

(24)

HMo(S|R;T) : HM (Y |R;Tyy) — HM o(Y|R)@zHM o ((RxS")3|R;T,),
which is shown in [18] to be an isomorphism.

To prove the equality in (12), it therefore suffices to show that the
maps

(25)  HMo(S|R;T,) 0 Oy1y2 o HMu(XL|R;T,) 0 HMy(M|R;T,)

(26) HM(S|R;T,) 0 HM (X2 |R;T,) o HM o(M|R;T,)

from

HM (Y| R)@z HM o(Rx S'|R;Ty) — HM (Y |R) @z HM o(Rx "3 B T)

are R*-equivalent. As alluded to earlier, the proof of this fact begins
with an excision argument very similar to that employed by Kronheimer
and Mrowka to show that the maps in (20) and (24) are isomorphisms.

Let W* be the composite cobordism & o X o M. Here, X is glued
to M via the identification in (19). For u = 1, we glue S to X1 o M
via the identification in (21) together with a diffeomorphism

1 2
Y+_>Y+

as in (9). For u = 2, we glue S to X3 o M via the identification in
(21). Let v = n x {0} x [0,3] C W be the composite of the cylinders
labeled v in M, X¥ and S. The compositions in (25) and (26) are then
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R*-equivalent to the maps
HM J(W*|R;T,)
for v = 1 and 2, respectively. Let ¢ be a smoothly embedded arc in S
with boundary on V3 and Vj at the points identified with —7/8 and 7/8,
respectively, and let ¢ be the corresponding arc in S’. Let T" be the
3-dimensional submanifold of W* given by
T"=RxcURx{-7/8,7/8} x[0,1] U Rx ¢,

where R x {—=7/8,7/8} x [0,1] C X¥. Note that T* is diffeomorphic to
a product R x S'. See Figure 4 below for a schematic.

Figure 4. Top, a schematic of the identifications used
to form W*. Bottom, the cobordism W*" and the 3-
manifold 7% = R x S' depicted in red.

Let W" be the 4-manifold obtained by cutting W* open along T“
and capping off the two newly introduced boundary components, each
of the form R x S', with copies of R x D2. The cobordism W" is
isomorphic to the disjoint union of the cylindrical cobordism Y x [0, 3]
with another cobordism U* from R x S! to (R x Sl)i. Here, U" is the
composite ((R x S1)2 x [2,3]) o V¥, where V* is the cobordism from
R x S to (R x S1)% obtained from R x S! x [0,2] by attaching —e!*
(= —1) framed 2-handles along the curves a¥ x {t%} x {2} € Rx S! x {2}
for all 7. In forming U', we glue (R x Sl)%r x [2,3] to V! according to
a diffeomorphism

(27) (Rx SHL — (Rx SH2
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which restricts to the identity outside of a small neighborhood of (R x
[—3/4,3/4])} and to B?o (B')™! xid in a neighborhood of R x {0}. In
forming U?, we glue (R x S')% x [2,3] to V2 according to the identity
map. See Figure 5 for a schematic of U"“.

Vu (R x S1)% x [2,3]

\ L /\J
>V/> ! \/ 7777777 Voo >

Figure 5. A schematic of the identifications used to
form U".

Let v C W" denote the image of the cylinder v C W*. Note that
v C W" is the union of the cylinder n x {0} x [0,2] C V¥ with 5 x
{0} x [2,3] C (R x S1)2 x [2,3], both also denoted by v. Kronheimer
and Mrowka prove in [18] that

HMo(W"|R;T,) = HM(W"|R;T,)
= HM.(Y x [0,3]|R) © HM(U"|R;T,)
= id ® HM(U"|R;T,)
as maps from
HM J(Y|R)®zHM o(RxS'|R;T,)) — HM (Y |R)@zHM o((Rx S")%|R; T,).
So, to establish (12), we need only show that the maps
HM J(UY|R;T,) : HMo(R x S'|R;T,)) — HMJ((R x SY)2|R;T,)
are R*-equivalent for u = 1, 2. It suffices to prove that both maps are
isomorphisms since
HM (R x S'|R;T,) = HM.((R x SY)2|R;T,) = R,
by Example 3.2. Since the cylindrical cobordism ((R x S1)2 x [2,3],v)

induces the identity map, it is enough to prove the following.
Proposition 4.8. The maps
HMJ(V*|R;T,) : HMy(R x S'|R;T,) — HMJ((R x S')"|R;T,)
are isomorphisms for u =1, 2.

Proof. Let ¢ be an orientation-preserving diffeomorphism of R and
suppose 7 is a homologically essential, smoothly embedded curve in R.
Performing —1 surgery along v x {t} C R x, S* (we will assume that
t # 0) results in a manifold diffeomorphic to R xgop., S 1. Let X denote
the cobordism obtained from R x4 S! x [0, 1] by attaching a —1 framed
2-handle along v x {t} x {1} C R x4 S! x {1}. Let n be an oriented,
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homologically essential, smoothly embedded curve in R and let v denote
the cylinder n x {0} x [0,1] C X.

Lemma 4.9. The induced map
HMo(X|R;T,) : HMo(R x4 S'|R;T,)) = HMo(R X gop, S'|R;T'y)
18 an isomorphism.

Note that Proposition 4.8 follows from this lemma since HM, (V¥IR;T))
is a composition of maps of the form HM (X|R;T).

Proof of Lemma 4.9. Below, we show that (X, ) can alternately be ob-

tained from a merge-type splicing cobordism (P, v) from (R x4 St 7 x

{0}) U Rxp, S' to (R Xgop, S*,m x {0}) by filling the boundary com-

ponent R xp S I with a Lefschetz fibration over D? with fibers diffeo-

morphic to R and vanishing cycle v in some fiber. That HM (X |R;T,)

is an isomorphism then follows from the facts that the induced map

(28)

HMo(P|R;T)) : HM o(Rx S| R;Ty))®@z,HM o (R p, S'|R) — HM o(RX gop, S| R; T')

is an isomorphism, that HM, (X|R;T,) is the map obtained from HM, (P|R;T)
by plugging the relative invariant of the Lefschetz fibration into the sec-

ond factor, and that this relative invariant is a unit in HM (R X D,

SY|R) = Z. We provide more details below.

The construction of (P,v) is very similar to that of (M,v) from
Section 4. Let S denote the 2-dimensional saddle used to define M.
The cobordism P is built by gluing together the cornered 4-manifolds

P =Rx[-1/2,1/2] x [0,1],
Po =R x S,
Ps =R x[-1/2,1/2] x [0,1],
along the horizontal portions of their boundaries. We glue Py to P
according to the maps
id xid: R x Hy — (R x {+1/2}) x [0, 1],
¢ xid: Rx Hy — (R x {-1/2}) x [0,1],

and then glue Ps to P; U Py according to

id xid: (R x {-1/2}) x [0,1] = R x Hs,
D, xid: (R x {+1/2}) x [0,1] = R x Hy.

Let v be the cylinder n x [0,1] C P; C P. See the right side of Figure
6 for a schematic of P, v and these gluings.
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P1
H ;
: Hy | Py ﬁ id X id \

@ X id

Vai Vy
Po Ps

Hs

" Py id % id
; ! Dy xid Ps :"'-. /
0 1

Figure 6. Left, the 2-dimensional saddle S. Right, a
schematic of the cobordism (P, v).

The 4-manifold P has boundary 0P = —P; U —P, U Ps, where

P=Rx[-1/2,1/2] U R x V4,

P,=Rx[-1/2,1/2) U Rx V;

P;=Rx[-1/2,1/2] U Rx V3 U Rx[-1/2,1/2] U R x Vj.
There are unique isotopy classes of diffeomorphisms

(P1, R x {0},m x {0}) = (R x4 S*, R x {0}, x {0})
(P2, R x {0}) = (R xp, S', R x {0})

(29)  (Ps, Rx {0}, 5 x {0}) = (R xgop, S*, R x {0}, x {0})
which restrict to the identity in a small neighborhood of R x {0} in each
case. (There are two surfaces of the form R x {0} in Ps; above, we are
referring to the one contained in P;.) The cobordism (P, v) thus gives
rise to the map in (28), which is shown to be an isomorphism in [18].

Let £ be the 4-manifold obtained from R x D? by attaching a —1
framed 2-handle along

yx{s} CRx S'=RxdD?

for some s € [—1/2,1/2]. Then L is the total space of a relatively min-
imal Lefschetz fibration as described above. There is a unique isotopy
class of diffeomorphisms

which restrict to the identity on a small neighborhood of R x {0}. We
may therefore view £ as a cobordism from the empty manifold to P;.
As such, L gives rise to a map

HMJ(L|R) : Z — HMJ(P3|R),
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and the relative invariant of L refers to the element
U, = HM(L|R)(1) € HMJ(P3|R) 2 Z.

Consider the composite P o L formed by gluing £ to P by the iden-
tification in (30). Figure 7 shows a schematic of this composite. The
induced map

HMo(Po LIR;T,) : HMo(R x4 S'|R;T,)) — HMo(R X gop, S'|R;T)
is therefore given by
HM(P o LIR;T,)(~) = HMo(P|R;T,)(~ © We).

Since HVM.(P|R; I')) is an isomorphism and ¥, = +1 by Proposition
B.1, the map HM((P o L|R;T',) is an isomorphism.

¢ X id ¢ X id
Py
~3 id ¥ id "; ' id ¥ id ";
\j D, X id / JJ D, X id /
L P PolLl

Figure 7. Left, schematics of £ and P. The Lefschetz
fibration £ is obtained from R x D? by attaching a —1
framed 2-handle along the curve v x {s} in its boundary.
The black dot in the schematic represents this 2-handle.
Right, the composite P o L.

Lemma 4.9 then follows from the observation that (P o L, v) is iso-
morphic to (X,r) in the case that ¢ > 0. The case t < 0 is virtually
identical. Figure 8 provides another view of (P o £,r) which better
illustrates the fact that this composite is isomorphic to (X,v). q.e.d.

As mentioned above, this completes the proof of Proposition 4.8. q.e.d.
This also completes the proof of Proposition 4.4. q.e.d.
We may now prove Theorem 4.3.

Proof of Theorem 4.3. That HM (X" |R;T,) is an isomorphism follows
from Proposition 4.4 since the cobordism (X*,v) is of exactly the same
form as (XY, v). Indeed, both are 2-handle cobordisms associated to —1
surgeries on curves of the form v x {t} in a product region R x [—1, 1]
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¢ X id

Py

id X id id X id

I
L

(PLxI)Uh  PyxI

Figure 8. Another view of (P o £,v) which makes it
clear that P o L is isomorphic to the composition of
P53 % [0,1] with the cobordism obtained from P; x [0, 1]
by attaching a —1 framed 2-handle h along v x {t} x {1}.
The latter cobordism is isomorphic to the cobordism
from P; to P3; obtained by attaching a —1 framed 2-
handle along v x {t}, which is then obviously isomorphic
to (X, v).

of a 3-manifold. We prove next that the inverse HM o(X“|R;T,)~! is
equal to the map induced by a cobordism of this form as well.

We start by writing each negative Dehn twist appearing in the fac-
torizations (6) and (7) as a composition of positive Dehn twists. Specif-
ically, for ¢ € A4, choose a factorization

(31) Dy ~ Doy 0+ 0 Doy,

and real numbers
u u
tnfﬂ < e <& tl,i

contained in the interval (% ,;").

Let X2 be the 4-manifold obtained from Y x [0, 1] by attaching —1
framed 2-handles along the curves r(aj,; x {t},}) x {1} C Y x {1} for
all i € A" and j = 1,...,n¢. One boundary component of Xi” is
—Y . The other is diffeomorphic to Y* by a map which restricts to the
identity on Y \int(Im(r)) and on a small neighborhood of (R x{0}). As
there is a unique isotopy class of such diffeomorphisms, Xi“ naturally

induces a map
HMJ(XYP2|R;T,) : HM(Y|R;T,)) — HM (Y"|R; T'y).

Our goal is to show that this map is R*-equivalent to the inverse of
HMJ(X"|R;T,).

Let Xﬁ+4 be the 4-manifold obtained from Y x [0,1] by attach-
ing —1 framed 2-handles along the curves r(a} x {t}“}) x {1} and
r(ay; x {tj;}) x {1} in ¥ x {1} for all i € A™ and j = 1,...,n}"
One boundary component of Xff“l is =Y. The other is diffeomorphic
to Y by a map which restricts to the identity on Y ~ int(Im(r)) and
on a small neighborhood of (R x {0}). With the boundary identifi-

cations above, the cobordism (Xjﬁ“, v) is isomorphic to the composite
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(X*,v) o (X2 v). Tt follows that map

HM (XY™ |R;T,) : HM(Y|R;T,)) — HM(Y|R;T,)
is equal to

HM (X" |R;T,) 0o HM (X4 T2 |R;T,).

On the other hand, (X}f_+4,l/) is the cobordism associated to compo-
sitions of Dehn twists like those in (6) and (7), but where each com-
position consists solely of positive Dehn twists and is isotopic to the

identity. Proposition 4.4 therefore implies that HM .(Xi+4|R; r,) is
R*-equivalent to the identity map. It follows that

HM (X" |R;T,) " = HMJ(X*P|R;T,).

To finish the proof of Theorem 4.3, it therefore suffices to show that
the maps

(32) Oyryz o HMy(XLR;T,) o HMy(XE|R;T,)
(33) HM (X2 |R;T,) o HM (X*|R;T,)

from IE\](Y|R; I';) to fT]\/l(Y_ﬂR; T,) are R*-equivalent. Let X'*% be
the 4-manifold obtained from Y x[0, 1] by attaching —1 framed 2-handles
along the curves r(a} x {t!'}) x {1} C Y x {1} for all i € &* and
r(aj;, x {tj;}) x {1} CY x {1} forall i € #™ and j = 1,...,n{. One
boundary component of X}ffﬁ is —Y. The other is diffeomorphic to Y’
by a map which restricts to the identity on Y \int(Im(r)) and on a small
neighborhood of 7(R x {0}). With these boundary identifications, the
cobordism (Xffrﬁ, v) is isomorphic to the composite (X ,v)o (Xfrz, v).
Proposition 4.4 implies that

GYJ%YE © E]\//[o(XZr‘R; r,) = W-(Xi’& ),
and, hence, that the compositions in (32) and (33) are R*-equivalent.
q.e.d.
5. The Maps ¥, 5
In this section, we define the canonical isomorphisms
Vy g : SHM(2) — SHM(Z')

described in the introduction. We will first define these maps for marked
closures of the same genus (Subsection 5.1) and then for marked closures
whose genera differ by one (Subsection 5.2) before defining ¥, 4 for
arbitrary marked closures (Subsection 5.3).



NATURALITY IN SUTURED MONOPOLE AND INSTANTON HOMOLOGY 33

5.1. Same Genus. Suppose Z and %’ are marked closures of (M,~)
with ¢(2') = g(2) = g. Below, we define the isomorphism

Yy =W, 0 SHMO() — SHMI(P)).
For the sake of exposition, let us write

9 =9 = (Y1,Ri,m1,m1,m)

9" = Py = (Ya, Ra, 79, ma,12).

To define \Il9 g = \119 7y> We start by noting that the complements
Y1~ 1nt(Im(r1)) and Ys \ int(Im(rq)) are diffeomorphic by a map

(34) C: Y N int(Im(ry)) — Y2 N int(Im(rz))

which restricts to mg om] " on my(M ~\ N(v)), for some tubular neigh-
borhood N(v) of v € M. Let ¢ and ¢ be the diffeomorphisms defined
by

0% = (rf)toCorf: Ry — Ry

¢ = (<p+)_ oo’ : R; — Ry.
Finally, choose any diffeomorphism

v° Ry — Ry
such that
(¢S 0 ) (m) = (12)-
Note that ¢© and ¢ are determined by C' whereas ¢¢ is not.
The maps ¢© and ¢ are defined so that the triple

(Y2, 72(R2 x {0}),72(n2 x {0}))

is diffeomorphic to the triple obtained from

(Yile(Rl X {0})77“1(771 X {0}))

by cutting Y7 open along the surfaces r1(R; x {t}) and 1 (Ry x {t'}) for
some t < 0 < t' and regluing by

rio ()" xid)oryt and o (€ 0d®) xid)oryt,

respectively. We may therefore define the map y% 2, using the con-
struction in Section 4, with ¢© o9 and (¢¥)~! playing the roles of A%
and B" (for a single value of u, say). This is made precise below.
Suppose ¢ o ¢ and ()71 are isotopic to the following composi-
tions of Dehn twists,
(pCowCNDelo -oDgr,

al

(1/}0)* ~ DZZE 0---0 DZZ:
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where each a; is a smoothly embedded curve in R; and each e; is an
element of {—1,1}. Let

P = {Z ‘ e; = —1—1}
e/V:{i‘ei:—l},
choose real numbers
—3/4 <ty < - <tpp <-1/A<1/d<ty,<---<t; <3/4,

and pick some t; between ¢; and the next greatest number in this list
for each i € 4.

Let (Y7)— denote the 3-manifold obtained from Y] by performing +1
surgeries on the curves r(a; x {t;}) for i € 4. Let X_ be the 4-
manifold obtained from (Y;)_ x [0, 1] by attaching —1 framed 2-handles
along r1(a; x {t;}) x {1} C (Y1)— x {1} for all i € .4#". One boundary
component of X_ is —(Y7)_. The other is diffeomorphic to Y; by a map
which restricts to the identity outside of a small neighborhood of

U R1 X [ti,t/i].

ieN
As there is a unique isotopy class of such diffeomorphisms, X_ naturally
induces a map

HMo(X_|Ry;T,) : HM((Y1)_|R1;Tyy,) — HM(Yi|Ry;Ty,),

where v is the cylinder 71 (1 x {0}) x[0,1] C X_. It follows immediately
from Theorem 4.3 that this map is an isomorphism.

We similarly define X to be the 4-manifold obtained from (Y7)_ X
[0, 1] by attaching —1 framed 2-handles along the curves ri(a; x {t;}) x
{1} € (Y1)— x {1} for all i € &. The boundary of X is the union of
—(Y7)— with the 3-manifold (Y7)4+ obtained from (Y7)_ by performing
—1 surgeries on the curves ri(a; x {t;}) x {1} for all i € &. The
cobordism X thus induces a map

HM o(X4|Ry;T,) : HM((Y1)—|Ri:Ty,) — HM((Y1)+|Ri:Ty,),

where v is the cylinder r1(m x {0}) x [0,1] C Xy in this case (as in
Section 4, we will use the same letter v to denote cylinders of this form
for many cobordisms).

By construction, (Y7)4 is diffeomorphic to Y3 by a map which re-
stricts to C on Y7 N int(Im(ry)) and to 73 0 ((¢€ 0 ) x id) o' on a
neighborhood of r1(R; x {0}). Let

9(6;’1)+Y2 t HMo((Y1)4|R1; Ty ) = HM o(Ya|Ro; Ty )

denote the isomorphism associated to the isotopy class of such diffeo-
morphisms. We now have everything we need to define the map yj -



NATURALITY IN SUTURED MONOPOLE AND INSTANTON HOMOLOGY 35

Definition 5.1. The map ¥¢, , is given by
C T o _
VY o =9 5= Oy, © HMo(X i |Ri;Ty) 0 HMo(X_|Ri;T,) L

Next, we prove that the R*-equivalence class of this map is well-
defined.

Theorem 5.2. The map y@ o0 18 independent of the choices made
in its construction, up to multiplication by a unit in R.

Proof. The choices we made in defining ¥9, _, were those of:

1) the diffeomorphism C,
2) the diffeomorphism ¢,
3) the factorizations of ¢“ o ¢® and (¢¢)~! into Dehn twists,
4) the t;, t;.
It follows from Theorem 4.3 that Q*q@’@, is independent of the choices

in (2)-(4). To see this, suppose we have fixed C' and let ¥{ and 9§
be two diffeomorphisms satisfying (5.1). Let A' = ¢ o ¢{, A% =
©Coyf, Bl = (¢¢)~! and B? = (x¢)~! and choose factorizations
of these diffeomorphisms into Dehn twists. Let (Y7)%, XY} and X"
be the surgered manifolds and 2-handle cobordisms associated to these
factorizations of A% and B" for u = 1,2, as defined above and in the
previous section. It suffices to show that the maps

(35) 0%y, © HMo(X'|Ry;T,) 0 HMo(X | Ry;T,) !
(36) O%ayzy, © HM o(X2|Ry;T,) 0 HM o(X2|Ry;T,) !

are R*-equivalent. Note that
C _ aC
Oy, = Omizy, ©Onnim)z
where
Ot vz HMo(Y)L|R13Tyy) — HMo((Y1)3| R Tyy)
is the map associated to the unique isotopy class of diffeomorphisms
from (Y1)} to (Y1)% which restrict to the identity on Y \ int(Im(r1))
and to

rio () Lol xid)ort =r o (B%o (B! xid)or?

in a neighborhood of r;(R; x {0}), as defined in the previous section.
But Theorem 4.3 implies that the maps

Ot ()2 © HMo(X}|Ry;T,) 0 HMo(XY|Ry;T,) 7!
HMo(X3|Ry;T,) o HMo(X2|Ry;T,) !
are R*-equivalent. Composing both with G(CYl)i Yo» it follows that the
maps in (35) and (36) are R*-equivalent as well.
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It remains to show that gﬁ’j’@/ does not depend on the choice of C.
Suppose C;7 and Cy are two such choices. Then Cy = C7 0 D, where D
is a diffeomorphism of Y] \ int(Im(r1)) which is equal to the identity on
mi(M ~ N(7)), for some tubular neighborhood N(v) of v C M. The
first step in relating the constructions of g«;,@/ for the different choices
C1 and C} is to relate gog_il, 0“1 and ¥ with the maps Lpig, ©©2 and
©2. Let

Note that

0 = 9% 0 ok,
and that we may choose 1“2 to be

¥O = P o g4
since
P 0@ = %1 0y

both send 7; to 72 in this case. Then, we have
(37) P20y = (7)o T oy™
(38) (¥) = @) ol

Suppose (apf)*l, ©Croyp@1 (1)~ and P are isotopic to the following
compositions of Dehn twists,

(39) ()t~ D o--0Dim,
(40) (pC1 o wcl ~ Dgz:i O--+0 Dgz7
(41) (W)™t~ Dgmtlo- 0 DY,
(42) @P ~ Dyt o0 DS,
Let

P ={ilei=+1}
N ={i|e=—1},
and define

P'=2Zn{n+1,...,1}
A= n{n+1,...,1}
P =P
N2 =N
P3=2n{1,...,n,1+1,...,k}
N =il nl+1,.. .k}
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Choose real numbers
—3/A <t < <tpm1 < —-1/4<1/4 <ty <--- <t <3/4,

and pick some t; between ¢; and the next greatest number in this list
for each i € 4.

For u = 1,2,3, we will denote by (Y1)" the 3-manifold obtained from
Y1 by performing +1 surgeries on the curves r1(a; x {t;}) for all i € A4,
and by X* the 4-manifold obtained from (Y1)“ x [0, 1] by attaching —1
framed 2-handles along the curves ri(a; x {t;}) x {1} C (Y1)* x {1} for
all i € A, As usual, X" induces a map

HM o(X"|Ry;T,) : HM((Y1)"|Ry; Ty, ) — HM(Yi|Ry; T)).

We will likewise denote by X the 4-manifold obtained from (¥7)* x[0, 1]
by attaching —1 framed 2-handles along the curves 1 (a; x {t;}) x {1} C
(Y1) x {1} for all i € Z* and by (Y1)!L the 3-manifold obtained from
(Y1)“ by performing —1 surgeries on the curves ri(a; x {t;}) for all
i€ P Then, XY induces a map

HM (XY |Ry:T,) : HM((Y)" [Ry:Ty,) — HM (Y1) RisTy)-

To complete the proof of Theorem 5.2, it suffices to show that the
maps

(43) @fﬁ)m o HMo(XL|Ry;T,) 0 HMo(XL|Ry;T,)
(44) @(0131>iy2 o HMo(X%|Ry;T,) 0o HMo(X2|Ry;T,)

are R*-equivalent. Indeed, (43) is U7, , as defined with respect to C}
and (44) is ®9 ,, as defined with respect to Cy. We will prove that

the maps in (43) and (44) agree using two lemmas, starting with the
following,.

Lemma 5.3. The map in (44) is R*-equivalent to

C it ) _
Oy, © HMo(XL|Ry;T,) 0o HMo(XL|Ry;T,) 7!

o @g/l)iyl o HMo(X3|Ry;T,) 0 HMo(X3|Ry;T,) 7L,
where
OBy vy : HMa((V1)2IR1: Ty, ) — HMo(Yi| Ry Ty)

is the map associated to the unique isotopy class of diffeomorphisms
from (Y1)3 to Y1 which restrict to D on Y1 \ int(Im(r1)) and to

1o (P opP) xid) o r! = id
on a neighborhood of ri(Ry x {0}).

Once this is established, we need only show the following.
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Lemma 5.4. The map
Oy, © HMo(XE|RisT,) o HMo(X? |Ry;T,) !
is R* -equivalent to the identity on HVM.(Yl]Rl; L)

Proof of Lemma 5.3. By Theorem 4.3, we are free to assume that A4 =
(. Our task is then to show that

(45)
Oy © HMo(XIIRITY) = O3, o HMo(X|RiT)
o ®(D}/1)3,Y1 9] HM.(X_?_|R1? Fl/)

Consider the composite (X}_, V)O(Xi’_, v) formed by gluing along (Yl)i’_ =

Y7 via a diffeomorphism in the isotopy class used to define @g/l)g v,
+

and suppose we identify the boundary component (Yl)i with Y5 via a

]

(V)L ve'

consider the cobordism (X7, v) with boundary identification (¥7)2 = Y5

diffeomorphism in the isotopy class used to define © Likewise,

given by a diffeomorphism in the isotopy class used to define 9(0331)2 Yo'
+

It is not hard to see that, with these boundary identifications, (X_1~_, v)o
(X3,v) is isomorphic to (X?,v) since Co = Cy o D. The desired R*-
equivalence follows. q.e.d.

Proof of Lemma 5.4. Up to isotopy, we can assume that D is the iden-
tity on a small neighborhood N of mi(M) C Y; ~ int(Im(r1)). By
Definition 2.2, Y7 ~ int(Im(ry)) ~\ int(Im(m;)) is homeomorphic to a
product F' x [—1,1], where F' is a compact surface with boundary. We
can therefore assume that the complement Y7 ~\ int(Im(r;)) \ N is dif-
feomorphic to a product F’ x [—1, 1], where F” is a compact surface with
boundary homeomorphic to F'. Let

f:F x[-1,1] = Yy ~int(Im(r1)) N~ N
be a diffeomorphism such that the image of f* is contained in the image
of v, where, as usual, f* refers to the composition

idx {%1
) idx (1),

F F' x {£1} £ Vi < int(Im(r)) ~ .

Our assumption about D implies that gjrl and g_ restrict to the identity
outside of compact subsurfaces F, and F’ of Ry, respectively, where

FL = (r]) 7 (T ().
We may therefore assume that the curves a; x {t;}, a; x {t;} for i €
P3UN3 are contained in FY| x(1/4,1/2) or F' x(—1/2,—1/4) depending
on whether 7 is in {1,...,n} or {{+1,...,k}, respectively.
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Remark 5.5. We cannot make this last assumption about a; x {t;},
a; x {t;} without allowing for both positive and negative Dehn twists
in the factorizations of gjrl and g_ since the surfaces F, and F’ have
boundary, as alluded to in Remark 4.5.

Let @ be the union
Q :=r1(Rix[—1/8,1/8])Uri (F x[1/8, 1)) Uf(F'x[-1,1])Uri (F_x[-1,—1/4]),

as depicted in Figure 9. Observe that @ is diffeomorphic to a product
of Ry with an interval, after rounding corners. By design, this product
contains a neighborhood of r1(n; x{0}) as well as the curves 1 (a; x{t;}),
r1(a; x {t/}) used to define the map

HM o(X3|Ry;T,) o HM o(X?|Ry;T,)

By construction, there is a unique isotopy class of diffeomorphisms
from (Y1)3 to Y7 which restricts to D on f(F’ x [—1,1]) and to the
identity outside of

Fox (1/4,1U f(F' x [-1,1)) UF" x [-1,-1/4)

(in particular, outside of @), and to the identity in a neighborhood of
r1(R1 % {0}). The point is that the Dehn surgeries defining (¥1)3 , which
are supported in the regions F' x(1/4,1] and F’ x[—1, —1/4), effectively
“cancel out” the diffeomorphism D, which is supported in f(F'x[—1,1]).
One can then apply Theorem 4.3, noting that a diffeomorphism in this

isotopy class is also in the isotopy class used to define 98,1)3 v, to show
+
that

@D

Boin © HMu(XFR1T,) 0 HMo(X? |Ri;T,) !

is R*-equivalent to the identity map on ﬁ]\//[.(Yl\Rl; Iy)-
To make this argument a bit more precise, let

r: Ry x[-1,1] =Y

be an embedding whose image contains () and is contained in a small
neighborhood of Q). We can arrange that r sends Ry x {0} to r1(R; x{0})
by the map r; and sends b; X {s;}, b x {s}} to ri(a; x{t;}), r1(a; x{t;}),
where the b; are curves in R; and

1/4<sp < - <811 <8 <--<s81<3/4

with s, between s; and the next greatest number in this list. We can,
moreover, assume that r sends the standard framings on b; x {s;}, b; X
{s} to those on r1(a; x {t;}), r1(a; x {t;}). The fact that there exists a
diffeomorphism from (¥7)3 to Y7 which restricts to the identity outside
of the image r(R; x [—1,1]) implies that the composition

el o .. en €l+1 DY ek
(46) Dylo---oDyro Dbz+1 00Dy
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(=)

Nl

== _

Nl=

Figure 9. Left, a portion of Y7 with the pieces Im(m;)
and r1(R; x [—1,1]) shown in dark gray and white,
respectively. The light gray region represents a piece
homeomorphic to F' x [-1,1]. The dots represent
m1(y). The middle diagram shows @ with the pieces
r1(Ryx[—1/8,1/8]), ri(F} x[1/8,1]), f(F' x[-1,1]) and
r1(F. x [-1,—1/4]) shaded in very light, light, medium
and dark gray, respectively. The rightmost picture shows
the image r(R; x [—1,1]) in very light gray. We have
drawn some of the fibers r(R; x {t}).

is isotopic to the identity. Since (Y3)_, (Y3)4, X3 and X3 are the 3-
and 4-manifolds associated to surgeries and 2-handle attachments along
these 7(b; x {s;}), 7(b; x {s}}), Theorem 4.3 implies that

(47) or

31)im © HMo(X3|Ry;T,) 0o HMo(X? |Ry;T,) 7!

is R*-equivalent to the identity map on HM o(Y1|R1; Ty, ), as desired.
q.e.d.

The proof of Theorem 5.2 is now complete. q.e.d.
Below, we show that these maps satisfy the following transitivity.

Theorem 5.6. Suppose 2,9', 9" are genus g marked closures of
(M,~). Then

gg@7@” - 2‘9@/7@,/ o gg@7@”

up to multiplication by a unit in R.

Proof. For the sake of exposition, let us write
9 =2 = (Y1,R1,r1,m1,m)
9" = P = (Ya, Ra, 12, M2, 12)
9" = D3 = (Y3, R3,73,m3,13).
We must then show that

Y - g Y
E@h—% - 2@2,-@3 © g%,@f
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To define gﬁ;l , and yj? 94> We start by choosing diffeomorphisms
Cy : Y1~ int(Im(ry)) — Yo N int(Im(rz))
Cy : Yo~ int(Im(re)) — Y3 \ int(Im(rs))

which satisfy the conditions described at the beginning of this subsec-
tion. We may then use the diffeomorphism

C3: Yy N int(Im(ry)) — Yz N int(Im(rs)),

given by C3 = Cy o C1, to define the map g%jl 25~ To compare the
maps E‘ZA D> E‘ZJQ g E‘ZA 94> We must first understand the relationships
between the diffeomorphisms gpii, @ % for i =1,2,3. Note that

(48) Pt = T 0 o
Pick 11 and ¥“? which satisfy
e o i (m) =2
P 0 2 (12) = 3.
Let us then define 9“3 by
YO = () o P 0 Tt 0 gt
We may do so since this 1“3 satisfies
% 0 B () = .
Finally, a quick substitution shows that
PP 0y =T oy oy
(@) =ho (),
where
9= (¢ o) o (™ 0 ®) 0 (¢ 0 y™)
h= (% 0p™) ™ o () o (¢ o).

To define ygl Dy Eg% X g_g% 24> let us suppose that @CroyCr g, h

and (wcl )~! are isotopic to the following compositions of positive Dehn
twists,

QOCIOT/JCINDalo"’ODan
gNDan+1o"'oDam
h~Dg,. ., 00Dy

(¢Cl)—1 ~ D O"'ODak

aj+1
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around curves a; in R;. Define
Pr={1,...,n,01+1,... k}
PE={n+1,...,1}
P3={1,...,k},
and set A% = () for i = 1,2, 3. Choose real numbers
—3/A<tp < - <tpy1 < —-1/A<1/A<t, < ---<t; <3/4
For i € 222, let b; be the curve in Ry given by
bi == 07 0 9 (ai),
and note that
(PCQ owcz — (Spgl OwC1) 0go ((,091 OwC&)fl ~ Dbn+1 0---0 Dbm’
(W) = (8 o) oho (98 o)t~ Dy, 00 Dy,
This follows from the well-known relation
Dy = foDgof,
which holds for any smoothly embedded curve a C R and any diffeo-
morphism f: Ry — Rs.

For u = 1,3, we will denote by (Y1)'f the 3-manifold obtained from
Y1 by performing —1 surgeries on the curves ri(a; x {t;}) for all i € 2%
and by X the corresponding 2-handle cobordism from Y; to (Y7)!L. We
will denote by (Y2)% the 3-manifold obtained from Y by performing —1
surgeries on the curves ro(b; x {t;}) for all i € £? and by X? the

corresponding 2-handle cobordism from Y5 to (¥2)%. Our task is then
to show that the map

g _ aC
g91@3 =0

()73 © HMo(X3|Ry;T,)

is R*-equivalent to the composition

C T 2 . C
WY 5,0 o = @(;Q)iYSoHM.(X+|R2,FV)OG)&I)
Consider the composite (X_%, u)o(X}r, v) formed by gluing along (Yl)}F %
C1

iYQOHM.(Xile; r,).

Y, via a diffeomorphism in the isotopy class used to define ©

(Y1)} Y2
and suppose we identify the boundary component (¥2)% with Y3 via a
diffeomorphism in the isotopy class used to define 042 Likewise,

(Y2)2 V3"
consider the decorated cobordism (X3, v) with boundary identification
(Yl)i 2 Y3 given by a diffeomorphism in the isotopy class used to define

C3
S} ()8 ¥a
(X%,v) o (X1,v) is isomorphic to (X?,v). This is because o 0 1
sends each a; to b; (preserving framings) and because

ryo (¢80 ®) ort =130 (¢ 0 @) oyl om0 (9T 0 ) 0,

It is not hard to see that, with these boundary identifications,
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which follows from (48) and the definition of ¢/“® above. It follows that
gg_%% = gg%’ 94 © gﬁ;h%, as desired, completing the proof of Theoredm
. q.e.d.

Remark 5.7. For a genus g marked closure 2 of (M, ), the map
gﬁj,@ :SHMY(2) — SHMI(2)
is R*-equivalent to the identity.

The modules in {SHM?(2)} and maps in {¥7, ,,} therefore define
a projectively transitive system of R-modules.?
Definition 5.8. The twisted sutured monopole homology of (M,~)

in genus g is the projectively transitive system of R-modules defined by
{SHMI(2)} and {¥7, ,,}. We will denote this system by SHMY (M, ~).

5.2. Genera Differ by One. Now, suppose 2 and 2’ are marked
closures of (M, ) with g(2') = g(2)+ 1 = g + 1. Below, we define the
maps

Vg = 955, SHMY(P) - SHM YN (P')
o g =990 SHMIY (') — SHM(9).
For the sake of exposition, let
9 =9 = (Y1, Ri,r1,m1,m)
D' = Dy = (Ya, R4, 74, M4, 7).

To define g_’;j’?;,l = g@ff@i, we start by choosing an auxiliary marked
closure
D5 = (Y3, R3,r3,m3,13),
with ¢(Z3) = g(Z4) = g + 1, which satisfies the following conditions:
1) there exist disjoint, oriented, embedded tori 77, T> C Y3\ Im(ms)
which cut Y3 into two pieces whose closures Y31, Y32 satisfy

oY =Ty uTy, = -0Y$ and m3z(M) C Y3,

2) each T; intersects r3(Rs x [—1,1]) in an oriented annulus r3(c¢; x
[—1,1]), where ¢1,co C Rg are oriented, embedded curves which
cut R3 into two pieces whose closures R}, R3 satisfy

8R§ =C U Cy = —8R§ and R% = 21,27

where Y1 o is a genus one surface with two boundary components;
3) m3 intersects each RY% in an oriented, non-boundary-parallel, prop-
erly embedded arc 73.

2The collection of marked closures, even of a fixed genus, is a proper class rather
than a set and so cannot technically serve as the indexing object for a projectively
transitive system. One can remedy this by requiring that Y and R be submanifolds
of Euclidean space. We will not worry about such issues in any case.
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Figure 10 shows a portion of Y3 near some r3(R3 x {t}). It is not difficult
to construct such a closure; we leave this as an exercise for the reader.
We will refer to a marked closure %5 satisfying the above conditions as
a cut-ready closure with respect to the tori 17, T5.

S .
Ré‘(\ i
N
L K

Figure 10. Left, a portion of Y3 and 77,75 near some
r3(R3 % {t}). Right, portions of the manifolds Y3, Y22 ob-
tained by cutting Y3 open along T7,7T>. We have labeled
r3(RE x {t}) and r3(n} x {t}) simply by R} and n}.

The following lemma will be important in a bit.

Lemma 5.9. The piece Y32 is diffeomorphic to the mapping torus of
some diffeomorphism of the surface R3 = % 5.

Proof. Y is the union of r3(R3 x [—1,1]) with a portion of Y3 \
int(Im(r3)) \ Im(ms). We can assume the latter portion is contained in
Y3~ int(Im(r3)) \ NV for some neighborhood N of Im(ms3). By Definition
2.2,

Y3~ int(Im(rs)) ~ int(Im(ms))
is homeomorphic to F' x [—1, 1] for some compact surface F' with bound-
ary. As in the proof of Lemma 5.4, we may therefore assume that
Y3~ int(Im(rs)) ~ N is diffeomorphic to F’ x [—1,1], where F” is some
compact surface with boundary, homeomorphic to F. Let

[ F' x[-1,1] — Y3 N int(Im(r3)) ~ N

be such a diffecomorphism. Each T; intersects f(F’ x [—1,1]) in an
annulus A; with boundary on both f(F’' x {+1}) and f(F’' x {—1}). In
fact, note that

A; = f(yvi x {+1H) U f(v; x {-1}),

where ; x {+1} = f~(r3(c; x {=1})) and 7] x {=1} = [~ (r3(c; x
{+1})). Using the annulus f~1(A;) we see that 4/ and ~; are freely ho-
motopic, hence they are isotopic by a theorem of Baer (see [10, Propo-
sition 1.10]) and so we can assume (by changing f if necessary) that
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v = 7. We can then assume, as in the proof of Proposition A.3, that
A; is the vertical annulus A; = f(vy; x [—1,1]). It follows that

YE N (Va3 N int(Tm(rz)) ~ Im(mz)) = f(Z12 x [1,1]),
where X 9 is the genus one, two boundary component subsurface of F’
given by
So1 = f (r3(RE x {—1})).

So, Y2 is the union
Y3 = f(S12 x [-1,1]) Urs(RE x [-1,1]),
which is diffeomorphic to a mapping torus as claimed. q.e.d.

Next, we will form a marked closure %5 = (Y2, Ro, 72, ma,12) from
D5 with g(Zs2) = g(21) = g, where Y3 is the manifold obtained from
Y31 by gluing its boundary components 17,75 together. We will then
construct an isomorphism

(49) Wt SHMI(Zy) — SHMI™ (73),

and define gggf;{l to be the composition

9,9+1 _ g9+l 9,9+1 g
g91,94 T g@:’,,%x © 292,@3 © 29, %"

We describe the construction of %2, below.
Let p1 = ¢1 Nn3 and pa = c2 N7z and choose an orientation-reversing
diffeomorphism
f 1Cl — C2

which sends p; to ps. Next, choose an orientation-reversing diffeomor-
phism
F: T — 15

which restricts to 30 (f xid)ors ! on r3(c; x [~1,1]). Fori = 1,2, let Y4
be the manifold obtained from Y3 by gluing its boundary components
together by F. Similarly, let R} be the surface obtained from R} by
gluing its boundary components together by f and let 75 C R} be the
oriented curve obtained from "7§ in this gluing. For the latter gluing,
we use collar neighborhoods of ¢1,co C 8Ré which come from tubular
neighborhoods

ny:c1 X [—€,€] - R
ng : ca X [—€,€] — R

of 1, ¢o C R3 such that n; sends each z x {0} to x and maps p; x [—¢, €]
into n3. This ensures that 75 is a smooth curve in R%. Note that r3
naturally induces maps

RS x [—1,1] — Y.
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To ensure that each fé is smooth, we perform the initial gluing using
collar neighborhoods of 77,75 C 0Y3 which come from tubular neigh-
borhoods
Ny :T) x [—€,¢] > Y3
Ny : Ty x [—€,¢] > Y3
of T1,T» C Y3 that sends each = x {0} to x and are compatible with
n1,ng. For this compatibility, we require that r3 Lo N;o (r3 X id) restricts
to a map
X [=1,1] x [—€,€] = Rz x [—1,1]
and sends each (z,t, s) to n;(z, s) x {t}.
Note that 77 is a homologically essential curve in R} and g(R3) =
g(R3) — 1 = g. Moreover, it follows from Lemma 5.9 that Y2 is dif-
feomorphic to the mapplng torus of some diffeomorphism of the closed
genus two surface R3 Let
Yo=Yy, Ry=R}, =13, ro =73,
and note that ms induces an embedding

m2zM<—>Y2.

These define a marked closure %, = (Y2, R, 79, ma,n2) of (M,~) with
9(Z) = g(21) = g, as promised above. We will refer to % as the

cut-open closure associated to %3. Below, we define the isomorphism

\Ilg i Bl mentioned in (49), following Kronheimer and Mrowka’s approach

o i8]

Let S be the 2-dimensional saddle used to define M in Section 4.
The map ¥ \I/g gt jg is defined in terms of a merge-type splicing cobordism
W which is bullt by gluing together the cornered 4-manifolds

Wi = [0 1]
Wo = T1 xS,
W3 = YV32 X [0’ 1]7

along the horizontal portions of their boundaries. Specifically, we glue
Wy to Wi according to the maps

F xid:Ty x H — Ty x [0,1],
id x id : Th x Hy — Th x [0,1],
and then glue Wi to W) U W, according to
Uxid : Ty x [0,1] = Ty x Hs,
id x id : Ty x [0,1] — T1 x Hy,
as depicted schematically in Figure 11.
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-
Hq
Hy ! Wl m F xid \

id X id
H Wy Ws

Hs

o Wa FETYd
F | id X id W3
0 1

Figure 11. Left, the 2-dimensional saddle S. Right, a
schematic of W.

Note that OW = —W; U —Ws LU W3, where

W1:Yz31UT1><V1,
WQZY;;UTlXVQ,
Ws=Y UTi x V3 UYE UT x V.

For ease of exposition, let us write

S5 = r3(Rs x {0})
05 = r3(ns x {0})
di = r3(c1 x {0})
q1 = r3(p1 % {0}).

Let 53,53, 55 be the closed surfaces in Wi, Wa, W3 given by
Sl=81ud xW,
52 =52 U dy x Vs,
S3 =83 Udy xV3US2Ud xVy,
and let 01,02, 03 be the closed curves in Si, 52, S5 given by
03 =03 U {q1} x V1,
05 =05 U {1} x Va,
03 = 03 U {ar} x Vi U 63 U {a1} x Vi,
Finally, let v be the 2-dimensional cobordism in W from 63 LI 62 to 63

given by
v==03x1[0,1] U {g:} x S U 62 x [0,1].
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Note that there are canonical isotopy classes of diffeomorphisms

(50)

(W1, 83,03) — (Y3, 73 (RS x {0}),73(713 x {0})) = (Y2, r2(Rg x {0}),72(n2 x {0}))
(51)

(W2, S3,03) — (Y3, 75(R3 x {0}),75(n3 x {0}))

(52)

(W3, 83,03) — (Y3,73(R3 x {0}),73(n3 x {0})).

Moreover, S3 is cobordant to 5’?} L 5§ in W via the cobordism
S x[0,1]Udy xS U S2xI0,1]
and
29(S3) — 2 = 2g(S5) — 2+ 29(S3) —

Therefore, W gives rise to a map
HM,(W|S3;T,) : HM.(Y2|R2;Fn2)®RHM.(1732|R§;Fﬁ§) — HM o(Y3|R3;Tyy,),

which is shown to be an isomorphism in [18]. Since }732 is the mapping
torus of some diffeomorphism of a genus two surface, 73(R3 x {0}) is a
fiber in this mapping torus, and 73(73 x {0}) is a homologically essential
curve in this fiber, we have that

(53) HM J(Y{|R3:Ty) 2 R,
as explained in Example 3.2. Choose any such identification, and define
1 —
\119@;7;3( ) := HM(W|S3;T,)(— @ 1).

Note that this map is only well-defined up to multiplication by a unit
in R since we do not pin down the identification in (53).

Remark 5.10. In constructing the smooth 4-manifold W, we use the
collar neighborhoods of the horizontal boundary components of W, and
Wjs naturally induced by the collars of Y3 and 9Y:. For the horizontal
boundary components of W,, we use collars induced by collars of the
horizontal boundary components of S. So, the only choice involved in
defining W is that of the collars of Hy,..., Hs. But, for any two sets
of such collars, there is a unique isotopy class of diffeomorphisms of S
which sends one to the other. It follows that the isomorphism class of
(W,v) as a cobordism from (Y2, ra(na x {0})) U (Y, r3(i3 x {0})) to
(Yz,r3(n3 x {0})) is independent of the choice of collar neighborhoods
of Hy,...,H;. The map ¥¥, gt jg is therefore also independent of this
choice, up to multiplication by a unit in R.

We now define the maps \Ilgjg;,l and \I/gﬂj’g as follows.
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Definition 5.11. The map gg«‘g} is given by

9.9+1 _ 39,9+l ._ g9+l 9,9+1 g
Yoo =¥5 9, = ¥5,9,°Y5,2,° Y9, 2,

Definition 5.12. The map ng,}ég is given by
vy = (25
Remark 5.13. It follows immediately from these definitions and
Theorem 5.6 that if 2, 2', 2" are marked closures of (M, v) with g(2") =
9(2')=9(2)+1=g+1, then
\Ijgng/} - \I/g+1 o \I,g,g+1

=9.9 g .gn ° Xg g
g - gotl, +1
g;mg = g‘g@/,@g o gg@//’@/-

Next, we prove that the R*-equivalence classes of the maps E@gﬁl

and g_’;;l@’g are well-defined. This follows from the theorem below.

Theorem 5.14. The map g%g;,l is independent of the choices made

in its construction, up to multiplication by a unit in R.

9,9+1

Proof. The choices we made in the construction of ¥72° " were those

of:
1) the cut-ready closure Zs,
2) the tori 17, Ty,
3) the tubular neighborhoods Nj, Na,
4) The diffeomorphism F' : T} — Tb.

Let

D3 = (Y3, R3, 73, m3,73)

-@é = (YB,’ Rgvré’ m%vné’))
be cut-ready closures of (M,~) with respect to tori 71,7» C Y3 and
Ty, T} C Y4 which satisfy

9(Z3) = 9(1) = 9(23).
Define the curves ¢j,c2 C Rs and ¢},c¢, C Rf accordingly. Let %
and 2 be the cut-open closures associated to %3 and %, respectively,

for tubular neighborhoods Ni, Na and N7, N} of the above tori and
diffeomorphisms F' : T1 — Ty and F’ : T{ — T3. We must show that

g+1 g,9+1 g - y9t! 9,9+1 g
Yo7 ° Y5, 2,° Yo, 9, = Yo 9, ° Yo o1 ° Yo, a1

By Theorem 5.6, the right hand side is R*-equivalent to

g+1 g+1 9,9+1 g g
Y91 ° Yot 2, ° Lop a1 ° L, 93 ° Y1 95

It therefore suffices to show that

9,9+1 - g9+1 9,9+1 g
Yoo = Yo 2, ° Lor a1 ° Lg, a5
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which is equivalent to saying that the diagram

g9,9+1

2-@27@3 1
(54) SHM9(Z2) SHMI™(23)
2992 ,@é 7;‘;%95
SHMI(25) o SHMI ()
— 24,24

commutes up to multiplication by a unit in R. This commutativity is
ultimately a consequence of the fact that the maps g% 4 and gﬁ}gl@,
129 123
can be defined in terms of 2-handle cobordisms where the 2-handles are
attached along curves that are disjoint from the tori T3, Ty, Ty, T4 used
to construct the splicing cobordisms which go into the definitions of
g,9+1 9,9+1
g@m@:s and g@é@é
To prove the commutativity of the diagram in (54), we start by
making careful choices in the constructions of gg}% and Q‘Z}b 7 For

g+1
E@&_@é?

we choose a diffeomorphism
C : Y3~ int(Im(r3)) — Y3 ~ int(Im(r5))

as in Subsection 5.1, but with some additional requirements. Let A;, A
be the annuli

A; =T;NYs N int(Im(rs))
Al =T/ NYy ~ int(Im(ry)),

for i = 1,2. We require that C sends each A; to A} and the diagrams

F

(55) Al A2
cl Lc
PR

(56) A; X [—¢, €] i Y3 ~\int(Im(rs))

Al X [—¢, €] Yy ~ int(Im(r5))

(]
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commute. These requirements will guarantee that C' naturally induces
diffeomorphisms

O Y Nint(Im(73)) — Y3~ int(Im (7))
C? . Y < int(Im(73)) — Y3 ~ int(Tm(73")).

Lemma 5.15. There exists a diffeomorphism C' satisfying the re-
quirements above.

Proof. Start with any diffeomorphism
Co : Y3~ int(Im(rs)) — Y3 \ int(Im(r}))

satisfying the conditions described in Subsection 5.1. Then Cj'(A})
and Cj ' (A}) are disjoint annuli in Y\ int(Im(r3)) \ N for some neigh-
borhood N of Im(m;). By the discussion in the proof of Lemma 5.9,
there are diffeomorphisms

fg: F' x[-1,1] = Y3 N int(Im(r3)) ~ N
such that the 4; and C;*(A!) are vertical annuli of the form
Ai = f(’YZ X [_17 1])5

Co ' (A7) = 93] x [-1,1]).
The pairs y1,v2 and 7], 75 each separate F' into two pieces, one of which
is a genus one surface with two boundary components. There is thus a
diffeomorphism of F’ which restricts to the identity on OF’ and sends
each ~; to ~/. It follows that there is a diffeomorphism of F’ x [—1,1]
which restricts to the identity on OF’ x [—1, 1] and sends each ~; x [—1, 1]
to v/ x [—1,1], and, hence, a diffeomorphism D of ¥ \ int(Im(r3)) which
restricts to the identity on N and sends each A; to Cy*(A}). We can,
moreover, force the restriction

D|a, : Ay = CyH(AY)

to be whatever diffeomorphism of annuli we like: the above descrip-
tion only requires the image of A1 to be Cj'(A}) as a set, so we are
free to change D by composing with any diffeomorphism supported on
a neighborhood of C{ 1(A/1) which fixes the image of A; setwise. By
choosing this restriction carefully, we can arrange that the diagram in
(55) commutes, where C' = Cy o D. We can also arrange, by altering D
near the A; if necessary, that (56) commutes, where C' = Cy o D. This
is because there exists a diffeomorphism of Y3 N\ int(Im(r3)) . N which
restricts to the identity outside of a neighborhood of each A; and sends
any tubular neighborhood of A; to any other. So, the map C' = Cyo D
satisfies the requirements above. q.e.d.

Note that the diffeomorphisms
go_g“; : Ry — Rj
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send each ¢; to ¢, (and each p; to p}). It follows that

©“ Ry — R3
sends each ¢; (and p;) to itself, and we can pick
v Ry — Ry
with the same property. This allows us to choose factorizations
(57) <pCowC~Dgio--~oD2’;,
(58) (W)™~ DGt o0 D,

where the curves a; are contained in Rz ~\ (¢; U ¢2).

Remark 5.16. In general, one cannot choose the curves a; to be
disjoint from c¢; U ¢o without allowing for both positive and negative
Dehn twists in the factorizations (57) and (58).

Note that the associated maps
¢ : RS — RY
" R — R}
are the diffeomorphisms naturally induced by the restrictions of gog and
©% to R}, and we likewise may choose

¢Cl : R;l)) — Ré
to be the diffeomorphism induced by the restriction of ¥¢ to Ré. Let
o Ry — RY
o B RS
wcz : R% — R%
be the diffeomorphisms induced by the restrictions of cpf_:, ©¢ and ¢©
to Rg. Since the curves a; are disjoint from ¢; U co, each is contained
in either R} or R3 and therefore corresponds naturally to a curve in

. = = . . . 1
either R} or R%. This means we can choose factorizations for 0¢ o

¢ and (¥©')~! that are obtained from those in (57) and (58) by
omitting the Dehn twists around the curves in R3. We can likewise

choose factorizations for ¢C” 0@ and ()°”)~! obtained from those in

(57) and (58) by omitting the Dehn twists around the curves in R1.

To define y’@f_@é and g{’% ) We now proceed in the usual way. Let
P ={ile=+1}
N ={ile=-1}

and choose real numbers

“BA <ty < <tpp < -—1/4<1/A<t,<-- <t <3/4
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Pick some t, between t; and the next greatest number in this list for
each i € 4. Let

ylzﬁﬂ{HaiCRé}

NV = n{i|a CRL},

P =2 0{i|a; C R3},

N2 =¥ 0{i|a; CR3}.
As usual, we denote by (Y3)_ the manifold obtained from Y3 by per-
forming +1 surgeries on the curves r3(a; x {t;}) for i € 4" and by (Y3)4
the manifold obtained from (Y3)_ by performing —1 surgeries on the

curves r3(a; X {t;}) for i € &. We then have the usual cobordisms X_
and X, which induce maps

HMo(X_|R3:T,) : HMo((Ys)-|R3;Ty,) — HMo(Y3|R3; )
HM (X1 |Ry;T,) : HMu((Ys)—|Ryi D) — HMo((Ya)1 | Ryi T).

Recall that \Ilg+ o 18 given by
3

gq@ﬂ@/ = @(CY3)+Y3’ o HMo(X4|Rs;T,) 0 HMo(X_|R5;T,)

Remark 5.17. Observe that the curves r3(a; x {t;}), r3(a; x {t})
are disjoint from the tori 17,75 since the a; are disjoint from ¢; Uco. As

alluded to earlier, this will play a key role in proving the commutativity
of (54).

Similarly, for each j = 1,2, we denote by (Yj )— the manifold obtained
from YJ by performing +1 surgeries on the curves 7"%(@Z x {t;}) for
i € A7 and by (VJ), the manifold obtained from ¥J by performing —1
surgeries on the curves r3(a2 x {t;}) for i € PJ. As usual, we define
cobordisms X? and XJ which induce maps

HM o(X7 |RE;T,) - HMo((Y]) | R T fa)—>HM (Vi |RS;T )
HM o(XL|RY:T,) : HMo((V])-| Ry T ) — HMW((V9)+|RE:T )
We then define a map from
(59) HM(Y]|R5:T,) — HMo(Y]'|RY:T )
by
@f;]) 7 © HM o(X|R};T,) o HM o(X? |R};T,) 7,
where

e,

@ g IV RET ) — HMu(V]'|RYT )
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is the isomorphism associated to the unique isotopy class of diffeomor-
phisms from (Y3) to ¥3' which restrict to €7 on Y3 \ int(Im(7%)) and
to 75 o (¢ 0 x id) o (7)~! on a neighborhood of 74 (R} x {0}).
For j = 1, the map in (59) is equal to Q%Q g For j =2, it is also an
)
isomorphism, essentially by Proposition 4.8. For notational convenience,
let us write
512 ol 92
Y =Y UY;
}731,2/ — }7:31/ L] Y32/
512y . ol 2
(Y3%)x = (Y3)= U (Y3)+
L2 Bl B2
Ry* := R3 U R3
RY” .= RY U RY

~1,2 1 —2
Ny =mn3Un3
_1,2r -1 —_2
iy =5 U3

X1,2 — Xl LIX2
1,2 . ~1 2
X7 =X, UXT.
Then
= o112 51,2, ~ s (V1 pl. M - (V2| R2-
]—I]\{.(YV3 |R3 ,Fﬁé,z) = HM.(}%”R;),Fﬁé) ®’R, HM.(Y32|R§7Fﬁ§)7

and likewise for the modules associated to }731’2' and (YSI’Z)i. In each
case, the second module in the tensor product on the right is isomorphic
to R. The map

.o o112 Bl2. o120 B2
WYy @id: HMo(Y3 % | Ry* Tra) — HM (Y3 | Ry T, )

is therefore R*-equivalent to the composition
cL2 T 1,2 51,2, T 1,2/ 51,2, 1 y—1
®(Y31’2)+Y31’2/ ° HM.(X"F |R3 ’FV) © HM'(X— |R3 ’FV) ’
where v refers to the appropriate disjoint union of cylinders, and

01,2 L C} ~ @C—Q ~
@(Y31,2)+}731,2/ - @(Y31)+Y31’ ® (Y32)+Y32"

Let W and W denote the splicing cobordisms from }731’2 to Y3 and
3731’2' to Yy constructed according to the procedure described earlier in
this section. We can define splicing cobordisms Wy from (Y;’Q)i to
(Y3)+ in the same way since the curves rs(a; x {t;}), r3(a; x {t;}) are
disjoint from the tori 71, T5. The commutativity of the diagram in (54)
then follows from the commutativity of the three diagrams below (up to

multiplication by a unit in R, of course). In these diagrams, the arrows
labeled by cobordisms represent the corresponding maps.
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HM o(Vy* | Ry Ty 2) ———— HM o (Ys|R; Ty

xb2 X_

HMo((Y3%)-| Ry*; T j2) HM o((Y3)-|R3;Tyy)

HM (V%) [BY™: T 12) HM.((Ys)-|R5; )

1,2
)(+7 X4

— o122 512 —
HMo((Y37")+ Ry T 2) HM o((Y3) 4 |R3; T'yy)

+

= 512y pl2 A=
M o(Vy ) | RY T 1) HM o((Y3)+|Rs: T

cl.2 ec
(Y;,2)+73)1,2/ (Y§)4 Y3
T 1,20 51,2 T P
HM o(Y3 | Ry T 1) ———— HMo(V{| Ry Ty

That the first of these diagrams commutes follows from the observa-
tion that the composites (X_,v) o W_,v) and (W, v) o (X 1) are
isomorphic. To see this, note once more that the 2-handles used to
form X_ and X>? are attached along curves in regions of Y3 and }731’2
that are disjoint from the tori T and T5. The cobordisms W and W_
therefore contain pieces diffeomorphic to the products of these regions
with the interval [0, 1]. The above observation follows immediately from
this fact. The commutativity of the second and third diagrams above
follows from very similar considerations. q.e.d.

5.3. The General Case. Here, we define the map

for an arbitrary pair 2, 2" of marked closures of (M,~). For this, we
choose a sequence

{@Z = (1/17 R’ia i, Mg, 777,)}3:;1
of marked closures of (M,~), where 9 = 21, 9' = 2,, and
19(Zi) — 9(Zit1)| < 1
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- ° g g,9+1 g+lg
fori=1,...,n—1. Let g%%l denote g%@m, Q%y%ﬂ or g%@m,
as appropriate. We define ¥, 5 as follows.

Definition 5.18. The map ¥, 4 is given by
-— o o
Y990 =¥9,9, =Yg, 1,9,°  ° ¥ 2,

Next, we prove that the R*-equivalence class of this map is well-
defined.

Theorem 5.19. The map Yy, 4 is independent of the choices made
in its construction, up to multiplication by a unit in R.

Proof. The one choice we made in defining ¥, 5, was the sequence
of marked closures interpolating between 2 and 2’ as above. Let

{2 = (V' Rl,vl,minh)}e,

7971 K3

{27 = (Y7, R, v mi,nd ) i

1771 K3

be two such sequences. We must show that

o

o)
X 2 2
0%

o] [0) . [0)
Y1 g1 00X 1 g1 = X2 g2 ©
]lfl’jé jl7j2 j’mfl’j’m

as maps from SHM(2) to SHM(2'). This is equivalent to showing
that
Yopapo oo Lo g0 Lo g
is R*-equivalent to the identity map on SHM (2). Let {Z; = (Yi, Ri, ri, mi, mi) }1 4
be any sequence of marked closures of the kind used to define ¥y 4 in
the case that 2 = Z’. It suffices to show that

(60) gO@n—h@n ©r--0 gCﬁQLQQ
is R*-equivalent to the identity map on SHM(Z).

If n = 2, then this composition is just y’@h% = Q‘Zj,gj, where g =
9(2), which is R*-equivalent the identity map.

If n > 2, then this composition is R*-equivalent to another compo-
sition of the same kind but with fewer terms. For example, if g(Z;) =

9(Zi41) = g for some i, then we can either replace gﬁji’%l 0¥y .

P with QO@“%H, as follows from
Theorem 5.6 or from Remark 5.13. On the other hand, if ¢(%;) #
9(Z;41) for any i, then, since g(%1) = g(%y), there is some 1 < i < n
such that either

9(D)=9(Di 1) +1=9(Ziz1)+1=g+1

. o o g
with Yo 201 T Yo 9., ° Yy, Div1

or

9(Zi) = 9(%i1) —1=9(%iy1) —1=9g— 1.

g+1.g 9,9+1 :
In the first case, we can replace g%%ﬂ o g%_h% with

g+l,9 9,9+1 g ~ 9
O (@) =
%, Di11 v i+1,%; goi—h%qq 201—17-@1-‘-1’
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by Remark 5.13. The second case is treated almost identically. That
the map in (60) is the identity now follows by induction on n.  q.e.d.

The maps ¥, 4 satisfy the following transitivity.

Theorem 5.20. Suppose 2,9', D" are marked closures of (M,~).
Then

Vg g1 =Yg gno¥qy g,
up to multiplication by a unit in R.
Proof. This follows immediately from the definitions of these maps

and the fact that they are well-defined up to multiplication by a unit in
R. q.e.d.

The modules in {SHM(Z)} and maps in {¥, 4 } therefore define a
projectively transitive system of R-modules.

Definition 5.21. The twisted sutured monopole homology of (M, ~) is
the projectively transitive system of R-modules defined by {SHM(2)}
and {¥ 5 }. We will denote this system by SHM(M, 7).

6. Maps Induced by Diffeomorphisms
We start with the following definition.

Definition 6.1. A diffeomorphism of balanced sutured manifolds from
(M,~) to (M’,~") is an orientation-preserving diffeomorphism of pairs,
[ (M) = (M, 5).

In this short section, we explain how to associate to a diffeomorphism
f as in the definition above the isomorphism

SHM(f) : SHM(M, ~) — SHM(M',~)

of projectively transitive systems of R-modules described in the intro-
duction. To define such a map, it suffices to construct isomorphisms

gf7@7@/ . SHM(.@) — SHM(.@/)
for every pair of marked closures 2, 2’ of (M,~) and (M’,~’), such that

(61) g_@/’_@/// o Eﬂ_@’@/ = Eﬂ_@]“’_o]“/ o Eg"@u
for all marked closures 2, 2" of (M,~) and all marked closures %', 2"
of (M',~").

Definition 6.2. The map SHM(f) is the isomorphism of projec-
tively transitive systems of R-modules defined by the collection {¥; 5 4 }.

Below, we define the maps ¥ 5 5. Let 2 = (Y, R,r,m,n) and 2’ =
(Y',R',r',m/,n’) be marked closures of (M,~) and (M’,~), and let

Iy =(Y', R r',m’ o f.0).



58 JOHN A. BALDWIN & STEVEN SIVEK

We define
Y599 =0z .9 °¥g g,
where
O, 9« SHM(Z§) — SHM(Z')

is defined to be the identity map from }TM.(Y’]R’; I'y)to HM, (Y'|R;Tyy).
For the identity in (61), note that
Yo gmo¥ysg g =Yg gmoOg g 0¥y g
=Yy gm0 Oz g0 Wgm g 0 Wy g
=Yy gm0 Wgm g1 0 g gm o Vg gu
= Wy, gm0 Ygm g0 Ogpr gm0 Ygn gm oWy gn
=Yg gm0 Wgm g 0 Wi gn gm0 Wy g
=Wy gn gm oYy gu,

where the second and fourth and sixth equalities follow from Theorem
5.20 and the third follows from the easy fact that the diagram

Lo,
(62) SHM(Z]') SHM (7))
@@}(/,@lll e@} 7@/
SHM(@’”) SHM(@’)
29///’9/
commutes.

We close this section with the following theorem.

Theorem 6.3. The isomorphism SHM(f) is an invariant of the
smooth isotopy class of f. Moreover, these maps satisfy

SHM(f" o f) = SHM(f") o SHM(f)

for diffeomorphisms
(,7) L (') L ),
In particular, the mapping class group of (M,~y) acts on SHM(M, ).
The following corollary proves Theorem 1.10.
Corollary 6.4. SHM defines a functor from DiffSut to R-PSys.

Proof of Theorem 6.3. That SHM( f) is an invariant of the smooth iso-
topy class of f follows from the fact that each W, 5 5 is, which itself
follows directly from the construction of the maps ¥, 7 To show that

SHM(f" o f) = SHM(f") o SHM(),
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it is enough to show that

Yyopa.9m = Lpg97 0 ¥s.9.90

for all marked closures 2, 2', 2" of (M,~),(M',~"),(M",~"), respec-
tively. But
gf/ofp@r@u = @@}/,01“9// o g‘@"@},’of

= @@}//’9// (¢} @@///

! of’@}// @] g@,@//

flof

= @@}//)_@// (¢] @@// -@}ll (@] g_@},@”

(e] \I/ !
flof’ fror =7

= @@}’,,.@” OE@/’@}O o @@}79/ Og@79}

=Yy g9 ¥ig9,

as desired, where the third equality above follows from Theorem 5.20
and the fourth follows from the commutativity of the diagram in (62).
q.e.d.

7. The Untwisted Theory

Recall that the untwisted sutured monopole homology groups asso-
ciated to (M,~) are defined in terms of ordinary rather than marked
closures. Suppose Z and 2’ are (ordinary) closures of (M,~) with
9(2) = g(2') = g. In this section, we construct the canonical isomor-
phisms

\Ilg%@, : SHMY(2) — SHMY (')
described in the introduction. In addition, we will describe the rela-
tionship between these untwisted invariants of (M,~) and the twisted
invariants defined in previous sections.

The maps \Il_g% 4 are constructed in almost exactly the same way as
are the canonical isomorphisms in the twisted setting for closures of the

same genus. We briefly spell out the modified construction below. For
the sake of exposition, let us write

9 = -@1 = (YiaRlyrlaml)
9" = Py = (Ya, Ra, 79, m3).
We first choose a diffeomorphism
C: Y Nint(Im(r)) — Yo N int(Im(r2))

and define the map ¢ exactly as in Subsection 5.1 (we do not need
the map ¥ in the untwisted setting). Suppose ¢ is isotopic to the
following compositions of Dehn twists,

C el €n
(p NDalo...oDan’
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and let
P ={ile=+1}
N ={i|e=—-1}.
Choose real numbers
=3/4<t, <--- <t <3/4,

and pick some t; between ¢; and the next greatest number in this list
for each i € 4.

We then define the 3-manifolds (Y7)+ and the 2-handle cobordisms
X+ exactly as in Subsection 5.1. In particular, (Y7)_ is the manifold
obtained from Y7 by performing +1 surgeries on the curves ri(a; X
{t;}) for i € A", while (Y7)4 is the manifold obtained from (Y7)_ by
performing —1 surgeries on the curves r1(a; x {t;}) x {1} for all i € 2.
The cobordisms X4 give rise to maps

HMo(X_|Ry) : HM((Y1)_|R,) — HM(Y3|Ry),
I?]/W.(X_HRl) : @/W((Yl)—“ﬁ) - W((Y1)+‘R1),

which are isomorphisms by the untwisted analogues of the results in
Section 4. Let

00y, : HMo((Y1)|R1) — HMo(Ya|Ry)

denote the isomorphism associated to the isotopy class of diffeomor-
phisms from (Y1) to Y2 which restrict to C' on Y7 N int(Im(r1)).

Definition 7.1. The map \11?27{9, is given by
W =0, = O o TR o VLX)

Theorem 7.2. The map \Ilg@ g0 18 independent of the choices made

in its construction, up to sign. Furthermore, if 2,9', 9" are genus g
closures of (M,~), then

up to sign.

Proof. This is proved in the same way that Theorems 5.2 and 5.6 are
proved. We just use the untwisted analogues of the results in Section 4
where needed. q.e.d.

Definition 7.3. The untwisted sutured monopole homology of (M, )
in genus g is the projectively transitive system of Z-modules defined by
{SHM?(2)} and {¥Y, ,,}. We will denote this system by SHMY (M, ~).
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Given a diffeomorphism f : (M,~v) — (M’',~") of balanced sutured
manifolds and genus g closures 2 = (Y, R,r,m) and 2' = (Y', R',»',m’)
of (M,~) and (M’,~"), we define an isomorphism

V4 gt SHMY(2) — SHM(Z')
exactly as in Section 6. That is, we let
Vig,0 =Og.9 0 Vg g
where _@} =(Y',R',r',m' o f) and
@@}’_@/ : SHMg(.@}) — SHMg(.@/)
is the identity map on oM, (Y'|R’). As in Section 6, these maps satisfy
(63) \Ilgj/7_@/// o \Ijgc’_@”@/ = qj?’_@//’_@/// o \I/‘gj“@//

for all genus g closures 2, 2" of (M, ) and all genus g closures 2, 2"
of (M',+).

Definition 7.4. The map
SHMY(f): SHMY(M,~) — SHMYI (M’ ~")
is the isomorphism of projectively transitive systems of Z-modules de-

fined by the collection {¥% ,, ,}.

The following are untwisted analogues of Theorem 6.3 and Corollary
6.4. Recall that DiffSut? is the full subcategory of DiffSut whose
objects are balanced sutured manifolds admitting genus g closures.

Theorem 7.5. The isomorphism SHMY(f) is an invariant of the
smooth isotopy class of f. Moreover, these maps satisfy

SHMY(f' o f) = SHMY(f) o SHM(f)

for diffeomorphisms
f f
(M, ) = (M) = (M",~").

In particular, the mapping class group of (M,~) acts on SHMYI (M, ~).
g.e.d.

Corollary 7.6. SHMY defines a functor from DiffSut? to Z-PSys.

In particular, this corollary proves Theorem 1.11.

The rest of this section is devoted to clarifying the relationship be-
tween the untwisted invariants defined in this section and the twisted
invariants defined earlier. This relationship may be stated as below.
Let SHMY(M,~) ®z R denote the projectively transitive system of R-
modules defined by of the modules in {SHMY(Z) ®z R} and maps in
(WY, 5 ®id}.
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Theorem 7.7. SHMY(M,~)®zR and SHMI(M,~) are isomorphic
as projectively transitive systems of R-modules.

Proof. To define an isomorphism from SHMY (M, v)®zR to SHMY (M, ),
it suffices to define isomorphisms

=9
=

G SHMY () @7 R — SHM (')

for all genus g closures 2 and genus g marked closures 2’ of (M,~)
such that

(64) gg@/’@/// ] Egg’@/ i Eg@//’@/// ] (ql‘g@’@// ® /Ld)

for all genus g closures 2, 2" and all genus g marked closures %', 2"
of (M,~).

Suppose Z = (Y, R,r,m) is a closure of (M,~y) and 7 is an oriented,
homologically essential, smoothly embedded curve in R. We will denote
by 2" the marked closure given by

7" = (Y,R,r,m,n).
We first define an isomorphism
Eg@ﬁn :SHMY(2) @z R — SHMI(2")

using the merge-type cobordism M introduced in Section 4. Recall that
M is built by gluing together the cornered 4-manifolds

M = (Y ~int(Im(r))) x [0, 1],

M2 =R X S,

Ms =R x[-3/4,3/4] x [0,1],
along the horizontal portions of their boundaries, as depicted in Figure
2, and that

v:=mnx {0} x[0,1].

Here, we will denote v by v to keep track of n and we will denote M
by M(2) to keep track of 2. As discussed in Section 4, (M(2),v")

defines a cobordism from Y U (R x S',n x {0}) to (Y,r(n x {0})), and
thus gives rise to an isomorphism

HM o(M(2)|R;Tyn) : HMJ(Y|R) @7 R — HMo(Y|R;Ty)
after choosing an identification HM o(R x SYR;T',)) = R. We define
EY.gm = HM(M(2)|R;Tyn).

The following proposition is the key to defining the maps Eg@ g In
general and to proving the commutativity in (64).
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Proposition 7.8. Suppose 21 = (Y1, R1,71,m1) and Do = (Ya, Ra, 12, m2)
are two genus g closures of (M,~), and let 1 and n2 be curves in Ry
and Ry as above. Then the maps

=9 -1 g =9 g .
('—‘@27@;72) o 2@171 ’.@512 o H@17@?1 and \Il@L@Q ® Zd

from
SHMg(.@1) ®zR — SHMQ(.@Q) X7 R
are R* -equivalent.

Let us postpone the proof of Proposition 7.8 to the end this section
and first see how this proposition is used to define the maps Eg@@, and
prove that (64) holds. To define the isomorphism Eg@,@/, we choose any
1 as above and set

=9 — g9 =9
=9.9 = Yon g © =5 gn-
Lemma 7.9. The map Eg@@, is well-defined (i.e. does not depend on
n) up to multiplication by a unit in R.
Proof. We must show that

g = = y9 =9
Yom g ©Zg,9m = Yo g © Zg gm
for any 77 and 72. But this is equivalent to showing that

=9 -1 g =9
(EG.gm) ™ °¥gm gn ©Eg gm

is R*-equivalent to the identity map from SHMY9(2) ®z R to itself,
which is just a special case of Proposition 7.8 where 21 = % = 9.
q.e.d.

The following lemma establishes the commutativity in (64).
Lemma 7.10. Suppose 21, %P> are genus g closures of (M,~) and
Ds, Dy are genus g marked closures of (M,~). Then
ggjs,@4 © Egjl,@s - 5%2,94 © (\pgﬁh.@2 ® id)’
up to multiplication by a unit in R.
Proof. We must show that
— -1 —_ . .
(65) (E%.2.)" °¥%,.0,°5%, 9, = V5, g, ©id.

Let m1 and 72 be oriented, homologically essential, smoothly embedded
curves in R; and Rz as above. The left hand side of (65) is R *-equivalent
to
g =g —1 g g g =9
(Zygm g, © By g72) " ©Lgm g, ° Ly, gm ©Lgm 5, ° g, gm

= (=4 LY “1owd oW o=?
('—'@2’9;2) (*@;2,94) *@2”2,@4 *9171,@;]2 ‘_‘@1,9{71

=9 ~1 g9 =9
= o\ o=
( @279;72) =922 " T, 9"

so (65) just follows from Proposition 7.8. q.e.d.
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All that remains is to prove Proposition 7.8.

Proof of Proposition 7.8. Recall that to define Qg@nz g We start by
1 72
choosing a diffeomorphism
C: Y Nint(Im(r)) — Yo N int(Im(r2))

as in Subsection 5.1. We then define ¢¢, »® and ¢ as usual, pick
factorizations of ¢© o ¢ and (¢)~! into positive Dehn twists,?

QOCOTZJCNDaIO"'ODam
¥ ~Dg,. 00D

and choose real numbers

Gn+1 am>»

1<ty < <l <-T8<T/8<ty, < ---<t1 <1

(normally, we choose these numbers in the intervals [—3/4, —1/4] and
[1/4,3/4] but this change will not affect the resulting map). Let (Y1)+
be the 3-manifold obtained from Y7 by performing —1 surgeries on the
curves r1(a; x {t;}) for all 7, and let X} be the associated 2-handle
cobordism from Y; to (Y7)4+. As usual, X induces a map

HMo(X4RisT,) : HMo(Vi| Ry Ty) = HMo((Y1)4|Ri T).

Then,
N = 00,), 1, © HMo(X1|R1;T,).

=M "2
DDy

As above, the maps =7 and =7

P,9 D2, D
merge-type cobordisms (M(%;),v™) and (M(Zs),v™). Kronheimer
and Mrowka use an excision argument in [18] to prove that the inverse
map (Eg% 9;,2)_1 is R*-equivalent to the map induced by the split-
type cobordism (—M (%), —v"™) from (Ya,72(n2 x {0})) to Yo U (R2 X
St mex{0}). We will think of (—M(Zs), —™) as having been obtained
by gluing together the cornered 4-manifolds

—M(Zs)1 = (Y2~ int(Im(r2))) x [0, 1],
—~M(P)s = Ry x &,
—M(Z2)3 = R x [-3/4,3/4] x [0, 1],
where S’ is the saddle cobordism used to define the split-type cobordism

S in Section 4. Here, we glue — M (%3)2 to —M(Z2)1 according to the
maps

are defined in terms of the

T;XidiRQXH1—>Y2X[O,1],
ry X id: Ry x Hy — Yo x [0,1],

3In Subsection 5.1 we had to allow negative Dehn twists in order to prepare for

the maps gggg} of Subsection 5.2, but we can avoid them here since we are not

planning to compare SHMY (M, v) for different values of g.
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and we glue —M(Zs)3 to —M(Z2)2 U —M(Z;); according to
id x id : (Rg x {—3/4}) x [0,1] — Ry x Hs,
id x id : (R x {+3/4}) x [0,1] — R x Hy.
In this case, —v™ corresponds to the cylinder o x {0} x[0,1] C =M (Zs)3 C

—M(Zy).
The map
(5227@;,2)’1029@?17@32 039@17@?1 : HM o(Y1|R1)®zR — HM o(Y2|R2)®7zR

is then R*-equivalent to the map
(66) __ __
HM o(=M(Z2)|Ra; T—ym )00y, y, o HM o (X4 | R15 T )o HM o (M(Z1) | Ry; T )

from
HM (Y1 |R1)®2HM o (Ry % S*|Ry; Tyy,) — HM o(Ya|Ro) @z HM o (Ryx S'|Ry; Ty)

after choosing identifications of ﬁ]\//[.(Rl x S Ry; Ty, ) and }7]\/4.(}22 X
St Ry; I';,) with R. So, to prove Proposition 7.8, we just need to show
that this composition in (66) is R*-equivalent to \I/g91 g, @ f, for some
isomorphism

f1HMJ(By x SYRy;Ty,) — HMo(Ry x S*Ry;Ty,).

For this, consider the composite cobordism

(W) = (=M(Z2), ~1™) 0 (X4,0) o (M(21), ™),
where —M (%) is glued to X4 along (Y7)4+ = Y5 by a map which re-
stricts to C on Y3 \int(Im(rq)) and to roo((¢€0y)®) xid)or; ! on a neigh-
borhood of r1(R; x [-7/8,7/8]). The induced map HM (W |Ry;T,) is
equal to the map in (66). To show that

HML(WIRGT,) =W, @ f,

for some isomorphism f as above, we use an excision argument nearly
identical to that in the proof of Proposition 4.4. Namely, we consider
the submanifold T C W given by

T =Ry xcURyx{-7/87/8 x[0,1] U Ry x c.

Recall that c is a smoothly embedded arc in S with boundary on V3 and
Vy at the points identified with —7/8 and 7/8, and ¢’ is the corresponding
arc in S, so that Ry x ¢ and Ry x ¢’ are properly embedded submanifolds
of M(2y) and M(%5). The middle piece Ry x {—7/8,7/8} x [0,1] is a
properly embedded submanifold of X, where X is viewed as a union
of Y1 %[0, 1] with 2-handles and Y] is viewed as the boundary component

Y1 Nint(Im(ry)) URy x V3 U Ry x [—3/4,3/4] U Ry x Vy
OfM(.@l)
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We form a new 4-manifold manifold W by cutting W open along
T = Ry x S and capping off the new boundary components with copies
of R x D?. The resulting cobordism (W, v) is isomorphic to the disjoint
union

XY U ((Ry x 8% x [0,3],m x [0,3)),

where X jr is a cobordism from Y7 to Y5 of the sort used to define the
map \Ilg@h% and ((Ry x S*) x [0,3],m1 x [0,3]) is the cobordism from
(R1 x S*,m) to (Ry x S, m2) with boundary identification

((B1x §%) x {3}, % {3}) = (B2 x S, 1p2)
induced by the map
(67) o o)’ : Ry — Ro.
By excision, we have that

HMo(W|Ry;T,) = HM o(W|R1;T,)
— HM (X, |R1) @ HMo((Ry x S) x [0,3]|Ri; T, x(0.5))

where

f1HMJ(Ry x S'|Ry:Ty,) — HMo(Ry x S'|Ry;T,)
is the isomorphism induced by the identification in (67). This completes
the proof of Proposition 7.8. q.e.d.

The above results show that the maps in {Z7, ,,} define an isomor-

phism of projectively transitive systems as desired, completing the proof
of Theorem 7.7. q.e.d.

One can easily adapt the above proof to show the following.

Theorem 7.11. The functors SHMY®zR and SHMY from DiffSut?y
to R-PSys are naturally isomorphic. g.e.d.

8. Monopole Knot Homology

In this section, we define the functors KHM and KHMY mentioned
in the introduction. At the end, we define the functors HM and HMY
by a simpler version of the same construction.

Suppose (K,p) is a based knot in Y. Let D? be the unit disk in the
complex plane, let St = 9D?, and suppose
(68) 0:S'x D?* =Y
is an embedding such that ¢(S! x {0}) = K and ({1} x {0}) = p. Let
Y (¢) be the balanced sutured manifold given by

Y(p) := (Y N int(Im(yp)), m;’f U —m;),
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where mf; is the oriented meridian ¢({#+1} x dD?) on dY (p). The
monopole knot homology KHM(Y, K, p) is defined, roughly speaking,
as SHM(Y (¢)). Of course, this does not make complete sense since
the latter depends on ¢ rather than just on (Y, K,p). However, given
embeddings ¢ and ¢’ of K as above, we will construct a canonical
isomorphism

U, SHM(Y (¢)) — SHM(Y (¢')).

These isomorphisms will then allow us to define KHM (Y, K, p) without
ambiguity (see Definition 8.4). We describe the construction of these
isomorphisms below.

Let us first consider the case in which Im(¢") C Im(yp).

Let N be a solid torus neighborhood of K with Im(yp) C int(N).
Recall that any two closed tubular neighborhoods of K are related by
an ambient isotopy of Y fixing K pointwise (cf. [16, Theorem 3.5]). A
slight extension of this result provides an ambient isotopy f; : Y — Y,
t € [0,1], such that:

) each f; fixes p,

) each f; restricts to the identity outside of N,

) Im(f10¢) =Im(¢'),

) f1 sends the meridional disks ¢ ({1} x D?) to the meridional disks
o' ({£1} x D?).

Conditions (3) and (4) imply that f; restricts to a diffeomorphism of

sutured manifolds,

1
2
3
4

fi:Y(p) = Y(¢).
We define ¥, . in this case by

W, o = SHM(f1) : SHM(Y (¢)) — SHM(Y (¢")).

Remark 8.1. We could just as easily require that the isotopy f;
fixes (K,p) and sends every meridional disk to a meridional disk. Not
requiring that f; fixes (K, p) will be convenient for our construction of
transverse knot invariants in [3].

Let us now consider the case of arbitrary embeddings ¢, ¢'.
Fix a third embedding ¢” with Im(¢”) C Im(p) and Im(y”) C

Im(¢’). We define
(69) W, =Yy ) ol i SHM(Y (p)) - SHM(Y (¢)),

where the maps ¥, ,» and ¥, ,» are defined as described previously.
We prove below that this map is well-defined.

Proposition 8.2. The map ¥, s is independent of the choices made
1 its construction.

Proof. We first consider the case in which Im(y’) C Im(p) and show
that the map ¥, . is independent of the choices in its construction,
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namely N and f;. First, we fix N and show that ¥, , is independent
of fi. Suppose f; and f/ are two isotopies as above. It suffices to show
that the induced maps
fiif1:Y () = Y(¢)
are isotopic (as diffeomorphisms of sutured manifolds) and therefore
give rise to the same maps, SHM(f;) = SHM(f]), by Theorem 6.3.
We will show, equivalently, that the diffeomorphism g = (f])~! o fi is
isotopic to the identity.

Recall that g is the identity outside of N. Let us consider the re-
striction of g to N NY(¢) = N ~\ Im(y), which we will identify with
a thickened torus 72 x [0,1], where T2 x {0} corresponds to d(Im(¢))
and T2 x {1} corresponds to ON. First, note that the restriction of g to
T2 x {0} is isotopic to the identity through an isotopy which preserves
the meridians mfg. This is because g preserves these meridians to start
with and sends any longitude to an isotopic longitude. (For the latter
statement, first observe that any diffeomorphism of T2 sending meridi-
ans to meridians must send longitudes to longitudes. Second, suppose
there is a diffeomorphism of T2 x [0, 1] which restricts to the identity on
T? x {1}, preserves a meridian z on T? x {0}, and sends a longitude \
to a curve homologous to A + ku. Then one could show that n-surgery
on a knot K is homeomorphic to (n+ kr)-surgery on K for any integers
n,r and any knot K. This can only happen if £k = 0.) We can realize
this isotopy on T2 x {0} as the restriction of an isotopy on 72 x [0, 1]
which is the identity on 72 x {1}. We may therefore assume that the
original sutured diffeomorphism

9:Y(p) = Y(¥)
restricts to the identity on 9(T? x [0,1]). From here, our aim is to
show that g is isotopic to the identity on 72 x [0,1] by an isotopy
which restricts to the identity on 72 x {1} and preserves the meridians
mi C T? x {0}. According to Proposition A.1, the natural map

71 (Diff (T?)) — mo(Diff (T2 x [0, 1] rel (T2 x [0,1])))

is surjective (in fact, it is known that this map is an isomorphism).
Moreover, 71 (Diff (T?)) 2 Z x Z, where the first and second factors are
generated by full rotations along a meridional direction (specified by
mi) and a longitudinal direction, respectively (see [7]). The fact that
g extends to a diffeomorphism of N which is isotopic to the identity
through an isotopy (namely, (f/)~! o f;) which fixes p and restricts to

the identity on ON implies that the class
[9] € mo(Diff(T? x [0,1] rel (T x [0,1])))

is in the image of the subgroup Z x {0} C m(Diff(7?)) under the sur-
jection above. (To see this, let D be a meridional disk in NV such that
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D NIm(p) = p({1} x D?). Then, by the above fact about g, the disks
D and ¢(D) are isotopic by an isotopy stationary on p and ON. But
g(D) N Im(p) = ¢({1} x D?) as well, by the conditions on f; and f].
This implies, without much difficulty, that the annuli D N (T2 x [0,1])
and g(D) N (T? x [0,1]) are isotopic in T2 x [0, 1] by an isotopy which
preserves their boundaries. It follows easily that [¢g] cannot come from a
loop in Diff(7?) with any longitudinal rotation.) But any such g is then
isotopic to the identity on 72 x [0, 1] by an isotopy which restricts to the
identity on T2 x {1} and traces out some number of full rotations along
the meridional direction on 7% x {0}. Such an isotopy can be assumed
to preserve the meridians mi, as desired.

That ¥, . is independent of N follows because given two such Ny, Ns,
we can find a third N3 such that Im(p) C int(N3) and N3 C No N Nj.
An ambient isotopy f; supported in N3 therefore also has support in
N1, Na. It then follows from the independence of W, on f; that the
maps defined using N1, No agree with the map defined using N3 and,
therefore, with one another.

Note that if we have three embeddings with Im(¢”) C Im(¢') C
Im(¢p), then it follows easily from the definitions that

(70) g‘ﬂv@// - g@,’@

1 O g@:@’ .

Let us now consider the case of arbitrary embeddings ¢, ¢©’'. We must
show that the map ¥, , defined in (69) is independent of ¢". Suppose
¢ and ¢ are embeddings such that Im(y}) C Im(p) and Im(¢) C
Im(¢') for i = 1,2. Let ¢4 be an embedding with Im(¢4) C Im(¢) and
Im(¢4) C Im(g4). Then it follows from (70) that

(\IJ / //)71 OEQD#P’{ = (\IJ / //)71 ng’wé/ = (g

-1
=0 ! =0 0l )T ol

o5 Sz
completing the proof. q.e.d.

Proposition 8.3. The isomorphisms constructed above satisfy the
transitivity relation

Vo or =W oW, o

for any three o, ¢, o".

Proof. This follows easily from the definitions of these isomorphisms.
q.e.d.

The projectively transitive systems in {SHM(Y (¢))}, and the iso-
morphisms in {¥,, .}, o thus form what we call a transitive system of
projectively transitive systems of R-modules. Note that this system of
systems defines an actual projectively transitive system of R-modules;
we simply take the union of the R-modules in the systems SHM(Y (¢))
and the union of the R*-equivalence classes of R-modules homomor-
phisms comprising these systems and the morphisms ¥,, .
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Definition 8.4. We define KHM(Y, K,p) to be the projectively
transitive system of R-modules determined, in the manner described
above, by the transitive system of systems given by {SHM(Y (¢))},

and and {W,, s}y o

Suppose f is a diffeomorphism from (Y, K, p) to (Y’, K’,p’). For each
neighborhood ¢ of K as in (68), f defines a diffeomorphism of balanced
sutured manifolds,

fo:Y(p) = Y'(¢),
where ¢’ = f o p. The map f,, then induces an isomorphism

SHM(f,) : KHM(Y (¢)) — KHM(Y’(¢)),

and it is not hard to show that the collection {SHM(f,)}, gives rise
to an isomorphism

KHM(f) : KHM(Y, K, p) — KHM(Y', K', )

of projectively transitive systems of R-modules. Moreover, it is not
hard to show that these isomorphisms are invariants of isotopy classes
of based diffeomorphisms and respect composition in such a way that
KHM defines a functor. We record this in the theorem below, which,
in particular, implies Theorem 1.14 from the introduction.

Theorem 8.5. KHM defines a functor from BKnot to R-PSys.
g.e.d.

We define the untwisted functor KHMY from BKnot to Z-PSys
described in Theorem 1.15 in exactly the same way, replacing SHM
with SHMY everywhere. We are able to define this functor for each
g > 2 since the balanced sutured manifolds Y () admit closures of
every genus g > 2. One can also define a twisted functor KHMY in each
genus, replacing SHM with SHMY everywhere in the construction. The
following analogue of Theorem 7.11 describes the relationship between
the twisted and untwisted monopole knot homology invariants defined
above.

Theorem 8.6. The functors KHMY®z R and KHMY from BKnot
to R-PSys are naturally isomorphic. g.e.d.

We may now define the functors HM and HMY very similarly.
Suppose (Y, p) is a based, closed 3-manifold. Let B3 be the unit ball
in R3, let S denote the equator given by

St = {(z,y,2) € 0B* | z = 0},
oriented as the boundary of the upper hemisphere
D? = {(z,y,2) € 9B* | 2 > 0}.

Suppose
p:pxB3=Y
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is an embedding such that ¢(p x {0}) = p. Let Y () be the balanced
sutured manifold given by

Y (p) := (Y N int(Im(g)), my,),

where m,, is the oriented equator ¢(S!) on Y (). Given tubular neigh-
borhoods ¢ and ¢’ as above, we define a canonical isomorphism

U, : SHM(Y () — SHM(Y (),

very closely mimicking our earlier construction for knots.

We first consider the case in which Im(y¢’) C Im(y). Let N be a
regular neighborhood of p with Im(y¢) C int(N). Choose an ambient
isotopy fi : Y — Y, t € [0,1], such that:

1) each f; fixes p,

2) each f; restricts the identity outside of NV,

3) Im(f10¢) =Im(y"),

4) f1 sends my, to myr.

As before, fi restricts to a diffeomorphism of sutured manifolds,

fLiY(e) = Y (),
and we define ¥, , by

V= SHM(f1).

For the case of arbitrary embeddings ¢, ©’, we fix a third embedding ¢©”
with Im(¢”) C Im(¢) and Im(¢”) C Im(¢’), and we define

(7].) g%@’ . (g@/7@//)

The propositions below are direct analogues of Propositions 8.2 and
8.3.

“lo Yoo

Proposition 8.7. The map V¥, ., is independent of the choices made
mn its construction.

Proof. This proof is almost word-for-word the same as that of Propo-
sition 8.2. Adopting the notation of that proof, we must show that
g = (fi)~' o f1 is isotopic to the identity. The only difference in this
case is that we identify N NY () with S? x [0, 1] rather than T2 x [0, 1],
with S? x {0} corresponding to d(Im(y)) and S? x {1} corresponding to
ON, so that g restricts to a map which is the identity on S% x {1}. It fol-
lows from Hatcher’s proof of the Smale Conjecture (see [11, Appendix])
that the natural map

71 (Diff (S%)) — mo(Diff(S% x [0, 1] rel d(S? x [0,1])))

is an isomorphism, where 71 (Diff(S?)) = m1(SO(3)) = Z/27Z is gener-
ated by a full rotation of S? about some axis, preserving a chosen equa-
tor (when we write Diff, we are talking about orientation-preserving dif-
feomorphisms). It follows that g is isotopic to the identity on S2 x [0, 1]
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by an isotopy which restricts to the identity on S? x {1} and preserves
the equator m, C S? x {0}.
The rest of the proof is identical to that of Proposition 8.2.  qg.e.d.

Proposition 8.8. The isomorphisms constructed above satisfy the
transitivity relation

Vo or =W oW, o

for any three o, ¢, o". g.e.d.
These propositions motivate the following definition.

Definition 8.9. We define HM(Y,, p) to be the projectively transitive
system of R-modules determined by the transitive system of systems

given by {m(y((p))}w and {gap,go’}%@"

A diffeomorphism f : (Y,p) — (Y',p') naturally gives rise to an
isomorphism
HM(f) : HM(Y,p) - HM(Y", ),

essentially in the manner outlined above for knots, such that:

Theorem 8.10. HM defines a functor from BMfd to R-PSys.
g.e.d.

We define the untwisted functor HM?Y described in the introduction
in the analogous way, for each g > 2. As usual, one can also define

a twisted functor HMY in each genus, and the following relationship
holds.

Theorem 8.11. The functors HMY @z R and HMY from BMfld
to R-PSys are naturally isomorphic. g.e.d.

9. Naturality in Sutured Instanton Homology

Here, we adapt the constructions of the previous sections to the in-
stanton setting using the notions of odd and marked odd closure. In
particular, given a marked odd closure Z of (M,~), we will define a
projectively transitive system of C-modules SHI (%) following the con-
struction in [18]. For every pair %, %', we will construct a canonical
isomorphism of systems

Yy g : SHI(Z) — SHI(Z')

such that the systems in {SHI(%)} and maps in {¥y, , } form a transi-
tive systems of projectively transitive systems, and, hence, a larger pro-
jectively transitive system of C-modules (as in the construction of KHM
in Section 8), which we denote by SHI(M,~). As in the monopole set-
ting, diffeomorphisms of balanced sutured manifolds induce maps on
SHI in such a way that SHI defines a functor from DiffSut to C-PSys,
as promised in Theorem 1.18.
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Likewise, given a genus g odd closure &, we will define a projectively
transitive system of C-modules SHIY9(Z) as in [18], and, for every pair
2,9 of such closures, we will construct a canonical isomorphism

Y, g SHIY(Z) — SHI' (')

such that the systems in {SHI9(Z)} and maps in {\11999,} form a
larger projectively transitive system of C-modules, which we denote by
SHIY(M,~). Asin Theorem 1.19, SHIY defines a functor from DiffSut?
to C-PSys.

Below, we explain the constructions of these twisted and untwisted
instanton invariants. As in the monopole case, we will focus on the con-
struction of the map ¥ 5. We will not say anything more about the
maps on SHI and SHIY induced by diffeomorphisms as the construc-
tions of these maps and proofs of their various properties are formally
identical to the constructions and proofs found in Section 6.

9.1. Odd Closures of Sutured Manifolds. First, we describe the
odd and marked odd closures used to define the untwisted and twisted

sutured monopole homology systems associated to a balanced sutured
manifold (M, 7).

Definition 9.1. An odd closure of (M,~) is a tuple (Y, R,r,m,a),
where (Y, R,r,m) is a closure of (M,~) in the sense of Definition 2.2,
and « is an oriented, smoothly embedded curve in Y such that:

1) « is disjoint from Im(m),

2) « intersects r(R x [—1,1]) in an arc of the form r({p} x [—1,1])

for some point p € R.

Definition 9.2. A marked odd closure of (M,~) is a tuple (Y, R, r,m,n, «)
where (Y, R, 7, m,«) is an odd closure of (M,~), as defined above, and
(Y,R,r,m,n) is a marked closure of (M,~) in the sense of Definition
2.3.

Remark 9.3. The adjective “odd” before “closure” is meant to re-
flect the fact that

(c1(w),r(Rx{0})) =a -r(Rx{0})=1

is odd for & as above. This will be important in the definition of sutured
instanton homology below.

Remark 9.4. Given an odd closure (Y, R, r,m, a), the pair (Y, (R X
{t})), together with the bundle w — Y, is a closure in the sense of Kro-
nheimer and Mrowka, for any ¢ € [—1,1]. The curve « in our notation
corresponds to the circle through the marked point ¢y in theirs. One
slight difference between our approach and theirs is that we require that
g(R) > 2 while they allow closures in which g(R) = 1.
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9.2. Sutured Instanton Homology. Here, we recall the construction
of Kronheimer and Mrowka’s instanton invariants of sutured manifolds,
starting with a very brief review of instanton Floer homology for closed
3-manifolds. For more details, see [5,18].

Suppose Y is a closed, oriented, smooth 3-manifold and w — Y is
a Hermitian line bundle such that ¢;(w) has odd pairing with some
class in Hy(Y;Z). Let E — Y be a U(2) bundle with an isomorphism
0 : A°E — w. Let C be the space of SO(3) connections on ad(E) and
let G be the group of determinant-1 gauge transformations of E (the
automorphisms of E that respect ). The associated instanton Floer
homology group, which Kronheimer and Mrowka denote by I.(Y ),
is the Z/8Z-graded C-module arising from the Morse homology of the
Chern-Simons functional on C/G (cf. [5]). Given any closed, embedded
surface R C Y there is a natural operator

(R L(Y)w = Le(Y )

of degree —2. When R has genus at least 2, Kronheimer and Mrowka
define the submodule

L(Y|R)y C L(Y )y
to be the eigenspace of p(R) with eigenvalue 2g(R) — 2.

Example 9.5. If Y = R x S! and the line bundle w is chosen so that
(c1(w), R x {0}) is odd, then

L(Y|R x {0})s = C,
as shown in [18, Proposition 7.4].

Suppose « is an oriented, smooth 1-cycle in Y which intersects a
closed, embedded surface in an odd number of points. One can associate
to (Y, ) an instanton Floer group after first choosing bundles w, E, and
an isomorphism 6 as above, where the first Chern class is Poincaré dual
to a.. This Floer group itself is not an invariant of (Y, «) as it depends on
these auxiliary choices. However, given a pair (Y, «), the Floer groups
associated to any two sets of auxiliary choices are related by a canonical
isomorphism which is well-defined up to sign (cf. [20, Section 4]). In
particular, the pair (Y, «) defines a projectively transitive system of C-
modules, which we will denote by I.(Y),. The canonical isomorphisms
respect the eigenspace decompositions and, so, for a closed embedded
surface R C Y, we may also define the projectively transitive system of
C-modules I, (Y|R),.

Suppose Ry and Ry are embedded surfaces in Y7 and Y5 as above. A
cobordism (W, v) from (Y1,a1) to (Y1, a2) together with an embedded
surface Ry C W containing Ry and Ro as components gives rise to a
map of projectively transitive systems

L(W|Rw)y : L(Y1|R1)ay = Le(Y2|R2)a,
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as in the monopole Floer homology setting. This map depends only
on the homology class [v] C Ha(W,0W;Z) and the isomorphism class
of (W,v) (again, cf. [20, Section 4]). These cobordism maps can also
be used, just as in Subsection 3.1, to define maps on instanton Floer
homology associated to diffeomorphisms.

We assign projectively transitive systems of C-modules to marked
(odd) closures of balanced sutured manifolds as follows (cf. [18, Section
7.4]).

Definition 9.6. Given an odd closure 2 = (Y, R,r,m, «) of (M,~),
the untwisted sutured instanton homology of 2 is the projectively tran-
sitive system of C-modules

SHI(Z) := LY |r(R x {0}))a.

Definition 9.7. Given a marked odd closure 2 = (Y, R, r, m,n, ) of
(M,~), the twisted sutured instanton homology of & is the projectively
transitive system of C-modules

SHI(Z) = L(Y|r(R x {0}))auy-

Remark 9.8. If w and u are line bundles over Y with first Chern
classes represented by « and 7, then the line bundle w ® u has first
Chern class represented by o U n.

As in the monopole setting, we will use SHI9(2) and SHI(Z) in
place of SHI(Z) and SHI(Z) when we wish to emphasize that & has
genus g.

9.3. The Maps Vg ;. Here, we define the isomorphisms

alluded to above. As in the monopole case, we will first define these
maps for marked odd closures of the same genus and then for marked
odd closures whose genera differ by one before defining ¥ 4 for arbi-
trary marked odd closures. Before defining any of these isomorphisms,
however, we establish an analogue of Theorem 4.3.

Suppose Y is a closed, oriented, smooth 3-manifold; R is a closed,
oriented smooth surface of genus at least two; 7 is an oriented, homolog-
ically essential, smoothly embedded curve in R; and r : Rx [—1,1] = Y
is an embedding. Suppose a C Y is an oriented, smoothly embedded
curve in Y such that aNIm(r) = r({p} x [-1,1]) for some point p € R.

Suppose A" and B" are diffeomorphisms of R, for u = 1,2, such that
Alo B' s isotopic to A%20 B2, (B%o(B')~!)(n) = nand A%(p) = B%(p) =
p. Just as in Section 4, we factor A* and B" into compositions of Dehn
twists around curves which avoid p, and use the corresponding 2-handle
cobordisms to construct maps

L(XYR)(aunx.) * LY [R)auy = L(Y|R)auy
L(XYIR)(aunxo.q * Le(YE | R)aun = LYY [R)auny.
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The isotopy class (9) of diffeomorphisms Y_& — Y_E induces an isomor-
phism
@Yiyf : I*(Y_MR)aun — I*(Y_E‘R)oauna
and we have the following.
Theorem 9.9 (cf. Theorem 4.3). The maps I.(X“|R)q Liy)x[o,1] are
invertible, and the maps
Oy1y2 © L(XL|R) (aumxfo1] © (L(X2IR) (aumx(o) "
L(X3IR) @umx(o1) © (L(X2[R) (@ Lmx(01]) "

from L(Y|R)auy to I(YZ|R)auy are equal and are isomorphisms.*

Proof. The proof of Theorem 9.9 is almost exactly the same as that
of Theorem 4.3. Essentially, we just use Kronheimer and Mrowka’s
excision theorem for instanton Floer homology (cf. [18, Section 7.3])
in place of excision for monopole Floer homology. The one thing that
requires care is the modification of the proof of Proposition 4.8. In
the instanton setting, we have a relatively minimal Lefschetz fibration
X — D? with fiber R and monodromy map which fixes p, and we need
to know that X has nonzero relative invariant

I*(X‘R){p}xD2 (1) I*((?X‘R){p}xsq ~C.
But this is exactly Proposition 8.2 of [25], so we are done. q.e.d.

9.3.1. Same Genus. Suppose
@ - @1 - (Ythﬂ’l,ml?Thval)
9" = Dy = (Ya, Ra, 72, M2, 12, 02)

are marked odd closures of (M,~) with g(2') = g(2) = g. Below, we
define the isomorphism

g@’_@/ = g‘g@7@, . SHIQ(@) — SHIg(@/)

almost exactly as in Subsection 5.1.
To start, we choose a diffeomorphism

C : Yy N int(Im(ry)) — Y2 N int(Im(r2))

as in Subsection 5.1, with the additional condition that C sends a3 N
(Y1~ int(Im(r1))) to ag N (Ya N int(Im(r2))). We define the maps ¢¢
and ¢ in the usual way, and choose a diffeomorphism

Y% Ry — Ry

4Note that we may say that these maps are equal rather than C*-equivalent as
in the analogous Theorem 4.3 since we are talking about maps between projectively
transitive systems in this case.
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such that
(Cov)(m) = m,
(o) (p1) = po,
where the points p; € R; are defined by o; Nr(R % [—1,1]) = r({pi} X

[—1,1)).

We now repeat the construction of gg@ 4 from Subsection 5.1. Namely,

we express p* 09¢ and ()~ as compositions of Dehn twists, and we
use these compositions to construct cobordisms X_ from (Y7)_ to Y3
and X from Y] to (Y7)4. As before, there is a preferred isotopy class of
diffeomorphisms from (Y1) to Y, which gives rise to an isomorphism

@(C;q)_,_YQ P L((Y1) 4| R1)ay um —* L (Y2|R2)a, Unz-

Definition 9.10. The map 99, , is given by

VY o =Y o= O, v, oL (X4 B1) (0 timy)xio, 0L (X[ R1) (0 iy xjo,1)

These maps are well- and satisfy the required transitivity, as stated
below.

Theorem 9.11. The map Yy, 4 is independent of the choices made
in its construction. Furthermore, if 2,9', 9" are genus g marked odd
closures of (M,~), then

Proof. The proofs of Theorems 5.2 and 5.6 rely entirely on topological
arguments together with several applications of Theorem 4.3. We repeat
these arguments verbatim to prove Theorem 9.11, using Theorem 9.9 in
place of Theorem 4.3. q.e.d.

Definition 9.12. The twisted sutured instanton homology of (M,~)
in genus g is the projectively transitive system of C-modules defined by
{SHI9(2)} and {g%j’@,}. We will denote this system by SHIY(M, ).

9.3.2. Genera Differ by One. Now, suppose
D=9 = (Y17R17r17m177717a1)
9 — 9Dy = (Y4,R4,r4,m4,774,044).

are marked odd closures of (M,v) with ¢(2') = g(2) +1 = g + 1.
Below, we define the maps

Vg0 =900} SHIY(P) — SHIY (D)
1’
Vo=V SHIN(P') — SHIY (D).
To define g@f’;} = g@f}i, we choose an auxiliary marked odd closure

23 = (Y3, Rz, r3,m3,n3, a3),
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with g(Z3) = g(Z24) = g+ 1, such that (Y3, R3,r3,ms,n3) is a cut-ready
marked closure with respect to tori 77,75 C Y3 as in Subsection 5.2.
We further require that the curve ag be contained in the piece int(Y3').
We may then form the corresponding cut-open tuple

92 = ()/27R2ar27m2a7727a2)a
with g(%22) = g(21) = g, where
Yo=Y), Ry=R}, m=m, r=r3

and aq is the image of a3 C Y3 inside Y3 .

We now construct a merge-type cobordism (W, fUv), where (W, v) is
defined exactly as in Subsection 5.2 and § is the product cobordism g x
[0,1] C Yy x [0,1] = W;. With respect to the boundary identifications
in (50)-(51), B is a cylindrical cobordism from ay C Y3 to a3 C Y3.
Kronheimer and Mrowka show in [18] that the induced map

I*(W|S3)5|—|V : I*(Y2|R2)a2un2 ®c I*(Y32|R§)ﬁ§ - I*(Y3|R3)as Uns
is an isomorphism. By [18, Proposition 7.8], we have that
2 P2\ |~
L(YRIRY), =
We choose any such identification and define
9, 1 [p—
BT (=) 1= L(W|S3)su0(— ® 1).

We now define the maps g%*} and g%j@; exactly as in Subsection

5.2.
Definition 9.13. The map gg‘g} is given by

\I,g,ngl

g+ +1 9+1
Yo e = g9 o 99 o \Ifg

=N, Yy T —=93,924 = —%2,93 ~ —21,%2"

Definition 9.14. The map ggj,gg is given by

+1, ,9+1—1
ggj',@g = (ggj?@/ )

We have the following analogue of Theorem 5.14.

Theorem 9.15. The map g@gg} is independent of the choices made
i its construction.

Proof. The proof of this theorem is virtually identical to that of The-
orem 5.14. q.e.d.
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9.3.3. The General Case. We now define the map
Yy g : SHI(Z) — SHI(Z')

for an arbitrary pair 2, 2’ of marked odd closures of (M, ) exactly as
in Subsection 5.3. Namely, we choose a sequence

{Zi = (Yi, Ry, riy miymiy ) by
of marked odd closures of (M,~), where 9 = 2y, 9' = 9,, and
19(%i) — 9(Ziv1)| <1

fori=1,...,n —1, and define ¥, 4 as follows.

Definition 9.16. The map ¥, , is given by

I e} o
g_@,@/ = E@h@n T g@n717_@n 0:-0 g@h@z’

Theorem 9.17. The map Yy, 4 is independent of the choices made

in its construction. Furthermore, if 2,9', 2" are marked odd closures
of (M, ), then

gg’@// = g@/’@// o gg,.@/.

Proof. The proof of this theorem is virtually identical to those of
Theorems 5.19 and 5.20. We therefore omit it. q.e.d.

Definition 9.18. The twisted sutured instanton homology of (M,~)
is the projectively transitive system of C-modules defined by {SHI(2)}
and {¥ 5 }. We will denote this system by SHI(M, ).

9.4. The Untwisted Theory. Given genus g odd closures 2,2’ of
(M, ), we define the canonical isomorphism

\I'g@’@, :SHI(2) — SHI(Z')
by simply adapting the construction in Section 7 to the instanton set-
ting.
Theorem 9.19. The map \I'%@, is independent of the choices made

in its construction. Furthermore, if 9,9', 9" are genus g odd closures
of (M,~), then

\II‘Z_]7_@// - \Ilgj/“o]// o \I[gj7g/.q.€.d.
Definition 9.20. The untwisted sutured instanton homology of (M, =)

in genus g is the projectively transitive system of C-modules defined by
{SHI(2)} and {99, 5 }. We will denote this system by SHI?(M, ).

The following theorem describes the relationship between the twisted
and untwisted sutured instanton invariants.

Theorem 9.21. SHIY(M,~) and SHIY(M,~) are isomorphic as pro-
jectively transitive systems of C-modules.
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Proof. To define an isomorphism from SHIY(M,~) to SHIY(M,~),
it suffices to define isomorphisms

=, SHIY(P) — SHIY(7')

for all genus g odd closures 2 and genus g marked odd closures 2’ of
(M, ) such that

(72) g‘g@/’@/// o E%Q,@/ = Eg@//,@/// o \113@7@//

for all genus g odd closures Z, 2" and all genus g marked odd closures
2" 9" of (M,~). We describe below how the maps Eﬂ’j?@, are con-
structed and omit the rest of the proof as it is virtually identical to the
proof of Theorem 7.7.

As in the monopole setting, the map E%g, is defined in terms of
the merge-type cobordisms M constructed in Section 4. Given an odd
closure 2 = (Y,R,r,m,«a) of (M,~) and an oriented, homologically
essential, smoothly embedded curve n C R, we let

‘@n = (Y7 R? r’ m7 777 a)

denote the corresponding marked odd closure, and let p € R be the point
satisfying aNr(R x [-1,1]) = r({p} x [-1,1]). We define a merge-type
cobordism (M, v" U ), where (M, ") is exactly as in Section 7 and /3
is the cobordism from « LIp x St to o defined by

oMy = (a~r({p}x(=11))) x[0,1],

ﬁ N M2 = {p} X S)

B NMsz = {p} X [_3/47 3/4] X [07 1]
This cobordism gives rise to an isomorphism

LMIR)r05 : L(Y|R)a ®c L(R % S'|R) st iy = L(¥ | R)aun,
We define
E9 gn = L(M|R)ynup(— @ 1),
and we define
E‘Zj,@' = ggjn,@' © E%J,Oj"l‘

As alluded to above, the proof that this map is well-defined and satisfies
the commutativity in (72) follows from the same reasoning used to prove
the analogous results in the monopole setting. q.e.d.

One can also prove the following analogue of Theorem 7.11.

Theorem 9.22. The functors SHIY and SHIY from DiffSut? to
C-PSys are naturally isomorphic. g.e.d.
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9.5. Instanton Knot Homology. We may define twisted and un-
twisted functors KHI and KHIY from BKnot to C-PSys in exactly
the same way that we defined KHM and KHMY in Section 8, replacing
SHM and SHMY with SHI and SHIY everywhere in the constructions.
We may similarly define a twisted functor KHIY for every genus g > 2
exactly as we defined KHMY, replacing SHMY with SHIY everywhere.
The twisted and untwisted instanton knot homology invariants are then
related as follows.

Theorem 9.23. The functors KHIY and KHIY from BKnot to
C-PSys are naturally isomorphic. g.e.d.

Finally, one defines the functors HI and HIY promised in the intro-
duction in perfect analogy with the constructions of HM and HMY.

Appendix A. Diffeomorphisms of ¥ x I rel 9(X x I)

In this section, ¥ will denote a smooth, compact, oriented surface,
possibly with boundary. We denote by

Diff (X x I rel 9(X x I))

the group of orientation-preserving diffeomorphisms of 3 x I which re-
strict to the identity near 9(X x I). Consider the natural map

(73)  m(Diff (X rel 9%),idy) — mo(Diff (X x I rel 9(X x I)))
which sends a loop
v:8'=10,1]/(0 ~ 1) — Diff(Z rel O%)

to the diffeomorphism (z,t) — (v(t)(z),t).
Our main result is the following.

Proposition A.1. If ¥ is not a 2-sphere, then the map in (73) is
surjective.

Proof. For any diffeomorphism ¢ € Diff (X x I rel 9(X x I)), Wald-
hausen [27, Lemma 3.5] shows that ¢ is isotopic rel (X x I) to a level-
preserving diffeomorphism ¢’ as long as ¥ is not a sphere, where level-
preserving means that ¢/(x,t) € X x {t} for all (z,t). In particular, each
@' (-, t) is a diffeomorphism of ¥.. Then the map t — ¢'(-,t) determines
a class in 71 (Diff (X rel 0X), idy) whose image under the map in (73) is
[¢'] = [¢] € mo(Diff (X x I rel (X x I))), completing the proof. q.e.d.

Corollary A.2. If ¥ is not a 2-sphere or a torus, then Diff(¥ x
I rel O(X x 1)) is connected.

Proof. This follows immediately from Proposition A.1 together with
the fact that Diff (X rel 93) has contractible components as long as %
is not the sphere or the torus [6,7]. q.e.d.
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These results are used throughout our paper, mostly in the following
context. Suppose Y7 and Y5 are 3-manifolds and N; C Y7 and Ny C Y5
are the images of smooth embeddings

rm:RxI—-Y;
TQtRXI—)YQ,

for R a closed, oriented, smooth surface with g(R) > 2. If F is a
diffeomorphism from Y7 to Yo which maps Ny onto Na, then Corollary
A.2 implies that there is a unique isotopy class of diffeomorphisms from
Y1 to Yo which restrict to F' outside of Ni. This reasoning is used in
Section 4, for example, to argue that the gluing instructions for M, S
and P determine isomorphism classes of cobordisms and therefore give
rise to well-defined maps, without having to specify collar neighborhoods
of the gluing regions.

We also use Proposition A.1 in Section 8, in the case that X is a torus,
in our refinement of monopole knot homology.

The following is a corollary of Corollary A.2.

Proposition A.3. If R is a closed, oriented, smooth surface with
g(R) > 2, then Diff(R x I rel (R x I)) is contractible.

Proposition A.3 is well-known to topologists but we could not find
its proof in the literature, so we have included one below following an
outline suggested by Ryan Budney on MathOverflow [4] and elaborated
on by Budney in private correspondence with us. We make no claim
of originality. Aspects of this proof are used the proof of Lemma 5.9,
which is key in defining the maps g%f’;,l in Subsection 5.2.

Proof. Suppose Y is not the sphere or the torus. Let ¢ C X be a
simple closed curve which does not bound a disk. By Corollary A.2,
Diff (X x I rel 9(X x I)) is connected. In particular, if we let A =cx I
and let F(A, > x I rel 0A) denote the space of embeddings A < 3 x I
which agree on A with the inclusion, then there is a natural map

(74) Diff(X x I rel O(S x I)) = E(A, S x I rel DA)

whose image is connected since the source is. Hatcher shows in [12,
Theorem 1(b)] that m;(E(A, X xI rel A)) = 0 for alli > 0, so letting Ey
be the component hit by the map in (74) (i.e., the component containing
the inclusion A = ¢ x I — X x I), we have that Fy is contractible.
Moreover, the induced map to Ej is surjective by the isotopy extension
theorem, and so we have a fibration

Diff (X x I rel (3(X x I) U A)) — Diff(E x I rel (S x I)) — E;

with contractible base. It follows that Diff(X x I rel (X x I)) is ho-
motopy equivalent to Diff (X x I rel (9(X x I) U A)). The latter space
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can be identified with Diff (X' x I rel (X' x I)), where ¥’ is the sur-
face obtained by cutting > open along ¢, and so we have a homotopy
equivalence

Diff(X x I rel O(S x I)) ~ Diff(3 x I rel 9(X' x I)).

In particular, if R is a closed, oriented, smooth surface with g(R) > 2,
and ci1,c2,...,c35-3 C R are simple closed curves which cut R into
2g — 2 pairs of pants, then we can apply the above reasoning to each
A; =c¢; x I C R x I in turn to conclude that

2g—2
Diff (R x I rel (R x I)) ~ [[ Diff(P x I rel (P x I))
i=1
where P is a pair of pants. To prove Proposition A.3, it therefore suffices
to show that Diff (P x I rel (P x I)) is contractible.
Let a1, a3 C P be a pair of disjoint, properly embedded arcs which cut
P into a disk. The papers of Waldhausen and Hatcher cited above also
show that the space of embeddings of the union of disks a; x I Uas x I
into P x I rel boundary is contractible. Then, by the same argument
as above, we may conclude that Diff(P x I rel 9(P x I)) is homotopy
equivalent to Diff(D? x I rel (D? x I)) = Diff(B? rel 9B?). But the
latter is contractible by Hatcher’s proof of the Smale Conjecture [11].
This completes the proof of Proposition A.3. q.e.d.

Appendix B. Relative Invariants of Lefschetz Fibrations

In the proof of Proposition 4.8, we used the fact that the relative
invariant of a certain Lefschetz fibration is a unit in the Floer homology
of its boundary. We justify this below.

Proposition B.1. Let £ denote the total space of a relatively min-
imal Lefschetz fibration ®@ : L — D? of fiber genus at least 2, with
boundary Y = 0L, and let R be a generic fiber. Then the relative in-
variant

U, = HMJ(L|R)(1) € HMJ(Y|R) = Z
1s equal to +1.

Proof. Let Z — D? be another relatively minimal Lefschetz fibration
of the same genus, with boundary —Y and b*(Z) > 2, and extend
to a Lefschetz fibration on the closed 4-manifold X = LUy Z. Let s,
denote the canonical spin® structure on X, and fix a spin® structure g
on X such that so|z = s,|z. Following Sections 3.6 and 41.4 of [17], we
define ,

ml (X) =) m(X,s)

S
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where m(X, s) is the Seiberg-Witten invariant of (X, s) and the sum runs
over isomorphism classes of spin® structures on X satisfying s|; = so|¢
and s|z = 59|z = s,|z. Note that s, is the unique spin® structure on
X satisfying m(X,s) # 0 (in fact, m(X,s,) = £1) and (ci(s),R) =
2g(R) — 2 by [26] and [25, Theorem 1.3], respectively. In particular, for
any s in the sum we have

{c1(s), R) = {e1(s0), R) = 29(R) — 2,

since we can realize R as a surface in Z and s|z = s,|z. Therefore we
have m(X,s) = 0 unless s = s,,, and so

+1 50|£ = 5w|£
m. (X) =
«(X) {0 otherwise.

The pairing formula for relative invariants now says that if Wy : §% —
Y and W5 : Y — 83 are the cobordisms obtained by removing a ball
from each of £ and Z respectively, then

ml (X) = (HM,(Wy)(1), HM, (W) (1))

50

where ﬁ]\\/[/.(W) and m’.(W) denote the contributions to @.(W)
and HM (W) from the spin® structures sg|s and so|z = s,|z respec-
tively. We will let 15|, denote the element W:(Wl)(l) of HM, (Y,soly) =
}TJT/I.(Y, s,|y) for convenience, and remark that W’,(Wz)(i) does not
depend on sy because it is defined in terms of 59|z = 5.,|z.

— -
When sq = s, we have observed that (v, HM,(W2)(1)) = *1.
In particular, 15, must be a primitive element of the nonzero group

HM.J(Y,s0ly) 2 HMo(Y, 5|y) C HMJ(Y|R) = Z

where the first isomorphism comes from the map j, : HM (Y s,ly) —
aM (Y, 5w/’z>= which is an isomorphism since s, |y is nontmiorg. It fol-
lows that HM (Y, s,]y) = Z and s, |z = 41, and also that H M/, (W) (1) =
+1 and the above pairing on HM (Y,s,|y) = Z is nondegenerate. But
then we must have 15|, = 0 whenever so|z # s,|c, since mg = 0.

Finally, since }T]\Z.(Y|R) = @.(Y, S,]y), we can identify the rela-

—

tive invariants 1) as elements of HM4(Y|R) = Z and write
Ue=> s
5

over all spin® structures s on £ such that s|y = s,|y. We have shown
that 15 is £1 if s = s,|z and zero otherwise, so we conclude that
U, = +1 as desired. q.e.d.
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