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Abstract
The wakes of bluff bodies, such as automotive vehicles, exhibit complex behaviour

due to three-dimensionality and high Reynolds numbers, and are furthermore re-

sponsible for significant aerodynamic drag. There are significant environmental and

economic incentives for reducing drag, however practicalities limit the extent to

which this can be achieved through changes to the vehicle shape. This motivates

the use of active feedback control methods that modify the flow directly, without

significant geometric changes.

In this thesis we develop feedback control strategies for two generic three-dimensional

bluff bodies, a bullet-shaped body and the widely used Ahmed body. After first ap-

plying an extremum-seeking controller to a pre-existing open-loop strategy, we then

examine the control of specific coherent structures within the wakes. Two such

structures understood to be related to the drag are the static symmetry breaking

(SB) mode and the quasi-oscillatory vortex shedding. The former of these is ob-

served as a large-scale asymmetry within the recirculating region. We find, through

simultaneous surface pressure and wake velocity measurements, that both the SB

mode and vortex shedding may be observed in real-time using practical pressure

sensors. Through the use of forcing flaps, we further demonstrate that we are

able to strongly interact with both these coherent structures. Statically deflected

flaps also prove effective at drag reduction under cross-wind conditions. In order

to guide feedback controller design, we develop stochastic models for each of the

coherent structures, describing their dynamics and response to forcing. Controllers

are then implemented, achieving an efficient drag reduction of 2% when suppressing

the asymmetry of the SB mode. Vortex shedding control proved ineffective at drag

reduction, despite the suppression of measured fluctuations around the frequency at

which oscillations are observed.
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Nomenclature

Acronyms

CoP Center of pressure m

ES Extremum seeking

FPE Fokker-Planck equation

LSE Linear stochastic estimation

PDF Probability density function

PIV Particle image velocimetry

POD Proper orthogonal decomposition

PSD Power spectral density

RHP Right-half-plane

rms Root mean square

SB Symmetry breaking

SDE Stochastic differential equation

SISO Single input single output

SNR Signal to noise ratio

ZNMF Zero net mass flux

Greek symbols

α Growth rate s−1

β Body yaw angle degrees

δ Instability timescale s

θ Flap angle degrees
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ζ Damping ratio

λ Saturation parameter m−2 s−1

ξ Random variable

ρ Air density; CoP radius kgm−3; m

σ Noise intensity m s−1

τ Time delay s

φ CoP angle rad

φ Normalised pressure mode shape

ϕ Instantaneous phase; Phase shift rad

ψ Vortex shedding phase rad

ω Angular frequency rad s−1

Roman symbols

a Dither signal amplitude; Vortex shedding amplitude

A Actuator transfer function; Base area degreesV−1; m2

A,B,C,D State-space matrices

b Flap gain

CD Drag coefficient

Cp Local pressure coefficient

d Dither signal; Transfer function denominator

D Bullet shaped body diameter m

e Feedback error

E Expectation operator

f Frequency Hz

F Mapping function

g Plant transfer function DC gain

G Plant transfer function

H Ahmed body height m
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K Controller transfer function

m Pressure mode coefficient

n Transfer function numerator

p Local static pressure Pa

P Probability

r ES reference parameter; Dimensionless RSB mode amplitude

R Real part

Re Reynolds number

s Laplace transform variable

S Power spectral density; Sensitivity function

St Strouhal number

T Mean flipping period s

u, x, y State-space variables: inputs, states, outputs

U∞ Free stream velocity m s−1

v Flap motor driving voltage V

V Energy potential m2 s−1

w Frequency weighting function

W Ahmed body width m

x, y, z Cartesian coordinates m

x Global mode amplitude

Y, Z Dimensionless CoP coordinates
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Chapter 1

Introduction and literature review

Fluid flows over bluff bodies are ubiquitous throughout areas of engineering inter-

est, a key example being the flow over automotive vehicles such as cars and lorries.

These flows are highly turbulent and three-dimensional, consisting of flow features

over a range of length and time-scales, yet the efficient drag reduction of such bluff

body flows has significant environmental and economic incentives. While the aero-

dynamic drag may be reduced significantly by adjusting the shape of road vehicles,

practical and aesthetic constraints make this undesirable. In this thesis we therefore

investigate the application of active feedback control techniques, to achieve this drag

reduction efficiently and with minimal geometric change.

The work in this thesis has formed part of a continued effort within the Flow Con-

trol Group to design efficient drag reduction strategies for three-dimensional bluff

bodies. The work initially involved the use of zero-net-mass-flux (ZNMF) jets to

increase the base pressure of an axisymmetric bluff body (Qubain, 2009; Oxlade,

2013; Oxlade et al., 2015) and a rectilinear truck model (Cabitza, 2014). These

drag reduction strategies were “open-loop” in nature, consisting of parametric stud-

ies aimed at determining the optimal forcing parameters for drag reduction. These

studies found novel and effective forcing strategies for drag reduction but suffered

from low efficiency. Further efforts have been concentrated on the modelling and

physical characteristics of bluff body wakes (Rigas et al., 2014; Rigas, 2014), with

the aim of developing low order models that give physical understanding and would

enable the development of feedback control. It is from here that the work in this the-

sis continues, with the aim of further developing low-order models and implementing

efficient drag reduction strategies.
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The key objective of this work is a practical one: to develop efficient drag reduction

strategies for bluff bodies with three-dimensional turbulent wakes. While this ob-

jective does not directly entail specific research questions, there are also many key

fundamental issues that are advantageous to address; related both to the nature of

bluff body wakes and to the limitations of feedback control. These will be discussed

alongside each issue of practical importance.

1.1 The aerodynamic drag of bluff body wakes

Before looking to control bluff body flows for drag reduction it is important to un-

derstand the nature of these flows and the underlying causes of drag. If the principle

mechanisms behind the aerodynamic drag are understood then these mechanisms

can be targeted by an active control system. We will therefore firstly give an overview

of bluff body wakes in general before moving onto the specific geometries examined

in this work.

Although bluff bodies can come in a range of different shapes, bluff body flows

usually share a number of common features including a large region of separated

flow, high pressure drag and significant wake unsteadiness (Roshko, 1993). Although

these qualitative wake features are clear, quantifying how they relate to drag remains

a challenge. One way to try and understand the cause of drag is to look at methods

of calculating it. This is a problem that started with D’Alembert’s paradox in

1752. The first attempt to resolve the issue was made by Kirchhoff (1869) who

modelled an infinite separated wake at constant pressure, which, although providing

a finite drag estimate, provides an underestimate. More recent models (Roshko,

1993; Balachandar et al., 1997) have improved upon that of Kirchhoff and are based

on a control volume analysis of the time-averaged separation bubble (see figure 1.1).

The principle here is to balance the time-averaged forces over the mean separation

bubble in order to calculate the mean pressure force over the base. If pb is the base

pressure, Tij the component of the stress tensor acting in the i direction on a surface

with normal j, and ∂Ω the boundary of the time averaged circulation bubble

∫
p̄b dy =

∫

∂Ω

T 11 dn1 +

∫

∂Ω

T 12 dn2

=

∫

∂Ω

(
−p+ 2µ

∂ū1
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− ρu′1u′1

)
dn1 +

∫
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(
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+
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)
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Although a very simple relation, this highlights the point that for a bluff body,

the drag is inextricably linked to the dissipative phenomena occurring within the

flow. Such dissipation may be related, for example, to the turbulent kinetic energy

generated in the wake, or to the vorticity generated by the body. Such flow char-

acteristics often have physical interpretation and are related to particular unsteady

flow features or to the cross-stream forces.

A third related viewpoint that links the drag to the wake features, is that of entrain-

ment and its underlying mechanisms. The control volume analysis detailed above

clearly relates the pressure drag to the mean properties of the separation bubble.

For example one implication is that if the separation bubble is very short, the drag

will be high as the streamline curvature associated with the rapid closure implies

very low pressure over the boundary of the bubble. The closure of the separation

bubble is generally understood to be controlled by the entrainment of flow from

the free-stream into the low-velocity wake region. For turbulent flows, entrainment

is governed by the turbulent/non-turbulent interface (da Silva et al., 2014), there-

fore mechanisms for the regulation of this interface have direct implications for the

aerodynamic drag.

Both the control volume and dissipation based analyses ultimately yield a simi-

lar question: what are the contributions of particular coherent structures to the

Reynolds stresses / dissipation / entrainment? This remains a matter of some de-

bate, largely because it is very difficult to decouple the effects of any particular flow

feature. Furthermore, all of the above analyses must remain consistent given any

change to the wake. For example, if a hypothetical control device were used that

gave drag reduction, most likely the wake would be less energetic, the entrainment

would be lower and any control volume analysis would demonstrate that the balance

of forces was consistent with an increase in base pressure. Nevertheless we may still

draw some broad conclusions:

• Significant unsteadiness has an associated drag penalty. This may be inferred

from the additional dissipation involved in the dampening out of fluctuations,

the possible additional Reynolds stresses over the separation bubble or the

increased entrainment. Attempts have been made to give this argument a

firm theoretical basis (Dalla Longa et al., 2017), although heuristic arguments

may be sufficient.

• Cross-stream forces have an associated drag penalty. Reminiscent of the notion

of induced drag in aeronautics, numerous studies have shown that there is a
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strong relation between the cross-stream and drag forces on three-dimensional

bluff bodies. Just as for the lift on a finite span wing, any cross-stream force

leads to additional trailing vorticity in the wake. Since vorticity is diffused

through viscous effects, there must be a drag penalty through the associated

dissipation.

1.2 Key characteristics of three-dimensional bluff

body wakes

As first proposed by Ruelle & Takens (1971), bluff bodies undergo the bifurcation

route to turbulence such that the flow undergoes a number successive bifurcations

that lead to particular features within the transitional flow. This is in contrast

to e.g. a pipe flow for which the flow remains theoretically stable to infinitesimal

disturbances up to infinite Reynolds number (Eckhardt et al., 2007). For the two-

dimensional cylinder wake the first bifurcation is of Hopf type (Jackson, 1987; Sreeni-

vasan et al., 1987), and leads to the oscillatory vortex shedding. For such wakes the

vortex shedding remains in the flow as a coherent structure up to extremely large

Reynolds numbers and is known to have a strong influence on the aerodynamic

drag (Roshko, 1993). Similarly, three-dimensional bluff body wakes also undergo a

sequence of bifurcations that ultimately affect the turbulent wake.

In this section we will provide a review of the wake features specific to three-

dimensional wakes and the implications for efficient drag reduction. This will be

with particular attention to the so-called Ahmed body used in this study. First

used by Ahmed et al. (1984), this geometry provides a generic representation of a

road vehicle, including the essential features of a real vehicle flow field such as three-

dimensional separation and ground effect. While we will also include details of the

axisymmetric body on which the experiments of chapters 3 and 4 are performed,

the reader is also referred to the recent review in the thesis of Oxlade (2013) for a

more detailed account.

1.2.1 Low Reynolds numbers and bifurcations

The low Reynolds number flows over axisymmetric bodies has been relatively exten-

sively studied and is illustrative of a range of three-dimensional wake flows. With
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increasing Re the flow can be seen to undergo essentially three persistent bifurca-

tions whilst remaining laminar. These bifurcations are common to the sphere, disk

and bullet shaped body reported by each of Tomboulides & Orszag (2000), Fabre

et al. (2008) and Bohorquez et al. (2011); Bury & Jardin (2012) respectively.

1. Symmetry breaking (SB) steady bifurcation - After an initially axisymmetric

flow at low Reynolds numbers the flow is seen to exchange axisymmetry for

planar symmetry whilst remaining steady (see figure 1.2(a)). The azimuthal

orientation of the symmetry plane is arbitrary and depends upon some small

disturbance. This steady bifurcation is in contrast to 2D bodies that first

undergo the unsteady bifurcation to vortex shedding.

2. Unsteady bifurcation - Beyond a second critical Reynolds number the flow

becomes unsteady, shedding vortex loops with a specific frequency. The planar

symmetry is maintained with the same orientation.

3. Laminar chaos - Beyond a third critical Reynolds number the azimuthal angle

of the instantaneous symmetry plane begins to vary with time. This manifests

as random reorientations that recover the axisymmetry of the flow in the long

time average.

The flow behind the Ahmed body appears to undergo an analogous series of bi-

furcations. Initially at low Reynolds numbers of order 100, the flow behind the

Ahmed body is steady and is characterised by reflectional symmetry with respect

to the vertical symmetry plane of the body (Grandemange et al., 2012a). Due to

the presence of the ground, a top-bottom asymmetry exists with respect to the

horizontal symmetry plane. Increasing the Reynolds number, the flow undergoes

a steady supercritical bifurcation and the resulting steady flow loses the remaining

spatial symmetry. The flow breaks the left-right reflectional symmetry and, depend-

ing on the initial conditions, relaxes in one of two possible stable asymmetric states,

as shown in figure 1.2(b). For even higher Reynolds numbers, the flow becomes

unsteady and periodic shedding starts to occur. These two regimes have been ob-

served experimentally for Re > 340 and Re > 410, respectively by Grandemange

et al. (2012a) and numerically by Evstafyeva et al. (2017). For higher Reynolds

number still, the sense of the initial asymmetry begins to switch randomly leading

to a bistable behaviour that is the equivalent of the reorientations in axisymmetric

wakes.





1.2. Key characteristics of three-dimensional bluff body wakes 29

flow permits decomposition into azimuthal modes, referred to by their wavenumber

m. We will provide here a brief overview of the key features as they are relevant to

the results of chapter 4.

1. Vortex shedding - Consistent between multiple studies is the existence of vortex

shedding with a specific Strouhal number (St). This is believed to be the satu-

rated result of an absolute instability in the wake with azimuthal wavenumber

m = ±1 (Monkewitz, 1988), and can be linked back to the unsteady bifurca-

tion of the laminar wake. This shedding was initially believed to have a helical

structure by Monkewitz (1988) as well as by Berger et al. (1990), inspired by

their observation of a helical mode under forced nutation of a disk2. However

the following investigation of Lee & Bearman (1992) found through the use

of conditional averaging in the wake of a disk that shedding instead had re-

flectional symmetry; the phase angle of velocity fluctuations changes rapidly

through 180◦ for angular separations of 90◦. This is largely supported by the

observations of the sphere wake by Vilaplana et al. (2013) who found single

sided vortex shedding rather than helical structures. These observations are

consistent with the result of the second, unsteady bifurcation of the laminar

wake that results in shedding with the preservation of a symmetry plane.

2. Bubble pumping - In addition to the m = ±1 vortex shedding, a component

of unsteadiness is also observed with azimuthal wavenumber m = 0, and at a

lower frequency than the vortex shedding. Berger et al. (1990) observed this

feature in the wake of a disk but found that unlike the m = ±1 mode it was

not possible to lock-in using motion of the disk. This suggests that it is not

a global mode in the same sense: i.e. that it is not a self excited oscillation

resulting from a global instability. This feature has also been observed for the

bullet shaped body of this study by Oxlade (2013); Rigas et al. (2014) and has

been suggested by Rigas (2014) to be caused by fluctuations in the magnitude

of the large-scale asymmetric structure.

3. Asymmetry and reorientations - In many of the observations of vortex shedding

it has been noted that shedding is one sided but that axisymmetry is recovered

in the long time average. However the true nature of this asymmetry was prob-

ably first detailed by Grandemange et al. (2012b). They investigated the flow

behind a bullet shaped body supported by two aerofoils imposing an m = 2

2This involves inclining the axis of symmetry away from the free stream and rotating the
direction of this inclination.
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perturbation. They found that the wake always had instantaneously one of

two asymmetric configurations and that switches between these two occurred

randomly in time. While in this configuration (m = ±2 rotational symmetry)

the wake is seen to be bistable, the result is consistent with the observations of

asymmetry and random reorientations observed in truly axisymmetric flows.

For example Berger et al. (1990) observed their helical mode to be “an anti-

symmetric structure, ... random in time”, and Vilaplana et al. (2013) observed

the one sided shedding from a sphere to have a random orientation with time.

Furthermore, consistent with the observation of Grandemange et al. (2012b)

that disturbances to axisymmetry strongly bias the orientation of the asym-

metry, Vilaplana et al. (2013) found that the m = 1 disturbance of a small

sphere in the wake could also force shedding to occur only on the opposite side,

suggesting high sensitivity. This is also consistent with the recent observations

of Mariotti & Buresti (2013) who investigated the bullet shaped body with a

single support. They found a high degree of asymmetry in the flow, from ei-

ther the support or misalignment, and noted that wake unsteadiness was also

asymmetric in the same sense, thereby suggesting one sided vortex shedding.

The same asymmetry and sensitivity to yaw angles has also been recently ob-

served by Gentile et al. (2016, 2017). All these observations of asymmetry

and reorientations are illustrative of the behaviour of the SB mode, and are

consistent with the first and third bifurcations of the laminar wake.

1.2.3 Bistability and the Ahmed body wake

Although it has only more recently been properly understood, the large-scale asym-

metry has been observed in axisymmetric wakes for some time. By contrast for

rectilinear wakes such as that behind the Ahmed body, such behaviour has only

fairly recently been noted. In turbulent rectilinear wakes the large-scale asymmetry

results in bistability, consisting of an instantaneous asymmetry of the wake, even

under nominally symmetric flow conditions, and a random switching between two

such asymmetric states. This bistability was first recognised by Herry et al. (2011)

who observed mean flow asymmetry and high sensitivity to side slip angle for the

flow over a three-dimensional double backward facing step. Since then, a large num-

ber of recent studies have examined this same feature on the Ahmed body used in

this study.

The first key publication detailing the bistable wake behaviour in the turbulent
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Figure 1.3: Plan view of the Ahmed body showing a conditional average of one
of the symmetry breaking states of the wake, obtained from PIV. The streamlines
demonstrate the asymmetry, showing the stationary vortex adjacent to the base.

regime were from Grandemange et al. (2013c). For a body aligned with the flow,

the asymmetric structure is demonstrated to flip randomly between two asymmetric

states, each the mirror image of the other. In the long time average this “flipping”

leads to a statistically symmetric wake, while instantaneously the wake is typically

asymmetric with an associated lateral force on the body. The structure of this

asymmetric flow is displayed in figure 1.3, and consists of a static vortex adjacent to

the base towards one side, leading to a low pressure region. The flipping process has

two time scales associated with it, the flipping period (T ) defining the average time

between flips, and the instability time scale (δ) defining the duration of a flipping

event. The former is generally many orders of magnitude greater than the latter.

Grandemange et al. (2013c) demonstrated that the time between flipping events was

exponentially distributed, indicating that the events themselves are independent in

time. Further to this it was found that the mean flipping rate scales approximately

linearly with flow speed, such that in a dimensionless sense the rate is likely to be

constant.

Just as for the axisymmetric wake (Gentile et al., 2017), the bistability is known

to be highly sensitive to yaw angle. For example Volpe et al. (2015) demonstrated

that for yaw angles β & 1◦, one of the two bistable states is permanently selected.

The same behaviour was confirmed by Cadot et al. (2015) and Grandemange et al.

(2015) who found a tighter bound of β & 0.5◦.

While the extreme sensitivity to yaw angle may be seen to suggest that the bistable

behaviour is only applicable under very precise conditions, other work has indicated

that the feature remains fairly general. For example Meile et al. (2016) examined the

flow behind an Ahmed body with a slanted rear at large yaw angles 10◦ < β < 15◦,

finding the lift and pitching moments to exhibit bistable behaviour. In addition to

the yaw angle, the feature is also known to be sensitive to the body geometry and

the ground clearance. In a systematic study Grandemange et al. (2013b) examined
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the influence of these two factors together, finding that the bistability could exist in

either a top/down or lateral sense. This generality of the feature has recently been

extended by the results of Bonnavion et al. (2017) who find a much richer set of

asymmetric configurations in the wakes of real car geometries. Other studies have

also confirmed that the feature is present up to industrial scale Reynolds numbers

(Grandemange et al., 2015).

While there have been a number of studies in which the bistable behaviour has

been observed, fewer studies have sought to model it. Some work has gone in this

direction, for example Cadot et al. (2015) found that the bistability resulted from an

(imperfect) supercritical pitchfork bifurcation, finding the ground clearance to act

as a bifurcation parameter. This was further supported by the work of Evrard et al.

(2015) who discussed the bistability in terms of bifurcation theory and considered

its modelling by a Langevin equation, similar to the work of Rigas et al. (2015).

Similarly, the recent work of Varon et al. (2017) demonstrated that the dynamics

of the large-scale asymmetry exhibited chaotic behaviour. While interesting, such

work gives limited physical insight, and a thorough understanding of the underlying

instability mechanism is still lacking.

One way in which to further investigate the instability mechanisms is to examine

methods for control. A number of studies have looked at passive methods to con-

trol the SB mode. For example Grandemange et al. (2014a); Cadot et al. (2015)

both applied a vertical control cylinder in the wake of the Ahmed body, finding

that if correctly located, the bistable behaviour could be suppressed achieving a

small concomitant drag decrease. More recently, Evrard et al. (2015) found that a

base cavity was also able to achieve bistability suppression with even larger drag

reductions. Active feedback control methods have also recently been employed by

Li et al. (2016) and Evstafyeva et al. (2017), although in the latter of these studies

the SB mode was not the target of control. While these varying control methods

have proven effective, the requirements for suppression of the SB mode remain un-

clear. Moreover, it remains to be seen whether the mode can be suppressed without

significant geometric modification or large energy input. This motivates the use of

other active feedback control techniques.

A note on similar flows

It is worth noting at this point that the static instability observed in three-dimensional

wakes is not unique or entirely unusual, in fact similar static symmetry breaking in-
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stabilities are observed in many other fluid flows. This ranges from the flow of a

shear-thinning fluid through a circular pipe (Wen et al., 2017), to the von Kármán

“washing machine” flow (Ravelet et al., 2004), to turbulent convection within a

closed container (Sreenivasan et al., 2002). The latter two of these examples may

be particularly pertinent, as they both consist of internal recirculating flows. The

recirculation within the separation bubble of a bluff body wake certainly has some

qualitative similarity in this sense, so it may be that some insight into the instability

mechanism of three-dimensional wakes may be obtained from these other flows.

1.2.4 Implications for drag reduction

For three-dimensional wakes the literature highlights two key features: the static

SB mode and the unsteady vortex shedding. It is important for our purposes to

understand the influence of these features on the aerodynamic drag. Heuristically,

and based on the discussion above in § 1.1 we may expect that the SB mode would

increase the drag due to the associated cross-stream force, while the vortex shedding

would increase the drag due to the increased unsteadiness and dissipation.

A first direct comparison of the effect of particular bifurcations may be made by

examining the variation of drag over a range of low Re, compared with a case in

which the bifurcation is suppressed. Data from two previous studies are displayed in

figure 1.4. Figure 1.4(a) displays results from the sphere from Pier (2008), demon-

strating that both the steady and unsteady bifurcation increase the drag relative

to a case in which a steady axisymmetric flow is imposed. Figure 1.4(b) displays

a similar result for the two-dimensional cylinder wake from Roshko (1993). In this

case the unsteady bifurcation again increases the drag relative to the steady case, al-

though the difference is much more marked. The implication of these results is that

suppression of either the symmetry breaking or vortex shedding may be expected

to reduce the drag in three-dimensional wakes, although the effect may not be so

pronounced as for the suppression of vortex shedding in two-dimensional cases.

In addition to the data over low Reynolds numbers some work has sought to un-

derstand the influence of these features in the turbulent regime. One way in which

the link between particular features and the drag may be established is through

the use of passive control devices. For example Garćıa de la Cruz et al. (2014) ap-

plied splitter plates to a bullet shaped body, finding drag reductions of up to 30%

once suppression of both the SB mode and shedding was achieved. Grandemange

et al. (2014a) looked to establish the influence of the SB mode alone, estimating a





1.3. Feedback control of fluid flows 35

strategies we apply are based on reduced-order models of the flow that focus only

on some of the particular coherent structures discussed above in § 1.2. We therefore

provide a review of suitable modelling strategies in § 1.3.2, followed by a review of

methods to observe the flow based upon surface pressure measurements in § 1.3.3.

1.3.1 Extremum seeking control

Many feedback control methods aim to force a system to track a reference trajectory

or to maintain a demanded input in the presence of disturbances. Further to this,

many such methods are based on a linear systems approach. However in the context

of fluid flows not only are the underlying dynamics nonlinear, but often the desired

reference is not known a priori. Furthermore both the model and “best” reference

may change with time due to changing conditions. In such situations it is often

desirable to simply seek to maximise or minimise some parameter such as drag,

mixing or heat transfer, adapting to a new optimum as conditions change. In such

cases an extremum or slope seeking controller may be appropriate.

ES control is a form of adaptive closed-loop control that acts as a real-time op-

timisation method. This is appropriate for systems with a nonlinear equilibrium

map, valid in a time-averaged sense, on which an unknown target location may be

identified by its gradient. In this case no model is required for the flow, only the

assumption of a peak or location of known gradient in the equilibrium mapping be-

tween a reference parameter and the output. For example such a mapping could be

that between the angle of attack and the lift of an aerofoil, which exhibits a peak at

a certain attack angle. ES control was first suggested in 1922 (see Tan et al., 2010,

for a review), but has in the last decade or so seen a resurgence of interest following

proofs of stability by Krstić & Wang (2000); Krstić (2000). Included in this recent

interest has been the application to a number of fluid flow systems. For example

ES control has been used to directly control the parameters involved in open-loop

control systems: Becker et al. (2007) and Pastoor et al. (2008) controlled the am-

plitude of pulsed jets used on an aerofoil and bluff body respectively. Alternatively

ES control can be used to adapt some parameter within a closed-loop system. For

example Kim et al. (2009) used an ES controller to adapt the phase shift of the

feedback gain used in the control of a cavity flow.

While a standard algorithm exists for ES, many previous authors have suggested

modifications, including in the context of flow control. For example Beaudoin et al.

(2006) used a variant on the traditional gradient estimation, computing a real-time
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fast Fourier transform as an alternative to the often used demodulation (see § 3.1.1).
Alternative gradient estimation methods have also been suggested by Henning et al.

(2008) who used an extended Kalman filter, finding it to be much faster than the

estimation of the standard algorithm. This algorithm was also tested by Wu et al.

(2015) who confirmed this result. Authors have alternatively looked at methods to

adapt the control gains. For example Chabert et al. (2014, 2016) used a fuzzy-logic

method to adapt the gains according to the current conditions. In general, many

different modifications may be advantageous, however their suitability depends upon

the particular system to be controlled.

While the application of ES to fluid flows has been demonstrated to be effective,

there are considerations pertinent to flow control which have not previously been ad-

dressed. Principle among these is the challenge involved in optimising the frequency

of a harmonic signal. In open-loop flow control this is a particularly common sce-

nario. For example in the use of synthetic jets (Kotapati et al., 2010; Kourta &

Leclerc, 2013), pulsed blowing (Seifert et al., 2008; Chabert et al., 2016), oscillat-

ing tabs (Bigger et al., 2009) or in a number of other situations (Greenblatt &

Wygnanski, 2000), the control consists of a periodic forcing. In many such cases,

performance of the open-loop system is dependent on the frequency of the periodic

signal, the optimal frequency depending upon the particular control mechanism and

the particular operating conditions. There are therefore advantages to be gained

through the application of ES controllers, both to find an optimal frequency and to

adapt as conditions change. We will show that frequency optimisation of a harmonic

signal cannot be done with a standard algorithm and propose a modified algorithm

suitable for this purpose.

1.3.2 Low-dimensional modelling for feedback control

While some flow control methods such as extremum seeking and machine learning

control (Gautier et al., 2015) are model free, many more rely on having a math-

ematical model of the fluid system. As summarised in the review of Brunton &

Noack (2015), modelling approaches for flow control may be categorised as either

black-box, gray-box or white-box, depending upon the level of physical detail that is

captured. If the end goal is feedback control of a particular flow feature, the purpose

of a model is to facilitate the control design process, or to give sufficient insight into

the type of control to be implemented. Within this context, the required properties

of a model may therefore be quite different to those that would be required for an
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accurate open-loop simulation (Jones et al., 2015).

A first set of models are those based on high-dimensional discretisations and/or lin-

earisations of the underlying Navier-Stokes equations (Kim & Bewley, 2007). Such

methods generally require knowledge of the full flow-field which consists of a very

high-dimensional system. Various approaches may then be applied to reduce the di-

mension of this system, including Galerkin projection onto global modes (Barbagallo

et al., 2009) or POD modes (Tadmor et al., 2011; Barbagallo et al., 2012). Following

such projections standard linear control methods may be applied, although accu-

rate nonlinear Galerkin models such as that of Noack et al. (2003) may also allow

the use of effective nonlinear control algorithms to be designed (Aleksić-Roeßner

et al., 2014). However, many of these methods would be completely impractical to

implement experimentally, given that full knowledge of the flow-field can never be

obtained.

An alternative to approaches based directly on the governing equations is system

identification, which may again be performed using knowledge of the full flow-field,

or based purely on input-output measures. A good example of the latter of these

approaches is the ERA of Juang & Pappa (1985), described in a fluids context by

Ma et al. (2010), and applied by numerous authors including e.g. Illingworth (2016);

Flinois & Morgans (2016). The ERA forms a linear state-space model of the flow,

based upon discrete-time snapshots of the impulse response. This is in principle ap-

plicable experimentally, but effectively generating impulse response data may prove

challenging. Other forcing strategies for system identification may consist of a set

of pure frequencies, from which a frequency response transfer function may be ob-

tained. This has been successfully applied to the backward-facing step by Dahan

et al. (2012) as well as to two- and three-dimensional wake flows by Dalla Longa

et al. (2017); Evstafyeva et al. (2017). Another approach applied to the convectively

unstable backward-facing step is the ARMAX algorithm (Hervé et al., 2012; Gautier

& Aider, 2014). This provides a statistical mapping between upstream inputs and

disturbances and the downstream output and is particularly suitable for so-called

“noise amplifier” flows (Schmid & Sipp, 2016), in which convective instabilities dom-

inate the measured response. For the flow features considered in this work such an

approach would be unlikely to work as the flow is dominated by global instabili-

ties. In these cases it is instead useful to have a good model for these “intrinsic”

dynamics.

While many of the modelling approaches discussed above seek to model the complete

flow or input-output behaviour, in this work we will target specific flow features that
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we believe to be of importance with respect to the aerodynamic drag. We there-

fore may be able to look for models that principally describe the dynamics of these

features alone. For the vortex shedding behind two-dimensional bluff bodies there

have been considerable efforts towards developing low-dimensional models, some of

which have been used for feedback control. A first “toy” model that describes qual-

itatively the oscillatory nature and underlying mechanisms of the vortex shedding

is the Ginzburg-Landau equation (Roussopoulos & Monkewitz, 1996; Lauga & Be-

wley, 2003, 2004; Chen & Rowley, 2011). The model consists of partial differential

equations defined over space and time, the purpose being to give insight into the

challenges and considerations required for successful feedback-control design. While

the Ginzburg-Landau model consists of PDEs, an alternative (arguably simpler)

model for the vortex shedding may consist of (nonlinear) ODEs, a particular exam-

ple being the Stuart-Landau equation. This has been applied by Monkewitz (1996)

although others have found such a model to compare poorly with experimental data

(Le Gal et al., 2001). Alternatively, others have applied purely phenomenologi-

cal models such as the van der Pol oscillator (Facchinetti et al., 2004), since this

describes a system exhibiting saturated self-excited oscillations.

It is finally worth noting that for most feedback control strategies, the model is

simply a means to an end. With the exception of some specific methods such as

nonlinear model predictive control, once the controller is designed the model of the

flow no longer features in the implementation; therefore in principle the controller

could simply be chosen through intuition and good luck. There are in fact several

examples of flow control for e.g. a cylinder flow (Ffowcs Williams & Zhao, 1989;

Son et al., 2011), combustion instabilities (Morgans & Dowling, 2007), or cavity

oscillations (Illingworth et al., 2012), in which successful control laws may be chosen

by inspection or trial and error. Nevertheless, for high Reynolds number flows such

as those investigated in this study this would likely prove very challenging. In general

we would expect to provide better control through the use of models that capture

the key flow physics than we would through the use of generic or ad hoc methods

(Ho & Pepyne, 2002).

1.3.3 Flow measurement

One of the particular challenges associated with practical flow control implementa-

tion is the accurate measurement of the flow from surface mounted sensors alone. In

the context of feedback control this may be considered as an observability problem,
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as will be discussed further in chapter 4. Here we will give an overview of some of

the available methods used by other authors to make suitable flow measurements.

The simplest approach to deducing velocities from pressure involves finding a static

mapping between measurements, and may be based on linear stochastic estimation

(LSE) (Adrian, 1994). LSE is widely used in turbulence to find conditional coherent

structures by looking at the two-point correlations between velocity measurements

in different parts of the flow-field, although it may equally be used to investigate the

relationship between pressure and velocity measurements. LSE may either be used

to link measurements directly, or may be used to deduce the coefficient of POD

modes, in which case it is generally referred to as modified LSE (mLSE) (Taylor

& Glauser, 2004). This is closely related to the extended POD of Borée (2003).

mLSE has been applied to flows such as the backward facing step (Hudy et al.,

2007; Ukeiley et al., 2008) and the D-shaped bluff body (Durgesh & Naughton,

2010). LSE is also commonly used with, possibly multiple, time delays in order to

take delayed relationships into account, such an approach has been performed for

the flow over a cavity (Lasagna et al., 2013), and wall-mounted pyramid (Hosseini

et al., 2015). These approaches often prove effective provided sufficient training data

is available, consisting of simultaneous and often time-resolved measurements.

One of the arguments for including time delays in LSE is that it allows some degree

of dynamics to be taken into account. This process can be taken further by using

fully dynamic estimation. For example Pearson (2012) looked at the estimation

of the flow over a forward-facing step. From PIV data and the application of the

OMD algorithm of Wynn et al. (2013), he developed a linear state space model for

the flow then applied a Kalman filter to estimate the velocity field from pressure

measurements. A combined static and dynamic approach was also employed by Tu

et al. (2013) who used LSE and an oscillatory model together in a Kalman filter to

estimate the POD modes in a bluff body wake based upon a single velocity sensor.

The majority of the previous examples have either looked at convectively unstable

flows such as the backward-facing step or largely two-dimensional flows exhibiting

an absolute instability that dominates the flow. The challenge for three-dimensional

wakes such as those in this work, is that instabilities such as the vortex shedding are

much less coherent and of a different spatial structure. The real-time observation

of vortex shedding for the purposes of control is therefore something that requires

further investigation. As with the previous works outlined above, this will require

simultaneous measurements of the surface pressure and velocity field.



40 Chapter 1. Introduction and literature review

1.4 Conclusions and thesis plan

In this project we wish to experimentally implement closed-loop flow control strate-

gies that will efficiently reduce the drag. In order to do this we have the following

requirements:

1. Physically motivated features that we wish to target. The choice of these fea-

tures may need to rely on assumed relationships with the mean drag. Given the

consensus of the literature, two such suitable features may be the static asym-

metry (SB mode) and unsteady vortex shedding observed in three-dimensional

wakes.

2. Methods of observing these features in real time, using only surface mounted

measurements. In order to assess suitable methods for achieving this we will

require simultaneous measurements of the velocity field and base pressure of

a bluff body.

3. Method of controlling these wake features using dynamic actuators. We will

require body-mounted actuators capable of efficiently regulating the flow fea-

tures that we choose to control.

4. Reduced order models of the wake features that facilitate control design. Such

models will be required to provide sufficient insight to inform the type of

controller as well as the details of its implementation.

In chapter 3, we shall discuss the implementation of a model-free extremum seeking

controller, applied to the open-loop control system of Oxlade (2013). This work

having been previously published in Brackston et al. (2016b). Following on from this

we shall explore the implementation of model-based controllers. Firstly exploring

the observability problem in chapter 4, followed by an investigation into open-loop

forcing with dynamic flaps in chapter 5. Based on some of this understanding we will

then develop stochastic models in chapter 6 followed finally by the implementation

of closed-loop controllers in chapter 7, elements of this work having been previously

published in Brackston et al. (2016a).



Chapter 2

Experimental and analytical

methods

For the work in this thesis, experiments were performed on two different bluff bodies:

firstly the axisymmetric bluff body previously used by Oxlade (2013) and Rigas

(2014) and secondly the commonly used Ahmed body of Ahmed et al. (1984), newly

built during this work. The axisymmetric body was used for the ES control work

described in chapter 3 and the observability work of chapter 4, while the Ahmed

body was used for the remainder of the work.

Both experiments were performed in the closed-circuit Donald Campbell wind tun-

nel, the test section of which measures 1.37 m × 1.22 m × 3.00 m. The turbulence

intensity of this tunnel is generally found to be less than 0.1%, while the free-stream

velocity is measured via a Pitot-static tube and PID controlled to an accuracy of

0.25%. The specific experimental procedures and analytical methods relating to

each of the bluff bodies are detailed below.

2.1 The axisymmetric bluff body

The principal features of the axisymmetric body experiments are the same as those

described in Oxlade (2013); Oxlade et al. (2015), consisting of an axisymmetric,

bullet shaped bluff body fitted with a pulsed jet actuator. A schematic of the

experiment is shown in figure 2.1. The model is instrumented with 8 Endevco

8501C-1 pressure transducers, and 64 static taps, distributed on a polar grid. The

pulsed jet actuation is applied by means of a speaker located within a cavity inside
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PIV sampling frequency 720 Hz
PIV sampling duration 3.79 s
Vector field resolution 1.84 mm
Time between laser pulses 140 µs
Combined field of view 338×294 mm
Camera lens focal length 50 mm
Camera lens aperture f/1.4
Mean pixel displacement 10 px

Table 2.1: Parameters for the PIV experiments.

2.1.2 Synchonised PIV experiments

Synchronised PIV and pressure measurements for the axisymmetric body form the

basis of chapter 4. In these experiments the ZNMF actuator is not used and data

is simply recorded for the unforced flow using the same acquisition set-up detailed

above. Synchronisation is achieved by recording the trigger signal sent to the PIV

camera along with the remainder of the measurements. Time series from the PIV

and pressure measurements could therefore be aligned in post-processing.

PIV experiments were performed using a time-resolved LaVision FlowMaster PIV

system composed of a Litron LDY300 laser and two 4 Mpx Phantom v641 cameras.

The two cameras captured adjacent and overlapping fields of view within the flow

in order to achieve a finer spatial resolution. Post-processing was performed using

LaVision’s DaVis software with which vector fields were first evaluated for each field

of view separately, before being stitched together. Further parameters detailing the

PIV acquisition are given in table 2.1.

The experimental procedure for the PIV experiment was as follows:

1. Set the tunnel to a low speed (U∞ ≈ 2 ms−1), turn on the seeding generator.

Periodically check the seeding density through the quality of a sample PIV

acquisition.

2. Once seeding density is adequate, set the tunnel to full speed (U∞ = 15 ms−1).

3. Start acquisition of the pressure measurements and PIV trigger signal, then

initiate acquisition of a PIV buffer.

4. Stop the pressure acquisition and check the alignment of the SB mode over

the duration of the PIV acquisition. If there was excessive rotation during the

PIV acquisition, return to step 3.
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the body, each 0.019 m in stream-wise length and running the length of the edge

on which they are mounted. These edges may either be on the left/right or the

top/bottom depending on the experiment, the two configurations referred to as

lateral or vertical respectively. The flaps are mounted on hinges driven by internal

motors powered through an amplifier. The flaps are given a natural equilibrium

and oscillatory dynamics through the action of internal springs. The angle of each

flap is measured using a 12-bit magnetic encoder, while the power supplied to the

flaps is monitored through measurement of the supply voltage and current. The

instantaneous electrical power supplied to each flap is simply the product of the

voltage and current, which may be integrated over time to find an average. Further

details regarding the flaps are given in § 2.2.1 below.

All channels are sampled simultaneously at 25 kHz with the exception of the pres-

sure scanners that are sampled at 250 Hz, and synchronised with every hundredth

analogue sample. For open-loop forcing of the wake, the mean angles, fluctuation

amplitudes and phases of the flaps are PID controlled to ensure uniform forcing at all

frequencies. Feedback control was achieved using a National Instruments Real-Time

PXI running a discrete time controller at 5 kHz. The controller obtains pressure

measurements from 6 of the Endevco transducers and outputs 2 voltages that are

sent to the motors.

2.2.1 Actuator characteristics

An important and novel feature of the Ahmed body used in this project is the

forcing flaps located at the rear of the model. These were chosen as an alternative

to the ZNMF and pulsed jets used in other studies (e.g. Pastoor et al., 2008;

Oxlade et al., 2015; Barros et al., 2016b), a key motivation for this choice being the

relatively low energy efficiency of jet-type actuators. For the control of large-scale

wake features, it is necessary to provide some cross-stream momentum flux to act as

a strong forcing. A jet actuator generates this momentum flux directly, by blowing

in the cross-stream direction. In contrast a flap may generate this momentum flux

through flow deflection, thereby lowering the associated energy cost. An additional

benefit of forcing with flaps is that we may expect the forcing to be effective over

a wide frequency range, including at DC (zero-frequency). This is important if we

wish to cater for static asymmetries, e.g. due to cross-wind. While ZNMF jets may

also achieve a quasi-DC forcing through a nonlinear interaction, such jets have a

relatively high energy cost, compared with a statically deflected flap which may
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consume no power.

In order to achieve efficient forcing in both a static and oscillatory sense, two different

motors are required. For static forcing we need a system that can slowly move the

flap to a desired angle but consume no power when not in use, irrespective of the

position. This can be achieved through the use of a stepper motor, since these

motors typically require no power to hold a static position, even under load. For

the oscillatory forcing the power consumption will always be non-zero, therefore

the efficiency of the motor itself is important. A suitable motor should ideally be

both brush-less and gear-less to minimise frictional losses, but need not necessarily

be capable of a large range of angles. We therefore chose to use the motor that

drives the scanning head of a standard computer hard-disk drive. These motors are

capable of generating a fairly high torque that scales approximately linearly with

the supply current, and furthermore are both efficient and reliable. Through the

use of a suitable power amplifier, the generated torque is proportional to the input

voltage, making for straightforward use in feedback-control.

A detailed view of the actuators is given in figure 2.3. As displayed, the dynamic

motor drives a linkage rod that moves the flap, the geometry of the mechanism being

such that the angular displacement of the flap is equal to that of the motor. The

angle of the flap may therefore be obtained by direct measurement of the motor

angle using the magnetic angular encoder. The mechanism is given an equilibrium

position and oscillatory dynamics through the action of two springs, shown by the

dashed red lines. The end location of one of these springs may be adjusted by

operating the static motor, and in turn determines the equilibrium angle of the flap.

An important characteristic for a dynamic actuator is the frequency response, as

this determines the bandwidth available for control purposes and gives the variation

of the forcing with frequency under open-loop conditions. This frequency response is

displayed in figure 2.4. The system can be seen to behave like a second-order linear

oscillator, the characteristics of which could be tuned by choice of the springs and the

addition of masses. The particular characteristics of the response also vary slightly

between the lateral and vertical flaps but in each case may be taken into account in

the control design by appropriate choice of parameters in the linear transfer function

A. This will be discussed further in chapter 7.
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2.2.2 Base pressure metrics

Given the distribution of pressure measurements displayed in figure 2.2, we may

define a number of different pressure metrics. These metrics draw more pertinent

information from the 64 base pressure tappings and 8 transducers.

Centre of pressure

The centre of pressure gives the position at which the pressure force on the base can

be considered to act and is evaluated via the first moment of the spatial pressure dis-

tribution. For measurements p(y, z, t) at locations X ′ = (y, z), the CoP coordinate

vector X may be evaluated as

X(t) =
1∫∫

A
p(y, z, t)dA

∫∫

A

p(y, z, t)X ′ dA. (2.1)

Normalised pressure modes

While the CoP can be straightforwardly approximated using the 64 base pressure

tappings, it is challenging to define an analogous measurement using only the 8

pressure transducers. Furthermore because the CoP involves calculation of the mean

pressure, it is influenced by both symmetric and asymmetric perturbations. An

alternative approach is to use normalised spatial pressure modes, onto which any

number of pressure measurements may be projected. While many options exist for

the choice of spatial structure, here we choose the following sinusoidal functions,

continuously defined over y and z:

ΦL(y, z) = sin
(
πy

W

)
(2.2a)

ΦV (y, z) = sin
(
πz

H

)
. (2.2b)

For any given set of n pressure measurements p = [p1, ...pn] at locations y =

[y1, ...yn], z = [z1, ...zn], the normalised modes are defined as:

φL(y) = sin
(
πy

W

)
/
∣∣∣sin

(
πy

W

)∣∣∣ (2.3a)

φV (z) = sin
(
πz

H

)
/
∣∣∣sin

(
πz

H

)∣∣∣ , (2.3b)
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Figure 2.5: The normalised pressure modes φL and φV , plotted on the base of the
Ahmed body.

where | · | denotes the 1-norm of the vector. These pressure modes are displayed

in figure 2.5. A pressure mode coefficient m(t) may then be evaluated by the dot-

product as e.g.

mV (t) = φV · p(t). (2.4)

Note that the pressure measurements may be normalised by the dynamic head to

allow comparison between different free-stream velocities, or left as raw pressure for

feedback control purposes.

A comparison of the pressure measurements

Given that the model is equipped with two different pressure measurement sources,

it is important to understand the advantages and limitations of each. The Endevco

pressure transducers are mounted flush with the base of the model and thereby

measure the pressure directly at the location of interest. In contrast the ESP pressure

scanner has a short length of tubing between the surface of the body and the bank

of transducers. Such tubing is known to have a frequency dependant attenuation

affect that is generally related to the frequency of the first acoustic mode of the

tube. More specifically, for a tube of length L the attenuation will be expected to

be relevant for frequencies f & fc given by,

fc =
c

4L
, (2.5)

where c is the speed of sound. While we expect the ESP measurements to be limited

at higher frequencies, the Endevco transducers have limitations at low frequencies.
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Figure 2.6: Ratio of the Fourier transform of the average measurement from the 64
ESP tappings on the base to the 8 pressure transducers.

In particular, at DC and very low frequencies the transducers suffer from drift, partly

temperature induced. By contrast the ESP scanners are temperature compensated

and are designed to drift to a much smaller extent.

In order to provide a direct comparison and understand the extent of the limitations

of the two pressure measurements, we test the systems under the influence of a white

noise source. A speaker is positioned adjacent to the base of the model with a cowling

around the edges to provide an almost closed cavity containing all of the pressure

measurement locations. The volume of the cavity is chosen to be small and the

speaker is placed close to the base in order to generate almost uniform pressure

fluctuations. The average ESP and Endevco measurements can then be compared

in the frequency domain to assess performance.

Figure 2.6 shows the ratio of the measurements from the ESP relative to the En-

devcos, plotted as a function of frequency. The data demonstrates that at very low

frequencies f . 5 Hz, the ESP generally gives a large response relative to the Ende-

vco transducers, up to a maximum factor of around 1.7. There is then a wide range

of good agreement up to f ≈ 60 Hz at which point the ESP measurements begin

to decay with frequency. The low-frequency discrepancy is likely a limitation of the

Endevco transducers which are not designed for low-frequency or DC measurements

while the higher frequency differences are indicative of the attenuation of the tubing.

We may conclude that for all cases in which frequencies less than 60 Hz are required,

the ESP will provide an accurate measurement system offering much higher spatial

resolution, without the need for a calibration.
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A final point is that while the ESP scanner provides accurate time-resolved data,

it is not data that can easily be accessed in real-time by a control system. For

feedback-control purposes the Endevco transducers will therefore be used.

2.3 Experimental procedures

Three different sets of experiments were performed on the Ahmed body fitted with

forcing flaps: open-loop harmonic forcing, open-loop static forcing and closed-loop

control. In each case care needed to be taken to accurately record the drag and base

pressure, the procedures for which are detailed below.

2.3.1 Open-loop forcing with flaps

For the open-loop forcing the flaps were either oscillated at a range of frequencies or

held at a range of static positions, at which the forces and pressure were measured.

Generally a sweep of forcing parameters may take around 12 hours, therefore par-

ticular care was taken to account for drift in the measurements that would usually

occur over this time. Possibly due to changes in temperature it was found necessary

to not only record a zero-reading of the instrumentation, but also to regularly record

a baseline (unforced) reading. In this way we could accurately measure changes with

respect to the baseline configuration. The procedure is detailed below:

1. Generate the sequence of forcing parameters.

2. Check that U∞ ≈ 0, then record all data for 10 s.

3. Start the tunnel and set the flaps to stationary positions of θ1 = θ2 = 0◦. Once

both U∞ and θ1,2 are set, record all data for 30 s.

4. Stop the tunnel, check that U∞ ≈ 0, then record all data for 10 s.

5. Start the tunnel and operate the flaps according to the i’th set of forcing

parameters. Once both U∞ and the flap motion are set, record all data for

300 s.

6. Stop the tunnel, check that U∞ ≈ 0, then record all data for 10 s.

7. Return to step 3.
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2.3.2 Closed-loop control with flaps

For closed-loop control, the measurement of absolute drag and pressure values was

unimportant, however the accurate measurement of changes to these values was.

The procedure to achieve this is as follows:

1. Start the tunnel and set the flaps to stationary positions of θ1 = θ2 = 0◦. Once

both U∞ and θ1,2 are set, start recording all data.

2. After 100 s, start operating the feedback control, running for a further 300 s.

2.4 Other analyses

2.4.1 Frequency response

The frequency response is a common method of analysis for linear systems for which

a sinusoidal input always gives a sinusoidal output. The frequency response quan-

tifies how the relative magnitude and phase of the output sinusoid varies with the

frequency of the input. For nonlinear systems a frequency response may still give

useful information about the response of the system to periodic forcing.

For a periodic input u = U sin(2πft) we expect a component of the output to be

periodic with the form y = Y sin(2πft − ϕ), where the amplitude and phase of

the output are frequency dependent. For experimentally generated data neither the

input or output will be purely harmonic and we therefore need to extract a single

frequency component from the signals. For a signal s(t) measured over a time period

T , and forcing frequency f we firstly evaluate the coefficients,

as =
2

T

∫ T

0

s cos(2πft) dt (2.6a)

bs =
2

T

∫ T

0

s sin(2πft) dt. (2.6b)

The amplitude and phase of this signal are then given by

S = |as + ibs| (2.7a)

ϕs = ∠(as + ibs). (2.7b)
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The complex frequency response between two signals u and y is then defined as,

G(f) =
Y

U
ei(ϕy−ϕu). (2.8)

Generally, the complex gain G will be evaluated for a range of forcing frequencies

and displayed by plotting the magnitude and phase.

2.4.2 The proper orthogonal decomposition

The proper orthogonal decomposition (POD) is widely used both within and beyond

fluid mechanics, and is variously known as principle component analysis, singular

value decomposition or Karhunen-Loève analysis. In this work we use it to em-

pirically identify coherent features in both the velocity and pressure fields. The

calculation method used is subtly different in each case and, while this is widely

documented elsewhere (e.g. Holmes et al., 1998), we will give here a brief descrip-

tion of the calculations employed.

In fluid mechanics the POD is usually applied to velocity field data from e.g. PIV, for

which the number of samples is much greater in space than in time. Performing the

decomposition then requires the method of snapshots given by Sirovich (1987), and

distinguishes the POD applied to fluid flows from similar methods such as principle

component analysis widely applied elsewhere. Given velocity field data V (x, y, t) ∈
R
Nx×Ny×Nt , we first rearrange the data into a “snapshots” matrix S ∈ R

Ns×Nt , where

Ns = NxNy is the total number of spatial samples. We then form the correlation

matrix R as

R = S⊤S. (2.9)

Given that Ns > Nt, this has the effect of reducing the dimension of the problem

since R ∈ R
Nt×Nt . We then perform an eigenvalue decomposition on R to form a

matrix W of ranked eigenvectors. The matrix of ranked POD modes may then be

evaluated by the multiplication,

Φ = SW, (2.10)

thereby projecting the eigenvectors back up to the full spatial dimension Ns. Finally,

a matrix of temporal coefficients may be evaluated through the multiplication,

A = Φ⊤S. (2.11)
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For some of the work in chapter 4, POD is applied to the data from the 64 static

pressure tappings on the rear of the axisymmetric body. In this case the method

is broadly the same but with two key differences. Firstly, there are fewer points in

space than in time, i.e. Ns < Nt, and secondly the measurement locations are not

uniformly distributed. The evaluation of R therefore follows a modified version of

(2.9) as,

Rp = SS⊤M, (2.12)

whereM ∈ R
Ns×Ns is a diagonal matrix of weightings that reflects the varying areas

that each pressure tapping may be allocated. Following the evaluation of Rp and its

eigen-decomposition, the POD modes are obtained directly as the eigenvectors.



Chapter 3

Extremum seeking control of the

axisymmetric wake

As a first application of feedback control, this chapter examines the application of

an extremum seeking (ES) controller to the open-loop control system of Oxlade

et al. (2015). The purpose of the work in this chapter is both to demonstrate an

application of effective closed-loop flow control to a high Reynolds number three-

dimensional wake, and to provide a bench-mark against which further flow control

schemes may be assessed.

In this chapter we first present a heuristic analysis and overview of the extremum

seeking method, with particular attention to modifications which we find to be ad-

vantageous to the algorithm, and to the considerations involved in frequency optimi-

sation. We then present the successful application of the controller to the open-loop

system of Oxlade et al. (2015): a highly turbulent bluff body wake forced by a

periodically-pulsed jet, variable in both amplitude and frequency. We demonstrate

that in the presence of broadband noise we are able to optimise both the forcing

amplitude and frequency of the open-loop system, either individually or simultane-

ously in a step-wise manner. We finally demonstrate the ability of the system to

adapt in real time to changing conditions, in this case varying free-stream velocity.

3.1 Analysis

Before presenting our experimental results we first give a brief overview of the stan-

dard ES algorithm followed by particular issues and suggested modifications.

55
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based upon the gradient N ′(r) = dN
dr

∣∣
r
.

The equations governing an ES controller applied to this system are given below,

while the influence of each of the parameters are summarised in table 3.1. Each of

the terms featured below may be referred to on the block diagram of figure 3.1 (b).

The reference r is composed as the sum of some initial value r0, the dynamically

varying control correction r̂ and the dither signal:

r = r0 + r̂ + a sin(ωdt)︸ ︷︷ ︸
d(t)

. (3.1)

As given in (3.2) below, the output y from the plant then consists of: a slowly varying

part, ȳ; a sinusoidal term proportional to the local gradient of the mappingN ′(r0+r̂);

and noise wG arising from the unmodelled dynamics within the plant. This comes

from taking a Taylor expansion about the current location on the mapping N , under

the assumption that r̂ varies slowly relative to the dither signal. For input to output

dynamics governed by a linear or weakly nonlinear G(iω), the signal at output will

be sinusoidal with a phase lag ϕG(iω) with respect to the dither signal and will be

attenuated (or amplified) according to a gain |G(iω)|. Such an effect may arise due

to the finite response time of the system or due to effects such as hysteresis (Benard

et al., 2009).

y ≈ ȳ + aN ′ (r0 + r̂) |G(iω)| sin(ωdt− ϕG(iω)) + wG. (3.2)

The high pass filter FH(iω) then removes the slowly varying term, induces an addi-

tional phase lag ϕFH
and slightly modifies the noise,

ỹ ≈ aN ′ (r0 + r̂) |G(iω)| sin(ωdt− ϕG(iω) − ϕFH(iω)) + w̃G. (3.3)

This output is then multiplied by a unity magnitude dither signal in order to achieve

a demodulated signal γ. This operation results in three components: a DC term

proportional to the local gradient; a harmonic of the dither signal, and modulated

noise.

γ ≈ 1

2
aN ′ (r0 + r̂) |G(iω)| ·

(
cos
(
ϕG(iω) + ϕFH(iω)

)
− cos

(
2ωdt− ϕG(iω) − ϕFH(iω)

) )

+ w̃G sin (ωdt) . (3.4)

A low pass filter is then applied to remove the harmonic terms and leave a value
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proportional to the gradient of the mapping. This will be referred to as the error

signal, e, where

e ≈
(
1

2
aN ′ (r0 + r̂) |G(iω)| cos

(
ϕG(iω) + ϕFH(iω)

))
+ we. (3.5)

As will be discussed below, for the case of frequency optimisation it may be advanta-

geous to choose the dither signal to be a square wave. In this case the above analysis

shows (see appendix C.1) that e may instead be written as the Fourier series:

e ≈ 1

2
aN ′ (r0 + r̂)

∞∑

m=1

[ |G(i (2m− 1)ωd)|
(2m− 1)2

×

cos
(
ϕG(i(2m−1)ωd) + ϕFH(i(2m−1)ωd)

) ]
+ we. (3.6)

Finally the controller evaluates the correction based upon the value of e with the

objective of moving the reference in the direction of the gradient of the mapping.

Specifically, K will increase r̂ if e is positive and vice versa:

r̂ = K(s)e. (3.7)

Typically K is chosen to be an integral controller (k/s) in order to drive the system

to the desired reference gradient.

3.1.2 Frequency optimisation

As discussed in § 1.3.1, for many open-loop flow control systems the input to the

plant may be a harmonic signal, u = c sin (2πft). For example the input may be a

sinusoidally pulsed jet, the effect of which may vary with frequency, as illustrated

schematically in figure 3.2 (a). In many such cases we may therefore wish to adapt

the frequency of the harmonic signal with the ES controller, i.e. f will be the

reference parameter r.

Following the standard method described in § 3.1.1 and applying a sinusoidal dither

signal to perturb the frequency, the input to the plant would be,

u = c sin
(
2π
(
f0 + f̂ + a sin (ωdt)

)
t
)
. (3.8)

To analyse the effectiveness of this perturbation strategy, we wish to determine the

instantaneous frequency content of this signal, since, to determine the gradient of
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the mapping in figure 3.2 (a), we must vary the frequency in the range f0 + f̂ ± a.
For a signal written in terms of a sin function the instantaneous frequency is the

derivative of the argument of the sin. That is, for u = c sin(ϕ(t)), we need to find

f(t) = 1
2π
ϕ̇(t). For the system in (3.8) this gives,

f(t) = f0 + f̂ + a sin (ωdt) + ωda cos (ωdt) t. (3.9)

Hence, the instantaneous frequency is given by the slowly varying base frequency

(f0+f̂), a sinusoidal perturbation and an additional time increasing term, ωda cos (ωdt) t.

This final term will cause the input to have a far more broadband spectrum, as indi-

cated schematically in figure 3.2 (b), rather than one that probes the system within

the required range. Alternatively, this final term may be thought of as an additional

noise component of the reference parameter r. This noise grows with time and is

unbounded as t→∞. This unbounded frequency input will cause erratic behaviour

of the system and acts to make the system unstable, in the sense that the reference

parameter grows without limit as time increases. Two methods to deal with this

problem are now suggested.

Sinusoidal phase deviation The first method can be found by explicitly calcu-

lating the phase argument ϕ(t) that gives the required variation in frequency, f(t).

For a sinusoidal perturbation of the frequency of u = c sin(ϕ(t)) we require

1

2π

d

dt
[ϕ(t)] = f0 + f̂ + a sin (ωdt) . (3.10)

Hence,

ϕ(t) = 2π

∫ (
f0 + f̂ + a sin (ωdt)

)
dt

≈ 2π
(
f0 + f̂

)
t− 2πa

ωd
cos (ωdt) . (3.11)

Here the approximation results from the assumption that compared with the sinu-

soid, f̂ changes only very slowly so can be considered constant within the integral.

Hence for a sufficiently slow adaptation of f̂ , a sinusoidal dither can be implemented

when the reference parameter is a frequency.

Step-wise changes in r A limitation of the above method comes from the fact

that changes in f̂ must be sufficiently slow to avoid introducing undesired frequencies

into the input. An alternative solution to the problem is to instead change the forcing
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frequency in a step-wise manner, akin to the square wave dither signal applied by

Tan et al. (2008). In this case we can choose the value of f̂ to be updated only when

step changes in the dither signal occur, thus avoiding the above problem. The input

is now given by

u = c sin
(
2π
(
f0 + f̂T2k ± a

)
t
)
. (3.12)

Here we use the subscript T2k to denote the value at the beginning of each half cycle

of the square wave. We can now evaluate the instantaneous frequency at all times

other than when the step changes occur as

f(t) = f0 + f̂T2k ± a. (3.13)

The instantaneous frequency now simply follows step-wise changes with time and

will, over the dither period, have the frequency content shown in figure 3.2 (b).

Furthermore it can be shown (see appendix C.1) that this step-wise dither signal

will operate in the same way as the sinusoidal dither, giving the result shown in

(3.6). Therefore a frequency optimisation scheme can be set up in this way and

may then be expected to be subject to the same considerations as the standard ES

scheme.

3.1.3 Stability

While proofs of stability for a sinusoidal dither are given in Krstić & Wang (2000);

Krstić (2000) among others, we aim to give a brief heuristic overview here. Instability

of the extremum seeking system can at first be separated into instabilities of the

plant itself and instabilities of the controller. The first situation, instability of the

plant, is the most obvious but need not be considered. The purpose of an extremum

seeking controller is not to stabilise unstable dynamics but to change the average,

long term output of the plant. Hence it should only be used in situations in which

the plant itself is open-loop stable.

Stability of the controller can now be considered on the basis of the analysis above.

The key instance in which the controller can induce instability is if the error signal,

e, is of the wrong sign. In general this will be due to phase lags between the dither

input and the multiplicative stage. This is clear from the expression for e in (3.5).

If the total phase lag ϕG+ϕFH
is greater than π/2, the cosine term will change sign,

resulting in the control action being in the wrong sense. That is, r will be adapted in

the direction away from the peak. Neglecting ϕFH
this could, for example, happen
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for a second order plant perturbed above its resonant frequency. An instability of

this kind will result in a diverging output from the plant in the opposite direction

of the extremum.

Instability may also arise under conditions for which the above analysis is invalid. In

particular it is assumed that the time-scales of the dither signal and the adaptation

are sufficiently separate. This scale separation is dependent, other things being

equal, on the relative values of the control gains K(s) and ωd. A similar observation

is noted in the analysis of Krstić (2000); Tan et al. (2010). The implication of this

limitation will be discussed in § 3.1.4.

3.1.4 Performance

The performance of the extremum seeking system may be considered in terms of

three key features, the gradient estimation, disturbance attenuation and control.

The performance of estimation and control may be considered separately, as shown

schematically in figure 3.1(b), although disturbance attenuation is affected by both

parts of the system. A summary of the implications of the analysis below is given

in table 3.1.

Estimation As shown in (3.5), e is composed of the true estimation value, pro-

portional to N ′(r), and additive noise. For brevity we will therefore decompose the

error signal as e = et + we. Estimation quality can now be considered in terms of a

signal-to-noise ratio (SNR) for e, defined as,

SNR =

(
et
we

)2

. (3.14)

It is shown from (3.5) that et depends upon the amplitude of the dither signal,

the local gradient of the mapping and the frequency response of the plant at the

perturbation frequency. Of these, only the dither amplitude a can be directly chosen.

The local gradient is a property of the plant, is generally unknown, and will vary

during operation of the ES system. The plant frequency response may also be

uncertain, but its influence may be changed by the choice of ωd. In general we wish

to maximise SNR, hence we wish to maximise the combined term |G| cos(ϕG+ϕFH
).

It is important to note that all the constituents of this term are frequency dependent,

since in general the magnitude of the frequency response of a physical system decays
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purpose of the high-pass filter is to remove the DC component ȳ from y, thereby

isolating the harmonic perturbation. Exclusion of the high-pass filter simply leads to

an additional harmonic term in γ (see (3.4)) of frequency ωd. However as discussed,

such a harmonic may be effectively removed by the low-pass filter. The high-pass

filter may therefore be redundant. In summary, we may expect to be able to remove

the high-pass filter, thereby avoiding the associated phase lag. Although this lag

may be catered for by including an additional lag in the demodulating signal, it may

still impose speed restrictions on the adaptation of the whole algorithm.

Control Historically, ES controllers have often used a pure integral controller

(Ariyur & Krstić, 2003), K(s) = k/s. This guarantees zero steady-state error and

has the added benefit of acting as a low pass filter to the many disturbances passing

around the loop. However, if the gradient estimation is of sufficient quality then

K(s) can be designed to be more aggressive, using a PID or more general frequency

domain controller. For example Krstić (2000) proposes that K(s) include a dynamic

compensator, the properties of which are decided based uponG(s) and the properties

of the expected changes in the operating point.

3.2 Experimental implementation

Based upon the analysis above we apply an ES controller to the open-loop control

system of Oxlade et al. (2015). The open-loop system here has a steady-state map-

ping between the parameters of sinusoidal pulsed jet forcing and the base pressure

(corresponding to the drag) of an axisymmetric bluff body. For this system the map-

ping is two dimensional: mean base pressure is a function of both forcing amplitude

and forcing frequency. The experimental setup is as described in § 2.1, while the

system properties will now be described in more detail.

3.2.1 System properties

For an extremum seeking controller, the most important feature of the plant is the

steady-state mapping N(r). For the system in this study, the mapping is two-

dimensional (N : R2 → R), giving spatially averaged base pressure as a function of

forcing amplitude and frequency as shown in figure 3.4. Here the temporally and
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Figure 3.4: The two dimensional steady-state mapping for the open-loop system
of Oxlade et al. (2015). Spatially averaged base pressure is given as a function of
forcing amplitude and frequency, where the forcing amplitude is defined in terms of
the rms of the pressure (pc) inside the cavity. Negative contours are shown by the
dashed lines.

spatially averaged base pressure change is defined as

〈∆Cp〉 = lim
T→∞

1

T

∫∫

A

∫ T

0

Cp − Ĉp
Ĉp

dt dA, (3.15)

where A is the area over the base, Ĉp is the pressure coefficient without forcing and

Cp is the pressure coefficient under forced conditions. The mapping is smooth with a

single global maximum located at values of amplitude and frequency of 1200 Pa rms

and 750 Hz respectively. Areas for which data are not shown are outside the range

of the actuator, and therefore cannot be explored in open-loop or reached during

operation of the ES controller.

For a bluff body such as that tested here, much of the drag is form drag. A positive

〈∆Cp〉 therefore corresponds to a drag reduction. The mapping displays a drag

reduction for large amplitudes and for frequencies f & 500 Hz, corresponding to a

situation in which the forcing frequency is sufficiently decoupled from those of the

shear layer and coherent structures of the wake. The forcing jet has zero net mass

flux, but is not referred to here as a synthetic jet as the mechanism of operation does

not rely on self induced streaming. Instead the forcing generates a discrete train of

vortices bounded by strong shear layers that provide a sheltering effect on the wake,

reducing entrainment. We refer the reader to Oxlade et al. (2015) for further details



66 Chapter 3. Extremum seeking control of the axisymmetric wake

on the drag reduction mechanism and actuator details.

While the data shown here is for a fixed free stream velocity U∞ = 15 ms−1, one

might expect the mapping to evolve in a predictable way as conditions change.

Dimensional analysis and knowledge of the drag reduction mechanism tells us that

〈∆Cp〉 is a function of jet momentum coefficient Cµ =
u2jAj

U2
∞
A
, Strouhal number Stθ =

fθ

U∞

and Reynolds number Reθ = ρU∞θ

µ
. Here uj and Aj are respectively the jet

velocity and area, f is the forcing frequency and θ is the boundary layer momentum

thickness at separation. Provided that the Reynolds dependence of the dimensionless

mapping is small, it may be expected that the optimal jet velocity and frequency

will scale linearly with U∞.

3.2.2 Extremum seeking algorithm

The implemented ES controller was operated to adjust the amplitude and frequency

of the harmonically forced jet described above, either of these parameters thereby

acting as the reference r described in § 3.1.1. The output of the system (y) is

taken to be 〈Cp〉, approximated by the average of the eight pressure transducers

and evaluated independently for each time sample.

The implemented ES algorithm is shown in the block diagram of figure 3.5. Follow-

ing our analysis in § 3.1.4, the implemented system had the following features not

commonly used in the literature:

1. Square wave dither signal for frequency

As discussed in § 3.1.2, a sinusoidal dither signal leads to complications when

the reference parameter is itself a frequency. We therefore choose to imple-

ment the method described above, varying the forcing frequency in a step-wise

manner, and only updating r̂ at the crossing points of the square wave.

2. Exclusion of the high pass filter

As discussed in § 3.1.4, the main purpose of the high pass filter is to remove

the DC component of the plant output, thereby removing a sinusoidal term

generated by the demodulation. Provided that this effect can be successfully

achieved using the low pass filter, the high pass filter is unnecessary. Further-

more the high pass filter introduces an additional phase lag which may impose

speed restrictions.
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a, (Pa) ωd/2π, (Hz) k

40 60 80 100 120 0.125 0.25 0.50 1.00 2.00 4.00 0.4 0.8 1.2

Tr, (s) 81.1 37.0 19.5 10.0 8.2 11.8 15.4 10.0 11.3 9.8 16.1 23.1 10.0 7.6
σ2, (Pa) - 46 63 78 101 99 89 77 81 - - 73 78 108
Stable Y Y Y Y Y Y Y Y Y N N Y Y Y

Table 3.2: Variation of the system performance with the choice of parameters when
seeking in amplitude.

The ratio of the proportional and integral gains shown here were based on the

recommendations of Krstić (2000) and some initial trial and error.

The results of the parametric investigations for seeking in amplitude are shown in

table 3.2. A preliminary investigation was first performed to establish approximately

optimal values for these variables of a = 100 Pa, ωd/2π = 0.5 Hz and k = 0.8.

Subsequently these initial values formed a baseline about which the parametric

investigation could be performed; i.e. for investigation of a, ωd/2π is kept at 0.5 Hz

and the control gain k kept at 0.8. The table displays the half rise time, the steady-

state variance and the stability of the scheme under each configuration. The half rise

time is defined as the time taken for the reference to reach half of the average steady-

state value, thereby giving a measure of the convergence speed. The steady-state

variance is the variance of the reference value after it has reached a steady-state,

including both the dither signal and the control input r̂. The system is determined

to be unstable if the reference parameter increases or decreases beyond the range of

the actuator and well beyond the anticipated optimal condition.

In agreement with the analysis of § 3.1.1, the dither amplitude is seen to have two key

influences. An increase in a is seen to increase the speed of the algorithm, – the rise

time reducing by a factor of 10 with a three-fold increase – but is also naturally seen

to increase the perturbations seen once a steady state is reached. Within the range

tested here the system always remained stable. By contrast the dither frequency

is seen to have little coherent effect on the convergence time, although at very low

frequencies there seems to be more perturbation about the steady state. At high

frequencies the system is found to become unstable, as anticipated: the reference

increasing beyond the optimal operating point. This may be a result of the phase

lag through the system becoming too large. Finally an increase in the control gain

is seen to increase the convergence speed, as anticipated, but is also seen to lead to

greater noise in steady state due to over-reaction of the controller.

Choice of optimal parameters require a choice of trade-off between convergence speed
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Figure 3.6: Amplitude only optimisation at a frequency of 650 Hz: (a) the spatially
averaged base pressure evolution and (b) the controller variables r(t) and e(t). Inset
is the trajectory over the mapping shown in figure 3.4.

and steady-state perturbations. It was felt that the values of a = 100 Pa, ωd/2π =

0.5 Hz and k = 0.8 provided a good compromise and were used for all subsequent

tests. Similar results for frequency optimisation lead to identical choices for ωd and

k and a dither amplitude a = 30 Hz.

3.2.4 Single variable implementations

The extremum seeking controller was first implemented in one dimension to optimise

either only the amplitude of the forcing at a fixed forcing frequency or to optimise

the frequency at a fixed amplitude. Initial conditions for the amplitude optimisation

were 400 Pa and 650 Hz, while those for the frequency optimisation were 250 Pa and

200 Hz, chosen in order to provide sufficient “space” in which the controller could

seek. Examples of these implementations are shown in figures 3.6 and 3.7.

For the case of amplitude optimisation, the response of the output of the system

under control action is shown in figure 3.6 (a). The trajectory of the system across

the static mapping is shown inset. Two key observations can be made from these

data. First, by looking at the filtered response (black line) the output can be seen

to have adapted to an optimal condition after around 30 s, beyond which only fairly

small fluctuations occur. Second, the raw data (blue) displays the level of noise

resulting from the broadband turbulent fluctuations of the flow, all of which pass

into the output measurement 〈Cp〉. These fluctuations can be seen to have been

greatly attenuated within the error signal e, shown in figure 3.6 (b), although some
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Figure 3.7: Frequency only optimisation at an amplitude of 250 Pa: (a) the spatially
averaged base pressure evolution and (b) controller variables r(t) and e(t). Inset is
the trajectory over the mapping shown in figure 3.4.

fluctuations do still remain. Finally the adapted reference input can be seen as the

black line in figure 3.6 (b). It is evident that the reference has been largely adapted

after 30 − 40 s and that only small fluctuations remain after this time. The filters

and controller are therefore effective in deciphering the effect of the dither within

the noisy output signal y, and passing only minimal disturbances into the adapted

reference r̂.

Similar results can be seen for the case of frequency optimisation in figure 3.7. Adap-

tation is seen to be similarly effective in spite of the same noisy output measurement.

However the key difference relative to amplitude optimisation is that the frequency

is seen to continue to increase with time, because the gradient of the mapping re-

mains slightly positive. For this particular operating point a slope (rather than

extremum) seeking controller may therefore be more appropriate, however for the

global optimum this is not the case. Also shown is that changes in the frequency

are made in the stepwise manner described in § 3.1.2.

The adaptation time for both controllers is seen to compare well with previous flow

control implementations. In particular, the adaptation time is found to be similar to,

but slightly greater than, that of the system of Henning et al. (2008); Pastoor et al.

(2008). In general, for a given noise level from the plant (w of figure 3.1), there exists

a trade-off between the adaptation time and the level of variation once a steady state

is reached, as was shown in the parametric study of § 3.2.3. For a turbulent wake

we may expect the level of noise to be partly determined by the Reynolds number

as with increasing Re there is an increased range of scales in the flow. If we wish
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to keep the steady state perturbations below a certain level, the adaptation time

would be required to increase with Re. The slight increase in adaptation time may

therefore be at least partially attributed to the factor 10 higher Reynolds number

in this experiment.

3.2.5 Dual variable implementation

While the implementation of the algorithm in each of amplitude and frequency in-

dividually allowed optimisation of the algorithm parameters, a fully working system

would be operated in both dimensions. In principle the ES controller can be op-

erated to adapt multiple references simultaneously, provided that the perturbation

frequencies are not equal; a result of the orthogonality of sinusoids. However, the

challenge arises in effectively filtering the variable γ (see figure 3.5). The moving

average filter discussed in § 3.1.4 is very effective at removing one frequency and its

harmonics but not optimal for other frequencies. Each moving average is therefore

unable to effectively filter the dither signal applied to the other variable, since the

frequency of the two dither signals must necessarily be different.

While methods do exist to avoid the filtering issue (see e.g. Gelbert et al., 2012), in

this study we chose to implement the algorithm in a stepwise manner, adapting each

variable in turn for a fixed period of time. The results of this are shown in figure 3.8.

The system converges to a steady state after about 100 s, so is clearly somewhat

slower than the one-dimensional examples seen above. This may be partially a result

of the stepwise nature of the control, as the controller has to effectively restart from

its current position every 20 s. However, the total convergence time still compares

favourably with previous studies (Pastoor et al., 2008).

The trajectory of the adaptation can be seen in figure 3.8 (b), from which it is clear

that the system converges to the optimal condition found in open-loop. Each stage

of the route is seen to arrive at approximately optimal conditions based upon the

current value of the fixed parameter (amplitude or frequency). It is possible that by

reducing the time between switches from the 20 s implemented here, the net speed

of the algorithm may be improved. However the best time will likely depend on the

local properties of the mapping so a generally optimal value may be difficult to find.

It is worth noting that under these testing conditions the controller brings the system

close to the limits of the actuator. While this is not an issue to the control scheme

here, it is clear that for any practical system, care must be taken to ensure that the
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Figure 3.8: Extremum seeking in two variables: (a) time series and (b) trajectory
across the mapping of figure 3.4.

controller does not try to reach an operating point that would cause damage to the

actuator.

3.2.6 Adaptation to changing conditions

One of the key purposes of using closed-loop control over open-loop control is that

the system will automatically adjust to changing operating conditions. For this

ES control system, the key operating condition is the free stream velocity U∞, since

this affects the optimal amplitude and frequency as discussed in § 3.2.1. Specifically,
with increasing U∞, the required forcing amplitude and frequency would be expected

to increase accordingly. The system was therefore tested with a slow sinusoidal

variation in U∞, optimising in forcing amplitude only. The results of this are shown

in figure 3.9.

The results indicate that the controller is able to adapt to the changing conditions

well and with minimised disturbances. Over the first 50 s, the system converges

to the optimal value of
√
p2c ≈ 1000 Pa, corresponding to U∞ = 15 ms−1. With

varying velocity between 10 − 20 ms−1, the amplitude is seen to also vary between

approximately 800− 1600 Pa with a small lag. Adaptation is therefore larger in the

positive direction than in the negative direction, possible indicative of nonlinearity

in the mapping between
√
p2c and uj. Regardless, the controller is here demonstrated

to be able to adapt in both a positive and a negative direction.

While it is not possible to confirm that an optimal condition is maintained at all
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Figure 3.9: The response of the controller to a slow variation in the tunnel speed.

times, a strong adaptation is evident. While truly optimal adaptation must take

place in frequency as well as amplitude, the results of shown in figure 3.8 indi-

cate that the controller would be able to achieve this, provided that variations are

sufficiently slow.

3.3 Concluding remarks

We have provided a heuristic analysis of the extremum seeking algorithm with a

particular focus on flow control applications. Our analysis has demonstrated that

the often used high-pass filter may be removed, and that the low-pass filter may

be replaced with a moving average in order to optimally filter the perturbations

resulting from demodulation. It has also been demonstrated that for the case where

the reference parameter is the frequency of a harmonic input, implementation of

a sinusoidal dither signal is problematic. In this case a step-wise dither signal can

provide a suitable alternative, provided that the control adaptation r̂ is only updated

when the step changes in the dither signal occur. This therefore provides a suitable

ES method for a number of open-loop flow control applications involving a harmonic

input.

Based on the analysis of the algorithm, a modified ES controller was implemented

experimentally in order to demonstrate its efficacy. The controller was applied to the
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open-loop control system of Oxlade et al. (2015), providing a closed-loop extension

to the pre-existing system. Despite a noisy output signal perturbed by turbulent

fluctuations, the controller is able to find optimum forcing configurations within

around 30− 40 s when operated on a single forcing variable and around 100 s when

operated on two forcing variables. Furthermore the system is able to effectively

filter the measured noise rather than passing it to the adaptation signal, and is

therefore able to maintain a fairly steady output once convergence has taken place.

The controller is also able to adapt to changing conditions, in this case free stream

velocity, in real-time. While in this investigation the controller was implemented to

seek maximum drag reduction, the system could just as easily be used to find an

optimal condition for energy efficiency, as in Beaudoin et al. (2006).

In conclusion we have introduced a modified ES algorithm and demonstrated its

efficacy in adjusting the open-loop forcing of a turbulent bluff body wake. We

hope that the modified system proposed here will be of use for other flow control

applications, particularly those involving a harmonic input signal.



Chapter 4

Observability of coherent

structures

As summarised from chapter 1, a promising strategy for drag reduction involves

the feedback control of large-scale coherent structures. However in order to achieve

this from surface mounted pressure measurements it is important to understand the

relationship between these structures and their pressure imprint. In control theory,

the question of whether these structures (the states of the fluid flow system) may be

deduced from the measurements is the question of observability. The development

of an algorithm to perform this real-time deduction is the process of observer design.

In this section, through the use of simultaneous PIV and pressure measurements,

we aim to establish which features of the wake are observable and ultimately glean

insight from this into the best approaches for their observation and control. A

corollary of this effort will be an improved understanding of the link between velocity

and pressure field features in three-dimensional wakes.

4.1 Background to the observability problem

We will begin this chapter with a brief overview of the observability problem in the

context of linear state-space feedback control systems. While these linear methods

are not directly applicable to the bluff body wake of this study, they still provide a

useful context in which to perform the analysis.

In control theory, linear state-space methods provide a particular manner by which

to describe a system for the purposes of feedback control design. The states x ∈ R
n
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of a system are generally defined to be those quantities that provide information

on the past of the system, and are sufficient to predict the evolution of the system

into the future (see e.g. Åström & Murray, 2008, chapter 2 for an overview). In a

fluid mechanics context there are essentially an infinite number of states since the

unsteadily moving fluid is a continuum. Here we will therefore abuse the notation

and use the term state simply to denote some of the key features of the velocity

field. Given a choice of states and a linear system, the equations governing the time

evolution of the system may be written as,

ẋ = Ax+Bu (4.1a)

y = Cx+Du, (4.1b)

where ẋ denotes the time derivative of the states, u ∈ R
p are the inputs to the

system and y ∈ R
q are the outputs (i.e. the measurements). The matrices A, B,

C and D define the dynamics and the relationships between input and output. For

feedback purposes it is often desirable to know the states x in real-time, however

these are generally different to what we can directly measure, the outputs y. The

observability question is therefore can we deduce, in real-time, the states x from

measurements y. For the linear state-space system described in (4.1), a general

test for observability may be performed by examining the rank of the observability

matrix, defined as

WO =




C

CA

CA2

...

CAn−1




. (4.2)

IfWO is full rank (i.e. has rank n) then the system is said to be observable (Åström &

Murray, 2008, § 7.1) and in principle the states x may be deduced by measurement

of the outputs y and inputs u over all previous times.

As displayed in (4.2) the observability matrix W0 is a function of the matrices A

and C, describing respectively the dynamics of the system and the mapping between

states and outputs. A special case of observability is that in which q ≥ n, i.e. there

are at least as many measurements as states and the measurement matrix C is of

full rank. In this case the state to output mapping alone is sufficient to achieve

observability, and the relationship between the outputs and states is given by

x = Ly − LDu, (4.3)
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where a left inverse of C exists because LC = I. For the case with no input u, (4.3)

describes a method equivalent to the linear stochastic estimation (LSE) (Adrian,

1994), and is an example of a static estimation method. The alternative scenario, in

which the rank of WO is dependent upon the dynamics matrix A, requires dynamic

estimation; a key method being the well-known Kalman filter (see e.g. Åström

& Murray, 2008, § 7.4). In this work we will look principally at the application

of static methods as a first examination of the observability problem. At the most

basic level this will be an attempt to deduce the best pressure-based metrics for each

velocity field feature, and to explain the various sources of the variance observed in

the pressure measurements. We will not perform dynamic estimation here, as to do

so we would need a good model for the dynamics of the velocity field features.

It is finally worth noting the implications to observability given by the concept of

global modes (Huerre & Monkewitz, 1990; Chomaz, 2005). By definition, modes

arising from an absolute instability are observable as these features contaminate the

entire flow-field. The question is therefore not so much which feature may be de-

tected, but what is the strength of this signal within the measurements. Generally

speaking, locations in the flow field for which the global mode amplitude is large

will be effective for measurement of the particular global mode. Examining the spa-

tial structure of the global modes therefore provides a suitable method for choosing

sensor location (Flinois & Morgans, 2016), and provides a method of heuristic ob-

servability analysis given pre-determined sensors. As we shall see below, while the

global modes of the flow may determine the most energetic features of the veloc-

ity field, they will not necessarily dominate a given set of pressure measurements.

Attention is therefore required beyond the global modes alone.

4.2 Acquisition configuration

In order to assess the link between velocity-field and surface pressure measurements

we choose to take time-resolved PIV, synchronously with pressure measurements

on the base. The experimental method is described fully in § 2.1.2, and provides

simultaneous time-series from the 64 static pressure tappings alongside a rectangular

region of the near-wake. The data are time-resolved at a frequency of 720 Hz and

cover a time-period of 3.8 s.

At this point it is important to note that effective velocity-field measurement of the

axisymmetric wake is complicated by the random reorientations of the SB mode.
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on the opposite side to the vortex. The distribution of the base pressure is seen

to be consistent with the velocity field. The relatively high pressure observed at

(y, z) ≈ (0, 0.3D) coincides with the impinging jet from the recirculating flow, while

the low pressure region at (y, z) ≈ (0,−0.2D) coincides with the location of the

circular vortex.

4.3 Choice of velocity-field features

The key question that this chapter attempts to answer is which features of the

velocity field may be observed, or put another way, which features dominate the

pressure measurements. It is therefore first necessary to identify and quantify some

key velocity-field features for subsequent analysis. We will present here three such

features which are either of interest for feedback control or will later be shown to

have a strong pressure imprint.

A first obvious method for choosing velocity field features is to find those which

contain the greatest fluctuating energy. This may be achieved using the proper

orthogonal decomposition (POD), applied to the PIV snapshots of the wake as

described in § 2.4.2. After the mean, the first two fluctuating POD modes are

found to capture the asymmetric vortex shedding, which is of particular interest for

control due to the anticipated link with pressure drag. The first of these POD modes

is displayed in terms of velocity magnitude u in figure 4.2, along with the PSD of the

temporal coefficient a1. The structure of the mode indicates the strong asymmetry

in the vortex shedding, arising from the particular orientation of the SB mode which

is as displayed in figure 4.1. The largest fluctuations are concentrated in the upper

shear layer in which the mean shear is also larger, possibly corresponding to the one-

sided vortex hoops proposed by Vilaplana et al. (2013) for the wake of the sphere.

The PSD confirms the oscillatory nature of the shedding, showing a strong peak for

StD ≈ 0.22. The second POD mode, not shown here, is essentially the complement

to the first, consisting of a similar structure displaced slightly downstream. These

two spatial structures together capture the convective nature of the vortex shedding,

however for the purposes of estimation we need only look to estimate one, as the

two modes generally change together in time with a π/2 temporal phase difference.

We therefore choose the first velocity field state x1 to be the temporal coefficient of

the first POD mode alone.

After the first two POD modes capturing the vortex shedding, the remaining modes







82 Chapter 4. Observability of coherent structures

Figure 4.4: Illustration of velocity field metric xs used for velocity-field state x3,
showing the selected location for a particular velocity field snapshot.

the measurement space first and then examine the correlations. We will follow this

approach here.

Just as for the velocity field data, a first natural method for dimensional reduction is

the use of the POD (see § 2.4.2). For the case of base pressure we have the advantage
that we have available data from much longer time-series on which to perform the

POD. A key consideration though, is that while for the simultaneous data used

in this study we have only short time periods in which the SB mode orientation

is approximately constant, over longer time-periods this orientation explores all

possible angles 0 ≤ φ < 2π. We therefore perform a conditional POD, following the

approach of Rigas et al. (2014) by choosing snapshots in which the CoP orientation

φ is within a narrow range corresponding to that for the simultaneous data. The

first four modes resulting from the POD are displayed in figure 4.5.

The first POD mode φp0 displayed in figure 4.5 is the ensemble mean of the snapshots

and is very similar to the temporal mean over the short time window displayed in

figure 4.1(a)3. This mean displays the average measurement of the SB mode given a

particular azimuthal orientation. The second POD mode has the same reflectional

symmetry axis as the first, and describes a modification to the magnitude of the

asymmetry that is seen on average. The next POD mode is antisymmetric about the

symmetry axis of the first two and is able to describe modifications to the symmetry

observed on average. The fourth mode displayed here has the same symmetry axis

3This mode is actually the negative of the mean, simply implying that the modal coefficient is
also negative.
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4.5 Correlations

In order to assess the correlations between velocity and pressure-field metrics, we

shall simply examine the normalised temporal cross-correlation. For two time series

of the state and measurement xi, yi this is evaluated as,

Rxiyi(τ) =
〈(xi(t)− x̄i)(yi(t− τ)− ȳi)〉

σxiσyi
, (4.7)

where ·̄ denotes the temporal mean and σ the standard deviation. While a fairly

simple metric, the temporal-cross-correlation will give us a good idea of the link

between variables including any time delay, and yields the possibility of using time-

delayed LSE as a static estimation method. We will present the cross-correlation

analysis for each of the three velocity field states xi, with the pressure metric giving

the maximum values of Rxiyi(τ).

Examining first the state describing the vortex shedding mode, we find that the

best cross-correlation is achieved using the CoP radius ρ. The results for which are

displayed in figure 4.6. The time-series in the upper figure demonstrate the oscilla-

tory nature of the first POD mode, although clearly the oscillations are somewhat

irregular. By contrast the CoP radius ρ does not obviously demonstrate the same

oscillatory behaviour, although it does appear to follow some of the lower frequency

trends in the time-series. The cross-correlation is seen to peak to just less than 0.5 at

a small lag τ ≈ 0.04 s, indicating that there is a clear link between the two variables,

but that one value may only account for half the variance of the other. The lag τ

is of the order 1/fVS so most likely corresponds to a particular phase relationship

between ρ and au1.

If we look now at the velocity metric Γ, we find that the best cross-correlation may

be found with the second pressure POD mode coefficient ap2. The normalised time

series and cross-correlation for these variables is shown in figure 4.7 and demonstrates

greater coherence than for the case of the vortex shedding: the cross-correlation in

this case peaking at around 0.75 close to τ = 0 s. Neither time-series appears to

oscillate at any particular frequency, but both can be seen to move together fairly

closely. The physical interpretation of this is that fluctuations in the strength of

the asymmetry in the recirculation region, as approximated by Γ, have a strong

influence on the asymmetry in the pressure measurements.

Examining the last of the velocity-field metrics xs, we find that the strongest cor-

relation may be found with the spatially-averaged pressure 〈p〉, the information for
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Figure 4.6: Simultaneous time-series and normalised cross-correlation between first
velocity POD mode coefficient au1 and CoP radius ρ.

Figure 4.7: Simultaneous time-series and normalised cross-correlation between the
near base circulation Γ and the second pressure POD mode coefficient ap2
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Figure 4.8: Simultaneous time-series and normalised cross-correlation between stag-
nation point location xs and spatially averaged base pressure 〈p〉.

which is displayed in figure 4.8. As for the case of the near base circulation, the time-

series exhibit no obvious pattern but are clearly strongly correlated, as confirmed by

the peak cross-correlation of 0.7. The link between the time-averaged recirculation

region length and pressure drag is well documented (see e.g. Roshko, 1993), and

may be explained in terms of the pressure gradients associated with the streamline

curvature. It is interesting to find that the same relationship holds for fluctuations

and that variation in the recirculation bubble length accounts for a large fraction of

the spatially uniform pressure changes.

4.6 Discussion and conclusions

The results presented in this section indicate that for three-dimensional wakes, the

link between pressure and velocity field features may not be obvious a priori. For

two-dimensional wakes the vortex shedding is both the dominant global mode of the

wake and a dominant source of pressure fluctuations at the base. This has allowed a

number of studies to use base pressure as a suitable measurement for feedback control

(Pastoor et al., 2008; Flinois & Morgans, 2016). For the axisymmetric wake of this
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study, application of POD indicated that the vortex shedding was again a dominant

source of coherent velocity fluctuations, but that it had a relatively weak pressure

imprint. The pressure measurements were instead dominated by fluctuations in

the spatially-averaged pressure, driven by fluctuations of the recirculation bubble

length, and variation of the strength and orientation of the SB mode.

One implication of these results is that the relationship between base pressure fluc-

tuations and velocity-field features is much more dependant on the spatial structure

of those features than on their energy content. For the wake of a wide range of two-

dimensional bodies, the von Kármán vortex street is both dominant in energy and is

coherent very close to the body base. By contrast for three-dimensional wakes, the

SB mode is the dominant structure close to the base. It makes sense that those flow

structures immediately proximate to the base are able to influence the pressure to a

much greater extent through direct impingement or adjacent streamline curvature.

By contrast flow structures further away most likely communicate pressure changes

acoustically, and therefore necessarily to a much smaller extent.

From the linear state-space perspective described at the beginning of § 4.1, the chal-
lenge associated with the application of purely static observation methods is that

they rely on each state having a unique, i.e. orthogonal, imprint on the measure-

ments. We find this not to be the case for the particular velocity states x chosen.

For example the CoP measurement, while giving the best correlation with the vor-

tex shedding, was found to be influenced by both the mean pressure (this is in fact

part of the definition of the CoP) and the SB strength. This may partially be seen

by examining the pre-multiplied PSD of the CoP radius ρ evaluated from a long

time-series, as displayed in figure 4.9. The spatial structure of the base pressure

measurement associated with the vortex shedding is therefore not unique, so the

vortex shedding may not be uniquely identified by static methods alone. Having

said this, it is worth noting that the frequency content of the vortex shedding is

uniquely identifiable. This is demonstrated by the fairly sharp peak at StD ≈ 0.22,

in an otherwise broadband frequency spectrum, consistent with the frequency seen

in the PSD of figure 4.2(b). This motivates either the use of dynamic-observers that

leverage knowledge of the expected frequency content as used by Tu et al. (2013),

or the use of controllers that aim to target specific frequency ranges via a sensitivity

function approach (e.g. Dahan et al., 2012). Real-time control of the vortex shed-

ding should therefore still be possible, although it is clearly more challenging than

for the case of the more straightforward observation seen in some two-dimensional

wakes.
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Figure 4.9: Premultiplied PSD for the CoP radius ρ. The black dashed lines ap-
proximately demarcate the frequency range of the vortex shedding.

The analysis presented in this section is by no means exhaustive, nor does it offer

truly optimal links between velocity and pressure metrics, however it does provide

useful insight towards feedback control methods. Firstly, it is clear that the SB mode

has an extremely strong imprint on the base pressure, suggesting that through the

correct choice of pressure metric the magnitude of the SB mode may be straight-

forwardly measured in real-time. The second key feature of interest for control,

the vortex shedding, is less straightforwardly observed due to a much weaker, and

spatially non-unique, measurement signal. However the characteristic frequency

content, as displayed in figure 4.9, indicates that the use of frequency targeted con-

trol strategies could still be effective. Feedback controllers for each of these features

in the Ahmed body wake will be the topic of chapter 7.
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Open-loop control with flaps

In this section we present the results of open-loop forcing of the Ahmed body wake

with flaps located at the rear edges. The forcing presented here consists of two types,

harmonic forcing whereby the flaps are oscillated sinusoidally, and static forcing with

the lateral flaps where we investigate the effect of “ruddering” and “boat-tailing”

when the flow is at a range of yaw angles. In both cases, forcing of the wake

may allow a more detailed investigation of the flow physics, beyond that which can

be achieved by observation of the natural wake alone. This may include a firmer

understanding of the nature of key wake features such as the vortex shedding and

the conditions for drag reduction.

All forcing of the wake presented in this chapter will consist of two flaps at a time,

located either at the sides or at the upper and lower surfaces. This forcing is de-

scribed by the angles of the two flaps, respectively θ1 and θ2, both defined in a

positive manner when the flap is moved inwards towards the base of the body. This

forcing can instead be written in terms of a symmetric and anti-symmetric com-

ponent, here referred to as boat-tailing and ruddering. Henceforth, the two angles

defining this decomposition are as follows:

θB =(θ1 + θ2)/2, (5.1a)

θR =(θ2 − θ1)/2. (5.1b)

89
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5.1 Harmonic forcing

The harmonic forcing discussed in this section is performed in an anti-symmetric

manner and therefore consists of pure ruddering θR. Symmetric forcing with four

flaps was also performed at a preliminary stage, with the aim of direct drag reduction

(see appendix A). However this was not found to be successful so we therefore instead

choose to focus on anti-symmetric forcing with two flaps at a time. This form of

forcing may be expected to interact directly with the anti-symmetric features of

the wake. Namely, the vortex shedding and the SB mode which, depending on

conditions, may arise in either a left/right (lateral) or top/down (vertical) sense

(Grandemange et al., 2013b). Forcing will allow additional insight into the dynamics

of these features.

5.1.1 Frequency response

For each of the anti-symmetric forcing cases we may first look at the frequency

response between the forcing θR and the relevant pressure metric ml, mv from the 64

ESP tappings. These pressure metrics quantify the anti-symmetric pressure imprint

on the base of the body and are evaluated as described in § 2.2.2. The frequency

response examines how the magnitude and phase of this measured imprint varies

with frequency and is evaluated as described in § 2.4.1.

Figure 5.1 displays the lateral frequency response and drag change for a range of lat-

eral forcing amplitudes. While there is variation between amplitudes, all responses

show the same general trends. At low frequencies StH . 0.05, the amplitude of the

response is relatively flat while the phase angle decreases very gradually. We would

expect that at these low frequencies the flaps may induce repeated reversals of the

wake between the two asymmetric configurations arising from the SB mode. Fig-

ure 5.2 confirms this interpretation, showing that the phase-averaged response at low

frequencies, here displayed for an amplitude of 7.5◦, consists of a repeated switching

between equal and opposite values of the pressure metric ml. This interpretation is

also consistent with the variation of the frequency response with forcing amplitude:

for low frequencies, smaller amplitudes have a larger measured response because

when repeatedly switching between the two bistable configurations, the measured

response will have an approximately constant amplitude regardless of the amplitude

of the forcing. Over this range of forcing frequencies the drag is seen to increase by

up to a maximum of 7 %, suggesting that repeated reversals of the wake has only a



5.1. Harmonic forcing 91

✶✵✦✷ �✁✂✄

☎✆✝✸❥●
✞

✟✠✡☛ ☞✌✍✎
✏✑✿

✒✓✔

✕✖

✗

✻
✭
✘
✮

✙✚✛✜ ✢✣✤✥

❙t❲

✧

★✳✩

✪✫✬

❈
❉
❂
✯
✰
✱
✲
✴ ✹✺✼✽

✾❀❁❃

❄❅❆❇

❊❋❍■❏

❑▲▼◆❖

Figure 5.1: Effect of lateral anti-symmetric forcing. Plots show the frequency re-
sponse (upper, middle) and average drag change (lower), as a function of forcing
frequency StW and for varying forcing amplitudes.

modest influence on the drag.

The next key feature in the frequency responses is seen at StW ≈ 0.1 and is a

sharp trough in the magnitude of the response, accompanied by a rapid decrease

in phase angle for all but the largest amplitude forcing. For a linear system this

particular combination of behaviour in magnitude and phase corresponds to the

presence of right-half-plane zeros, and is often caused by a cancellation between

dynamics operating at different time scales (Skogestad & Postlethwaite, 2005). It

is important to note that this does not coincide with any particular response of

the drag at the same frequency. It is therefore likely to be a result of cancellation

between the measurement of different flow features, rather than the result of any

specific flow phenomenon. This will be discussed further in chapter 7.

For StW & 0.1 the amplitude of the responses is seen to increase rapidly, rising to
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Figure 5.2: Phase-averaged response of the lateral pressure metric to lateral forcing,
for a number of key forcing frequencies. Data are displayed for a speed of 15 ms−1

and forcing amplitude of 7.5◦.

a peak at StW ≈ 0.2. This is seen to coincide with large increases in the drag of

up to 28 % and is consistent with a strong amplification of the vortex shedding

in the wake. Similar behaviour has recently been seen for three-dimensional wakes

by Barros et al. (2016a), confirming that even if the vortex shedding has a weak

pressure imprint for the case of the unforced flow, under harmonic forcing it may

again become dominant and have a strong impact on the aerodynamic forces.

Figure 5.3 displays similar results for the case of vertical forcing, i.e. forcing with the

top and bottom flaps. The general shape of both the frequency response and drag

change is seen to be the same, but with a few key differences. At low frequencies

the response is seen to be more uniform across amplitudes and generally has a

smaller (negative) phase angle, as compared with the lateral forcing case. The

phase-averaged response displayed in figure 5.4 suggests that the induced oscillations

are more sinusoidal in nature and of smaller amplitude. This may be because the

unforced wake is not bistable in the vertical dimension, therefore while vertical

forcing still has a strong and measurable impact on the pressure, the effect is one of

continuous deflection of the recirculation bubble, rather than the induced reversals

that occurs in the lateral dimension. As for the lateral case, the total drag changes

in this frequency range are again small, up to a maximum of 7 %.

At StH ≈ 0.09, the frequency responses again show a relatively sharp trough and

phase angle decrease consistent with right-half-plane zeros. Above this frequency,
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Figure 5.3: Effect of vertical anti-symmetric forcing. Plots show the frequency
response (upper, middle) and average drag change (lower), as a function of forcing
frequency StH and for varying forcing amplitudes.
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Figure 5.4: Phase-averaged response of the vertical pressure metric to vertical forc-
ing, for a number of key forcing frequencies. Data are displayed for a speed of
15 ms−1 and forcing amplitude of 7.5◦.

the response is almost identical to the lateral case, displaying a strong amplification

of the vortex shedding for StH ≈ 0.2. In the vertical case both the measured response

and drag change are larger, as displayed in figures 5.3, 5.4. Given that the body

is wider than it is tall (see figure 2.2), this stronger interaction with the vortex

shedding may be both because the flaps themselves are larger, and the shear layers

are closer allowing for more intense interaction and a stronger shedding behaviour.

It is also worth noting that for the case of lateral forcing only, small open-loop drag

reductions are observed. Drag reductions of up to 1% are observed for a range of

intermediate frequencies 0.03 & StW . 0.13 and for small forcing amplitudes of 5◦.

This drag reduction is accompanied by accompanied by a base pressure increases

(not shown) of up to 1.7%. The reason for this open-loop drag reduction is unclear

but it is interesting to note that it occurs only in the lateral dimension and therefore

may be related to forcing of the bistability of the wake.

5.1.2 The forced flow

In addition to examining trends of particular variables as a function of forcing fre-

quency, we may also look at the nature of the flow at particular forcing frequencies,

as quantified by the metrics ml, mv defined in § 2.2.2. While the dominant effect of

either lateral or vertical forcing is on the response in the forcing dimension, there
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Figure 5.5: Effect of lateral anti-symmetric forcing on the distributions of vertical
and lateral pressure metrics, compared with the unforced case given by the black
dashed line. Data are displayed for a speed of 15 ms−1 and forcing amplitude of
7.5◦.

may also be an impact on the dynamics operating in the perpendicular dimension.

These could either be due to global changes to the flow or due to a coupling between

perpendicular dynamics. A good way to examine this is to look at the PDF of each

of the pressure metrics for a number of particular forcing frequencies. These results

are displayed in figures 5.5, 5.6.

Firstly examining the effect of lateral forcing, figure 5.5 shows that for the lowest

forcing frequency there is very little change to the PDF of either pressure metric.

This is consistent with the idea that low-frequency lateral forcing simply induces

switching between the two asymmetric flow structures that naturally occur. As

the forcing frequency is increased to StW = 0.02 the PDF demonstrates that ml

is nearer to zero more of the time, consistent with an increased switching rate. A

marked change is seen for forcing near to the trough of the frequency response, for

StW = 0.112 the metric no longer displays bistable behaviour but has a PDF peaking

atml = 0. This may be because the bistability of the wake is either suppressed or no

longer detectable from the base pressure due to cancellation effects. Given that there

is little drag change at this frequency it seems unlikely that complete suppression of

the SB mode is achieved, although it is not possible to know for certain from base

pressure and force data alone. For the higher forcing frequency corresponding to

amplification of the vortex shedding the PDF appears bi-modal again, although for



96 Chapter 5. Open-loop control with flaps

✲✵�✶ ✁✂✄☎✆ ✝ ✞✟✠✡ ☛☞✌

♠✈

✍

✎✏

✷✑

✸✒

✹✓

✺✔ ✭❜✮

✕✖✗✘ ✙✚✛✜✢ ✣ ✤✥✦✧ ★✩✪

✫❧

✬

✯✰

✱✳

✴✻

✼✽

✾✿

P
❀❁
❂

❃❛❄ ❙t❍ ❅ ❆❇❈❉❊

❋●■ ❏ ❑▲▼◆❖

◗❘❚ ❯ ❱❲❳❨❩

❬❭❪ ❫ ❴❵❝❞❡

Figure 5.6: Effect of vertical anti-symmetric forcing on the distributions of lateral
and vertical pressure metrics, compared with the unforced case given by the black
dashed line. Data are displayed for a speed of 15 ms−1 and forcing amplitude of
7.5◦.

this frequency this is most likely not indicative of a bistable wake. It is only for this

final forcing case that there is significant evidence of coupling between the lateral

and vertical dynamics: the PDF for mv is seen now to become both more symmetric

and with less variance, exhibiting a sharp peak at mv = 0.

In contrast to the lateral forcing case, figure 5.6 demonstrates that the vertical

forcing has a strong impact on the PDF of both pressure metrics. For the lowest

frequency the lateral metric ml appears no longer to be bimodal, but rather has a

broad range of values peaking at ml = 0. At this same frequency the vertical metric

mv does appear bimodal, although this may be a result of the sinusoidal nature

of the forcing: the PDF of a sinusoid exhibits a particular bimodal behaviour. As

the forcing frequency is increased, a bimodality of the lateral pressure metric is

restored, though never to the extent of the unforced flow, while the PDF for mv

becomes increasingly narrow. For the resonant case of StH = 0.203, the PDF for

mv is wide and bimodal, consistent with the large sinusoidal response displayed in

figure 5.4, while that for ml is relatively narrow and centred at ml = 0.



5.2. Static forcing 97

5.1.3 Discussion and concluding remarks

The harmonically forced flaps demonstrate influence over two key features of the

flow. At low frequencies lateral forcing simply induces reversals of the wake between

the two bistable configurations, having negligible influence on the vertical metric

and a small influence on the drag. Vertical forcing has a similar influence on the

drag but appears to generate a larger change in the wake structure, possible chang-

ing the dimension in which the SB mode dominates. At much higher frequencies

around St ≈ 0.2 both lateral and vertical forcing generates a strong response and

large drag increase, consistent with a resonance of the oscillatory vortex shedding

in the wake. In these cases the variance of the pressure metric in the opposite di-

mension is minimised, suggesting that the SB modes of the wake are completely

suppressed. Such resonant behaviour has been observed before in 3D wakes (Barros

et al., 2016a; Rigas et al., 2017), yet it is interesting that despite the weak nature of

the oscillatory modes in the unforced measurements, under forced conditions these

oscillatory features can again become dominant. This may be indicative of a tran-

sition between a 3D and quasi-2D flow, much like the transition with aspect ratio

seen by Norberg (1994).

The other key feature of both the lateral and vertical forcing is behaviour indicative

of right-half-plane zeros at an intermediate frequency of St ≈ 0.1. It is important to

note that no particular changes in the drag are observed around this frequency in

either case and it is therefore likely to be a limitation of the available measurements,

rather than indicative of a particular fluid mechanical feature. As we shall discuss

in chapter 7, such behaviour can arise from cancellation between the measurements

of the low-frequency dynamics of the recirculation region and the high-frequency

dynamics of the shear layers. Furthermore the presence of zeros has important

implications for feedback-control design and may suggest a fundamental limitation

of a system using forcing flaps.

5.2 Static forcing

While open-loop forcing of the wake provides interesting insight into the dynamic

response, we may also hope to gain insight into the optimal fixed conditions for

drag reduction. In these investigations the wake is subjected to “static forcing”,

which consists of positioning the lateral flaps at a range of fixed angles. It has

long been known that boat-tailing may lead to drag reduction via the higher base







100 Chapter 5. Open-loop control with flaps

Figure 5.9: Base suction coefficient −〈Cp〉, drag coefficient CD and lateral force
coefficient |Cy| as a function of each of θ1 and θ2 with the other held constant. For
these data β = 6◦ and δ = 13%.

Figures 5.9 (d), (e), (f) show parameters as a function of θ1 for three fixed values

of θ2. In this case the base suction and lateral force are again closely related, each

exhibiting a maximum for the same configuration. However the drag is seen to find

a minimum at values of θ1 that do not minimise −〈Cp〉 or Cy. Interestingly, the drag
is seen to rise for θ1 < 0, i.e. for configurations in which this flap extends outwards

away from the body (see figure 5.7). This suggests that a trade-off must be found

between minimising the base suction - by minimising |Cy| - and minimising the drag

on the flap itself.

We may alternatively consider the trends with respect to the degree of ruddering

and boat-tailing, as defined in (5.1). Figures 5.10 (a), (b), (c) show parameters

as a function of the ruddering angle, for fixed degrees of boat-tailing. For each

of these configurations, the ruddering has a strong influence on the lateral force,

Cy, with the exception of the case θB = +16◦. This is to be expected as the

flaps will cause a lateral deflection of the flow. For a series of boat-tailing angles,

figure 5.10 (c) demonstrates a notable collapse of the data along a single straight line

with negative gradient, indicating a significant linearity in the relation between θR

and Cy . However, in each case there is an angle at which the data begins to deviate

from this line, possibly due to a separation of the flow over one of the flaps. The
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Figure 5.10: Base suction coefficient −〈Cp〉, drag coefficient CD and lateral force
coefficient |Cy| as a function of each of θR and θB with the other held constant. For
these data β = 6◦ and δ = 13%.

point at which this deviation occurs is seen to coincide with the angle of minimum

base suction, as shown in figure 5.10 (a). This indicates a strong link between the

total lateral force and the pressure drag experienced by the body, consistent with

previous experiments using base flaps (Grandemange et al., 2013a).

Figures 5.10 (d), (e) and (f) show parameters as a function of θB for three fixed

values of θR. In this case the lateral force is seen to be much less strongly affected,

and is almost constant with changing θB in some cases. This is to be expected as

symmetric deflection of the flaps should provide little net lateral deflection of the

flow. However for the most extreme θR cases, where there is a dependence of Cy,

possibly due to a separation of the flow over one of the flaps, there is again a clear

relationship between −〈Cp〉 and Cy. For all of the data shown, the minimum CD and

−〈Cp〉 do now coincide. These minima are all for θB > 0, i.e. for inward deflection

of the flaps. This reinforces the notion that boat-tailing of the flow to achieve a

narrower wake also decreases the pressure drag on the body.
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Figure 5.12: Effect of flap positioning on the distribution of the lateral pressure
metric ml. Cases for which θ1 = θ2 = 0 are displayed in (a) while those giving a
bistable wake are displayed in (b).

figure 5.12 (b) demonstrates that the bistable behaviour can be restored. Even for

the case β = 9◦, the PDF is modified such that values ml > 0.03 occur under static

forcing but not under unforced conditions. Given that the bistability is known to be

highly sensitive to asymmetry in the flow, (Cadot et al., 2015; Evrard et al., 2015) it

is certainly noteworthy that the bistability can appear even under highly asymmetric

conditions. While the PDFs displayed in figure 5.12 (b) show bistable behaviour,

initial results suggest that unlike under aligned conditions, the two flow conditions

of ml ± 0.03 do not correspond to equal CD and Cy. This makes the two bistable

configurations more similar to those seen under other asymmetric conditions, such

as the up-down bistability observed in some real cars (Bonnavion et al., 2017), for

which one configuration has higher drag than the other.

Figure 5.13 illustrates schematically the behaviour of the wake under ruddered and

yawed conditions. For an aligned flow small flap angles can preferentially select

the orientation of the SB mode, such that the low-pressure vortex is nearest to

the inwardly deflecting flap. This means that the pressure gradient on the base is

consistent with that on the sides of the body, as inward/outward deflection leads

to respectively low/high pressure immediately upstream of the flap. Under yaw

angles, the orientation is again preferentially selected such that the base pressure

is consistent with the sides: the lower pressure on the leeward side of the body is
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Figure 5.14: Frequency response between anti-symmetric flap forcing and pressure
metric ml under aligned and yawed conditions. For the case β = 1.5◦ the mean
ruddering angle of the flaps is θR = 7.8◦.

5.2.3 Concluding remarks

Static deflection of the flaps may consist of either boat-tailing, ruddering or a com-

bination of the two. Consistent with previous understanding (Wong & Mair, 1983),

we have found that positive boat-tailing gives a drag reduction under aligned con-

ditions. Under yawed conditions ruddering is also able to give drag reduction by

reducing the lateral force on the body, confirming the existing understanding of the

strong relationship between the stream-wise and cross-stream forces (Grandemange

et al., 2013a). However minimum drag generally does not coincide with minimum

lateral force due to the drag induced on the flaps themselves. The globally minimised

drag is achieved through the optimal combination of ruddering and boat-tailing that

likely achieves a relatively narrow and symmetric wake, while minimising the drag

on the flaps.

A second crucial observation is that close to the conditions giving minimum pressure

drag (−〈Cp〉), the flaps restore the bistable behaviour of the wake, despite the highly
asymmetric conditions. This observation confirms that the SB mode remains rele-

vant to the flow under a wide range of scenarios, supporting the recent observations

on real car geometries (Bonnavion et al., 2017).
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In terms of practical applications, the results from static forcing indicate that by

having an adaptive system which caters for varying cross-wind, large drag reductions

may be obtained. More specifically, it may estimated that such an adaptive system

would perform up to 70 % better than a static system consisting of equally sized

flaps (Garćıa de la Cruz et al., 2017). It is unclear how the results would differ if

the aspect ratio were to change, since the SB mode may no longer be present in the

lateral direction. However the strong relationship between lateral and stream-wise

forces would almost certainly remain. Furthermore, it is important to note that

unlike some active flow control systems, one that used adaptive flap positioning

would be expected to have very low energy requirements as little flap motion would

be required. An ES controller such as that described in chapter 3 would be highly

suitable for this sort of application.



Chapter 6

Stochastic modelling of coherent

structures

For the purposes of control design, it is advantageous to obtain models of low or-

der that describe the dynamics of the coherent structures that we wish to control.

Through the literature review of chapter 1 and the results of chapter 4 we have seen

that the SB mode and the vortex shedding are both suitable wake features for flow

control. In this section we will develop low order models for each of these coherent

structures, building upon the work of Rigas (2014); Rigas et al. (2015). This will

start with an overview and additional analysis of the SB mode for axisymmetric bluff

body wakes, followed by the application of the model to the rectilinear Ahmed body

wake. Finally, we will extend the model to the unsteady vortex shedding behind the

Ahmed body.

6.1 A general model

While many different modelling strategies exist for fluid flows, what we seek here is

a simple dynamical description of key features, rather than a model that accurately

describes the entire flow. For example we may want to define only one or two states

and find simple equations for their dynamics. This approach has been pursued

before in fluid flows, for example Li & Juniper (2013a,b) demonstrated that the

dynamics of a self-excited axisymmetric jet could be accurately modelled by a van

der Pol oscillator. Other authors have looked at the modelling of vortex shedding in

wakes. For example, Le Gal et al. (2001); Facchinetti et al. (2004) used respectively

107



108 Chapter 6. Stochastic modelling of coherent structures

complex Stuart-Landau and van der Pol models for the vortex shedding behind a

cylinder.

While deterministic low-order models such as the van der Pol oscillator may accu-

rately describe large-scale structures in low Reynolds number flows (Li & Juniper,

2013a), at higher Reynolds numbers it is necessary to model the chaotic dynamics

and additional turbulent fluctuations. A first method may be to choose a deter-

ministic model that exhibits chaotic behaviour, in much the same way that the

Navier-Stokes equations do. The challenge is that to give chaotic behaviour that

accurately describes the fluid-flow feature of interest, a large number of states may

be required. An alternative (and simpler) method is to include a stochastic forcing

term in a low-dimensional model. For example, Brown & Ahlers (2007) derived a

physics-based model for the dynamics of the large-scale circulation in a convective

flow, including a stochastic term to account for the random forcing from turbulent

fluctuations.

The basis for the stochastic models suggested by Rigas et al. (2015) and developed

here, is the observation that many large-scale coherent structures in turbulent wake

flows result from a persistence of the laminar global modes (Rigas et al., 2014). At

low Reynolds numbers, these global modes arise from bifurcations in the flow and

manifest as either spatial (Fabre et al., 2008; Meliga et al., 2009; Grandemange et al.,

2012a) or temporal (Jackson, 1987) symmetry breaking features. Such bifurcations

may be written in terms of a normal form that describes the type of bifurcation

taking place and is accurate for values of the bifurcation parameter (in this case Re)

near to that at which the bifurcation occurs (Strogatz, 1994). A stochastic model

to describe the global modes at high Reynolds numbers may therefore be composed

of these same normal forms, but with the addition of a stochastic term to model the

noise arising due to small-scale turbulence. While this type of model does not have

a firm theoretical basis, it can be shown to fairly accurately reproduce the behaviour

of large-scale coherent structures in turbulent flows and provide insight into their

control.

A general stochastic model of the form employed in this work may be written as

ẋ = αx+ λx|x|2 + u+ σξ(t). (6.1)

This equation describes a bifurcation for which x is the (possibly complex or vector

valued) bifurcated mode and ẋ the time derivative. For example this could be the

SB mode observed in three-dimensional wakes, x quantifying the magnitude of this
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asymmetry. The parameters α and λ are real or complex, while the variable u

quantifies any additional forcing terms and will be required for feedback control

design. The final term σξ(t) represents phenomenologically the additional forcing

due to turbulence; ξ(t) is a vector of normally distributed random variables N(0, 1),

for which σ2 determines the variance.

There is some flexibility in the dimension of x as well as the other parameters in

the model, appropriate dimensions and the choice whether or not to include com-

plex parameters depends upon the particular flow feature being modelled. For the

case that x, α and λ are real and λ < 0, (6.1) describes a supercritical pitchfork

bifurcation, while if x, α and λ are complex and R(λ) < 0, (6.1) describes a su-

percritical Hopf bifurcation (Strogatz, 1994). As we will show later, the SB mode

of three-dimensional wakes may be modelled by the former of these two cases while

the vortex shedding may be modelled by the latter.

6.2 Symmetry breaking in the axisymmetric bluff

body wake

As a first application of the stochastic modelling strategy, we will recap the work

of Rigas (2014); Rigas et al. (2015), before providing some additional data and

analyses. This work provided a model for the SB mode of the axisymmetric bullet-

shaped body shown in figure 2.1.

6.2.1 Stochastic model

The SB mode of three-dimensional wakes may be quantified by many metrics, de-

pending upon the available data. Rigas et al. (2014) found the two-dimensional

CoP coordinates, as evaluated on the body base, to be a suitable one. This CoP

coordinate X = (Y, Z), normalised by the body diameter D may be evaluated as

X(t) =
1

D
∫∫

A
p(y, z, t) dA

∫∫

A

p(y, z, t)(y, z) dA, (6.2)

where p(y, z, t) is the local pressure measurement, y, z are the lateral and vertical

coordinates and A is the area over the base of the body. Taking these coordinates
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Figure 6.1: Time series of the centre of pressure coordinates (ρ, φ). Large changes
in φ are seen to correspond to times when ρ is small.

as a metric for the SB mode x of (6.1), we obtain equations in each of (Y, Z),

Ẏ = αY + λY (Y 2 + Z2) + σξY (t) (6.3a)

Ż = αZ + λZ(Y 2 + Z2) + σξZ(t). (6.3b)

If the coordinate system is now transformed from Cartesian (Y, Z) to polar (ρ, φ),

Rigas (2014) demonstrated that (6.3) becomes,

ρ̇ = αρ+ λρ3 +
σ2

2ρ
+ σξρ(t) (6.4a)

φ̇ =
σ

ρ
ξφ(t), (6.4b)

where each of ξρ, ξφ are again normally distributed random variables N(0, 1).

6.2.2 Experimental data

Having detailed the model describing the SB mode in the turbulent axisymmetric

body wake, we will now present some experimental data beyond that given in Rigas

(2014); Rigas et al. (2015). These results will provide a motivation for the use of

a similar model for the Ahmed body, and provide a benchmark against which the

Ahmed body data may be compared.
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Figure 6.2: Statistics for the CoP angle φ showing (a) the power spectral density,
and (b) the escape time statistics. The solid black line shows the dimensionless
exponential distribution: p(τq) = exp(−τq/〈τq〉). Inset is the mean escape time 〈τq〉
as a function of the number of bins q.

Figure 6.1 displays a sample time series1 of the parameters ρ and φ of (6.4). The

parameter ρ can be seen to fluctuate around a mean value, intermittently reaching

very small values highlighted by the red circles. Given the definition of ρ as a radius

in polar coordinates it must remain positive by definition, and is also seen to remain

bounded below approximately 2ρ̄. By contrast the angle φ is unlimited in range as it

can describe any number of rotations. Figure 6.1 shows that φ meanders randomly

with no discernible frequency or consistent direction. A key observation is in the

relationship between ρ and the rate of change of φ: small values of ρ are seen to be

accompanied by large changes in φ, consistent with the model of (6.4b) for which

φ̇ ∝ 1/ρ.

A key feature of the model is the use of Gaussian white noise, as is standard practice

for a Langevin equation (Zwanzig, 2001). Evidence for the Gaussian nature of

fluctuations is given by Rigas et al. (2015, figure 5), however another important

characteristic of a white noise process is its temporal behaviour. This can first

be examined by looking at the PSD for the variable φ, shown in figure 6.2(a). It

may be shown that if the noise term in (6.4) is Gaussian with a uniform frequency

spectrum, the PSD of the variable φ should display a −2 decay with frequency, and

in particular should be independent of that of ρ (see appendix C.2.2). The PSD

shown in figure 6.2(a) demonstrates such a -2 decay with frequency over almost

three decades, and is therefore consistent with the model.

1Note that the parameters displayed here are low-pass filtered. This is in order to prevent
high-frequency noise from causing spurious jumps in the angle φ.
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A further key property of white noise is that it is delta correlated in time, indicating

that it is memoryless (Zwanzig, 2001). For the Ahmed body, Grandemange et al.

(2013c) demonstrated that the reversals of the bistable wake form a memoryless

process, by examining the distribution of times between reversal events. A similar

analysis may be performed here by dividing the range of azimuthal angles into a

number of uniformly-spaced bins. Figure 6.2(b) shows the distribution of times

τq for which φ remained within a specified range. For a division of the base into

q = 2, 3, 4, 5, 6 bins, the distribution of “escape times” can be seen to follow an

exponential distribution, consistent with a memoryless process.

6.3 Symmetry breaking in the Ahmed body wake

The modelling strategy discussed above is now applied to the SB mode of the Ahmed

body wake. For such rectilinear bodies it has been shown that the SB mode occurs in

only one of the two cross-stream dimensions, the specific dimension depending upon

the aspect ratio and ground effect (Grandemange et al., 2013b). For the Ahmed

body wake this feature occurs only in the lateral dimension (see figure 2.2). Again

using the CoP as a suitable metric we may therefore take only the lateral component.

Non-dimensionalised by the body width W , this is defined as,

r(t) =
1

W
∫∫

A
p(y, t) dA

∫∫

A

p(y, t)y dA, (6.5)

where p(y, t) is the local pressure measurement, y is the lateral coordinate and A

is the area over the base of the body. Henceforth, we will use the parameter r to

describe the SB mode of the Ahmed wake and, when displaying experimental results,

use the metric defined by (6.5).

6.3.1 Stochastic model

As for the axisymmetric bluff body wake, we start from a modified version of (6.1)

but now require only a single variable r for the mode, and purely real parameters

α, λ, σ ∈ R>0:

ṙ = αr − λr3 + bθt−τ + σξ(t). (6.6)

Here, the forcing term u of (6.1) is given by bθt−τ , modelling the effect of the forcing

by the flaps. The flaps may be expected to deflect the shear layers by an amount
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Figure 6.3: (a) The potential well V (r) for θ = 0, and (b) an example time series
demonstrating the time-scales T and δ.

determined by their angle θ. They thereby provide a lateral momentum flux that

forces the mode r, possibly according to some linear scaling factor b. Given that

any shear layer perturbation must be advected it is natural to also incorporate an

advective time delay τ . We will demonstrate later that the nature of this term fits

well with the experimental observations. Furthermore, for the flaps to have good

authority over the flow, we may require the term bθt−τ to be relatively large. We

will also see that this is the case.

The system described by (6.6) may also be written in terms of the gradient of an

energy potential V (r) as,

ṙ = −V ′(r) + σξ(t). (6.7)

This potential is illustrated in figure 6.3(a) and consists of a double-well with minima

at r = ±re. The turbulent forcing perturbs the state within this well, while the

parameter θ is able to skew the well in either direction. Such systems are common-

place and have been studied extensively in the past (see for example Gammaitoni

et al., 1998), therefore we will summarise only the key features here. In the absence

of noise and for θ = 0, the system has three points of equilibrium: one unstable at

r = 0 and two stable at r = ±
√
α/λ = ±re. The state r will therefore tend to

move in a region around one of the two stable equilibrium points until sufficiently

perturbed by the noise to switch to the other. If a switching event is defined as a

movement from r < −re to r > re (or vice versa), the mean time T between such

switches is as illustrated in figure 6.3(b), and may be shown to be given by (see
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appendix C.2.1),

T =
π√
2α

exp

(
αr2e
2σ2

)
. (6.8)

The second time-scale of the process is the instability time-scale associated with the

duration of a reversal of the wake, as indicated in figure 6.3(b). This time-scale

depends upon the growth rate of the instability so scales according to δ ∼ 1/α.

The ratio of these two time-scales therefore depends upon the ratio σ2/α, i.e. the

argument of the exponential in (6.8), and determines the proportion of time spent

around the stable equilibrium positions.

In the long-time average the distribution of values for r may be given analyti-

cally by the steady state Fokker-Planck equation (Risken, 1996), as discussed in

appendix B.1. The stationary probability density function (PDF) for the system

described by (6.6) with constant θ is

P (r) = C exp

(
−2V (r)

σ2

)

= C exp

(
α

σ2

(
r2 − 1

2

λ

α
r4
)
+

2bθ

σ2
r

)
, (6.9)

where C is a normalisation constant that ensures
∫
∞

−∞
P (r) dr = 1. This will later

allow us to validate the model and determine its parameters.

The model is also consistent with expectations for the power spectral density (PSD)

of the variable r. It has been shown that for a system of the form in (6.6), switch-

ing events form a Poisson process, i.e. they are independent (Gammaitoni et al.,

1998). This is consistent with previous observations of the bistable switching pro-

cess (Grandemange et al., 2013c) and, given this property of the switching events,

it may also be shown that the PSD of the variable has a −2 decay with frequency

(Grandemange, 2013, section D.2.). For more detail see appendix C.2.2.

6.3.2 Parameter normalisation

It is useful at this stage to find a suitable non-dimensional form for the parameters

of the model. This will aid in the interpretation of the parameters, and provide a

suitable way to compare their numerical values.

The time-scales α and τ can be non-dimensionalised using the body width W and

free-stream velocity U∞. The remaining parameters λ, σ2 and b can all be written
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αW
U∞

τU∞

W

λr2e
α

σ2

αr2e

b
αre

Value 0.05 1.7 1 0.23 0.11

Table 6.1: Dimensionless parameters for the low dimensional model (6.6). The
parameters are determined from the experimental data.

as ratios with respect to α, thereby showing the relative importance of the terms in

(6.6). However, the ratio of these parameters is dependent upon the range of values

that the mode r takes. Furthermore the choice of metric for r is somewhat arbitrary;

for example the CoP location could be replaced by the pressure gradient on the base

or barycentre of velocity deficit in the wake. Any of these metrics quantify the same

flow feature but give different numerical values for the mode r, and with different

physical units. A characteristic value such as the equilibrium value re =
√
α/λ,

may therefore be taken into account in the normalisation2. The correct method for

doing this can be seen by considering the change of variables q = r
re
. Under this

change (6.6) becomes

q̇ =
1

re

(
αreq − λr3eq3 + bθt−τ + σξ(t)

)

= α︸︷︷︸
α′

q − λr2e︸︷︷︸
λ′

q3 +
b

re︸︷︷︸
b′

θt−τ +
σ

re︸︷︷︸
σ′

ξ(t). (6.10)

Under the change of variables, each of the model parameters can be seen to be re-

placed by a normalised version, denoted by the ′. As expected, the time-scale defined

by α remains unchanged but the other terms now depend upon re. This gives an

appropriate method for non-dimensionalising the parameters, as shown in table 6.13.

The parameters displayed in this table are determined from the experimental data

as will be detailed in § 6.3.6. The general approach is to firstly determine the time-

scales α and τ from the frequency response, then determine the ratio σ2/(αr2e) from

the unforced PDF. The ratio b/(αre) may then be determined from the PDF under

a number of fixed angles θ.

A similar non-dimensional form may be given to the parameters of (6.4) for the

axisymmetric wake. For comparison, these parameters are given in table 6.2 and

are evaluated from those given in Rigas et al. (2015). Note here that the value

2Note that this is not the same as the expected value E[|r|], for which there is not a simple
analytical solution.

3Given that the model is for the temporal derivative of a spatial variable r, we could choose
to non-dimensionalise in either time or space. We have chosen the spatial approach although a
temporal approach would yield the same non-dimensional parameters.
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αD
U∞

λρ2e
α

σ2

αρ2e

Value 0.0498 1 2.16

Table 6.2: Dimensionless parameters for the low dimensional model (6.4). Values
are non-dimensionalised from those given in Rigas et al. (2015).
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Figure 6.4: Properties of the mode r at the three tested Re: (a) probability density
function and (b) power spectral density.

ρe =
√
α/λ is not actually the equilibrium value of ρ from (6.4a), however it is still

a characteristic value and serves its purpose for non-dimensionalising.

6.3.3 Unforced flow

The unforced flow was examined at three different free-stream velocities correspond-

ing to Re = 2.3 × 105, 3.0 × 105 and 4.4 × 105. Figure 6.4(a) shows the PDF for

r, along with the model prediction from (6.9), using the parameters values shown

in table 6.1. The PDF demonstrates the asymmetry of the flow since the mode of

the distribution is non-zero, i.e. the PDF peaks at |r| = re, the equilibrium value

of (6.6). The results demonstrate both collapse of the data with Re and agreement

with the model prediction.

As indicated in (6.9), the unforced (θ = 0) PDF can be written as a function of

two ratios: σ2/α and λ/α. These two ratios determine respectively the sharpness

and location of the peak in the PDF and are seen to be largely Re independent.

Physically, the parameter ratio σ2/α gives the intensity of the noise relative to the

growth rate of the instability. The results therefore suggest that as Re changes,
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any change in growth rate is accompanied by a roughly equal change in the noise

intensity. As noted above, this parameter ratio is closely linked to the ratio of the

two switching time-scales: a large σ2/α corresponds to a larger δ/T . The second

parameter ratio, λ/α describes the level of asymmetry, and hence the topology of

the flow, at the two stable equilibrium points. The results therefore suggest that

this topology remains approximately constant.

Figure 6.4(b) shows the power spectral density of r as a function of the Strouhal

number, StW = fW/U∞. At lower frequencies, a region of ω−2 roll off is observed

for all three Re, consistent with the expectations for a randomly bistable process as

described above.

6.3.4 Response to harmonic forcing

While the unforced results of § 6.3.3 allow assessment of the time-averaged be-

haviour, full quantification of the process requires knowledge of the time-scales quan-

tified by α and τ . These time-scales can most accurately be assessed by examining

the frequency response, evaluated as discussed in § 5.1.

We may begin by examining the anticipated response to harmonic forcing based

upon the model (6.6), neglecting for now the time delay τ . It is helpful at this stage

to consider a normalised version of (6.6), as per the method described above. For a

case with harmonic forcing this gives the following equation for q = r/re,

q̇ = α(q − q3) + b′Θsin(ωt+ ϕ) + σ′ξ(t), (6.11)

where b′ = b
re

and σ′ = σ
re
.

As is common for SDEs, obtaining analytical solutions is extremely difficult, so we

must proceed by looking at limiting cases where some terms in the model may be

assumed much larger than others. One such approximation for the case in which

the stochastic forcing is much stronger than the deterministic input is given by

Gammaitoni et al. (1998). For a small harmonic input we can expect a component

of the response q(t) = Q sin(ωt), noting here that a phase shift is already included

in the input term. Under these assumptions Gammaitoni et al. (1998) showed that
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the parameters Q and ϕ are given as a function of frequency as,

Q(ω) ∝ 2rK√
4r2K + ω2

, (6.12a)

ϕ(ω) = tan−1

(
ω

2rK

)
. (6.12b)

Here the parameter rK is the mean switching rate without forcing, equal to the

inverse of (6.8). It can be shown that these equations are identical to the frequency

response of a first-order low-pass filter with a corner frequency at the mean switching

rate rK .

The implication of the expressions in (6.12) is that the response of the system is

critically governed by the mean switching rate which is in turn dependent upon

the noise. While this will be true in the case of weak forcing, it is intuitive that

for strong forcing the noise may no longer be a critical factor. This motivates an

alternative approach in which the noise is neglected and we seek harmonic solutions

to a deterministic version of (6.11).

Substituting an assumed solution of q = Q sin(ωt), and using the identity sin3(θ) =
1
4
(3 sin(θ)− sin(3θ)) gives,

ωQ cos(ωt) = αQ sin(ωt)− α1
4
Q3 (3 sin(ωt)− sin(3ωt))+

b′Θ(cos(ϕ) sin(ωt) + sin(ϕ) cos(ωt)) . (6.13)

Neglecting higher harmonics and equating trigonometric terms gives the following

two equations which may be solved for Q and ϕ:

ωQ = b′Θsin(ϕ), (6.14a)

αQ− 3

4
αQ3 + b′Θcos(ϕ) = 0. (6.14b)

Numerical solutions to these equations for varying dimensionless forcing amplitudes

b′Θ/α are displayed in figure 6.5, along with the solution of (6.12). At low frequen-

cies, the gain is largest for small amplitudes which is to be expected for induced

switching between the two stable solutions: for the normalised system this corre-

sponds to switching between q = ±1. At intermediate frequencies approaching α

sudden transitions are seen for the small amplitude cases, most likely caused by a

transition from repeated switching, to oscillations around one of the minima. At

frequencies ω > α, all responses converge towards a 1/ω decay rate and −π/2 phase
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Figure 6.5: Analytical solutions to the frequency response according to (6.14) for
varying forcing amplitudes and (6.12) for the case rK = α.

shift.

It is finally worth noting that the true frequency response of the system, even if

accurately captured by (6.6), will not be given by either of the solutions presented

here, as in practise the noise and forcing are of numerically similar size. However in

both cases we may expect the system to act broadly like a first-order low-pass filter

and, provided our forcing is strong enough, to have a corner frequency determined

by the parameter α.

Figure 6.6 shows experimental data for the antisymmetric frequency response of the

flow for a particular forcing amplitude of 10◦ at the three different Re, demonstrating

that the responses collapse in both magnitude and phase. This shows that the

dynamics and flow topology associated with the process remain essentially identical,

such that in a dimensionless form the parameters of (6.6) remain constant. As

discussed in § 5.1, the bistability dynamics are evident for StW . 0.1. Within this

frequency range we observe that the magnitude of the response begins flat before

beginning to decay, just as for the analytical results discussed above. From the phase

response shown in the lower part of figure 6.6, we first observe that at all frequencies

the output r lags the actuation. While some portion of this phase lag may be

attributable to the dynamics captured by the magnitude response, some portion

may be due to the advective delay. The monotonic decrease of phase angle with

frequency over a region in which the magnitude response is flat (StW . 2 × 10−2),
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Figure 6.6: Frequency response between the antisymmetric flap oscillation and the
mode r at the three Re. The flap oscillation amplitude is 10◦.

suggests that such a delay is present4. Since the phase responses are independent

of Re, this delay is observed to be constant in a dimensionless sense, i.e. τU∞/W

is constant. This confirms the idea that τ is an advection time associated with the

shear layer perturbations generated by the flap.

6.3.5 Offset response

In addition to the frequency response discussed above, we can also consider a DC

forcing where the angle θ is held at fixed non-zero values. Experimentally the

flaps may be placed at a fixed angle and their effect on the distribution P (r) is

measured. Figure 6.7(a) shows the steady state PDF for a number of different

flap angles at a free-stream velocity U∞ = 15 ms−1. The data show that the flaps

induce approximately equal and opposite skewness as they are moved from positive

to negative offsets. At a zero offset the PDF is approximately symmetric, with

any asymmetry resulting from either imperfect alignment within the experiment or

insufficient averaging time.

Figure 6.7(b) shows the particular relationship between θ and the skewness of the

PDF; defined here as the natural logarithm of the ratio P (re)/P (−re). The results

demonstrate that a linear fit can be obtained for a range of angles. While more

4A delay τ will give a phase lag ϕ(f) = 2πτf with no effect on the amplitude of the response.
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Figure 6.7: Response of the wake to static forcing: (a) Steady state PDF P (r) under
a range of steady flap angles θ and (b) skewness as a function of θ. The dashed line
in (b) shows the linear fit used to establish the parameter b, fitted for −2◦ < θ < 2◦.

details are provided below, the implication of this is that θ has a linear influence in

(6.6), justifying the choice of a linear term bθt−τ .

6.3.6 Parameter extraction

As detailed in Rigas et al. (2015) the parameters of (6.4) may be estimated using the

steady state PDF of ρ and the mean squared displacement of φ. These two statistics

respectively provide information on the ratio of the parameters (λ/α, σ2/α) and the

time-scales associated with them, thereby providing sufficient information to fit the

model. For the Ahmed body wake, the PDF may again provide information on the

relative sizes (λ/α, σ2/α), but in this case the frequency response is required to

obtain temporal information.

The first time-scale, α, is estimated from the frequency response of figure 6.6. We

stress here that while the frequency response is usually used as a method for the

identification of linear systems, the behaviour seen here is nonlinear, as may be

observed from the results of § 5.1. We therefore do not seek to fit a linear model

to obtain α, but are still able to use the response. Based on the frequency response

analysis presented above, we may estimate the parameter α as the inverse of the

corner frequency, seen at StW ≈ 5 × 10−2 in figure 6.6. This gives δ ≈ 1/α ≈
W/0.05U∞ ≈ 0.2 s for a free-stream velocity of 15 ms−1. Such a time-scale is

sufficiently small that, when a long time series is viewed, wake reversals appear
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to be instantaneous. However this is notably slower than the period of the vortex

shedding: for the same U∞, this period is approximately 0.07 s.

Secondly, the time-scale given by the advective time delay is estimated via the slope

of the phase response; the precise method for doing this is described in appendix D.2.

The value of this parameter, 1.7W/U∞, is consistent with the interpretation that τ

is associated with the stream-wise advection of perturbations generated by the flaps.

The parameters λ and σ, quantifying respectively the saturation and noise intensity,

are estimated from the shape of the PDF shown in figure 6.4(a). As stated above,

λ/α determines the location of the peak while σ2/α determines the width of the

distribution. Based upon this understanding of how the parameter ratios change

the PDF, a combination may be found that provides a close fit between the model

and experimental data.

Estimation of the parameter b can be found by examining the Fokker-Planck pre-

diction, (6.9). As can be seen, only the term involving θ gives an effect that is

asymmetric about r = 0. Taking the natural logarithm of the ratio of P (±re) we

obtain

ln

(
P (re)

P (−re)

)
=

4bθre
σ2

. (6.15)

As shown in figure 6.7(b), the left-hand side of this equation is seen to be linear

with respect to θ, within a certain range. Provided that σ is already estimated, the

dimensionless form for b is estimated by the slope of the fit and given in table 6.1.

The dimensionless form for λ is by definition equal to unity since re =
√
α/λ, while

those for σ and b are seen to be of O(0.1) (see table 6.1). The relative size of λ and

σ2 is therefore consistent with the fairly sharp peaks in the PDFs of figures 6.4(a),

6.7(a). Given flap angles θ of O(10◦), the bθ term is therefore large relative to the

noise and instability terms, suggesting that the flaps have good control authority.

It is finally interesting to note by comparing tables 6.1 and 6.2 that the dimension-

less values of α are almost identical for the two models of (6.4) and (6.6). This

parameter quantifies in some sense the strength of the instability associated with

the SB mode. Since this mode is believed to be essentially the same, but with dif-

ferent spatial symmetries in each case, it may not be surprising that the values are

numerically very similar. In contrast, the dimensionless values for σ are an order of

magnitude different. This may indicate a deficiency in the modelling and estimation

approach, or suggest that the SB mode of the axisymmetric wake is more susceptible

to turbulent fluctuations.



6.4. A model for the vortex shedding 123

6.4 A model for the vortex shedding

Having successfully applied the stochastic modelling approach to the SB mode of

three-dimensional turbulent wakes, we now look to apply a similar approach to the

vortex shedding in the Ahmed body wake. The vortex shedding is believed to ap-

pear in both the top-down (vertical) and left-right (lateral) dimensions (Volpe et al.,

2015) and is visible as broadband fluctuations in the base pressure spectrum. This

is confirmed by the results shown in chapter 5, that the wake exhibits resonant

behaviour under the influence of antisymmetric forcing in both the lateral and ver-

tical dimensions. A model is therefore required that can display both broadband

self-excited oscillations when unforced, as well as resonant behaviour under the in-

fluence of forcing. We will not seek to find a model that accurately reproduces

the behaviour seen experimentally in a quantitative sense, but rather demonstrate

that the general form of model proposed here may qualitatively capture the key

characteristics.

6.4.1 The stochastic model

As for the SB mode, we again start from a modified version of (6.1), but in this case

use complex parameters: α = αr + iαi, λ = λr + iλi, u = ur + iui, σ = σ(1 + i).

This is then analogous to a Hopf bifurcation with the addition of noise. Writing

x = aeiψ, (6.1) becomes,

ȧeiψ + iaψ̇eiψ = (αr + iαi)ae
iψ − (λr + iλi)a

3eiψ + ur + iui + σ(1 + i)ξ(t). (6.16)

Splitting (6.16) into real and imaginary parts gives equations in each of the magni-

tude and phase of x,

ȧ = αra− λra3 + ur cos(ψ) + ui sin(ψ) + σ (cos(ψ) + sin(ψ)) ξ(t), (6.17a)

ψ̇ = αi − λia2 +
1

a
(ui cos(ψ)− ur sin(ψ)) +

σ

a
(cos(ψ)− sin(ψ)) ξ(t). (6.17b)

The equation for the amplitude in (6.17a) is very similar to that for r in (6.6).

In the absence of forcing the dynamics of a would be the same as those for r,

consisting of bistable switching and fluctuations around a non-zero equilibrium value

of ae = ±
√
αr/λr. For the case again of no input u, the equation for the phase

(6.17b) describes a process with a mean drift, E[ψ̇] = αi− λi E[a2], and a stochastic

forcing. Together these terms impose a mean frequency to the variable x, and
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αr

αi

λra
2
e

αr

αiW
U∞

λia
2
e

αr

σ2

αra2e

U
αrae

Value 0.25 1 4 0 0.4 0.8

Table 6.3: Dimensionless parameters for the low dimensional model (6.17). The
growth rate is determined by αr while the natural frequency (ω0) is determined by
αi. By definition λra

2
e/αr = 1, and by choice λi = 0.

random fluctuations which give a broadening of the frequency content, as observed

in turbulent flows.

While this equation is complex, it is important to be able to provide a single input

and to evaluate from it a single output. In this way the model may be made

consistent with the experiment, from which a single input (flap angle) and single

output (base pressure metric) are defined. If applying a purely real input u = ur+0i,

we may define our single input as u = ur and for the case of a harmonic input we

have u = U sin(ωt). We take a single output as y = a sin(ψ).

Initially, it is insightful to understand how the nature of the system described by

(6.17) varies with each of the model parameters. As described in § 6.3.2 it is impor-

tant to normalise the parameters in a suitable way. These normalised parameters

are displayed in table 6.3, along with representative values from a comparison to

experimental data. Note that unlike for the models presented in § 6.3, these val-

ues have not been found via rigorous fitting procedures, but are simply chosen to

illustrate the desired behaviour.

The parameter αr gives the growth rate of the instability in a very similar manner

to the parameter α of (6.4) and (6.6). This describes in some sense the strength of

the instability and the speed at which the magnitude a can change. Similarly αi

also describes a time-scale but in this case one quantifying the oscillatory frequency.

In the dimensionless form, αiW/U∞ is the Strouhal number of the process. The real

saturation parameter λr specifies the equilibrium values for a and as for the previ-

ous models, has a value of unity in a dimensionless sense. The imaginary parameter

λi provides a coupling between the amplitude and frequency and is neglected for

simplicity. Finally the parameters σ and U provide the amplitude of the stochas-

tic and deterministic forcing terms. Larger values of σ2/(αra
2
e) tend to give more

broadband dynamics for the output y, while smaller values give more narrow-band

frequency content and a narrower resonant region under forcing. Finally, while the

unforced behaviour is unaffected by U , larger values change the range of frequen-

cies over which resonance can occur, demonstrating a non-linearity in the frequency

response. Further examples of how the behaviour varies with these parameters is
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Figure 6.8: Unforced time series (left) and power spectral density (right) for the
variable y = a sin(ψ) of (6.17).

given in appendix E.

6.4.2 Simulations

To demonstrate the properties of the model we may examine time series and spectra

for the output variable y. We cannot expect a very close fit to experimental data, as

the CoP measurement is dominated by other features of the wake, however we may

still assess the qualitative behaviour. Figure 6.8 displays these data, evaluated from

a realisation of (6.17). The time series demonstrates oscillatory behaviour but also

significant broadband fluctuations. This is corroborated by the PSD which displays a

broad peak, centred at the frequency ω0. At higher frequencies the spectrum decays

with a −2 slope. The model therefore qualitatively displays the noisy, self-excited

oscillations typical of vortex shedding in turbulent flows.

Figure 6.9 displays the frequency response of (6.17), subject to a purely real input

ur = U sin(ωt). The behaviour is almost identical to that of a lightly-damped 2nd-

order oscillator with natural frequency equal to ω0. Such a fit is shown by the solid

black line and is seen to match the response almost perfectly in both magnitude and

phase.

To summarise, it is clear that the stochastic model of (6.16) is able to provide broadly

the correct behaviour for the vortex shedding. Namely, broadband frequency content
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Figure 6.9: Frequency response of the model (6.17) between real input ur = U sin(ωt)
and output y = a sin(ψ). Also shown is a linear 2nd-order fit to the data.

for self-excited oscillations and resonant behaviour under the influence of forcing. It

is also interesting to note that the frequency response is very similar to that for a

2nd-order linear oscillator. This suggests that a linear 2nd-order transfer function

may provide a useful step in the design of feedback controllers. We shall examine

the application of this in chapter 7.

6.5 Summary

The modelling approach presented in this chapter has consisted of the simple equa-

tions governing pitchfork or Hopf bifurcations with the addition of a stochastic

forcing term. While this type of approach was first suggested by Rigas et al. (2015),

here we have additionally applied the approach to the SB mode of the Ahmed body

wake and to the oscillatory vortex shedding. For the case of the SB mode, we have

demonstrated that the model may provide a good fit to the experimental data under

both unforced and forced conditions. For the vortex shedding we have demonstrated

that the model may provide qualitatively the correct behaviour.

Part of the value of these models is in the qualitative description that they give. For

the case of the bistability this is of a wake flipping between two stable equilibrium

positions, perturbed by the noise arising due to turbulence. Further to this, the

bistability model provides parameters that quantify the physical processes: e.g. the
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time scales δ and T that are respectively the instability time scale and the flipping

period. We have demonstrated here through the frequency response that the former

is finite and notably larger than the vortex shedding period. Our model suggests that

the ratio of these time scales may be related to the ratio σ2/α which the experimental

results demonstrate to be roughly constant with Reynolds number. This indicates

that any increase in the growth rate α is accompanied by a proportionate change

in the noise intensity σ2. Our model and observations are consistent with those of

Grandemange et al. (2013c) who found a linear increase in the flipping rate with

increased free-stream velocity, corresponding to a reduction in the time scale T and

therefore an increase in σ2. Since we find that α ∝ U∞, this increased flipping rate is

accompanied by an increased growth rate and therefore the ratio σ2/α may remain

constant with changing Re.

For the vortex shedding the model describes an oscillatory limit cycle, wherein

the phase follows a random walk with a drift term equal to the mean frequency.

This describes well the broadband frequency content typical of vortex shedding in

turbulent flows.

An interpretation of these models is that despite the high-dimensionality of the fluid

flow system under investigation, the large-scale features follow relatively simple, low-

dimensional behaviour. Furthermore, this reinforces the idea that the instabilities

observed at laminar and transitional Reynolds numbers are persistent and important

to the nature of the flow even under fully turbulent conditions. Perhaps the greatest

utility for these models is the insight that they bring in the work towards control

of fluid flows. In particular, we have found that the input-output behaviour of the

wake may be described by fairly simple models that, as will be discussed in the

following chapter, allow effective feedback-control design.
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Chapter 7

Closed-loop control with flaps

Having examined the effect of open-loop forcing and also developed models for both

the SB mode and the vortex shedding in three-dimensional wakes, we now look at

the application of feedback control to these features of the wake. As will be explained

below, control of each will require subtly different approaches but will involve some of

the same challenges associated with the particular nature of the frequency response

of the wake. We will therefore start this chapter with a discussion of the frequency

responses displayed in chapter 5 and the implications for feedback control. We will

then move onto the detailed control design and results for each of the SB mode and

the vortex shedding.

7.1 System interpretation

The frequency responses displayed in § 5.1 displayed some particular characteristics

that have implications for feedback control. The responses evaluated from both the

lateral flaps (figure 5.1) and the vertical flaps (figure 5.3), demonstrated a fairly

strong response at low frequencies St < 0.05 and a resonance of the vortex shedding

at St ≈ 0.2. However crucially for feedback control both responses also demonstrated

a sharp trough in the response at St ≈ 0.1, indicative of what are known as right-

half-plane (RHP) zeros. In this section we will provide a possible explanation for

these RHP zeros and discuss the implications for control.

As seen in the frequency responses in § 5.1, RHP zeros may be exemplified by a sharp

trough in the frequency response accompanied by a rapid decrease in phase angle. A

common cause for such behaviour is the cancellation between dynamics occurring at

129
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different frequencies (see e.g. Skogestad & Postlethwaite, 2005, § 5.7), if the output
is composed as the sum of the response to these different dynamics. For the system

consisting of the three-dimensional wake and forcing flaps, it is plausible that there

are indeed two separate sets of dynamics in evidence. At low frequencies the flaps

deflect the separation bubble, either leading to induced flipping of the bistability or

deflection in a continuous sense. In either case we may expect the response to be

largest at low-frequencies and to gradually decay as the forcing frequency increases,

similar to a first-order low-pass filter (see e.g. figure 6.5). At higher frequencies

the flaps excite the oscillatory vortex shedding, which may be expected to act as

a second-order resonant system, as described by the model of § 6.4. Approximate

transfer functions for the forced response of each of these dynamics may therefore

be,

G1(s) = g1
1

1 + sT1
=
n1

d1
, (7.1)

G2(s) = g2
1

1 + 2ζsT2 + s2T 2
2

=
n2

d2
. (7.2)

Here T1/T2 give the time constants of the first/second-order systems respectively,

and ζ gives the damping ratio of the second-order system.

In order for a cancellation to occur, the two transfer functions must be added to-

gether, G = G1 +G2. This is based on the idea that the two features are essentially

independent, therefore the total response of the wake may be considered as the sum

of the two responses. The poles of the resulting transfer function G will be the poles

of the two constituent transfer functions, however the zeros will not be the same but

are instead given by the roots of

n(s) = n1(s)d2(s) + n2(s)d1(s)

= g1
(
1 + 2ζsT2 + s2T 2

2

)
+ g2 (1 + sT1)

= g1 + g2 + (2g1ζT2 + g2T1) s+ g1T
2
2 s

2

= g
(
1 + 2ζzTzs+ T 2

z s
2
)
, (7.3)

where g = g1+g2, ζz = (2g1ζT2+g2T1)/(2T2
√
g21 + g1g2)) and Tz = T2

√
g1/(g1 + g2).

By Routh-Hurwitz, the criteria for the pair of RHP zeros observed experimentally

are therefore,

g1 + g2 = g > 0, (7.4a)

2g1ζT2 + g2T1 = 2gζzTz < 0, (7.4b)

g1T
2
2 = gT 2

z > 0. (7.4c)
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These criteria may be satisfied by appropriate choice of the parameters, and fur-

thermore the properties of the response may be chosen to fit with observations. For

example, if we specify the DC gain g, the properties of the zeros (specified by Tz and

ζz) and the properties of the poles (specified by ζ and T2), we have enough infor-

mation to determine all remaining parameters. We will discuss a full application of

this fitting approach in § 7.3, but for now the key point is that modelling the wake

response as the sum of high and low-frequency dynamics provides a possible expla-

nation for the observed behaviour. Furthermore, a suitable form for these dynamics

is one consistent with the modelling of chapter 6.

7.1.1 Implications for feedback control

Having found that the observed frequency response may be explained by the models

of chapter 6 and that the behaviour is indicative of RHP zeros, it is important to

consider the implications of these observations for feedback control design. Intu-

itively, it is clear that for the range of frequencies in which the measured response

is very small, it will be difficult to provide effective control. Further to this, the

large decrease in phase angle associated with the presence of RHP zeros may be

considered similar to a delay in the response. It may also be intuitive that if the

response of the system is consistently delayed relative to the input, it will be difficult

to provide the correct input in response to unpredictable disturbances. For a more

rigorous understanding of the effect of RHP zeros we can look at what is known as

the sensitivity function S(iω).

The sensitivity function defines the expected ratio of measured fluctuations, with

and without control. Considering the system displayed in the block diagram of

figure 7.1, we can first define a “loop” transfer function as L = (G1 +G2)AK. If no

control is present then the measurement m will consist purely of the disturbances

d. With the negative feedback loop in place it may be shown that,

m =
1

1 + L
d,

=Sd, (7.5)

where we define the sensitivity function as S = 1/(1 + L). This transfer function

describes, as a function of frequency, how the exogenous disturbances d are amplified

or attenuated by the action of the feedback control. For a system with no RHP poles

but a complex conjugate pair of RHP zeros at z = x± iy it may be shown that the
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following integral must be satisfied (Freudenberg & Looze, 1985)

∫
∞

0

ln |S(iω)|w(z, ω) dω = 0, (7.6)

where1

w(z, ω) =
x

x2 + (y − ω)2 +
x

x2 + (y + ω)2
. (7.7)

This is similar to the classical waterbed formula from Bode (1945), the difference

being the frequency dependent weighting function w(z, ω). The weighting function

is large near to the frequency of the zeros and decays away from this frequency. The

result of this is that any attenuation (S < 1) in a frequency range near to that of

the zeros must be compensated by an amplification (S > 1) within a similar range.

As we shall see below, such amplification is often detrimental with regard to drag

reduction, therefore the limitation of (7.6) is of key importance and will impose

limitations to the control efficacy.

7.1.2 Control approaches

The block-diagram schematic for the feedback systems that we will develop is dis-

played in figure 7.1. As discussed above, the response of the wake is shown as

the sum of transfer functions G1 and G2, quantifying respectively the response of

the low and high frequency dynamics to flap angles θ. The measurement r is also

seen to be influenced by disturbances d, that capture both measurement noise and

all remaining unmodelled dynamics of the wake. In the case without any control

or open-loop forcing the measurement consists entirely of the disturbance signal d.

The input to the combined wake model is the antisymmetric flap angle θ which is

in turn determined by the voltage v and actuator transfer function A. As discussed

in § 2.2.1, the actuator dynamics behave as a 2nd-order oscillator, for which the

resonant frequency is determined by choice of the mechanical components. Control

design consists of deciding the dynamics of the controller K that determines v based

upon real-time measurement of the wake.

Control design may now proceed along one of two approaches, either targeting the

static asymmetry of the wake influenced by the bistability, or the unsteadiness which

is strongly influenced by the vortex shedding. The former of these approaches is the

1Note that the actual values of this function are unimportant, what matters is the variation
with frequency.
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unproblematic since this term provides a saturation so is likely to help the control

action. Moreover, the controller will be aiming to make r small, and thereby achieve

a flow state in which this term is negligible. Secondly, having transformed the system

to the Laplace domain, we use a first-order Padé approximation for the time delay

(Skogestad & Postlethwaite, 2005, § 4.1.6). This gives the following transfer function
between θ and r:

G1(s) =
r̄(s)

θ̄(s)
=

b (2/τ − s)
(s− α) (2/τ + s)

, (7.8)

where s is the complex Laplace transform variable. This transfer function has one

unstable pole at s = α corresponding to the flow instability, as well as a pole and

zero at s = ±2/τ , resulting from the time delay. The presence of the unstable pole

and right half-plane zero both imply that control of the system will have limitations

(Freudenberg & Looze, 1985); in particular this implies that we cannot hope to have

control authority over a wide frequency range.

It is worth noting here that the transfer function given by (7.8) is of course different

to that given by (7.1), however this is not really a contradiction, just a result of

different assuptions. For the full nonlinear system, (7.1) provides a stable transfer

function that approximates the phase-averaged response, as seen in § 6.3.4. However
in this section we are hoping to suppress the instability underlying this behaviour

and therefore choose to use the linearised version of the unstable system, as captured

by (7.8).

In addition to the transfer function specifying the dynamics of the bistability, it is

insightful to capture the dynamics present at higher frequencies. These dynamics

are evident for StW > 0.1, as shown in figure 6.6. In order to best cater for these

dynamics in the control design, we seek to fit a linear model that captures the neces-

sary amplitude and phase information. Our fit to the higher frequency dynamics is

shown in figure 7.2. As shown, we only fit the response for StW > 0.11. Below this

frequency the bistability dynamics are dominant, and we therefore do not require a

linear fit to the (nonlinear) dynamics. For StW > 0.11 the response of the flow to

open-loop forcing is much more sinusoidal than at lower frequencies (figure 5.2) and

a linear fit such as that applied in (Dahan et al., 2012) may be appropriate. We

emphasize that the purpose of this is simply to understand any interactions between

the controller and these higher frequency dynamics, it is (7.8) that captures the key

information about the dynamics of the SB mode.

Finally it is necessary to identify A, the dynamics of the actuator consisting of

the lateral motors and flaps. This is important since the finite bandwidth of the
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actuator, and the limitations this imposes, must be included in the control design.

As was discussed in § 2.2.1, the actuator acts as a second-order linear oscillator

to which we may readily fit a linear transfer function. We choose the actuator to

have a natural frequency corresponding to StW ≈ 0.24 at 15 ms−1, giving sufficient

bandwidth to control the bistability which manifests for StW . 0.1. The frequency

response and transfer function fit are displayed again here in figure 7.2.

7.2.2 Preliminary control design

Based purely upon the transfer function G1 derived from our model, the system

shown in figure 7.1 has a closed loop transfer function given by

T (s) =
A(s)K(s)G1(s)

1 + A(s)K(s)G1(s)

=
nAnKnG

dAdKdG + nAnKnG
, (7.9)

where n and d respectively denote the numerator and denominator of the individual

transfer functions. The stability, among other closed-loop properties, is determined

by the roots of the denominator of T (s) (denoted dT (s)). For an initial analysis we

can consider the case without actuator dynamics, i.e. A = a0, a static gain. For

K = kp, a simple proportional gain we have

dT (s) = s2 +

(
2

τ
− kpba0 − α

)
s+

2

τ
(kpba0 − α) . (7.10)

All variables here have the same meaning as in (7.8). For stability, the Routh-

Hurwitz criterion requires that each of the bracketed terms are positive (Åström &

Murray, 2008). This requires that

α

ba0
< kp <

2− τα
τba0

. (7.11)

There is therefore expected to be a gain window, just as there is for the control of

vortex shedding over cylinders (Illingworth et al., 2014). A necessary condition for

the existence of a kp satisfying (7.11) is therefore

ατ < 1. (7.12)

This makes intuitive sense because if the time delay is equal to, or greater than

the time scale of the SB instability, the feedback system will be unable to respond
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Controller ki ∆CD (%) 〈∆Cp〉 (%) Pact (%) Stmax

Open loop - −1.0 1.7 - -
K1 0.07 −0.9 1.7 11 0.22
K2 0.13 −1.6 3.7 15 0.19
K3 0.20 −2.0 3.9 24 0.13

Table 7.1: The controllers and their performance including the controller gain, drag
reduction, base pressure change, actuation power as a percentage of the power saving
and the most amplified frequency. For comparison, the results for the open-loop
forcing giving approximately maximal drag reduction are also shown, taken from
the results displayed in figure 5.1.

quickly enough. Inspection of the values in table 6.1 confirms that this condition is

satisfied2 and therefore that, in the absence of other wake and actuator dynamics,

the bistable wake mode can be stabilised using proportional feedback.

7.2.3 Detailed control design and performance

Given the models for G(s) and A(s) we can now design controllers, K(s). We present

the results here from the application of three controllers of increasing complexity.

In each case the form of the controller is chosen before the gain is manually tuned

to identify the condition for maximum drag reduction. Each controller also features

a low pass filter (KLP ) with a 3 dB frequency corresponding to StW ≈ 10, intended

to filter out noise in order to reduce power consumption. The properties and results

from the three controllers are summarised in table 7.1.

Proportional controller, K1

Based upon the above analysis, a first controller was chosen to be of the form

K1(s) = k1
1

1 + sTL︸ ︷︷ ︸
KLP

, (7.13)

where TL is the time constant of the low-pass filter KLP . The optimal gain k1 with

respect to drag reduction was found by manual tuning. It can be seen from table 7.1

that such a controller achieves a drag reduction of 0.9% and requires only 11% of

the saved power in order to drive the actuators. By comparing the curves for K1

2This product is given by the product of the dimensionless parameters: αW

U∞

τU∞

W
= ατ =

0.05× 1.7 = 0.085.
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Figure 7.3: PDF for r (a) and premultipled PSD (b) under the three controllers.
The solid black line shows the uncontrolled case for comparison.

and the uncontrolled case in figure 7.3(a), it can also be seen that the controller

makes the wake more symmetric on average, i.e. the peak of the PDF has moved to

a smaller value of r.

The limitations of the proportional controller can be seen by looking at the sensi-

tivity function S(s) = 1/(1 + A(s)K(s)G(s)). This is shown in figure 7.4. For a

stable system, the sensitivity function gives the expected ratio of fluctuations with

and without control, therefore values of greater than unity indicate that the con-

troller amplifies fluctuations. It can be seen that for K1 there is a large peak at

StW ≈ 0.23. The prediction of the sensitivity function is borne out in the closed

loop PSD, shown in figure 7.3(b), where there is evidently a large peak in the fluc-

tuations at StW ≈ 0.22. The open-loop results displayed in figure 5.1 demonstrate

that fluctuations at this frequency lead to a large drag increase, and most likely

correspond to an interaction with the vortex shedding. Since any further increase in

gain increases the magnitude of these fluctuations, the optimal gain is found as the

trade-off between providing increasing suppression of the bistability and avoiding

the undesired higher-frequency interaction.

Filtered controller, K2

The limitation of the proportional controller arises in part due to the actuator

dynamics: the peak sensitivity coincides with the resonant frequency of the actuator

at StW ≈ 0.23, as seen in figure 7.2. These dynamics may be catered for by the
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Figure 7.4: Bode plot for the controllers (left) and the expected sensitivity function
S (right).

inclusion of a notch filter (KN) that counteracts the resonant behaviour, giving a

controller of the form

K2(s) = k2
1 + 2ζnsTA + s2T 2

A

1 + 2ζdsTA + s2T 2
A︸ ︷︷ ︸

KN

1

1 + sTL︸ ︷︷ ︸
KLP

, (7.14)

where ζn < ζd and TA is the time constant of the actuator. The controller may again

be tuned by minimising the drag with respect to the DC gain k2. The optimal drag

reduction and base pressure increase, shown in table 7.1, are significantly increased

to 1.6% and 3.7% respectively, while the control is only marginally less efficient than

for K1. Figure 7.3(a) demonstrates that bistability is suppressed further relative to

the K1 case since the peak in the PDF is reduced.

As in the previous control case, the limitation to the gain comes from fluctuations

occurring at higher frequencies. This is consistent with the sensitivity function

shown in figure 7.4 which predicts amplification at StW ≈ 0.22 and also confirmed

by the PSD in figure 7.3(b) which shows a distinct peak for StW ≈ 0.19. The

controller again represents a trade-off between achieving sufficient gain to suppress

the SB mode and avoiding amplification of high-frequency fluctuations that are

detrimental to drag reduction.
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Figure 7.5: The Nyquist diagram for the three controllers. For stabilisation of the
SB mode we require one encirclement of the −1 location, as marked by the red cross.

Loop shaped controller, K3

The previous two controllers are both limited by the presence of fluctuations at

higher frequencies that tend to increase the drag. These fluctuations limit the gain

that can be achieved at lower frequencies, thus imposing a limitation on the extent

to which the bistability can be suppressed. In order to improve this, is it is insightful

to look at the Nyquist diagram for each controller, as shown in figure 7.5.

The Nyquist diagram plots the real and imaginary parts of the loop transfer function

L(iω) = G(iω)A(iω)K(iω), and can be used to determine the expected stability and

robustness. In order to stabilise the instability that leads to the SB mode, one anti-

clockwise encirclement of the −1 point on the Nyquist diagram is required (Åström

& Murray, 2008). Practically, this means that the DC gain must be sufficiently large,

as discussed in § 7.2.2. It can be seen from figure 7.5 that K1 does not achieve an

encirclement while K2 does. The nonlinear saturation means that an encirclement

is not strictly necessary in order for a positive effect to be achieved, but the Nyquist

curves still help explain why greater suppression of the asymmetry is achieved with

K2.

The Nyquist diagram also gives insight into the sensitivity function: since S(s) =

1/(1 + L(s)), the sensitivity at any given frequency is determined by the distance

between the Nyquist curve at that frequency and the −1 point (shown by the cross).
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Minimising the sensitivity function therefore necessitates keeping the Nyquist curve

as far from the −1 location as possible. However, it is also important to understand

that there are fundamental limitations to the extent to which this can be achieved, as

discussed above in § 7.1. In particular, while the sensitivity function may be designed

to be small at some frequencies, over some other frequency range fluctuations must

be amplified by the controller. In terms of drag reduction, it is important to try

and place these fluctuations in a frequency range that has the least negative effect

on the drag. This frequency range may be estimated from the open-loop forcing

shown in figure 5.1, which displays that the generated drag increases approximately

linearly for 0.15 . StW . 0.25.

The final loop-shaped controller can be seen in figure 7.4, and the “loop” seen on

the Nyquist diagram of figure 7.5. The controller consists of the same notch filter

as K2 but with the addition of a second-order resonant filter (KR), specified by the

parameters ζ3 and T3. The objective of this filter is to reduce the loop gain over the

frequency range in which vortex shedding is amplified, while minimising the phase

lag at lower frequencies. This shaped controller is given by

K3(s) = k3
1

1 + 2ζ3sT3 + s2T 2
3︸ ︷︷ ︸

KR

1 + 2ζnsTA + s2T 2
A

1 + 2ζdsTA + s2T 2
A︸ ︷︷ ︸

KN

1

1 + sTL︸ ︷︷ ︸
KLP

. (7.15)

The loop shape can be seen to be improved by the wider encirclement of the −1
location, indicating that the low frequency gain and phase are appropriate. This is

consistent with the sensitivity function of figure 7.4, which is seen to demonstrate

a much smaller peak and at a lower frequency compared to the previous two con-

trollers. The frequency of this peak is therefore now at frequencies leading to a

smaller drag increase under open-loop forcing.

As shown in table 7.1 the loop-shaped controller K3 gives the highest drag reduction

and base pressure increase as 2.0% and 3.9%, while also maintaining good energy

efficiency. From figure 7.3(a), it is clear that the bistability has now been almost

entirely suppressed as there is no longer a peak present in the PDF. This can be

attributed to the higher DC gain of the controller, made possible by the loop-shaping

design. Conversely, it can be seen from figure 7.3(b) that K3 led to the largest

energy fluctuations of all the controllers, but was still able to achieve the highest

drag reduction. This was done by placing these fluctuations at lower frequencies

at which their effect on the drag is smaller, as demonstrated from the results in

figure 5.1.
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7.2.4 The controlled flow

Having observed that the controller may achieve up to a 2% drag reduction, it is

worth assessing the changes that the controller makes to the flow. This may first

be done by examining the time series of the mode r, as shown in figure 7.6. The

complete time series shows data before and after the controller is turned on at t = 0.

For t < 0, r is seen to flip randomly, as is typical for the natural flow. With the

application of the control there is an abrupt change in the behaviour, the random

flipping ends and smaller values of r become much more probable, as also indicated

in the PDF shown in figure 7.3(a).

Figure 7.6 also displays the drag coefficient CD and lateral force coefficient Cy. It is

evident that with the application of control there is an almost immediate reduction

in CD. This reduction is seen to be accompanied by a significant change in the

lateral force. For t < 0, Cy is seen to switch between two equal and opposite values

as a result of the bistable wake. The average size of this lateral force is shown by

the dashed lines. For t > 0 the bimodal behaviour is suppressed and the average

magnitude of the lateral force is significantly reduced, although the fluctuations

are still significant. While the magnitude of the lateral force is shown here, it is

important to note that the drag is likely related to the square of the lateral force

〈C2
y 〉, due to induced drag effects (Grandemange et al., 2013a, 2014b). However a

quantitative evaluation of 〈C2
y 〉may not be made from this experiment, as the inertial

forces associated with the flap motion provide a significant fluctuating contribution

to Cy.

We may also assess the motion of the flaps, in order to deduce the mechanism by

which the controller is able to reduce the drag and lateral forces. Figure 7.7(a) shows

a snapshot of the time series of r and θ. It is clear from the time series that the two

signals are closely linked, resulting from the DC gain of the controller. It can be

seen that as the mode moves towards one extreme (e.g. at t ≈ 29, 32 s), the flaps

also move in order to compensate, thereby causing the mode to move back towards

a value of zero. The reactive motion of the flaps leads to a broadband spectrum

for their motion, as displayed in figure 7.7(b). This indicates that the flaps do not

achieve suppression of the bistability via a quasi-open-loop effect. Rather, they rely

on the nature of a true feedback control system.

Although the time series of r and θ look superficially similar, the spectra demon-

strates some key differences, principle among which is the peak in Srr at StW ≈ 0.13,

as displayed in figure 7.3(b). As noted above, this peak is predicted by the sensitivity
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Figure 7.7: The dynamics of the actuator showing (a) a short time series of the
mode r and flap angles θ, and (b) their power spectrum.
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function displayed in figure 7.4, and is therefore a result of the interaction between

the flaps and the wake, arising due to the feedback. While we do not have velocity

measurements to confirm the exact nature of these oscillations, it is likely that they

result from an interaction with the vortex shedding of the wake since both the forc-

ing and measurement are antisymmetric, just as for a von Kármán vortex street.

Furthermore, the open-loop results shown in figure 5.1 demonstrate that open-loop

forcing at StW = 0.13 leads to a small drag increase irrespective of the amplitude.

It is therefore reasonable to expect that these oscillations in the closed-loop system

act to increase the drag on the body and that if they could be avoided the drag

reduction may be improved.

Finally, it is important to note that the measurements here cannot distinguish drag

reduction from any thrust produced by the flaps. Such thrust could manifest as

a force directly on the flaps or as a pressure force on the body. However, any

thrust producing mechanism would have negative efficiency: the power required

would be greater than the power saving. The efficiency of the system detailed in

table 7.1 therefore suggests that the primary drag reduction mechanism is not thrust

generation.

7.3 Control of vortex shedding

The principle behind the control design presented in this section is to suppress

measured fluctuations over prescribed frequency ranges; the aim being to suppress

vortex shedding and thereby reduce the drag. Attenuation of unsteadiness for drag

reduction is an approach that has been previously applied to a number of flows

in numerical simulations, including: the flow over a backward facing step (Dahan

et al., 2012), a D-shaped bluff body (Dalla Longa et al., 2017) and the Ahmed body

(Evstafyeva et al., 2017). While in these examples the approach has proven effective

at achieving drag reduction, there is in general no a priori guarantee that measured

fluctuations are directly linked to the drag. In this work, we may be fairly confident

that the vortex shedding is related to the drag and, from the results of chapter 4,

that the fluctuations at St ≈ 0.2 are linked to the vortex shedding. Nevertheless,

the optimal choice of controller for drag reduction is non-obvious given the necessary

amplification of disturbances discussed in § 7.1.1. We therefore test a large number

of controllers in order to determine the best characteristics. This will be described

in detail below.
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Figure 7.8: Comparison of the experimental frequency response and the composite
model evaluated as the sum G1(s) +G2(s).

7.3.1 System formation

As for the bistability control described above, we must now find the transfer function

G(s) describing the response of the wake to flap forcing. As we are now considering

the vertical dimension for which the flow is not bistable, the transfer function of

(7.8) is no longer applicable. Instead we choose to model the wake as the sum of

first and second order transfer functions, as described above in § 7.1. The resulting

fit, combined with a small time delay, is displayed in figure 7.8. While this fit is

imperfect, it broadly captures all the key features of the response in both magnitude

and phase and will be suitable for control design. As above we will also need to

include the transfer function for the actuators A, which again consists of a 2nd-

order linear oscillator.

7.3.2 Control design

A starting point for the design of fluctuation-suppressing controllers is to examine

the unforced spectrum in order to identify the frequency range of interest, as well

as the drag change that open-loop forcing generates. Figure 7.9 displays the PSD
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Figure 7.9: Drag change with open-loop forcing frequency (a) and PSD of the vertical
pressure metric mv for the unforced flow (b).

of the pressure metric ml for the case both with and without vertical flaps in place

and repeats the drag change data of figure 5.3 for comparison. As discussed in

§ 5.1, the flaps are seen to interact very strongly with the vortex shedding for

StH ≈ 0.2. This frequency range is seen to approximately coincide with a “hump”

in the premultiplied spectra of figure 7.9(b). This hump is actually much clearer

for the case without flaps in place, but is still present for the case with flaps. The

reasons for differences between these two spectra are unclear, but may consist of a

combination of changes to flow features and changes to the observability of these

features. Regardless of this, the control must necessarily be applied with the flaps

in place. The frequency of the shedding is also consistent with previous results for

the Ahmed body from Grandemange et al. (2013c) and Volpe et al. (2015).

Motivated by the spectra and observed drag changes displayed in figure 7.9 we

may design controllers aiming to provide suppression in a frequency range around

StH ≈ 0.2. Given the relative complexity of the system we are trying to control, it is

desirable to use one of the many automated control-design algorithms available. We

choose to use what is known as H∞ synthesis, using the Matlab function hinfsyn.

As explained below, this allows automated shaping of the sensitivity function S,
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Figure 7.11: Illustration of a particular control design showing the weighting func-
tions w1, w2 and the corresponding closed-loop transfer functions S, KS.

The power of the H∞ control-design process described above is that by choosing the

frequency response of the weighting functions w1 and w2 we can shape directly the

closed-loop properties of the system; something that is otherwise challenging to do

in an ad-hoc manner. More specifically, we choose w1 to be large over the frequency

range in which we require fluctuation suppression. If we perform the design process

specifying only w1, overly aggressive control action may result, characterised by a

controller with very high gain at some frequency. We can therefore employ the

weighting function w2 to prevent such behaviour by first finding the frequency at

which K is large, then choosing w2 to be large at this same frequency. Our control-

design procedure is therefore a two-stage process where we first specify only w1, then

specify both w1 and w2.

To further clarify how the control-design process works, figure 7.11 displays the

transfer functions from a particular controller design. Displayed are the scaled

weighting functions γ/w1 and γ/w2 and the corresponding closed-loop transfer func-

tions S and KS. As displayed, 1/w1 is chosen to be a “notch” function, dipping

in a particular frequency range of StH ≈ 0.2. The H∞ control-design generates a

K such that S is also small in this same frequency range, but is necessarily large

elsewhere. The particular frequency and the width of the notch specified by 1/w1

can be varied and a large number of variants were designed. The two-stage process

of control design is detailed further in algorithm 1.
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Algorithm 1 The H∞ control design process.

1: Specify range of parameters for array of weighting functions W1

2: for wi1 in W1 do
3: P i ← P (GA,wi1, 1)
4: K0 ←hinfsyn(P i)
5: find St iH for which K0 is maximum
6: generate wi2 to be minimum at StH

i

7: P i ← P (GA,wi1, w
i
2)

8: Ki ←hinfsyn(P i)
9: check stability of Ki

10: end for
11: Test all stable Ki experimentally

Figure 7.12: Scatter plot of the drag and base pressure changes achieved by all of
the tested controllers. Positive ∆CD corresponds to a drag increase.

7.3.3 Controller performance

Following the application of the procedure outlined above, a total of N = 123

controllers were tested, all achieving attenuation and amplification of fluctuations

over different frequency ranges. The performance of these controllers quantified by

the achieved changes in CD and 〈Cp〉, is displayed in figure 7.12. Only five of the

controllers give a measured drag reduction, and for all of these the drag change is

within the experimental uncertainty.

The PSD for the pressure metric mv under the action of a particular controller is

displayed in figure 7.13. It is clear that for this particular controller suppression of
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Figure 7.13: PSD of the vertical pressure metric mv for a particular controller.
Suppression is achieved around StH ≈ 0.2, however the drag is not reduced.

the measured fluctuations is achieved around the shedding frequency of StH ≈ 0.2.

Also clear is the large amplification that is imposed at other frequencies, just as for

the bistability control displayed in figure 7.3(b). From the changes to CD and 〈Cp〉,
we know that the net effect of these changes is to increase the drag, although from

this example alone it not possible to decouple the beneficial and detrimental effects

of the control.

7.3.4 Analysis of the controlled flow

The results presented above demonstrate that for the particular controllers that were

tested, it was not possible to find one that could achieve measurable drag reduction.

Given these results we wish to know if there is something inherently wrong with the

strategy of measurement attenuation and amplification, or if drag reduction would

be possible given the correct choice of controller. While for any particular controller

it is only possible to observe the net impact of the changes in measured fluctuations,

leveraging the information from many controllers we may hope to learn the average

effect of attenuation or amplification as a function of frequency.

From the experimental implementations we haveN controllers, each with a predicted

sensitivity function Si and drag change Di. Since the predictions of the Si will not

be exactly borne out in the results, we define the experimentally determined spectral
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changes as,

Mi(ω) = ln

(
m̃i
v(ω)

m̃0
v(ω)

)
. (7.20)

Here m̃i
v and m̃0

v are the magnitude of the Fourier transform of mv for the i’th

controller and baseline case respectively. Due to the use of the logarithm in (7.20),

the parameterMi has the property that for the case of no control, it will be expected

to have a value of zero for all frequencies.

As a first try, we may look to fit a linear relationship between Mi(ω) and Di. Such

a relationship can be defined by the linear integral relation,

D(M) =

∫
∞

0

F (ω)M(ω) dω, (7.21)

where F (ω) is the frequency dependent mapping function. We may hypothesize

that F be large and positive around StH ≈ 0.2, as this would be consistent with

our expectation that amplification/attenuation of the vortex shedding would lead to

drag increases/decreases respectively. At this point it is worth noting the similarity

between (7.21) and the waterbed constraint of (7.6). For the case that the sensitivity

function is entirely accurate, M(ω) = ln |S(ω)|, so we may therefore gain some

insight from the differences between F (ω) and the waterbed weighting function

w(z, ω), as defined in (7.7). For example, if F (ω) = w(z, ω) and the relation of

(7.21) were true, it would be impossible to cause drag changes through the action

of feedback control. An alternative for a “frequency independent” flow might be

a constant F (ω) = c. In this case drag reduction could be achieved by placing

amplification in the region where w(z, ω) is large, thereby achieving large suppression

over other frequencies. In practice neither of these seem likely to be the case, but

as examples give some of the possible implications arising from the particular form

of the function F (ω).

The linear fitting may be estimated via a least-squares minimisation, seeking to ap-

proximate F (ω) in a piecewise manner. This procedure is detailed in appendix D.3,

and consists of finding a vector F̂ that minimises the error between the observed

drag and that predicted by (7.21). The frequency bins of this discretised weighting

function are chosen to be logarithmically spaced, as this gives the fairest way to

capture possible changes at all frequencies within the range of interest. The weight-

ing function is displayed in figure 7.14(a), plotted alongside the open-loop spectrum

for reference. Figure 7.14(b) shows the relationship between the true drag change

induced by each controller, and that given by our approximation (7.21). These re-

sults demonstrate a good agreement, suggesting that we may have some faith in the
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Figure 7.14: (a) A comparison of the best-fit weighting function F̂ with the uncon-
trolled spectrum, and (b) a comparison of the actual and predicted drag changes
from the least-squares fit.

best-fit vector F̂ and the relationship described by (7.21).

At very low frequencies, F̂ is seen to vary between large positive and negative values.

This is likely a result of over-fitting and the limited frequency resolution at this end

of the spectrum, so may not necessarily have any physical significance. A possibly

more significant positive value is seen for StH ≈ 0.09. Conversely for StH ≈ 0.2,

the value of F̂ is fairly small, although still positive. This would imply that, in

fact, attenuation/amplification around the frequency of the shedding has relatively

little effect, compared with at frequencies approximately half that of the shedding.

Regardless of this, the form of the weighting function may give some clue as to

why the control was generally unsuccessful, and is displayed in figure 7.15. The

peak close to StH ≈ 0.09 coincides approximately with that of w(z, ω) which is in

turn the location of the RHP zeros in the frequency response. This means that it

is practically very difficult to design a stable controller that provides suppression

around this frequency. Moreover, most of the controllers tested in this study aimed

at providing suppression at frequencies higher than StH = 0.1 so generally generated

amplification over this frequency range, therefore if the form of F̂ is to be trusted,

it is not surprising that these controllers failed to achieve drag reduction. Further

work targeting lower frequency ranges may therefore prove more successful.

It is finally important to note the (significant) limitations to the above analysis

approach. The founding assumption of a linear relation between D and M is of

course unlikely to hold in practice, although is a natural first approximation. This is

especially the case given that we are considering both amplification and attenuation
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bistable behaviour. Our analysis and experimental results demonstrate that effective

control requires an adequate DC gain, but that care also needs to be taken to shape

the frequency response at higher frequencies, avoiding the addition of detrimental

fluctuations. This strategy proved effective and achieved an efficient drag reduction

of 2%. The second control approach aimed to target a fluctuating feature of the wake,

namely the vortex shedding. In this case controllers were designed that targeted the

fluctuations directly via a quasi-automated shaping of the sensitivity function. While

this method proved able to suppress fluctuations over various frequency ranges, it

did not achieve measurable drag reduction.

It is especially encouraging for the case of the bistability control that the strat-

egy proved energetically efficient. This not only demonstrates the efficiency of the

forcing flaps as actuators, but also indicates that the direct suppression of coher-

ent structures such as the bistability is a fundamentally correct strategy. To our

knowledge this strategy is one of the first to prove energy efficiency for active con-

trol of a turbulent three-dimensional wake. For the control of the vortex shedding

we implemented an analysis that sought to understand the trade-offs inherent in

the sensitivity function approach to control design. While the method gave some

insight into the poor control performance, it is ultimately unclear whether the strat-

egy is fundamentally flawed or if feedback control following this approach could be

successful.

With regard to the actuators, it is important to note that because the flaps used

here consist of a mass-spring system, minimising their power consumption requires

a trade-off against control efficacy. Much of the power consumption arises due to

inertial loads and the work done in deforming the springs: low power consumption

therefore requires a low mass and soft springs. This is in contrast to the requirements

of the control for which a stiff spring is required to maximise the actuator bandwidth.

It appeared that both controllers were limited by the presence of the RHP zeros in

the frequency response, and the necessary amplification of disturbances discussed

in § 7.1.1. As discussed, the zeros may be a result of the combined ability of the

flaps to influence both low-frequency quasi-static features, and the oscillatory vortex

shedding. This may therefore represent a limitation of forcing flaps as an actuator

for this flow. The related limitation imposed by the waterbed constraint of (7.6),

is one that applies in the context of the linear feedback-control methods employed

in this work. It is perceivable that through the use of more complex nonlinear

methods such as sum-of-squares optimisation (Chernyshenko et al., 2014; Lasagna

et al., 2016), this limitation could to some extent be circumvented. Such approaches
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would require an accurate (nonlinear) model for the system, of which the models of

chapter 6 may be a suitable example, although the inclusion of stochasticity may

prove problematic.
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Chapter 8

Conclusions

In this thesis we have examined the application of active feedback-control techniques

for the drag reduction of three-dimensional bluff bodies. We have demonstrated that

efficient drag reduction is achievable, although ultimately some strategies prove to

be more effective than others.

We firstly examined in chapter 3 the application of extremum-seeking control, as an

improvement to the open-loop control system of Oxlade et al. (2015). The controller

proved effective at finding the optimum operating conditions, but is naturally unable

to perform better than the underlying open-loop system. Such adaptive control

algorithms are certainly useful, but for efficient drag reduction an open-loop efficient

system must first be developed.

The bulk of the work in this thesis has then focussed on the development of feed-

back control targeting particular coherent structures within the flow. Through the

observability analysis of chapter 4, we demonstrated that for the axisymmetric bluff

body wake the large scale asymmetry associated with the SB mode generated an

extremely strong pressure imprint; readily facilitating real-time measurement. We

also demonstrated that the vortex shedding had a much weaker pressure imprint,

but that due to a unique frequency signature, it may still be targeted with the

correct observation and control methods. As detailed in chapter 7, we were then

able to develop feedback controllers that targeted each of these wake features in the

Ahmed body wake. For the SB mode which manifests as a bistability in the wake,

suppression through feedback control resulted in efficient drag reductions of up to

2%. For the vortex shedding control no drag reduction was achieved, despite the

suppression of measured fluctuations over the frequency range in which the shedding

157
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operates.

A key aspect of the work underlying the feedback control was the development of

the low-order stochastic models for each of the SB mode and the vortex shedding, as

detailed in chapter 6. These models consist of the normal form of the underlying low

Reynolds number bifurcation, with the addition of a random forcing term to cater

for the influence of high Reynolds number turbulence. In addition to the qualitative

description that these models provide, they also capture the expected response to

forcing. Therefore providing both insight for feedback control design, and giving an

explanation for some of the behaviour seen under open-loop forcing.

Both the open and closed-loop forcing were performed using dynamic flaps as an

active flow control actuator. These flaps provide forcing on the wake through shear

layer deflection, rather than by the direct generation of momentum flux typical of

other flow control actuators. Through this mechanism the flaps were able to provide

forcing in both a static and dynamic sense. However, while this meant that the flaps

could be used to control both the bistability and vortex shedding, this dual ability of

the flaps may also have been the cause of the RHP zeros that provided an additional

challenge for feedback control.

A final utility for both the open- and closed-loop forcing is the improved under-

standing of the conditions under which aerodynamic drag may be reduced. The

static forcing results displayed in chapter 5 and the bistability control discussed in

chapter 7, both confirm the link between the lateral and stream-wise forces on bluff

bodies. Suppression of lateral forces with movable flaps therefore proves to be an

effective drag reduction strategy. The confirmed relationship between forces clarifies

some of the conditions under which bluff body drag may be minimised. In contrast,

it remains unclear if suppression of measured fluctuations in general - and the vortex

shedding more specifically - is a suitable control approach for drag reduction. We

have also presented a method to attempt to quantify the effect of fluctuations, which

may prove suitable as the basis of further investigations.

8.1 Possible future work

Motivation for the effective drag reduction of bluff bodies remains strong, with

economic and environmental influences not likely to fade in the near future. The

application of closed-loop active methods for drag reduction therefore remains a
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promising and worthwhile approach, but must continue to be based on improved

physical understanding. Specific items to address following on from this work could

be as follows:

1. The application of extremum-seeking algorithms to a system using quasi-

statically positioned flaps.

For bodies positioned at yaw angles with respect to the flow, e.g. due to cross-

wind, the asymmetric static positioning of lateral flaps offers significant drag

reductions. Given that the yaw angles of the flow vary only gradually, this

would be an ideal application for an ES control algorithm that minimised the

drag as a function of the two flap positions. In principle, an additional control

algorithm such as the bistability suppressing control could be implemented in

parallel.

2. The development of more advanced observation algorithms for real-time flow

measurement in three-dimensional wakes.

These algorithms could involve finding optimal spatial structures on which to

project the pressure measurements, and the use of known dynamics through,

for example, a Kalman filtering approach. Pressure measurements in three-

dimensional wake flows often reveal spectral peaks, and may be decomposed

into orthogonal spatial structures, however deducing the particular flow-field

features associated with these structures remains a challenge.

3. A full understanding of the differences between two- and three-dimensional

wakes.

There is a general understanding that the vortex shedding in three-dimensional

wakes is weaker and less coherent than for two-dimensional cases. Further to

this it is clear that the SB mode is only present in three-dimensional wakes,

along with additional features such as a vortex shedding “sub-harmonic” (Rigas

et al., 2014). However, a full understanding of these features and a quantitative

assessment of their relative drag contributions is still lacking.

4. Improved understanding of the physical mechanism underlying the instability

leading to the SB mode.

While the SB mode can be predicted by stability analysis, accurately simu-

lated by numerical methods and observed experimentally over a wide range of

Reynolds numbers, a physical mechanism underlying the instability is not yet

known. What is likely required are numerical or practical experiments that
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can isolate particular flow features to fully develop mechanistic understanding.

For the SB mode this may involve investigations that can separate the effects

of the shear layers and internal flow within the recirculation region.

5. Investigation into the effect of Reynolds number on the controllability of co-

herent flow structures.

Over low Reynolds numbers it is understood that for flows such as the circular

cylinder wake, feedback control efficacy decreases with Re (Illingworth, 2016).

Ranging over higher Reynolds numbers the trend is not so clear, as a very

limited number of studies have attempted control in such cases. Through the

modelling approach employed in this work, we have considered the turbulence

simply as a noise/disturbance term and have found that over a limited range

of Re dimensionless parameters remain approximately constant. From this

viewpoint, global flow instabilities should be stabilisable even up to a very

large Reynolds number, albeit with increased disturbance levels. It remains

to be seen if this is in fact possible. Analysis of many flows demonstrates

a very large number of “global modes” for the linearised system (Barbagallo

et al., 2011), several of which are unstable. With increasing Reynolds number

it seems likely that the number of unstable modes will increase.

6. Further investigation of fluctuation suppressing controllers in three-dimensional

wakes.

Several previous studies have demonstrated effective use of fluctuation sup-

pressing controllers for 2D or low Re flows. However, in this work we were

unable to find an effective strategy for a high Re 3D wake. While fluctua-

tions may be suppressed over various frequency ranges, effective drag reduc-

tion could not be achieved. It would be interesting to pursue the approach

tried here further, taking care to cover a wider range of controllers and esti-

mate the uncertainty in any empirical relationship between drag changes and

fluctuation frequency. Ultimately, one would hope to establish if a sensitivity-

function-based linear control strategy could ever be effective, or whether there

is a fundamental limitation.

7. The application of nonlinear control methods, designed to overcome some of

the limitations inherent in the system.

Standard linear control methods may be unable to overcome the limitations

imposed by features such as RHP zeros. It is possible that more sophisticated

nonlinear methods may be able to do so, given a suitably informative model of
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the system. This would be something worth exploring initially in simulations,

perhaps based on the stochastic models given in this work.
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J. I. & Mart́ınez-Bazán, C. 2011 Stability and dynamics of the laminar wake

past a slender blunt-based axisymmetric body. J. Fluid Mech. 676, 110–144.
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Appendix A

Open-loop forcing with four flaps

This appendix contains preliminary results of open-loop forcing with all four flaps.

Results presented in this chapter are preliminary in nature, and do not have the

benefit of fully zeroed instrumentation (as described in § 2.3.1), or PID controlled

flaps. However the data may still give an indication of some of the challenges and

general features of open-loop forcing.

A first key aim in the use of harmonic forcing is direct drag reduction. Motivated by

the work of Pastoor et al. (2008) and Parkin et al. (2014), it may be anticipated that

symmetric forcing of the wake would achieve drag reduction. These previous works

had demonstrated that for a 2D bluff body, symmetric forcing with ZNMF jets at

St ≈ 0.1 could achieve drag reduction by symmetrisation of the shear layer dynamics.

We therefore performed open-loop forcing in a similarly symmetric manner, i.e.

consisting of oscillatory boat-tailing, and with the flaps located at all four rear

edges.

Restricted to symmetric forcing, there are still two manners in which the flaps may

be operated: the four flaps may either all move inwards and outwards together

(synchronous), or the top/bottom flaps may move inwards while the lateral flaps

move outwards (asynchronous). Differences between these strategies should give

insight into the specific dynamics of the 3D wake, and in particular the interaction

of the vertical and lateral vortex shedding. Figure A.1 displays the drag and base

suction as a function of forcing frequency for each of these types of forcing. Within

the experimental uncertainty, the data always demonstrate a drag increase and a

trend of increasing drag with forcing frequency. There is a notable difference between

the two forcing methods, namely that the synchronous case gives consistently lower
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Figure A.1: Effect of symmetric harmonic forcing with all four flaps operating either
synchronously or asynchronously. Drag coefficient CD and base suction coefficient
−〈Cp〉 are shown by the solid and dashed lines respectively.

drag than the asynchronous case. While both forcing methods display a larger drag

increase for StWf ≈ 0.35, this may be due to inconsistency in the flap oscillation

amplitude.

In order to understand better the effect of the open-loop forcing, we may examine

how the frequency spectrum of the base pressure modes ml and mv change with

forcing frequency. This may best be viewed as waterfall plots, as displayed in fig-

ure A.2. it is important to note here that while the forcing is symmetric, these

displayed results are for antisymmetric pressure measurements. Therefore from

symmetry arguments we would not expect any particular response at the forcing

frequency, shown in each plot by the black dashed lines. An important observation

is therefore that for the case of the pressure mode mv, significant energy is seen at

the forcing frequency itself. A possible reason for the generation of antisymmet-

ric fluctuations is the asymmetry imposed by the ground. Unequal strength of the

upper and lower shear layers would cause symmetric flap motion to generate an

antisymmetric forcing component. This generation of antisymmetric fluctuations

could amplify the vortex shedding in the wake, just as for the antisymmetric forcing

displayed in § 5.1, and may be partially responsible for the consistent drag increases

displayed in figure A.1.

It is worth also noting that the work of Parkin et al. (2015) also found that open-loop

forcing may be ineffective when in ground proximity. Their results (for a 2D body)
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Figure A.2: Waterfall plots illustrating the effect of harmonic forcing on the spectra
of the pressure modes ml, mv, under synchronous forcing (a), (b) and asynchronous
forcing (c), (d).

found that the presence of the ground disrupted vortex shedding in the wake, thereby

rendering the forcing inapplicable. This is somewhat in contrast to our results which

suggest that the shedding is still present and, moreover, may be amplified to the

detriment of the drag reduction.

While all the plots display some energy at the harmonics of the forcing frequency, a

key difference between the synchronous and asynchronous cases is seen at the sub-

harmonic of the forcing. For the synchronous cases only, forcing above StW ≈ 0.35

results in an increase in energy in both the lateral and vertical pressure modes at

half the forcing frequency. This is indicative of a subharmonic resonance, just as

observed by Barros et al. (2016a) for a similar rectilinear body, and Berger et al.

(1990); Rigas et al. (2017) for axisymmetric bodies. It is interesting to note that

this does not occur at all for the case of asynchronous forcing, reinforcing the under-

standing that “axisymmetric” forcing is essential in order to generate this effect. It

is finally interesting to note that this subharmonic resonance effect does not lead to

significantly higher drag, as compared with asynchrous forcing from which it is not

generated. This is possibly in contrast to the above cited works for which notable

drag increases were observed under conditions of subharmonic resonance.
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A.0.1 Summary

In summary, the open-loop forcing strategy attempted here has proved ineffective

for drag reduction. This may firstly be due to the obvious differences between

this experiment and that of Pastoor et al. (2008); Parkin et al. (2014), namely the

replacement of ZNMF jets with oscillating flaps and the change from a 2D to 3D

geometry. From this work it is not possible to quantify the differences between

ZNMF jets and oscillating flaps, however there are many clear differences between

the structure of 2D and 3D wakes that may be important here. In particular, the

relative importance of the vortex shedding will have strong implications for the

applicability of symmetric open-loop forcing. Given that the vortex shedding is

likely less coherent in a 3D wake, the ability to readily control it in open-loop is not

guaranteed. Finally, the asymmetry imposed by the ground effect, and to a lesser

extent the SB mode, means that symmetric flap motion will lead to a degree of

antisymmetric forcing. The results of § 5.1 show that this consistently increases the

drag, thereby working against any other drag reduction mechanisms.
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Stochastic differential equations

Much of the modelling discussed in chapter 6 is based on stochastic differential

equations (SDE). Here we provide a brief summary of SDEs and some common

methods for their analysis.

A SDE consists of a differential equation or set of equations, including one or more

stochastic terms. A SDE may most accurately be written as an integral equation as

Xt+s −Xt =

∫ t+s

t

µ(Xh, h) dh+

∫ t+s

t

σ(Xh, h) dWh. (B.1)

This may then be written in a differential form as

dXt = µ(Xt, t) dt+ σ(Xt, t) dW. (B.2)

Here it is important to note that the term dW refers to the integral of a Wiener

process and is not integrable in the usual sense, instead requiring the use of Stochas-

tic calculus and a particular interpretation. Heuristically, it is easiest to interpret

by understanding that increments of a Wiener process are independent and nor-

mally distributed. Bearing the special properties of the stochastic term in mind and

without time dependence, the SDE may be written least formally as

ẋ =f(x) + g(x)ξ(t) (B.3)

=− V ′(x) + g(x)ξ(t). (B.4)

Here the term f(x, t) represents a standard deterministic function, while g(x, t)

multiples a normally distributed random variable ξ(t). As shown, the deterministic

term may also be written in terms of the gradient of a potential V (x), the ′ here
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denoting the derivative with respect to x.

B.1 Fokker-Planck equation

The Fokker-Planck equation (FPE) is a partial differential equation describing the

time evolution of the probability density function for a random variable governed by

an SDE. In this work we will make use of the steady state FPE, as the nature of the

SDEs examined permit a steady-state solution. For a SDE of the form in (B.4),the

FPE is given by

∂

∂t
[P (x, t)] =

∂

∂x
[V ′(x)P (x, t)] +

∂2

∂x2

[
1

2
g2(x)P (x, t)

]
. (B.5)

The steady state distribution Ps(x), is therefore given as the solution to the equation

0 =
∂

∂x

[
V ′(x)Ps(x, t) +

∂

∂x

[
1

2
g2(x)Ps(x, t)

]]
(B.6)

=
∂

∂x
[J(x)] . (B.7)

Here the term J(x) is known as a “flux” and must be constant over x. The distri-

bution Ps(x) must tend to zero as x→∞, implying that J(∞) = 0 and hence that

J(x) = 0. This reduces (B.6) to a first order ODE in P (x), which can be solved to

give

Ps(x) ∝
1

g2(x)
exp

(
−2
∫ x V ′(x′)

g2(x′)
dx′
)
. (B.8)

For the case of constant g(x) = σ (B.8) simplifies to

Ps(x) ∝ exp

(
−2V (x)

σ2

)
. (B.9)
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Miscellaneous proofs

C.1 Extremum seeking with a square dither sig-

nal

In § 3.1.2, it was proposed that a square wave dither signal could be used to overcome

the issue of varying the frequency of an input signal. To check that a square wave

perturbation and associated square wave demodulation will work, we can write the

signal in terms of its Fourier series. For a square wave s(t) of period T = 2π/ωd ,

s(t) =
4

π

∞∑

m=1

sin ((2m− 1)ωdt)

2m− 1
. (C.1)

If we have a reference to the plant r(t) = f(t) = f0 + f̂ + as(t) then we may take a

Taylor expansion about the slowly varying part (f0+ f̂). The output from the plant

may then be written to include a modified version of the original square wave:

y ≈ ȳ + aN ′

(
f0 + f̂

)
·

∞∑

m=1

|G(i (2m− 1)ωd)| sin((2m− 1)ωdt− φG(iωd))

2m− 1

+ wG. (C.2)
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Following application of the HP filter, demodulation with the square wave s(t) results

in the multiplication of two summations to give

γ = aN ′

(
f0 + f̂

)
·
(

∞∑

m=1

|G(i (2m− 1)ωd)| sin((2m− 1)ωdt− φG(iωd))

2m− 1

)
·

(
∞∑

n=1

sin ((2n− 1)ωdt)

2n− 1

)
+ w̃Gs(t), (C.3)

which may be rewritten as,

γ = aN ′ (r)·
∞∑

m,n=1

[ |G(i (2m− 1)ωd)|
(2m− 1) (2n− 1)

sin((2m− 1)ωdt− φG(iωd)) sin ((2n− 1)ωdt)

]

+ w̃Gs(t). (C.4)

The items within this summation can be split into two cases after applying the

trigonometric identity

sin(A) sin(B) =
1

2
(cos (A− B)− cos (A+B)) . (C.5)

For m = n we have a sum over terms of the form given in (3.4) which include a DC

component, while for m 6= n we have purely sinusoidal terms. Given a sufficiently

effective low pass filter, only the DC terms will pass into e:

e ≈ 1

2
aN ′

(
f0 + f̂

) ∞∑

m=1

[ |G(i (2m− 1)ωd)|
(2m− 1)2

cos
(
φG(i(2m−1)ωd)

)]
+ we. (C.6)

This square wave extremum seeking system can therefore be expected to work in a

very similar manner to the original system with a sinusoidal dither, and is suitable

for use in optimising the frequency of a harmonic signal.
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C.2 Statistics of bistable processes

C.2.1 Switching statistics

A bistable stochastic process may be written as

ẋ =αx− λx3 + σξ(t)

=− V ′(x) + σξ(t), (C.7)

where the potential well is

V (x) =
1

4
λx4 − 1

2
αx2 +

α2

4λ
. (C.8)

This gives V (0) = α2/4λ, and V
(
±
√
α/λ

)
= 0. The potential well therefore has a

potential barrier, Eb = α2/4λ, meaning that at least this much energy input (from

noise) is required to flip from one equilibrium point to another. A key parameter is

the ratio of the noise intensity to the barrier size. In the weak noise limit (σ2/2Eb ≪
1), the expected mean first passage time is given by (Zwanzig, 2001),

T =
π

ω0ωe
exp

(
2Eb
σ2

)
, (C.9)

where the two frequencies are defined as ω2
0 = |V ′′(0)| and ω2

e = V ′′

(
±
√
α/λ

)
. It

can be shown that

V ′′(x) = 3λx2 − α, (C.10)

hence, ω0ωe =
√
2α. Substituting this and the expression for Eb into (C.9) gives

T =
π√
2α

exp

(
2α2

4λσ2

)

=
π√
2α

exp

(
αr2e
2σ2

)
. (C.11)

It is also worth noting that in the weak noise limit where the potential barrier is high

and symmetric, each crossing of the barrier is statistically independent (Gammaitoni

et al., 1998). This means that crossings of the barrier form a Poisson process, for

which the distribution of times between crossings is exponential with mean T :

P (x) =
1

T
e−

x
T . (C.12)
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This distribution for the flipping times has been demonstrated before by Grande-

mange et al. (2013c).

C.2.2 Power spectral density

It has been regularly observed that measurements in the wakes of three-dimensional

bluff bodies exhibit a -2 exponent in the PSD at low frequencies. For the axisym-

metric bluff body this is a result of the random walk in azimuthal angle, and we

will show below that this is consistent with the model of (6.4). For the bistable

dynamics of rectilinear wakes this region is attributed to the random flipping. A

key difference between these two observations is that while the -2 slope continues

to the lowest frequency bins for axisymmetric wakes, in rectilinear wakes this slope

becomes zero below a minimum frequency. Here we will provide an explanation for

this behaviour.

Axisymmetric body

The modelled stochastic differential equation for φ consists of the following:

dφ =
1

ρ
ξφ(t) (C.13)

Here the variable ξφ(t) is a Gaussian random variable, delta correlated in time. We

therefore have a modified Wiener process where our variable of interest, φ is equal

to the integral of Gaussian white noise divided by the instantaneous radius. Hence:

dφ

dt
=

1

ρ(t)
η(t) (C.14)

Defining the variable q = 1/ρ and taking Fourier transforms:

iωΦ(ω) =
1

2π
Q(ω) ⋆ H(ω)

=
1

2π

∫
∞

−∞

Q(Ω)H(ω − Ω)dΩ

=
H0

2π

∫
∞

−∞

Q(Ω)dΩ

=
H0

2π
Iq (C.15)
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Where H0 is the uniform Fourier transform of η and Iq is the integral under the

Fourier transform of q.

The power spectral density of φ can now be found as:

Sφφ =|Φ(ω)|2

=

∣∣∣∣
H0Iq
i2πω

∣∣∣∣
2

=
H2

0I
2
q

4π2ω2
(C.16)

The spectrum of the angle φ should therefore have ω−2 roll off provided that the vari-

able q = 1/ρ has finite mean squared value. Notably, the spectra of φ is independent

of the spectra of ρ.

Ahmed body

A proof for the -2 exponent seen in the pressure spectrum is given in Grandemange

(2013, section D.2.2). Here we provide a more heuristic explanation that also ex-

plains the saturation of the -2 exponent at very low frequencies.

A random flipping process may be considered to be a square wave signal, for which

the period is random according to a certain probability distribution. A square wave

signal s(t) of period T = 2π/ωd, may be written as the series,

s(t) =
4

π

∞∑

m=1

sin ((2m− 1)ωdt)

2m− 1
. (C.17)

The Fourier transform therefore consists of a series of delta functions having 1/ω

decay in their amplitude, giving a single sided PSD of,

|S(ω)|2 = 16
∞∑

m=1

δ (ω − (2m− 1)ωd)

(2m− 1)2
. (C.18)

This power spectrum consists of delta functions with 1/ω2 decay, and a lowest

frequency content of ωd. If the period of the square wave is random with time it is

reasonable to expect that on average the spectrum is “filled out”, such that there is a

frequency range over which there is a continuous -2 decay. However, for frequencies

below ωd this is not the case. At very low frequencies ω ≪ 1/T , there will be very

few fundamentals as there will be very few time periods over which there are not
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flipping events. These low frequencies correspond to long time-scales of the cross-

correlation function Rxx(τ). Since all flipping periods are likely much smaller than

these time-scales, the cross correlation would be expected to be zero. This implies

a uniform power spectrum at low frequencies, as observed in the data.
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Analyses

D.1 Bubble length estimation

As described in § 4.3, we wish to estimate the length of the recirculation region from

time-resolved PIV data of the near wake. For a laminar wake or the temporal mean

of a turbulent one, we could simply select the stream-wise location at which the

stream-wise velocity becomes entirely positive. For the fully turbulent wake of our

study, this approach will not work since even well after the location at which the the

separation bubble has ended, turbulent fluctuations may lead to small patches of

reversed flow. We therefore instead require a method to detect where the coherent

region of reversed flow ends, on a time-resolved basis. This is performed via a two-

stage process: for all stream-wise (x) locations we find the range of cross-stream

(y) coordinates at which the stream-wise velocity (ux) is negative; we then find the

average ux in the full range of y coordinates between the minimum and maximum

locations of negative ux. In this way we find the average ux within an approximately

identified recirculating region. The end of the recirculation bubble is identified as the

location at which this “wake averaged” velocity changes from negative to positive.

This process is detailed below in algorithm 2.

Algorithm 2 The method for estimating recirculation bubble length.

1: for xi in x do
2: Find vector ŷ for which ux(xi, ŷj) < 0
3: Fill in the range ŷ to include all ŷ for which min(ŷ) ≥ ŷ ≤ max(ŷ)
4: Evaluate wake average as ūw ← mean(ux(xi, ŷ))
5: end for
6: Choose xs as first xi for which ūw > 0
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Figure D.1: The response of the wake shown in figure 6.6 along with the linear fit
used to estimate the time delay τ .

D.2 Time delay estimation

The model discussed in § 6.3 incorporated a time delay τ . Estimation of this con-

vective time scale can be achieved from the frequency response shown in figure D.1.

The magnitude response allows the definition of a linear, minimum-phase system

using the fitmagfrd Matlab function. This fitted system has a phase correspond-

ing to the minimum-phase part of the system. Any remaining phase response can

be attributed to the dead zone (evaluated for the lowest frequency case) and the

delay, both of which are non minimum-phase features. A delay term simply gives a

linear decrease in phase angle with frequency while the dead zone gives a constant

(negative) phase angle. This delay can simply be adjusted until the phase response

of the modelled system matches that of the experiment.

D.3 Least squares fitting

For the N tested controllers, we wish to find the optimal frequency weighting F (ω)

that minimises the error between the observed drag changes Di and that predicted

by the relation:

D(M) =

∫
∞

0

F (ω)M(ω) dω, (D.1)
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where M(ω) is the spectral change as defined in § 7.3.4. We firstly discretise F into

a piecewise representation according to,

F (ω) =
P∑

j=1

f̂jχ[ωj ,ωj+1], (D.2)

where the frequencies ωj are fixed frequencies ranging from ω1 to ωP+1. These

frequencies need not be uniformly distributed and need only cover the bandwidth

of the controller. The characteristic functions are defined by,

χ[a,b](x) =




1, a ≤ x ≤ b,

0, otherwise.
(D.3)

For each controller (D.1) therefore gives the expected relation,

Di =
P∑

j=1

f̂j

∫ ωj+1

ωj

Mi(ω) dω. (D.4)

Given the experimental data we can form a matrixA = (aij) where aij :=
∫ ωj+1

ωj
Mi(ω) dω.

The relation of (D.4) may then be rewritten as AF̂ = D where F̂ = (f̂j)
P
j=1 and

D = (Di)
N
i=1. Given that this relation is likely approximate, we hope to find an

optimal F̂ in a least squares sense as,

min
F̂

||AF̂ −D||22. (D.5)

This has the standard least-squares solution F̂ = (A⊤A)−1A⊤D provided that N ≥
P .
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Appendix E

Parameter influence in the

stochastic models

In this chapter we present results of simulations and analysis for the stochastic model

for the vortex shedding discussed in § 6.4. The results aim to illustrate the influence

of parameter variation upon the behaviour of the models.
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Figure E.1: Unforced power spectral density for the parameter y = a sin(ψ) for
varying noise intensity.
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