
Empirical Asset Pricing in
High-Frequency Markets

Oleg Komarov

January 2017

Submitted in partial fulfilment of the requirements for the degree of Doctor of Philosophy
of Imperial College London

Imperial College Business School
Imperial College London

South Kensington Campus
London SW7 2BZ



Empirical Asset Pricing in High-Frequency Markets

Oleg Komarov

Abstract
The first chapter provides a brief overview of the theoretical grounding of the so-called
realized-measures and summarizes their statistical properties. Motivated by the superior
statistical accuracy of high-frequency measures I test if they add economic value in a low-
frequency investment context. I compare the profitability of the same investment strategy
against two implementations of its trading signals: one that conventionally uses daily
returns (LF) and the other that takes advantage of high-frequency (HF) returns. I use dif-
ferent lengths of the formation period to verify if the HF implementation can leverage the
superior amount of observations. Although economic di�erences favour the HF implemen-
tation, the evidence is not statistically significant. Nonetheless, the HF implementation is
more robust to the choice of parameters and provides, for the most illiquid stocks, strong
economic benefits that are inversely increasing in the length of the formation period.

The second chapter moves the focus onto the intraday level and seeks to establish the
existence of an intraday momentum e�ect. Motivated by limited evidence of intraday pre-
dictability both in the cross-section of US stock returns (see Heston, R. A. Korajczyk, and
Sadka, 2010) and in the time-series of the aggregate stock market (see Gao et al., 2015),
I reconsider the time-series dimension using all common US stocks from 1993 until 2010
and, building on this, I present the cross-sectional dimension with new and complimen-
tary evidence. I find that statistical time-series predictability does not imply economic
profitability, whereas cross-sectional sorts on past performance see stocks, which lost or
won the most in the morning, earn (positive returns) above the rest of the cross-section in
the afternoon, and especially during the last half-hour of trading. The e�ect is robust to
stock characteristics, the day-of-week e�ect, variations in the formation and holding peri-
ods, but exhibits some dependence on the sample period, suggesting that specific market
mechanisms or frictions play a relevant role on intraday price formation.

The third chapter looks at some claims about price acceleration constituting an infor-
mative trading signal. We build several empirical measures of acceleration and compare
them to other traditional equity signals from the academic literature. We find that buying
stocks whose returns are decelerating and shorting stocks whose returns are accelerating,
produces a wide spread in returns. Moreover, while these profits are not explained by the
state-of-the-art equity factor models, the cross-sectional variation of the average returns
of portfolios sorted on the acceleration signals, are reconciled once we add our la5 factor
– a simple reversal strategy with a lookback of one week. Taken together, our results cast
doubt on acceleration being a separate phenomenon and suggest that the lookback period
in trending strategies has been shrinking over time.
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Chapter 1

Low-Frequency Investment with

High-Frequency Measures: Is it

Profitable?

1.1 Introduction

The past fifteen years have witnessed significant advances in financial econometrics relative

to the use of high-frequency returns in the estimation of the so-called measures of realized

variation.1 The success of these measures lies in the appeal of their statistical proper-

ties, discussed below, and in the simplicity of their implementation, made possible by the

ever growing availability of high frequency data. However, while applications of realized

variation o�er significant statistical gains in fields that range from risk-management to de-

rivative pricing, there is no evidence that these measures provide tangible economic gains.

This paper addresses this gap in the literature and proposes a methodology to measure

1Among the most influential theoretical results are Andersen, Bollerslev, Diebold, and Labys (2001,
2003) and Barndor�-Nielsen and Shephard (2002a,b), especially for univariate measures like the realized
volatility, and Barndor�-Nielsen and Shephard (2004) for multivariate measures like the realized covariance
(RC) or the realized regression.
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Chapter 1. Low-Frequency Investment with High-Frequency Measures

the economic impact of statistical measures based on high frequency returns, as opposed

to the same measures calculated with daily returns.

Before going into further details, I give a brief overview on the implementation of these

measures and on their statistical benefits. In their simplest form, these measures are sums

of squared intraday returns sampled over a fixed horizon, usually a day, and at su�ciently

high frequency, e.g. at intervals of 5 minutes. The mechanics are trivial in comparison

to competing parametric models like (G)ARCH and Stochastic Volatility (SV) and virtu-

ally requires no calibration. Moreover, the theoretical link with the Quadratic Variation

allows to treat volatility (the price-path variation) as an ex-post observable quantity and,

therefore, to derive estimators which are approximately unbiased and consistent (see again

Andersen, Bollerslev, Diebold, and Labys (2001)).

In other words, high-frequency measures provide estimates and forecasts of volatility

which are more accurate than those derived from daily returns or from competing models.

For example, in the context of derivatives pricing, returns standardized by Realized Vo-

latility (RV) are nearly Gaussian. In contrast, returns standardized by (G)ARCH or SV

exhibit excess kurtosis (see Andersen, Bollerslev, Diebold, and Labys (2000) among others).

In terms of forecasting accuracy, Andersen, Bollerslev, Diebold, and Labys (2003) show

that RV and Realized Covariance (RC) are preferable over GARCH and related approa-

ches. In yet another example, P. R. Hansen and Lunde (2006a) use the realized measure

as the optimal benchmark, due to the consistency of RV, and rank competing volatility

models against it.

While it is beyond the scope of this paper to summarize the whole progress of this field

of literature, it is worth noting that the underlying theoretical framework is flexible to the

inclusion of jumps and that the estimation mechanics can be adapted to deal with real

world frictions like microstructure noise.2 In fact, a great deal of research has explored

2A good overview on the advances and challenges of high-frequency financial econometrics is given
by Barndor�-Nielsen and Shephard (2007), Andersen, Bollerslev, and Diebold (2010) and McAleer and
Medeiros (2008).
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1.1. Introduction

the two strands of financial time-series mentioned above in search of an optimal solution.

However, the focus has remained statistical in nature and no study has tried to assess the

potential economic value of this statistical accuracy.

Hence, this work tries to quantify the economic gains that generate from the increased

statistical accuracy of realized measures. Since the task is naturally broad, I suggest

a methodology that quantifies the economic contribution in the context of a tradable

strategy in US equities. More specifically, I implement a trading strategy from a risk factor

building signals based on low-frequency returns. Then, I reproduce the same strategy using

signals based on high-frequency returns and compare the economic performance of the two

implementations. Apart from the frequency of returns, all other implementation details

are kept identical, i.e. I use the same: investable universe, formation period, rebalancing

scheme and trading costs. With this approach, any di�erence in economic performance

between the two versions of the same strategy should exclusively come from di�erences in

the statistical accuracy of high-frequency measures.

This work is relevant from both an academic and a practitioner’s perspective. In the

former case, the discrepancy between the high- and low-frequency versions of an investment

strategy can be interpreted as a test of the weak-form of market e�ciency postulated by

Fama (1970, 1991). That is, if the market already incorporates past public information,

then the price at the close-of-day should reflect all intraday fluctuations, and therefore,

it should not be possible to obtain significant economic gains by using high-frequency

data. However, from a practical perspective, as the number of observations diminishes, e.g.

by shortening the formation period, the estimation of the signal from daily observations

becomes noisier than its equivalent based on high-frequency data. Hence, establishing a

clear trade-o� between the length of the estimation horizon and the added value of high-

frequency measures is of direct benefit to e.g. asset management applications.

For the choice of the strategy, I use the Betting-Against-Beta (BAB) factor by Fraz-

zini and Pedersen (2014) since it is relatively easy to implement and yet it involves the

3



Chapter 1. Low-Frequency Investment with High-Frequency Measures

estimation of covariances. It is important to note that the implications should not be

interpreted as conclusions about the BAB factor itself and that other eligible factors could

have been used in its place. However, this analysis cannot be applied to momentum-like

factors, because holding-period returns do not depend on the cumulation frequency. Anot-

her arguably eligible example is the strategy based on realized skewness by Amaya et al.

(2015). As the authors point out, there is a fundamental theoretical di�erence between

historical and realized skewness which impedes a clear direct comparison. Lastly, although

the estimation methodology is central to realized measures, the main focus of the paper

is not directed towards finding the optimal combination of parameters that maximises the

performance of the high-frequency strategy.

The remainder of the paper is organized as follows: this section concludes with an overview

of the theoretical framework underlying the estimation of the realized betas for the high-

frequency version of the BAB factor. Section 1.2 describes the data adopted in the analysis

with an emphasis on the challenges posed by high-frequency trades. Specifically, the section

details the procedure used to link the CRSP and TAQ datasets, summarizes the cleaning

steps for high-frequency trades and proposes solutions to the big-data challenges inherent to

such tasks. The general methodology on the construction of the portfolios and preliminary

statistics are presented in section 1.3, and a comparison of the performance between the

high- and low-frequency versions of the BAB portfolio, with several robustness checks, are

given in section 1.4. Finally, section 1.5 concludes.

1.1.1 The theoretical framework of high-frequency measures

I assume that asset returns can be described by a discrete-time one-factor model

ri = –i + —ir0 + ‘i (1.1)

4



1.1. Introduction

where the r0 is the return on a systematic risk factor which is assumed uncorrelated with

the asset-specific risk ‘i. The — measures the contribution of the systematic return to that

of the i-th asset and is generally not observed, but can be estimated with a regression of

its returns on the returns of some market portfolio. In a simple linear regression with e.g.

daily returns, the beta is equivalent to

—i = cov(ri, r0)
var(r0)

. (1.2)

However, to extend the same approach to a high-frequency setting, additional structure is

required. I will leverage previous works on realized betas by Bollerslev and B. Y. Zhang

(2003), Barndor�-Nielsen and Shephard (2004) and Andersen, Bollerslev, Diebold, and Wu

(2005), Andersen, Bollerslev, Diebold, and Wu (2006) and provide a brief overview of the

relevant results.

To this end, let log-prices pi evolve over a fixed-time interval [0, T ] according to a

continuous-time di�usive process defined on some filtered probability space (�, F , (F)tØ0,P).

Assume the process is a semi-martingale of the form

dpi,t = µi,t dt + —i‡0,t dW0,t + ‡i,t dWi,t, (1.3)

where µi,t is a predictable drift of finite variation, ‡0,t and ‡i,t are continuous càdlàg pro-

cesses respectively capturing the volatility of the market portfolio and of the i-th asset,

and Wi,t and W0,t are standard Brownian processes independent of each other. Moreover,

I assume that the market portfolio is only exposed to systematic risk, i.e.

dp0,t = µ0,t dt + ‡0,t dW0,t. (1.4)

This continuous-time setting is consistent with equation (1.1) since we can rewrite equa-
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Chapter 1. Low-Frequency Investment with High-Frequency Measures

tion (1.4) in terms of its di�usive part and substitute back into equation (1.3) to get

dpi,t = (µi,t ≠ µ0,t) dt + —i dp0,t + ‡i,t dWi,t,

where the return of the asset, expressed in di�erential terms, depends on a firm-specific

drift term, the return of the market portfolio and the firm-specific di�usive component.

From known arguments, the quadratic covariation between the processes in equati-

ons (1.3) and (1.4), and the quadratic variation of the market portfolio, over the period

(0, t], are

[pi, p0]t = —i

⁄ t

0
‡2

0,s ds,

[p0, p0]t =
⁄ t

0
‡2

0,s ds,

which we can use to express the realized beta over the period (0, t] as the ratio of these

two terms, i.e.

—i = [pi, p0]t
[p0, p0]t

. (1.5)

To estimate the quantities in equation (1.5), we can refer to the general definition of

quadratic variation and covariation for two stochastic processes Xt and Yt

[X, X]t = lim
Î�Îæ0

nÿ

k=1
(X·k

≠ X·k≠1

)2

[X, Y ]t = lim
Î�Îæ0

nÿ

k=1
(X·k

≠ X·k≠1

)(Y·k
≠ Y·k≠1

)

where the limit is taken over random partitions of the interval [0, t], which are informally

defined as � = {0 = ·0 Æ ·1 Æ . . . Æ ·n = t}, such that the mesh of the partition,

given by the longest sub-interval, goes to zero, i.e. Î�Î = maxk(·k ≠ ·k≠1) æ 0. By this

definition, it is possible to approximate the quadratic variation and covariation with the

sum of discrete-time increments of the price, by sampling the processes as frequently as

6



1.1. Introduction

possible.

Concretely, if log-prices are observed at n equally-spaced intervals over the trading day

[t, t + 1), I denote the log-return of an asset over the k-th intraday period [(k ≠ 1)/n, k/n]

by rt:k © pt+k/n ≠pt+(k≠1)/n. To keep notation simple, the estimation horizon is normalized

to a single day. By this convention, the daily realized covariance (RC) with the market

portfolio and the realized variance (RV) are defined

RCt,i =
nÿ

k=1
ri,t:kr0,t:k + ron

i,t ron

0,t

RVt,i =
nÿ

k=1
r2

i,t:k +
1
ron

i,t

22
(1.6)

where ron

t is the overnight return of an asset or the market portfolio, and is defined as the

di�erence between the open price of the current day minus the previous-day price at close,

i.e. ron

t = popen

t ≠ pclose

t≠1 . The expression for RVt,0 follows immediately from RVt,i.

The inclusion of the overnight component in the estimation of the realized measures

follows in spirit P. R. Hansen and Lunde (2005), which suggest to weight its influence in

order to reduce excessive noise. In order to keep the specification as simple as possible

I include the full overnight return but test the robustness of the estimates in section 1.4

by comparing it with results that exclude ron altogether. Moreover, since TAQ prices are

not adjusted for corporate events, e.g. splits or distributions, the overnight component is

backed out from CRSP daily total returns and the details of the procedure are outlined in

section 1.A.1.

The measures in equation (1.6) are linear and increasing in time and can be extended

to a multi-day horizon of length h, by simply summing the daily estimates

RC(h)
t,i =

h≠1ÿ

s=0
RCt≠s,i

RV(h)
t,i =

h≠1ÿ

s=0
RVt≠s,i .

(1.7)

7



Chapter 1. Low-Frequency Investment with High-Frequency Measures

As the number of sampling points n increases, the RC and RV respectively converge to the

quadratic covariation and variation in equation (1.5). Formally,

RC(h)
t,i

p≠æ [pi, p0](t≠h+1,t]

RV(h)
t,i

p≠æ [pi, pi](t≠h+1,t],

(1.8)

as n æ Œ, and in the same manner, the estimated high-frequency beta converges to the

integrated beta, that is

—̂HF
i

p≠æ —i.

To summarize, the framework presented in this section provides the necessary grounding

to estimate betas both with daily returns, through a simple linear regression, and with

high-frequency returns by exploiting the theory of quadratic variations which underpins

the estimation of the realized variance and covariance.

1.2 Data

The sample includes all US equities that belong to both the Center for Research in Security

Prices (CRSP) and the Trades And Quotes (TAQ) databases, with a coverage that extends

to the New York Stock Exchange (NYSE), the American Stock Exchange (AMEX or

currently NYSE MKT), the NYSE Arca exchange and NASDAQ’s National Market System

(NMS, OTC trades only due to TAQ limitations).

I only keep common stocks, identified as such by a CRSP Share Type Code of 10 or 11,

and in order to mitigate the spurious e�ects induced by microstructure issues, I exclude

observations that belong to microcaps. That is, holding period returns do not include

observations from stocks which either had, on the previous day, a price below $5 or a

market capitalization in the lowest New York Stock Exchange (NYSE) decile. Moreover,

to alleviate the impact of stale prices, I require stocks to be su�ciently liquid. Specifically,

8



1.2. Data

I only keep the stock-date pairs that had at least 79 observations on the previous day,

which is equivalent to a series having on average a price every 5 minutes during a 9:30 to

16:00 trading session. Finally, all returns from CRSP are adjusted for corporate events,

i.e. stock splits and distributions, and for delistings as in Beaver, McNichols, and Price

(2007).

Consequently, the sample has a total of 8924 equities with an average of more than

1800 stocks per day, and covers the period from January 1993, first date of availability of

the TAQ, until May 2010.3

Description of the TAQ dataset. High-frequency data are collected by NYSE through

the Consolidated Tape System and distributed as the Trade and Quote (TAQ) database

directly by NYSE Market Data or by secondary vendors, e.g. Tick Data, Thomson Reuters

or Wharton Research Data Services (WRDS). The database is organized into the Master

Records table, which holds historical meta-information about securities like the symbol or

the company name, the Trades table, which collects time-series with traded prices, the Quo-

tes table, which has time-series with quoted prices and a National Best Bid O�er (NBBO)

table which derives the NBBO series from the Quotes table. The data are available either

as a monthly or a daily subscription, the latter giving exclusive access to the NBBO table

and having time-series of prices with a resolution of the timestamp up to the millisecond

instead of a second. Since the primary identifier for TAQ securities is a modified version

of the trading symbol, which appends a su�x to di�erentiate among types of issue, it is

not straightforward to match those series in other databases like CRSP. A solution to this

problem is discussed in the following section.

3Days with partial trading times, either due to recurring festivities like Christmas’ Eve, or due to major
disruptions like the power outage of 2003/08/15, are excluded from the analysis.
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Chapter 1. Low-Frequency Investment with High-Frequency Measures

1.2.1 Linking TAQ to CRSP

This section introduces the identification problem of securities across data sources and

gives a detailed account of the matching procedure.

Series identification problem. Working with separate databases usually poses the

problem of how to uniquely identify the same stock across the di�erent sources. A similar

situation applies to the interaction between CRSP and TAQ, since the former database

uses the permno for most of its data as its unique identifier, while the latter relies on a

special version of the trading symbol. To overcome this segregation, I link stocks through

the historical cusip and adopt the permno as the fundamental unit of analysis also for

TAQ data. While any other unit qualifier, e.g. the cusip, can also solve the identification

problem, the permno tracks a stock through its entire life, i.e. across firm events and

changes in the name, symbol and cusip. Overall, I match 98% on average and always at

least 91% of the daily TAQ observations.

Table 1.1 show the relevant fields from the TAQ master records and CRSP’s msenames

table which are used to establish the link. Both tables report the trading symbol (called

tsymbol in CRSP), the historical cusip, i.e. a database independent code that identifies

North American securities, and one or two dates, depending on whether the end-range of

the record is implicitly subsumed by the start of the next period (as in TAQ). Additionally,

the msenames table has the permno which is inherited by the TAQ master records after

matching.

Even though both tables contain the trading symbol, which TAQ uses to index its data,

it is preferable for a few reasons to match securities through the historical cusip. First, the

tsymbol often does not coincide for the same security with the TAQ’s symbol. In fact,

the latter usually includes a su�x to identify the type of the issue, as with e.g. aapr which

appears in the last row of table 1.1 where pr stands for private.4 Second, in contrast with
4The complete list of su�xes can be found in the appendices to the TAQ manuals: Daily TAQ and

Monthly TAQ.

10



1.2. Data

Table 1.1: an extract of stock-specific information used to match securities between TAQ and CRSP
databases. The top panel contains records from CRSP’s msenames table, and the lower panel reports
TAQ master records. The upper panel lists the Permno, CRSP’s proprietary unique stock identifier,
the trading symbol (Tsymbol), the name of the company (Comnam), the historical 8-character CUSIP
(Ncusip), and the date range on which the meta-information applies (Namedt,Nameendt). The lower
panel reports TAQ’s Symbol, the Name of the issue, the 12-character TAQ Cusip, and the first date of
validity of the meta-information record. TAQ records report information for each issue, i.e. at a lower
granularity than CRSP. The panels are horizontally aligned to highlight the closest match between the
columns.

CRSP: msenames

Permno Tsymbol Comnam Ncusip Namedt Nameendt

10000 OMFGA Optimum Manufacturing 68391610 19860107 19861203
10000 OMFAC Optimum Manufacturing 68391610 19861204 19870309
10000 OMFGA Optimum Manufacturing 68391610 19870310 19870611
10001 GFGC Great Falls Gas 39040610 19860109 19931121
10001 EWST Energy West 29274A10 19931122 20040609
10001 EWST Energy West 29274A10 20040610 20041018
10001 EWSTE Energy West 29274A10 20041019 20041226
10001 EWST Energy West 29274A10 20041227 20080204
10001 EWSTD Energy West 29274A20 20080205 2008030

TAQ: master records

Symbol Name Cusip Date

A Agilent Technologies 00846U101000 20060118
AA Alcoa 013817101000 20031013
AAC Ableauctions.com 00371F206001 20041109
AACC Asset Accep Cap 04543P100002 20040205
AACE Ace Cash Express 004403101002 20040102
AAI Airtran Holdings 00949P108000 20060118
AAME Atlantic American 048209100002 20040102
AAON Aaon 000360206002 20040102
AAP Advance Auto Parts 00751Y106000 20060118
AAPL Apple Computer 037833100001 20060316
AAPL Apple Computer 037833100002 20060214
AAPR Alcoa 3.75 Cum Pfd 013817200001 20060301

11
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the symbol, the cusip cannot be reused by di�erent issues. This means that matches built

on the cusip do not require meeting conditions on date ranges and hence avoid altogether

potential discrepancies in the dates across the databases. Figure 1.1 presents a real-life

example of a case of symbol re-use, on the left-side of the diagram, and the correspondence

to a di�erent cusip/permno on the right-side.

NaN

ASB

CUSIP X NCUSIP X

2006/05/15
...

2008/10/16
...

PERMNO 1 PERMNO 2

CUSIP Y NCUSIP Y

Œ

Œ

Figure 1.1: the same symbol can be used at di�erent points in time by two or more companies. On
the left side, the two bars are interrupted by a sequence of NaNs (Not-a-Number) but represent the same
time-series which is identified by one symbol. In fact, the two portions of the time-series can be mapped to
two di�erent TAQ cusips which in turn will link (Œ) to separate CRSP ncusips. The right side shows the
correct separation of the two time-series and their final correspondence to CRSP permnos. The example
is a real case extracted from TAQ.

Finally, the cusip avoids fragmentation of a time-series by tracking the issue across

symbol changes, as figure 1.2 illustrates. To sum it up, the cusip o�ers a simpler and

more reliable way of linking the two databases.

The linking procedure. The actual procedure consists of some initial data handling

followed by two main steps: matching series through the cusip and dropping duplicate

series.

The initial manipulations concern the format of the cusip. TAQ reports an extended

12



1.2. Data

PATLD USCG CUSIP
1993/07/21

...

1993/08/04
...

Figure 1.2: the same stock issue can change its symbol. On the left side, the two bars represent two
separate time-series identified by a di�erent symbols, while in fact, they should be treated as a single series.
The right side maps the two symbols to the same cusipand correctly recombines the fragments into one
series. The example is a real case extracted from TAQ.

12-character cusip (see table 1.1) while CRSP uses the 8-character format, which does

not include the check digit from the standard 9-character format. Hence, I drop the last

4 characters from the TAQ’s format, which represent the check-digit and a 3-digit code

that distinguishes between NYSE, AMEX, and NASDAQ issues. Furthermore, records

with all-null or empty identifiers are excluded altogether on both sides. After the cusips

are readied, the match is established through them, and the permno from table 1.1 is

implicitly ported to TAQ data respecting the pairings between symbol and date-ranges.

The second step handles duplicates which arise from a security sharing the same cusip

for its main issue and special ones. Figure 1.3 outlines this problem for mrv, which labels

the main issue, and mrwi which denotes a when issued series. Special issues usually have

the symbol as the main one but extended with a su�x. Therefore, most of the conflicts are

solved by sorting the symbols in alphabetic order and dropping the series with the longest

symbol. In a few cases, it is not possible to determine the main issue from the symbols

alone, which results in a negligible loss of 130 series.

A more sophisticated matching procedure, that extends the one just outlined, is des-

cribed in section 1.A.2. Although the results are very similar for the current sample, the

13
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MRV MRWI
1993/08/18

...

CUSIP NCUSIP

PERMNO

Œ

Figure 1.3: a stock can have secondary or special issues. On the left side, the two bars correspond to
separate time-series with the main issue mapped to the symbol MRV and a secondary when-issued issue
corresponding to symbol MRWI. Both symbols map to the same cusipand therefore to the same permno.
When such conflicts arise, all but the main issue are dropped. The example is a real case extracted from
TAQ.

extended procedure could prove its worth in analyses focusing on short-lived securities and

special issues.

1.2.2 TAQ cleaning and sampling

This section describes the cleaning rules applied to TAQ raw trade-data and how the

cleaned data is subsequently sampled at a lower frequency.

Cleaning high-frequency trades. High frequency data is known to be a�ected by irre-

gular or misreported trades and Falkenberry (2002) gives a good overview of the problem.

For this reason, I follow in spirit Barndor�-Nielsen, P. R. Hansen, et al. (2009) and Bol-

lerslev, Li, and Todorov (2016), and only keep valid prices of the trading session that have

not been flagged as irregular by the central tape and which have passed a simple filter for

abnormal observations. Specifically, I keep records if:

• the timestamp falls within the NYSE trading hours window which extends from 9:30

to 16:00;

• prices are not corrected, i.e. the corr field has a value of 0;

14
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• the trade does not qualify as ‘G’, Rule 127 or stopped stock trade, i.e. if the g127

field is either 0 or 40 (can be a Display Book-reported trade);

• sales conditions are normal, i.e. when the cond field contains only the letter codes

‘E’ (Automatic Execution), ‘F’ (Intermarket Sweep Order), ‘ ’ (No Sale Condition)

or ‘@’ (Regular Trade);

• the price is positive;

• the traded amount (siz) is positive;

• the price is proportionally within an order of magnitude from the daily median of

prices.

The filter for the outliers from the last bullet point captures only grossly misreported

prices and is thus very conservative. Figure 1.4 backs the claim by showing the daily count

of outliers, which most of the time stays below 5-10 bad observations and is valued only

on 288 days out of 17 years of data.

1993 1995 1997 1999 2001 2003 2005 2007 2009

0

50

100

150

200

250

Figure 1.4: total number of (price) outliers per day in the TAQ trades. For a given stock, an intraday
price is defined to be an outlier if it is an order of magnitude bigger or smaller than its median intraday
price. The total count sums the outliers of all stocks in the sample. Outliers are detected on only 288 days
out of the whole period of analysis that goes from 1993 until 2010 (more than 4000 days).
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Table 1.2: example of price outlier. The table reports a slice of TAQ records together with CRSP’s
permno, the symbol, the name of the company, the date and time of trade, the recorded price, the size
of the traded lot (Size), whether it respected G and 127 rules, if there were corrections (Corr) and the
condition of the trade (Cond). Null or empty values for G127, Corr and Cond, qualify as a valid trade.
The (first) traded price on 2003-10-31 is highlighted in yellow and marks the outlier.

Permno Symbol Name Date Time Price Size G127 Corr Cond

77008 XLTC EXCEL TECHNOLOGY INC 2003-10-30 15:59:03 28.30 100 0 0
77009 XLTC EXCEL TECHNOLOGY INC 2003-10-30 15:59:33 28.31 100 0 0
77010 XLTC EXCEL TECHNOLOGY INC 2003-10-31 09:30:00 0.01 100 0 0
77010 XLTC EXCEL TECHNOLOGY INC 2003-10-31 09:30:01 28.13 300 0 0
77010 XLTC EXCEL TECHNOLOGY INC 2003-10-31 09:31:46 28.25 100 0 0

To give a sense of what qualifies as a grossly misreported price, table 1.2 provides a real

case detected by the filter. The table reports a few intraday trades in Excel Technology

(XLTC) at the end of October 2003. In the example, none of the records contain invalid

prices or are flagged as irregular by the central tape, and in fact the g127, corr and

cond fields all contain acceptable values. However, the first price on October 31st is only

$0.01 as opposed to the prices immediately before and after which have a value of about

$28. Falkenberry (2002) suggests that the record erroneously reports only the decimal

component of the price.

On one hand, the impact of the outlier from table 1.2 can be substantial, as e.g. the

average open-to-close return for the whole cross-section on the 31st of October 2003 would

record a biased value of 77.23% instead of a more realistic -0.54% which is obtained by

excluding XLTC. On the other hand, while the economic impact of such outliers might

average out over two decades of data, Anderson, Bianchi, and Goldberg (2015) warn that

they might induce statistical significance in results that have none. Hence, it is best to

remove these observations altogether.

After high-frequency data are cleaned of its irregularities, I consolidate observations

that share the same timestamp. Hence, I follow Bollerslev, Li, and Todorov (2016) and

take the volume-weighted average of the prices and accumulate the volumes. Another

alternative approach, which produces very similar results, is used by Barndor�-Nielsen,
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P. R. Hansen, et al. (2009) who take the median of the prices instead of the volume-

weighted average.

The impact of the data handling, in terms of loss of observations, is given in figure 1.5

which presents the monthly count of trades over time (top subfigure) and the proportional

split among outliers, irregular observations, consolidated and good observations (bottom

subfigure). The top figure shows that trading activity increased over time, steadily until

2007 and almost exponentially afterwards, with a peak in 2008. The bottom figure, instead,

highlights the relative importance of the preparatory steps that precede data sampling.

Most notably, we can observe that the loss of observations due to same-timestamp conso-

lidation is dominant in the most recent years, with a clear upward trend. This result is

mechanically induced by two e�ects, the fixed length of the trading day combined with the

increased number of trades and the limited resolution of the timestamp.5 Irregular trades,

while increasing in absolute terms, never take more than 5% of the monthly observations,

and outliers at most represent 0.02% (not visible in the figure).

Sampling. Prices are sampled at a fixed and relatively low frequency of 5 minutes, for

a total of 79 observations per day, ready to be combined into lower frequencies as the

need arises. The 5-minute interval has been one of the most widely adopted in literature

since the early work by Andersen and Bollerslev (1997) and has been a di�cult benchmark

to beat in terms of optimal sampling frequency L. Y. Liu, Patton, and Sheppard (2015),

at least for realized volatility estimates. Nonetheless, the choice of the sampling interval

has received a lot of attention, since the frequency determines the trade-o� between the

theoretical precision in estimation, which improves as the interval shrinks, and the e�ects

of microstructure noise, which diminishes as the interval widens. The area of research is

quite vast and some authoritative references, in the univariate context, are Lan Zhang,

5I currently use the monthly feed whose timestamp has resolution up to a second, but even with the daily
feed, which also records milliseconds, we would still observe a smaller but increasing trend in observations
lost to consolidation.
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Figure 1.5: monthly count of total TAQ trades (top) and percentage split between types of trades
(bottom). Trades classify as irregular if the traded amount is not positive, the price is null, the record has
been corrected, or qualifies under the g127 rule or corresponds to an abnormal sale condition. A price of
a given stock is defined to be an outlier if it is an order of magnitude bigger or smaller than the median
intraday price for the same stock. Time-consolidated records corresponds to prices that share the same
timestamp minus one observations which is retained. The residual trades are considered good and eligible
for sampling. The proportion of outliers is very small and hence not visibly perceptible in the bottom plot.

Mykland, and Aït-Sahalia (2005), Oomen (2006), P. R. Hansen and Lunde (2006b) and

Barndor�-Nielsen, P. R. Hansen, et al. (2008).

Figure 1.6 illustrates the mechanics of the sampling procedure. The figure consists of

two timelines, with the bottom one representing the trading hours, and the top one being

a sampling grid which marks the sampling times on the lower line. Trades are marked with

a cross on the bottom line. The sampling uses previous-point interpolation, also known

as forward-filling, to pick the most recent trade, at each sampling time, and marks it in

red. As with the 5-minute interval, the previous-point method is yet another stronghold

in high-frequency sampling and it has been shown by P. R. Hansen and Lunde (2006b) to

be the better alternative to linear interpolation, used in earlier studies. The e�ects of the

interpolation are illustrated by the red arrows. At the end of the sampling, since the grid
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is fixed, all stocks will have n observations on every day.

·1 ·n

9:30 16:00

NaN NaN x1 x2 x3 x3 ...

Figure 1.6: example of previous-price sampling on a regular 9:00 to 16:00 trading day. Trades are
executed throughout the day at times marked by the crosses. The upper grid casts n sampling points
(dotted vertical lines) on the timeline and the most recent trade to each grid-point becomes marked in red
to denote that it has been sampled. The arrows show the previous-price interpolation and the carry-over
e�ects, i.e. the last trade within an interval is sampled at the next closest grid-point and if no trades
are executed during the next interval, the same price is carried-over to the following point and so forth
until the end of the day. Sampling points which are never preceded by any trade are filled with a NaN
(Not-a-Number).

The figure encompasses three specific cases of sampling and outlines the role of inter-

polation. In the trivial case, represented by x1, no interpolation occurs since the trade falls

exactly on a sampling point. However, the most common case, denoted by x2, is when the

trade occurs sometime between two consecutive sampling times. As figure 1.6 shows with

the red arrow, the trade is brought forward in time to the next sampling point. The last

example shows what happens during a period of prolonged inactivity, i.e. when prices are

stale. The trade, labelled with x3, is first interpolated to the next sampling point and also

carried over to the following grid-points until a new trade happens or the day ends.

If a stock is only traded a while after the opening time, the initial sampling points will

be filled with NaNs (not a number). I do not fill the series backwards with the first price

of the day nor interpolate with the closing price of the previous day. Therefore, I keep

the sampling method consistent with the resolution of information over time and free of

simplifying assumptions about the opening auction.

To summarize, consistently with prior literature, data are cleaned of irregular trades flagged

by the Central Tape. Then, grossly misreported prices are removed by a very parsimonious

filter and same-timestamp records are consolidated using a volume-weighted average for

prices and summing volumes. Finally, prices are sampled at the 5-minute frequency.
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1.2.3 A big data problem

The amount of data involved in high-frequency research poses several challenges whose

solutions are usually left out of the analysis. This section gives a concise overview of these

challenges and their solutions.

Size matters. With technological advances, electronic trading has become ever more

pervasive and since 2007 the number of trades has soared exponentially (see figure 1.5).

For example, at the end of the period of analysis, the month of May registered about

800 million trades, which is equivalent to about 15 GB of data.6 On the other hand, if

we were to consider the whole sample, the storage requirement would go up to almost

700 GB. Furthermore, this number represents just about 5% of the whole TAQ database

and quotes constitute the remaining part. Thus, high-frequency financial data demands

significant amounts of disk-space.

In addition to the storage requirement, Figure 1.7 gives context to the real-time flow

of data that e.g. intraday analysis or trading systems have to cope with. The figure plots

the maximum number of trades per second in a day and shows that the count peaks at

more than 12,000. While this statistic might not be very impressive in terms of disk-space,

it stresses latency and resiliency prerequisites in real-time systems. In other words, each

stream of data has to be processed and analysed by the second and these operations must

also be reliably executed under unexpected increases in loads. Although these requirements

might not be as stringent in research, the total time of execution becomes central when

processing huge amounts of information.

Fundamental changes in the workflow. The examples given above, all emphasize the

technical aspects of a problem that ultimately lies with adopting the correct workflow. In

essence, it is not possible to approach the analysis in the usual way, i.e. the limitations
6The estimate assumes a trade is stored in the TAQ binary format which uses 19 bytes per record and

I ignore index files in the size count. Alternative formats that repeat symbol and date, and use e.g. csv
files to store trades, will easily take up twice the space needed by the binary format.
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Figure 1.7: daily series of the maximum number of TAQ trades executed in a second on a single stock.
The surge after 2007 corresponds to an increase in automated High-Frequency Trading.

imposed by the data invalidate the one-action-per-task workflow, and alternative solutions

must be taken.

One way to tackle Big Data problems is to scale up the infrastructure and, for example,

use a clustered file system. However, using large-scale systems is just one side of the coin

and handling huge amounts of data also asks for specific programming paradigms. The

MapReduce, an industry standard by Dean and Ghemawat (2008), is one such program-

ming model which processes data by blocks and in parallel on a distributed environment.

A concrete example on high-frequency data will clarify. Suppose a researcher is in-

terested in the average return of a company, e.g. Apple Inc. (AAPL), over its lifetime.

In the usual one-action-per-task approach, we would just load into RAM the whole series

of returns and apply some function to get the desired statistic. Nonetheless, the task is

slightly more complicated if the series does not fit into memory as in the case with AAPL.

Therefore, we need to partition the data into m blocks and perform several actions before

getting the average return. This limitation forces to decompose the mean, or any other

function of interest, into a linearly additive form (or parallelize, in computing jargon). For

instance, each partition of returns is summed and counted on separate instances, and the

intermediate results, respectively si and Ni, are later consolidated together as in
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r̄ = 1
N

Nÿ

t

rt = s1 + s2 + · · · + sm

N1 + N2 + · · · + Nm

,

where si = qNi
t rt and N = qm

i Ni. On the two sides of the rightmost equality is the

sample mean (LHS) and the partitioned mean (RHS), and the di�erence between the two

lies only in the implementation. The former does not scale indefinitely while the latter

does so by reducing a block of data to a mere sum and count, before processing the next

partition.

Another concept that becomes necessary when working with partitioned data is caching

of intermediate results. It arises when a statistic, e.g. the variance, needs some partial

result, i.e. the average, that has to be calculated on data which spans several blocks. A

solution is to split the data such that the partial result can be calculated from a single

block. However, this is often impossible to achieve with multidimensional datasets like a

cross-section of stocks. If the horizon is su�ciently long, we cannot partition the cross-

section by stock, because even a single series, as with AAPL, will not fit into memory.

Hence, to calculate stock variances, previously computed means need to be grouped and

replicated as necessary to match the partitioning.

The actual infrastructure is based on a local implementation of the MapReduce, which

executes jobs in parallel on up to 8 cores, and stores data as a collection of compressed

binary files (.mat files). The parallel execution achieves a speedup of execution almost

equivalent to the number of cores while compression allows to keep all data on a local

hard drive, achieving a compression factor of a magnitude. In this setting, even though

compression trades disk-space for CPU cycles (time), a job runs on average in an hour

(recall the example of the mean). 7

7The implementation runs on a PC with an Intel Core i7-2700 CPU, 500 GB of disk space and 16 GB
of RAM. Although, hardware specifications can be lowered to a CPU with 4 cores, 150 GB of disk space
and 8 GB of RAM.
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1.3 Methodology and preliminary results

This section outlines two implementations of the Betting Against Beta (BAB) factor by

Frazzini and Pedersen (2014). It starts by presenting the general testing framework and

follows with the details of the factor construction. The description concludes with some

preliminary results.

The BAB factor is short high-beta securities and buys leveraged low-beta securities; I

implement it in two versions, using daily and high frequency returns.8 The two portfolios

share the same investable universe, formation and holding periods, and are rebalanced

at the beginning of each month. The choice of a common lookback ensures that the

only di�erence in the information set comes from the sampling frequency of the returns.

Moreover, the trading schedule is identical, implying the same cost-profile for the two

versions. In other words, since the focus of the analysis is to uncover eventual di�erences

in performance and because costs bear the same impact on the two strategies, they will be

disregarded altogether.

1.3.1 Estimating betas

Consistently with Frazzini and Pedersen (2014), henceforward FP, I estimate low-frequency

betas with a simple linear regression of stock returns on market returns (plus a constant).

I use daily observations and log-returns in excess of the one month T-bill rate. The market

portfolio and the risk-free rate are from professor’s Kenneth French Data Library.9 The

estimated low-frequency (LF) market beta for stock i is given by

—̂
LF
i =

‰cov(ri, r0)
‰var(r0)

, (1.9)

8Henceforward, depending on the context, I will interchangeably refer to the implemented BAB factors
by calling them portfolios, strategies or signals.

9The market portfolio is defined as the value-weighted index of all CRSP firms incorporated in the US
and listed on the NYSE, AMEX, or NASDAQ that have a CRSP share code of 10 or 11.
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where, consistently with equation (1.2), ‰cov(ri, r0) and ‰var(r0) are respectively the estima-

ted covariance between the stock and the market returns, and the variance of the market

factor.

In estimating high-frequency betas, I use the realized variants of the covariance and

variance. Akin to Bollerslev, Li, and Todorov (2016), prices are sampled every 75 minutes

starting at 9.45 am until 4.00 pm for a total of five returns per day plus the overnight.

The sampling grid might seem coarse relative to the commonly adopted 5-minute grid,

which produces 78 returns. However, while for univariate measures the 5-minute step

strikes an optimal balance between microstructure noise and precision of estimation, and

according to L. Y. Liu, Patton, and Sheppard (2015) there is hardly any worth in alternative

specifications for realized variance, on the other hand, for multivariate measures there

are additional complications. For instance, Epps (1979) documents that asynchronous

trading biases the realized covariance towards zero as the sampling is performed at higher

frequencies.

Research on optimal sampling o�ers several competing alternatives to circumvent the

undesirable impact on covariance estimates of the Epps e�ect and the microstructure noise

in general. Among the solutions Barndor�-Nielsen, P. R. Hansen, et al. (2011) have sug-

gested using the refresh-time sampling scheme along with multivariate realized kernels,

Sheppard (2006) adopts a scrambling procedure, Christensen, Oomen, and Podolskij (2014)

formulate a theory of pre-averaged measures and Lan Zhang (2011) extends the two-scale

estimation to multi-variate measures. However, along these more sophisticated solutions,

it is still possible to simply lower the sampling frequency and trade-o� accuracy to obtain

a relative stable estimate of the realized covariance. Due to its simplicity, most of the

literature follows this approach and so do I by picking an intermediate sampling interval

of 75 minutes.
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The estimated - realized - high-frequency (HF) betas for stock i are given by

—̂
HF
i = RCi

RV0
, (1.10)

where the RCi and RV0 are defined by equations (1.6) and (1.7) to be respectively the

estimated realized covariance between stock and market returns, and the realized variance

of the market. I adopt the S&P 500 ETF (spy), readily available in TAQ, as a proxy for

the high-frequency market returns. However, since LF betas use a di�erent proxy, I verify

that results are not a�ected by this choice in section 1.4 by using close-to-close returns of

the spy series.10

Betas are estimated with daily and high-frequency observations over formation periods

of a year and six, three and one months. Consistent with FP, I require at least 200, 100,

50 and all trading days of non-missing data for the periods listed above. All estimation

windows are rolledover each month and thus overlap, with the exception of the single-month

period.

Finally, to reduce the impact of outliers, I apply the same shrinkage used by FP with

their set of parameters. At each date, time-series betas are shrunk towards their cross-

sectional mean. Formally, if I denote with —̂i
TS the time-series beta for the i-th stock,

regardless of their low- or high-frequency nature, the shrunk beta is given by

—̂i = wi—̂i
TS + (1 ≠ wi)—̂XS, (1.11)

where, for all dates and stocks, the shrinkage factor wi is kept constant at 0.6 and the cross-

sectional average —̂XS at 1.11 The impact of di�erent values of the shrinkage parameter is

assessed in section 1.4.

10Results are una�ected by the choice of the proxy and are available upon request.
11The same shrinkage factor as in FP is used for all formation periods. The only exception goes for the

monthly window which requires a factor of 0.4 since it is more sensitive to outliers because of its shorter
length.
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1.3.2 Constructing the BAB factor

The construction of the BAB factor is exactly the same as in FP and it is here reported

for clarity.

Stocks are ranked in ascending order by their estimated betas and the first half of the

securities are assigned to the low-beta portfolio while the other half to the high-beta port-

folio. The weights, within each portfolio, are determined by the distance of each rank from

the average overall rank. Hence, contributions are linearly increasing as we approach both

extremes of the ordering. Figure 1.8 presents an example of weights for ten pre-ordered

securities, i.e. the first stock has the lowest beta and the last one the highest beta. The

weighting scheme is symmetric around the average overall rank of 5.5, with the (positive)

proportions for the low- and high-beta portfolios respectively on the left and right side of

the figure. Both sets of weights sum up to one by construction and details follow below.

1 2 3 4 5 6 7 8 9 10

0

0.1

0.2

0.3

0.4

Figure 1.8: example of weights for the low-beta portfolio (circles) and the high-beta portfolio (diamonds)
which are used to construct the BAB factor. The sample is assumed to have a cross-section of ten stocks,
already sorted in ascending order on the value of their market beta, i.e. the stocks with lowest and highest
betas are respectively in position one and ten. Weights sum up to one by construction and are linearly
increasing in the distance from the average rank of the beta. Stocks with a beta ranking above (below)
the average have null weight and thus are not included in the low(high)-beta portfolio.

Formally, given a set of n securities, their beta ranks zi = rank(—i,t) and the average
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1.3. Methodology and preliminary results

rank z̄ = (n + 1)/2, the weights for the low- and high-beta portfolios are generated by

wL
i = ≠(zi ≠ z̄)≠

k

wH
i = (zi ≠ z̄)+

k

(1.12)

where k normalizes the weights to one and is equal to k = 1
2

q |zi ≠ z̄|, with x+ and x≠

respectively equal to max(x, 0) and min(x, 0). Then, both portfolios are rescaled to have

a beta of one and the BAB is short high-beta securities and buys low-beta securities, with

overall factor return of

rBAB
t+1 = 1

—L
t

(rL
t+1 ≠ rf ) ≠ 1

—H
t

(rH
t+1 ≠ rf ), (1.13)

where —ú
t = q

wú
i —i,t and rú

t+t = q
wú

i ri,t+1. The BAB is a self-financing strategy financed

by the risk-free and a beta-neutral portfolio by construction, i.e. its beta is equal to zero.

1.3.3 Descriptive statistics

This section presents descriptive statistics and preliminary results for all estimation win-

dows of the BAB factor. To distinguish between the high- and low-frequency versions of the

strategy, I label with bab the portfolio whose signals are estimated with daily returns, and

with rbab (realized BAB) its high-frequency counterpart. The labels contain a subscript

to indicate the formation period of the signals which can be of a year (y), semester (s),

quarter (q) and of one month (m).

Analysis of correlations. Table 1.3 reports the time-series average of cross-sectional cor-

relations among the estimated betas, which are the (sorting) signals for the BAB portfolios.

The table has two types of correlations coe�cients, with Spearman’s rank correlations ap-

pearing above the main diagonal and the conventional Pearson’s coe�cients below the main

diagonal. For convenience, the matrix is arranged in blocks: the upper-left portion lists
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Chapter 1. Low-Frequency Investment with High-Frequency Measures

Table 1.3: time-series average of cross-sectional correlations between market betas estimated over forma-
tion periods of a month, a quarter, a semester and a year. Spearman’s rank correlations appear above the
main diagonal and Pearson’s coe�cients are below the main diagonal. The matrix is arranged in blocks:
the upper-left portion lists only the interactions among the low-frequency betas, i.e. babm, babq, babs

and baby, and the lower-right portion has the correlations between the high-frequency betas only, namely
rbabm, rbabq, rbabs and rbaby. The lower-left and upper-right blocks address the cross-interaction between
the low- and high-frequency variants. Low-frequency betas are calculated from simple linear regressions of
stock excess returns on market excess returns. High-frequency betas are calculated as the ratio of realized
covariance between stock and market intraday returns over the realized variance of the market. Intraday
returns are sampled at 75 minutes. The average correlations are calculated over the 1993-2010 period.
The sample covers common US equities and daily returns are from CRSP and intraday returns are from
TAQ.

babm babq babs baby rbabm rbabq rbabs rbaby

babm 0.61 0.64 0.53 0.60 0.51 0.53 0.47
babq 0.60 0.62 0.75 0.63 0.72 0.61 0.66
babs 0.64 0.61 0.76 0.87 0.73 0.77 0.68
baby 0.51 0.75 0.76 0.77 0.90 0.76 0.83

rbabm 0.58 0.61 0.88 0.77 0.79 0.85 0.74
rbabq 0.49 0.71 0.73 0.91 0.80 0.79 0.88
rbabs 0.52 0.60 0.77 0.76 0.85 0.79 0.83
rbaby 0.45 0.66 0.68 0.84 0.74 0.88 0.84

only the interactions among the LF strategies, i.e. babm, babq, babs and baby, and the lower-

right portion the correlations between the HF strategies only, namely rbabm, rbabq, rbabs

and rbaby. The lower-left and upper-right blocks, instead, address the cross-interaction

between the LF and HF variants.

First, all coe�cients fall between 0.45 and 0.91, indicating an expected high degree of

similarity between the signals. Second, there are no major di�erences between Spearman’s

and Pearson’s corelations, suggesting the absence of outliers among the estimated betas.12

Nonetheless, a few di�erences emerge when comparing HF and LF signals. For instance,

looking at the lower-right block in table 1.3, the average correlation among HF signals

is about 82%, sensibly higher than the average coe�cient of 64% calculated on the LF

signals, in the upper-left block of the table. Especially influential in the latter average is

12Spearman’s correlation is robust to outliers since all values are first converted into ranks. Hence, no
matter how extreme is an influential observation, its value is shrunk to at most the minimum or maximum
rank.
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1.3. Methodology and preliminary results

the monthly signal, i.e. babm, which exhibits low a�nity with all the other signals of the

same low-frequency nature. Moreover, when paired with the HF variants, the babm scores

the lowest correlation of 0.45 with the rbaby and only 0.58 with rbabm, i.e. the HF version

with the same formation period. On the other hand, the converse is not true: that is, the

correlation between rbabm and the other HF signals, or the LF variants, are not necessarily

the lowest coe�cients among all pairings. Additionally, looking at the main diagonals of

the lower-left and upper-right blocks in the table 1.3, the degree of a�nity between HF

and LF signals with the same formation period improves as the lookback increases. For

example, the correlation between babm and rbabm is 0.58, and it increases to 0.84 for the

yearly pair, i.e. between baby and rbaby. Hence, the formation window seems to play a role

in di�erentiating the signals, as shorter periods correspond to lower correlations. Moreover,

this e�ect is strongest with babm and the other HF strategies suggesting that intraday data

might also be relevant.

To summarize, although all signals are very similar to each other, there are perceivable

di�erences driven by changes in the estimation window and some indication that HF signals

bear some systematic dissimilarities from the LF alternatives.

Descriptive statistics. Table 1.4 reports descriptive statistics of monthly returns earned

by the low- and high-beta portfolios and the BAB factor. The table is split in four panels,

one per estimation window of the betas, each showing side-by-side the results for the LF and

HF versions of the signals. Among others statistics, I report the average return (avgret) and

standard deviation (std), their annualized equivalents (annret and annstd), the annualized

Sharpe Ratio (SR), the Newey and West (1987) standard error of the average return

computed with fixed lags (se) and its p-value (pval), the skewness and kurtosis (skew and

kurt), and the average beta for each portfolio ( avgbeta), see equation (1.13), where BAB

by construction has 0. Returns, and related measures, are expressed in percentage.

The results detailed for the baby, bottom-right panel on the left-side, are partially in

29



Chapter 1. Low-Frequency Investment with High-Frequency Measures

Table 1.4: descriptive statistics of monthly returns earned by the low- and high-beta portfolios and the
Betting-Against-Beta (BAB) factor. The table lists in this order: the average return (avgret), standard
deviation (std), the default-bandwidth Newey-West standard error of the average (se) and its pvalue (pval),
the annualized return, standard deviation and Sharpe Ratio (annret, annstd and SR), the annualized
downside deviation with return threshold at 0 (downstd), the minimum, median and maximum returns
(minret, medret and maxret), skewness and kurtosis (skew and kurt), the maximum drawdown return,
its length in months and the number of months that the price series took to recover from it (mdd, mddlen
and reclen), the sortino ratio (sortino), and the time-series average of the cross-sectional averages of
betas within a portfolio (BAB is beta-neutral by construction). All return are in percentage. The table is
organized in panels by estimation window of the betas (month, quarter, semester, year), and each panel
has statistics for portfolios based on low-frequency (Daily) and high-frequency (Intraday, shaded sections)
betas. Specifically, low-frequency betas are calculated from simple linear regressions of stock excess returns
on market excess returns. High-frequency betas are calculated as the ratio of realized covariance between
stock and market intraday returns over the realized variance of the market. Intraday returns are sampled
at 75 minutes. Portfolio formation is described in section 1.3.2. The sample covers common US equities
and daily returns are from CRSP and intraday returns are from TAQ. Statistics are calculated over the
entire period of analysis from 1993 until 2010.

Daily Intraday Daily Intraday
Low High BAB Low High BAB Low High BAB Low High BAB

month quarter

Avgret 0.68 0.21 0.47 0.66 0.36 0.30 0.74 0.26 0.48 0.84 0.34 0.50
Std 6.60 5.27 4.32 5.01 6.58 4.75 5.49 4.81 3.59 5.02 6.06 4.68
Se 0.48 0.38 0.29 0.38 0.46 0.35 0.41 0.35 0.27 0.38 0.44 0.37
Pval 0.16 0.58 0.10 0.08 0.44 0.39 0.07 0.46 0.08 0.03 0.44 0.18
Annret 8.11 2.51 5.61 7.94 4.35 3.58 8.89 3.15 5.74 10.06 4.04 6.02
Annstd 22.86 18.27 14.97 17.36 22.79 16.46 19.02 16.65 12.45 17.39 20.98 16.20
SR 0.35 0.14 0.37 0.46 0.19 0.22 0.47 0.19 0.46 0.58 0.19 0.37
Downstd 16.62 12.79 10.80 12.32 15.69 11.81 13.08 11.64 8.29 11.75 14.56 10.65
Minret -29.49 -19.41 -21.21 -23.14 -21.51 -24.76 -21.36 -16.57 -15.69 -21.65 -20.85 -20.11
Medret 1.40 0.36 0.69 1.19 0.54 0.34 1.23 0.45 0.54 1.11 0.47 0.32
Maxret 16.79 22.46 12.81 12.16 26.80 17.61 15.68 17.51 13.96 15.87 22.16 20.99
Skew -0.96 -0.07 -1.08 -0.92 -0.07 -0.78 -0.59 -0.21 -0.27 -0.70 -0.16 -0.05
Kurt 5.99 5.79 8.68 5.62 4.76 10.19 5.19 4.72 6.96 5.87 4.49 8.52
Mdd 57.97 63.94 54.54 48.95 73.92 62.99 47.25 60.18 38.61 43.66 70.11 62.60
Mddlen 31 108 29 21 108 23 21 108 27 21 108 23
Reclen -92 -15 -115 -15 -15 50 -15 -15 11 -15 -15 25
Sortino 0.49 0.20 0.52 0.64 0.28 0.30 0.68 0.27 0.69 0.86 0.28 0.57
Avgbeta 0.66 1.57 0 0.75 1.30 0 0.66 1.62 0 0.66 1.33 0

semester year

Avgret 0.63 0.22 0.41 0.81 0.29 0.52 0.69 0.18 0.52 0.78 0.23 0.55
Std 4.99 5.13 4.03 5.12 6.25 5.20 4.59 5.21 4.39 5.08 6.26 5.42
Se 0.37 0.37 0.32 0.39 0.45 0.40 0.35 0.39 0.35 0.39 0.47 0.44
Pval 0.09 0.55 0.20 0.04 0.52 0.19 0.05 0.65 0.14 0.05 0.62 0.21
Annret 7.54 2.65 4.89 9.67 3.45 6.23 8.33 2.13 6.20 9.42 2.77 6.65
Annstd 17.28 17.77 13.95 17.75 21.67 18.00 15.91 18.05 15.19 17.60 21.69 18.79
SR 0.44 0.15 0.35 0.54 0.16 0.35 0.52 0.12 0.41 0.54 0.13 0.35
Downstd 12.15 12.57 9.47 11.98 15.23 11.77 10.70 12.96 9.88 11.95 15.47 12.30
Minret -19.37 -18.12 -19.34 -21.25 -22.28 -22.10 -16.34 -18.68 -19.87 -20.09 -22.19 -26.10
Medret 1.20 0.46 0.39 1.20 0.48 0.31 1.27 0.30 0.28 1.31 0.33 0.14
Maxret 15.27 16.43 15.79 16.05 20.26 21.87 13.69 16.03 16.73 16.60 19.45 21.23
Skew -0.72 -0.27 -0.31 -0.59 -0.24 -0.05 -0.49 -0.38 -0.12 -0.61 -0.33 -0.15
Kurt 5.15 4.55 7.88 5.64 4.21 8.16 4.76 4.21 8.24 5.64 3.97 8.30
Mdd 46.40 62.10 49.66 44.03 70.74 62.30 42.68 63.79 54.67 40.66 71.96 66.54
Mddlen 21 108 23 21 108 23 21 108 23 21 108 23
Reclen -15 -15 48 -15 -15 24 -15 -15 18 -15 -15 26
Sortino 0.62 0.21 0.52 0.81 0.23 0.53 0.78 0.16 0.63 0.79 0.18 0.54
Avgsignal 0.72 1.58 0 0.69 1.32 0 0.77 1.53 0 0.71 1.29 0
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1.3. Methodology and preliminary results

line with those reported by FP. For instance, the strategy scores a monthly average return

of 52 basis points (bp), which is 30% smaller than the 70 bp listed by FP for US equities,

and has a p-value of only 0.14 (se of 35 bp). The Sharpe ratio is half that of FP with a

value of 0.41 versus 0.78 which reflects the relatively high standard error. Even though the

Sharpe ratio does not line up with FP, the average betas of the securities in the low- and

high-portfolios, with values of 0.77 and 1.53, are very close to those listed for the decile

portfolios in Frazzini and Pedersen (2014).

The outcome for the other estimation periods is very similar to those described for the

baby, although in principle not directly comparable to FP. Average returns, Sharpe ratios

and, in particular, average betas do not change much across estimation windows. However,

all rbab strategies exhibit slightly worse performance and statistical significance than their

corresponding bab versions, an observation that already comes up in figure 1.9. Noticeable

di�erences across LF and HF versions appear in the average beta of the high-beta portfolio,

the leg that is shorted in the BAB factor. The average LF beta has a value of about 1.6

across all estimation windows while its HF counterpart settles at around 1.3. Finally, the

distribution of BAB returns is not normal with the kurtosis usually above seven although

the skewness is often close to zero, especially so for rbabq, rbabs and rbaby.

For a visual inspection of all strategies, figure 1.9 plots the monthly cumulated returns,

rebased at one, of the low- and high-beta portfolios, defined by the first and second term

of equation (1.13), and the BAB portfolio, resulting from the combination of the two

components. There are a total of four pairs of side-by-side plots, vertically ordered by

increasing formation period, with the bab strategies on the left and the rbab strategies on the

right side. In all plots, a vertical line marks April 2001, the date when the decimalization

was extended to the NASDAQ market, briefly after its introduction to the NYSE in January

of the same year.13

13The decimalization introduces finer increments in stock prices. Before its introduction, prices were
allowed to change by pre-set fractional amounts, with 1/16 being the smallest allowed change.
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The figure reflects the results anticipated by the high correlations between signals in

table 1.3, i.e. the cumulated returns all trace very similar paths to each other. Nonetheless,

upon closer inspection of the solid lines without markers, all rbab strategies (on the right)

underperform their bab counterparts (on the left) over the entire horizon, with the worst

case captured by the monthly estimation window (top row of plots). Aside any di�erences

between the HF and LF versions, it seems that the BAB factor falls short of expectations.

I contextualize this graphical evidence with extensive descriptive statistics in table 1.4.

Preliminary results on the whole period of analysis suggest that estimating the betas, the

signals for our BAB strategy, with intraday returns in place of daily observations can only

worsen performance as measured by Sharpe ratios. However, for reasons outlined in the

following section, these implications are not final and should be re-considered over the

more recent period that starts from the decimalization of price quotes in April 2001.

1.3.4 Dot-com bubble and price decimalization

This section provides the motivation for focusing on the sub-period that comes after April

2001, and an update, with new evidence, to the results from the previous section.

Excluding the pre-decimalization period. I limit the analysis to a more recent sub-

period in order to avoid the dot-com bubble and the excess noise in the estimation of

realized betas. First, it is well known that internet stocks have experienced a sharp rise

in prices and an even more pronounced fall during the period from January 1998 until

February 2000. Ofek and Richardson (2003) explain this extraordinary event with the

excessive optimism of some agents, the inaction of pessimistic agents limited by short-sale

constraints and lockup expiration agreements. Moreover, Estrada (2004) finds the market

beta of such companies, calculated against the S&P 500 index, to average at an impressive

2.5. Hence, it is not surprising, that the prediction of FP’s model is inconsistent and the

BAB factor is bound to lose money by virtually shorting internet companies.In fact, this
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Figure 1.9: monthly cumulated returns of the low-beta (cross-marked), high-beta (plus-marked), and
the Betting-Against-Beta (BAB) portfolios (no markers). On the left (right) side, portfolios are formed
on low(high)-frequency betas. Betas are estimated, from top to bottom, over the past month, quarter,
semester and a year. Specifically, at month-end, stocks are sorted by the rank of their market beta (the
signals) into low- and high-beta portfolios, with weights linearly increasing in the distance of each rank
from the average rank (see equation (1.12) and figure 1.8). The BAB factor is the di�erence in excess
returns of the levered versions of the low- minus high-beta portfolios (see equation (1.13)). Stocks are held
for a full month. Low-frequency betas are calculated from simple linear regressions of stock excess returns
on market excess returns. High-frequency betas are calculated as the ratio of realized covariance between
stock and market intraday returns over the realized variance of the market. Intraday returns are sampled
at 75 minutes. All portfolios are re-based at one and the vertical line marks April 2001, the date of the
final decimalization of price quotes. The sample covers common US equities and daily returns are from
CRSP and intraday returns are from TAQ.
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is exactly what happens in figure 1.9: the high-beta portfolio, the solid line with the plus

markers (+), outperforms the low-beta portfolio, the solid line with the cross markers (◊).

However, we should not be including these stocks in the sample at all, owing to the their

rigid constraints on short-sales. It is also worth noting that FP cover the period from 1926

until 2012 while I am restricted to 1993 by TAQ’s availability, and therefore the impact of

the bubble is much stronger in my results.

The second reason to exclude the initial period is to avoid the noise, due to lack of

liquidity, and the bias, coming from market microstructure limitations, in the estimates of

realized measures. These complications are easier to show for the sub-sample of the S&P

500 constituents with betas calculated at the 5-minute frequency, which allows to emphasize

the impact of the Epps e�ect. Figure 1.10 reports the time-series of average betas for this

sub-sample. The top-plot draws the time-series of the average betas for beta-sorted quin-

tile portfolios, while the bottom plot has equivalent averages but for capitalization-sorted

quintile portfolios (only bottom, mid and top portfolio averages are shown for clarity). The

shaded areas mark the periods a�ected by the estimation issues.

The first shaded area covers the initial period that runs from 1993 through 1997 and is

characterized by intense intraday illiquidity.14 In fact, the price series of many US stocks

and the S&P 500 ETF are very stale, i.e. sampled intraday returns are often null. This

has a two-fold impact on the distribution of realized betas. First, the covariance shrinks,

as a direct consequence of the Epps e�ect, and betas distribute almost symmetrically

around zero (the time-series average of the 3rd portfolio averages at 0.2), far from the

sub-sample’s (value-weighted) average beta of one. Second, illiquid stocks will have noisier

beta estimates and the overall distribution will be more dispersed. In fact, the few non-

null returns, which survive the cross-product of the realized covariance from equation (1.6),

have a high chance of being substantially bigger in magnitude than those of the market

14I define intraday activity as the daily proportion of non-null returns computed at a given frequency,
e.g. 5-minute sampling, over the number of sampling points. Average results for the S&P 500 constituents
and its ETF are available on request.
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Figure 1.10: average of high-frequency betas of the cross-section of S&P 500 constituents, calculated with
intraday returns sampled at 5 minutes (and excluding the overnight). The top plot shows the average betas
for beta-sorted quintile portfolios and the bottom plot shows the average betas for quintile portfolios sorted
on market capitalization. In the top plot, the first portfolio has the lowest values and the fifth the highest
ones. The bottom plot shows only the first, third and fifth portfolios and their order follows the top plot
under the 2001 mark, i.e. lowest values correspond to first portfolio and highest to fifth. High-frequency
betas are calculated as the ratio of realized covariance between stock and market intraday returns over the
realized variance of the market. The shaded bands cover two periods a�ected by estimation bias in the
betas. In the first period, the whole cross-section of S&P 500 constituents is a�ected by the Epps (1979)
e�ect. During the second period, the trend in the betas (top) is driven by the gradual improvement of
liquidity in small-caps (bottom). Intraday returns are from TAQ.

proxy, since decimalization has not occurred yet. This means that the covariance will be

big relative to the market variance and will compose into imprecise and extreme estimates

of the realized beta. This outcome, which can be observed in the conic shape traced by

the average betas of the 1st and 5th quintile portfolios, slowly vanishes over time as the

liquidity of the market proxy improves.

The second shaded area covers the introduction of the decimalization, piloted in late

2000, and extends until 2003. The betas of the quintile-sorted portfolios, in the bottom

plot of figure 1.10, delineate an increasing trend where the median slowly converges to

the expected value of one. Stocks are traded more often thanks to the finer increments in

quotes and liquidity improves across the whole sub-sample. However, we observe a trend
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instead of a shift in the beta-sorted quintile portfolios (top plot), because low-capitalization

stocks (bottom line in the bottom plot) have a slower response to the introduction of finer

quotes. While the average beta of large-caps has been gradually converging towards one

since 1997, small-caps had betas consistently biased towards zero until late 2000, and only

afterwards their estimates benefit from the increased liquidity.

To sum up, the period from 1993 until 2001 is not appropriate for my comparative study

in view of the inconsistency of the FP model with the dot-com bubble and because of

the systematic noise and bias in the estimates of realized betas. Therefore, I condition

correlations, descriptive statistics and the plots with the cumulated returns on the period

starting April 2001. The tables and the figure can be found in the appendix, respectively

under table A1, table 1.5 and figure A1.

Descriptive statistics after decimalization. After April 2001, correlations among

signals are slightly higher and fall between 0.49 and 0.95. The same considerations made

for table 1.3 apply to table A1 and hence are omitted for clarity.

More relevant is table 1.5, which reports overall better performance metrics across all

formation windows. Specifically, the results for the baby strategy are now in line with FP. In

fact, the Sharpe ratio has a value of 0.72, much closer to the 0.78 reported by FP than the

previous value of 0.40, and the average monthly return of 50 bp, while unchanged, is now

significant at the 5% level. Most importantly, the ranking between LF and HF portfolios

this time is reversed, with the rbab strategies systematically scoring higher average returns

and p-values below the 5% level.

Moreover, the Sharpe ratios of the HF implementation remain stable at 0.75 when es-

timating betas over the past year, semester and quarter and a slightly lower value of 0.70

for the monthly window. In contrast, the LF implementation performs worse producing a

Sharpe ratio of 0.58 when using semiannual or quarterly betas but records values of 0.72

and 0.71 respectively for the yearly and monthly estimation windows. Even though redu-
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Table 1.5: descriptive statistics of monthly returns earned by the low- and high-beta portfolios and the
Betting-Against-Beta (BAB) factor after the decimalization in 2001. The table lists in this order: the
average return (avgret), standard deviation (std), the default-bandwidth Newey-West standard error (se)
of the average and its pvalue (pval), the annualized return, standard deviation and Sharpe Ratio (annret,
annstd and SR), the annualized downside deviation with return threshold at 0 (downstd), the minimum,
median and maximum returns (minret, medret and maxret), skewness and kurtosis (skew and kurt), the
maximum drawdown return, its length in months and the number of months that the price series took
to recover from it (mdd, mddlen and reclen), the sortino ratio (sortino), and the time-series average of
the cross-sectional averages of betas within a portfolio (BAB is beta-neutral by construction). All return
are in percentage. The table is organized in panels by estimation window of the betas (month, quarter,
semester, year), and each panel has statistics for portfolios based on low-frequency (Daily) and high-
frequency (Intraday, shaded sections) betas. Specifically, low-frequency betas are calculated from simple
linear regressions of stock excess returns on market excess returns. High-frequency betas are calculated
as the ratio of realized covariance between stock and market intraday returns over the realized variance
of the market. Portfolio formation is described in figure 1.9. The sample covers common US equities and
daily returns are from CRSP and intraday returns are from TAQ.

Daily Intraday Daily Intraday
Low High BAB Low High BAB Low High BAB Low High BAB

month quarter

Avgret 0.36 -0.13 0.49 0.44 -0.11 0.54 0.37 -0.04 0.41 0.54 -0.03 0.57
Std 5.27 4.32 2.39 4.73 5.12 2.68 4.81 3.93 2.44 4.71 4.72 2.66
Se 0.60 0.48 0.23 0.58 0.54 0.26 0.57 0.42 0.25 0.56 0.50 0.25
Pval 0.55 0.79 0.03 0.45 0.84 0.04 0.52 0.93 0.10 0.34 0.95 0.03
Annret 4.33 -1.57 5.89 5.25 -1.28 6.53 4.46 -0.44 4.90 6.52 -0.38 6.89
Annstd 18.25 14.96 8.28 16.38 17.74 9.30 16.66 13.62 8.44 16.33 16.35 9.20
SR 0.24 -0.10 0.71 0.32 -0.07 0.70 0.27 -0.03 0.58 0.40 -0.02 0.75
Downstd 13.72 11.53 5.52 12.22 13.37 5.86 12.70 10.12 6.09 11.91 12.02 5.59
Minret -18.38 -14.12 -9.40 -16.48 -15.96 -9.46 -19.62 -11.48 -10.88 -19.43 -13.24 -9.18
Medret 1.15 0.32 0.74 1.13 0.18 0.57 0.96 0.12 0.57 1.11 0.13 0.27
Maxret 12.94 9.85 6.10 11.44 11.78 9.22 11.52 10.08 6.89 11.74 11.54 8.98
Skew -0.96 -0.56 -0.83 -1.03 -0.40 -0.23 -1.21 -0.32 -1.44 -1.05 -0.23 -0.11
Kurt 4.70 4.05 6.16 5.07 3.62 5.26 5.99 3.48 9.12 5.97 3.26 5.44
Mdd 50.19 43.64 16.26 48.95 48.71 16.89 47.25 38.49 16.14 43.66 42.52 14.13
Mddlen 21 92 8 21 92 10 21 34 8 21 34 5
Reclen -15 -15 -15 -15 -15 -13 -15 -15 -15 -15 -15 12
Sortino 0.32 -0.14 1.07 0.43 -0.10 1.11 0.35 -0.04 0.81 0.55 -0.03 1.23
Avgbeta 0.71 1.51 0 0.78 1.31 0 0.69 1.57 0 0.69 1.36 0

semester year

Avgret 0.37 -0.04 0.40 0.56 -0.04 0.60 0.47 -0.04 0.50 0.57 -0.04 0.61
Std 4.64 4.09 2.42 4.81 4.86 2.75 4.38 4.16 2.43 4.76 4.89 2.81
Se 0.56 0.44 0.23 0.57 0.51 0.27 0.53 0.45 0.24 0.56 0.53 0.28
Pval 0.51 0.93 0.08 0.33 0.94 0.03 0.38 0.94 0.04 0.32 0.94 0.03
Annret 4.39 -0.47 4.86 6.71 -0.46 7.17 5.60 -0.43 6.02 6.84 -0.50 7.34
Annstd 16.09 14.17 8.37 16.65 16.82 9.54 15.16 14.41 8.40 16.50 16.94 9.75
SR 0.27 -0.03 0.58 0.40 -0.03 0.75 0.37 -0.03 0.72 0.41 -0.03 0.75
Downstd 12.23 10.45 5.71 12.16 12.29 5.59 11.24 10.60 5.01 12.19 12.43 5.50
Minret -18.25 -11.66 -9.64 -18.25 -13.01 -8.32 -15.87 -11.77 -6.93 -19.34 -13.45 -8.62
Medret 1.13 0.16 0.37 1.15 0.07 0.32 1.24 0.13 0.28 1.28 0.18 0.30
Maxret 10.82 10.24 6.80 11.60 11.95 9.20 9.44 10.80 8.56 10.37 12.06 10.79
Skew -1.16 -0.25 -0.75 -1.02 -0.17 0.13 -1.05 -0.22 0.07 -1.17 -0.19 0.35
Kurt 5.71 3.28 5.68 5.63 3.20 4.83 5.02 3.21 4.74 5.95 3.13 5.48
Mdd 46.40 39.68 14.59 44.03 43.70 13.98 42.68 39.61 13.79 40.66 44.68 15.98
Mddlen 21 34 6 21 34 5 21 21 6 21 92 6
Reclen -15 -15 13 -15 -15 12 -15 -15 15 -15 -15 15
Sortino 0.36 -0.04 0.85 0.55 -0.04 1.28 0.50 -0.04 1.20 0.56 -0.04 1.33
Avgsignal 0.75 1.55 0 0.73 1.35 0 0.78 1.51 0 0.74 1.33 0
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cing the estimation period from a year to a semester or a quarter plays in favour of a HF

implementation, as the di�erence in Sharpe ratios suggests, this pattern is not monotonic.

For instance, the di�erence in performance for the monthly window is negligible. Hence,

although the month-long period has many less daily observations than the intraday sam-

pling scheme, the realized measure does not manage to leverage this statistical advantage

and create a monotonic gain in terms of Sharpe ratios. Interestingly, the performance leap

is achieved with essentially unchanged average betas of the low- and high-beta portfolios

that form the BAB factor.

To recapitulate, after conditioning on the sub-period following April 2001, the rbab strate-

gies have an economic advantage over the low-frequency bab analogues. This gain is picked

by the di�erence in the Sharpe ratios and should potentially reflect the superior statisti-

cal accuracy of intraday realized measures. However, the length of the formation period

does not seem to play the role it was expected to have in di�erentiating HF signals from

LF ones. In fact, it is not self-evident whether realized measure are more accurate than

low-frequency estimates. The di�erence in Sharpe ratios, between HF and LF, improves

as the formation period shortens, but not monotonically, and reverts for the month-long

estimation period, signalling the inability of realized betas to leverage the superior amount

of observations. Alternatively, the results might indicate that the cross-sectional ranks of

the betas are relatively stable over time. Regardless of the answer, I first need to establish,

in the next section, if the observed economic advantage is statistically significant.

1.4 Performance evaluation

This section tests if the di�erence in performance between bab and rbab portfolios is sta-

tistically significant, that is, if there is an economic advantage in using the HF version

of conventional LF signals. Results are reported for the base case and for specifications

that gauge the robustness of the construction of the signals, of the sampling methodology

38



1.4. Performance evaluation

and whether the overnight component bears a significant impact for portfolios built on HF

data.

Methodology. I adopt the Jobson and Korkie (1981) statistic with the correction by

Memmel (2003) to test if the di�erence in Sharpe ratios is equal to zero. Specifically, given

the return series of two portfolios A and B, the null hypothesis of no di�erence in Sharpe

ratios, i.e.

H0 : SRA ≠ SRB = µA/‡A ≠ µB/‡B = 0, (1.14)

where µ and ‡ are the estimated means and standard deviations of their respective port-

folios, can be tested with the following statistic

zJK = ‡BµA ≠ ‡AµBÔ
◊

≥ N(0, 1), (1.15)

with

◊ = 1
T ≠ M

A

2‡2
A‡2

B ≠ 2‡A‡B‡A,B + 1
2µ2

A‡2
B + 1

2µ2
B‡2

A ≠ µAµB

‡A‡B

‡2
A,B

B

,

and where ‡A,B is the estimated covariance between the two series of returns. The statistic

in equation (1.15) is derived under IID and normally distributed returns, and because these

conditions are often violated in time-series data, Ledoit and Wolf (2008) suggest alterna-

tive approaches. For instance, they test the null using heteroskedasticity-autocorrelation

consistent (HAC) and bootstrapped Sharpe ratios. Since table 1.5 reports skewness values

of more than 4.77 for all series of BAB returns, I also employ both methods suggested

above to guard against spurious e�ects induced by non-normality. The additional tests are

in line with the inference drawn with the zJK statistic and, in all cases, exhibit a more

pronounced failure of rejecting the null. Therefore, to avoid redundancy, only the boots-

trapped test is reported, and the results with the HAC Sharpe ratios remain available on

request.

Results. Table 1.6 collects, in this order, the annualized Sharpe ratios of the LF and
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HF strategies, their di�erence (� SR), and the Jobson-Korkie (JK) and the bootstrap-

ped Ledoit-Wolf (LW) p-values on the null in equation (1.14), i.e. that H0 : � SR =

SRHF ≠ SRLF = 0. Results are reported for all four formation periods (month, quarter,

semester and year), with the base-case represented by the period going from April 2001

until May 2010, with the realized betas estimated over returns sampled at 75 minutes,

including the overnight return and having the same shrinkage factor of 0.6 as in FP (see

equation (1.11)). For completeness, I also report in successive panels the tests on the

whole horizon, i.e. from 1993 until 2010, and a series of robustness checks that gauge the

sensitivity of the framework.

The base case, i.e. the first four rows of table 1.6, confirms the results anticipated in

section 1.3.4. The di�erence in Sharpe ratios increases as the formation period shortens

from yearly to semi-annual or quarterly, but the pattern is not monotonic (top panel). In

fact, the LF Sharpe ratios for the year- and month-long periods settle at about 0.71, while

the portfolios formed over the two intermediate lookbacks record a performance of about

0.58. In contrast, the HF portfolios are steadier and exhibit higher Sharpe ratios of about

0.75 with the exception of 0.70 for the monthly formation period. The highest � SR is

of 0.17 for signals estimated over the past semester but the di�erence is not statistically

significant with JK and LW p-values of respectively 0.21 and 0.26. Contrary to the belief

that the estimation of LF betas might su�er from the lack of observations, the babm and

baby achieve the same SRLF of about 0.71 with a slight advantage for the LF version.

Noticing how the p-values are inevitably large, a remark is necessary. Since the focus of

the paper is on testing if the HF implementation adds any economic value, we are mostly

interested in checking that SRHF > SRLF. However, concluding the opposite is also of

interest, even more so if the di�erence is statistically significant. Hence, I use the two-

tailed test instead of a one-sided alternative and retain the more general p-values. The

reader can mechanically half those values to see that in some cases, the HF implementation

comes close in adding value with respect to the LF variant. As an example, the JK p-values
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Table 1.6: comparison of annualized Sharpe ratios (SR) and tests of statistical significance of the di�e-
rence in performance, i.e. H0 : � SR = 0. The table reports Sharpe ratios of the Betting-Against-Betas
(BAB) portfolios based on low-frequency betas (SRLF) and high-frequency betas (SRHF), the high-minus-
low di�erence (� SR = SRHF ≠ SRLF), the Jobson and Korkie (1981) p-value with correction by Memmel
(2003), and the Ledoit and Wolf (2008) bootstrapped p-value with their default specification. BAB portfo-
lios are constructed from low- and high-frequency betas estimated over the past month, quarter, semester
and a year, and results are reported for each of these cases. For a detailed description of the methodology
see section 1.3. The first four rows list the performance for the base case, which is estimated over the period
from 2001 until 2010 with intraday returns sampled at 75 minutes, including the overnight component,
and using the same shrinkage factor as Frazzini and Pedersen (2014) of 0.6, refer to equation (1.11). Sensi-
tivity to changes in estimation parameters is tested on the shrinkage parameter, the smoothing approach,
the sampling frequency (a�ects HF only), the sampling method (refresh times with minimum step at 75
minutes and with pre-averaged returns), the absence of the overnight component (a�ects HF only), and
the base case is also estimated over the full horizon for completeness, although inconsistent with BAB as
described in section 1.3.4.

SRLF SRHF � SR JK pval LW
pval

2001-2010

month 0.712 0.702 -0.009 0.968 0.969
quarter 0.581 0.749 0.168 0.320 0.434
semester 0.580 0.752 0.172 0.214 0.256
year 0.717 0.753 0.036 0.746 0.761

1993-2010

month 0.359 0.179 -0.180 0.487 0.543
quarter 0.454 0.392 -0.062 0.574 0.647
semester 0.360 0.315 -0.045 0.964 0.965
year 0.401 0.323 -0.078 0.321 0.361

No shrinkage

month 0.361 0.404 0.043 0.934 0.927
quarter 0.202 0.576 0.374 0.007 0.030
semester 0.299 0.621 0.322 0.020 0.064
year 0.521 0.532 0.011 0.923 0.940

Shrinkage 0.8

month 0.265 0.565 0.300 0.194 0.293
quarter 0.403 0.707 0.303 0.048 0.066
semester 0.457 0.726 0.269 0.052 0.108
year 0.650 0.697 0.046 0.680 0.762

ARMA(1,1)

month 0.516 0.483 -0.033 0.732 0.765
quarter 0.487 0.621 0.134 0.402 0.560
semester 0.568 0.669 0.101 0.461 0.567
year 0.696 0.762 0.066 0.571 0.628

continues...
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SRLF SRHF � SR JK
pval

LW
pval

...continues from table 1.6.

5min sampling

month 0.712 0.569 -0.143 0.642 0.676
quarter 0.581 0.629 0.048 0.850 0.892
semester 0.580 0.584 0.004 0.985 0.989
year 0.717 0.639 -0.078 0.740 0.782

30min sampling

month 0.712 0.695 -0.017 0.949 0.947
quarter 0.581 0.696 0.115 0.570 0.685
semester 0.580 0.635 0.055 0.747 0.798
year 0.717 0.698 -0.019 0.899 0.907

Refresh 75min

month 0.712 0.719 0.007 0.974 0.971
quarter 0.581 0.730 0.149 0.364 0.451
semester 0.580 0.726 0.146 0.306 0.423
year 0.717 0.700 -0.017 0.891 0.918

Refresh pre-avg

month 0.712 0.682 -0.030 0.888 0.883
quarter 0.581 0.688 0.107 0.590 0.614
semester 0.580 0.731 0.151 0.481 0.516
year 0.717 0.785 0.068 0.754 0.817

No overnight

month 0.712 0.543 -0.169 0.517 0.554
quarter 0.581 0.738 0.157 0.435 0.549
semester 0.580 0.742 0.162 0.314 0.377
year 0.717 0.775 0.058 0.607 0.614
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for the base case, under the one-sided hypothesis, would respectively be about 0.37, 0.16,

0.11 and 0.48 for signals estimated over a year, semester, quarter and a month.

Next, in the second block of four rows, I list the robustness check performed using

data on the whole horizon of analysis, i.e. since 1993. Results, are largely discussed

in section 1.3.3 and the conclusions should not be taken as indicative of overall average

performance but are repeated here for completeness. The period from 1993 until 2001 is

inconsistent with the model underlying the BAB factor. Moreover, realized measures are

severely a�ected by the Epps e�ect, and the bias diminishes only after the decimalization

of price quotes in April 2001. For this reason, the � SR is always negative across all

estimation windows. Therefore, these results should be interpreted with caution because

of the uneven playing field.

Additionally, I assess the sensitivity of the signals to the shrinkage parameter used to

reduce outliers in the betas (see equation (1.11)). The first robustness test is run without

shrinking the time-series betas from equations (1.9) and (1.10) to their cross-sectional

average. The second run uses an intermediate value of w = 0.8, instead of 0.6 employed by

the base case. A final test is conducted by regularizing each time series of estimated betas

with an ARMA(1,1) filter, rather than a cross-sectional shrinkage towards the average

value.

For the robustness test with no shrinkage and for the intermediate value of w = 0.8,

the absolute performance of the low- and high-frequency portfolios worsens. The impact is

stronger for shorter formation periods and particularly for the LF strategies. In fact, the

SRLF are reduced to the point that the di�erence with the SRHF is positive and statistically

significant. For example, with w = 0.8, the Sharpe ratio of rbabq has an advantage of 0.30

points over babq, and this discrepancy is significant at the 5% level. With no shrinkage at

all, i.e. with w = 1, the performance advantage for the quarter-long estimation window

widens to 0.37 points and has a higher statistical significance with a JK pvalue of 0.007.

While this evidence cannot establish an unequivocal advantage of the HF implementation
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over the LF variant, it does expose the excessive sensitivity to outliers of the LF portfolios.

The robustness with the ARMA(1,1) filter does not provide additional insight other than

marginally improving the performance over the base case for the HF portfolio estimated

over the past year, i.e. the SRHF goes from 0.75 to 0.76.

A di�erent type of robustness is carried out on the choice of the sampling scheme for

HF betas (does not a�ect the bab portfolios). As already mentioned in section 1.2, optimal

sampling is central to the estimation of realized-measures, but is beyond the scope of the

current analysis. Hence, I experiment with sampling intervals of 5 and 30 minutes. I pick

the former frequency because it is a canonical choice for the estimation of realized-variance,

and since L. Y. Liu, Patton, and Sheppard (2015) is also arguably the best choice. The

latter frequency, is an intermediate calibration step between the base case (75 minutes)

and the 5-minute interval. In terms of results, the performance of the rbab portfolios

progressively worsens as the sampling step shortens (see table 1.6), giving clear indication

of the well-known estimation problems that a�ect multivariate measures, like asynchronous

trading and microstructure noise.

To tackle potential issues deriving from asynchronous trading, instead of sampling

prices at a fixed interval, I borrow the Refresh Time sampling from Barndor�-Nielsen,

P. R. Hansen, et al. (2011). The sampling scheme, whose mechanics are illustrated by

the authors in their figure 1, avoids biasing multivariate measures, like the covariance,

towards zero (see Epps (1979)). When one of two series is rarely traded, a su�ciently

high-frequency fixed-sampling scheme will create many null returns in that series. Those

null returns will void the variability in any other series which is more frequently traded.

Hence, to avoid this e�ect, the sampling is performed only when both series have traded at

least once or, in other words, when both series have refreshed their prices. Additionally, to

avoid microstructure noise that is stronger at higher frequencies, the sampling is refreshed

only after 75 minutes have elapsed from the previous price. An alternative approach to to

the minimum step, in order to avoid additive microstructure noise, is to pre-average the
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series as in Christensen, Kinnebrock, and Podolskij (2010).

The performance of HF portfolios, under the alternative refresh-times scheme and the

minimum step or the pre-averaged series, is preserved. There are two minor improvements

in the absolute values of SRHF with respect to the base case: the value for the month-long

estimation window raises from 0.70 to 0.72 under refresh time with the minimum step, and

the value for the year-long estimation window raises from 0.75 to 79 under the refresh time

with pre-averaging. All other values are marginally worse than in the base case.

Finally, Lou, Polk, and Skouras (2016) split the close-to-close return into intraday and

overnight components and highlight the dominant role of the latter one. In this check, I

estimate realized betas using only same-day prices in order to assess the contribution of

the overnight return to the profitability of HF strategies. Changes in Sharpe ratios with

respect to the base case are negligible except for the rbab estimated over a month which

exhibits some performance regression. This e�ect is consistent with the results of Lou,

Polk, and Skouras (2016): the co-movement between stock and market proxy is stronger

overnight and is more relevant during shorter horizons, when the number of observations

is relatively low.

To summarize, the results reported in table 1.6 suggest that the theoretical statistical

precision of high-frequency measures does not translate directly into superior and statis-

tically significant economic gains. Moreover, although in absolute terms there is some

improvement, it is not monotonic in the formation period as suggested in section 1.1. In

other words, there is no evident advantage in high-frequency data when using a formation

period of one month. However, a series of robustness checks suggest that realized betas

are less sensitive to the estimation methodology than their low-frequency counterparts.
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1.4.1 Sorts by liquidity

The previous section has established that although the HF implementation is more robust

than the LF one, the di�erence in performance is usually not statistically significant. Mo-

reover, the � SR does not improve monotonically as the lookback period becomes shorter,

suggesting that the accuracy of high-frequency measures might not play as big of a role as

supposed in section 1.1.

Nonetheless, this section shows that the HF implementation does provide a strong be-

nefit among the most illiquid stocks. In other words, while one month of daily observations

is generally long enough to deliver a meaningful signal for the BAB strategy, this princi-

ple does not extend uniformly to the whole cross-section. For instance, less liquid stocks

might exhibit some variability only during the trading day, while remaining stale at the

daily level. To assert this claim, stocks are first sorted into five quintiles according to the

Amihud (2002) illiquidity measure. For each group, BAB portfolios are formed from HF

and LF betas estimated over the past month, quarter, semester and a year, for a total of

20 portfolios, and their performance is compared.

Table 1.7: di�erence in annualized Sharpe ratios of the Betting-Against-Betas (BAB) portfolios based on
high-frequency betas minus the low-frequency version, i.e. � SR = SRHF ≠ SRLF. Equities are one-way
sorted into quintiles by the illiquidity measure of Amihud (2002) and the BAB portfolios for each quintile
are constructed from betas estimated over several formation periods. For a detailed description of the
methodology see section 1.3. The rows of the table group portfolios by liquidity, with the most to least
liquid portfolios respectively in the first and last rows. The columns, instead, group portfolios by formation
period of the betas, with the month, quarter, semester and year windows respectively in the first through
the fourth column. The last column plots the values by row. In bold are the coe�cients that have a Jobson
and Korkie (1981) p-value with correction by Memmel (2003) below 5%.

month quarter semester year

liquid 0.03 0.06 0.06 0.06

2 -0.06 0.09 0.08 0.03

3 -0.12 0.05 0.12 -0.02

4 -0.16 0.26 0.16 0.05

illiquid 0.56 0.43 0.35 0.21

Table 1.7 lists the di�erence in annualized Sharpe ratios between the HF and LF im-
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plementation of the BAB portfolios, i.e. � SR = SRHF ≠ SRLF. Results are organized in a

matrix with the most liquid portfolios in the first row and the least liquid in the last row.

Columns group portfolios by lookback period with the monthly window in first position

and the yearly window in last. Results in bold represent � SR which have a JK p-value of

5% or lower. The coe�cients are also plotted by row in the last column of the table. For

completeness, the Sharpe ratios and the JK and LW p-values are reported in table A2.

It is evident how the least liquid stocks largely benefit from the high-frequency imple-

mentation of the signals, and that the e�ect is monotonically increasing as the lookback

window shortens. The � SR for the month-, quarter- and semester-long estimation window

are respectively 0.56, 0.43 and 0.35, and are all statistically significant, while the coe�-

cient for the year-long period is 0.21. Also, it is noteworthy the absence of any performance

di�erential for the most liquid group of stocks, in the first row of the table. In fact, all

coe�cients are about 0.06 and are insensitive to the length of the lookback.

To conclude, there is some evidence that the high-frequency implementation of the BAB

portfolio is more robust than the canonical low-frequency implementation and that it

provides statistically significant economic gains among the most illiquid stocks.

1.5 Conclusion

This paper proposes a framework to test if high-frequency realized measures add economic

value in the context of asset pricing factors which are traditionally traded at a lower

frequency. Although the performance of the factor improves in absolute terms with signals

estimated on intraday data, the evidence is only statistically significant for the most illiquid

stocks.

The empirical exercise implements the Betting Against Beta factor by Frazzini and

Pedersen (2014), over the horizon from 2001 until 2010, using daily and intraday data

sampled at 75 minutes. All other conditions are held constant, i.e. both variants of
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the factors share the same investable universe (US equities), formation period, monthly

rebalancing and have equal trading costs. The performance of the two versions of the

BAB factor is assessed with a test on the di�erence in Sharpe ratios. Additionally, to

verify the intuition that signals built with intraday data can leverage the higher number

of observations, as opposed to a daily scale, the factors are calculated with lookbacks of a

year, semester, quarter and a month.

While it does seem that the di�erence in performance increases as the estimation

window becomes shorter, from yearly to semi-annual or quarterly, the di�erence for the

monthly period takes a step back. The regression in the performance di�erential suggests

that realized betas, estimated with five times the amount of daily observations, are noisy

on short lookbacks. To further gauge the sensitivity of the estimated betas to estimation

parameters, general results are complemented with robustness checks on the shrinkage pa-

rameter, the type and the frequency of the sampling (only a�ects high-frequency factors)

and the exclusion of the overnight return from the realized beta.

As already noted in the preliminary analysis, which uncovers strong bias in the estimates

preceding the decimalization of stock prices in 2001, high-frequency betas are severely

a�ected by the Epps e�ect at lower sampling intervals. Despite that, the high-frequency

measure is more robust than the conventional factor to single outliers in the cross-section

of the estimated betas and the performance is more stable across estimation windows. In

fact, reducing or removing the shrinkage parameter which mitigates the impact of outliers,

produces a statistically significant di�erence in performance for the intraday version of the

factor. However, the absolute performance worsens in comparison with the base case, thus

only indicating a marginal benefit.

Perhaps more interesting is the e�ect of the overnight return. Intraday betas calculated

over the past month and without the close-to-open component, exhibit much worse per-

formance than the corresponding daily analogue. This result is consistent with Lou, Polk,

and Skouras (2016), who argue that close-to-close performance is mainly driven by the
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overnight return. Hence, the estimation of realized betas over short windows is strongly

dependent on the overnight component and thus similar to the daily measures.

Finally, when the performance of the two versions of the BAB factor is compared for

stocks sorted into quintiles by the liquidity measure of Amihud (2002), the HF implemen-

tation shows statistically significant economic gains for the most illiquid group. Moreover,

the e�ect is monotonically inversely increasing in the length of the formation period. That

is, the accuracy of high-frequency measures does pay o� especially on shorter periods for

the most illiquid stocks.

Although the findings suggest that a real-word implementation of high-frequency measures

might not add any economic value to strategies traded at low frequencies, additional insight

is warranted due to the specific choices of the setting. First, while the BAB factor is well

known it does not entail a straightforward to understand strategy. An easier to interpret

alternative could be a version of the reversal strategy, where signals are standardized by

volatility estimated with daily and high frequency returns. Moreover, in addition to the

test on the di�erence in Sharpe Ratios, a certainty equivalent measure might capture the

added economic value without the shortcoming of e.g. unequal leverage of the long and

short leg of the BAB factor. Finally, a preliminary step that ascertains the accuracy

of the high-frequency measures in an out-of-sample exercise, would relate the statistical

contribution to the economic one.
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Appendix 1.A Additional tables and figures

Table A1: time-series average of cross-sectional correlations between market betas estimated over forma-
tion periods of a month, a quarter, a semester and a year. Spearman’s rank correlations appear above the
main diagonal and Pearson’s coe�cients are below the main diagonal. The matrix is arranged in blocks:
the upper-left portion lists only the interactions among the low-frequency betas, i.e. babm, babq, babs

and baby, and the lower-right portion has the correlations between the high-frequency betas only, namely
rbabm, rbabq, rbabs and rbaby. The lower-left and upper-right blocks address the cross-interaction between
the low- and high-frequency variants. Low-frequency betas are calculated from simple linear regressions
of stock excess returns on market excess returns. High-frequency betas are calculated as the ratio of rea-
lized covariance between stock and market intraday returns over the realized variance of the market. The
average correlations are calculated over the 2001-2010 period, i.e. after the decimalization of stock quotes.
The sample covers common US equities and daily returns are from CRSP and intraday returns are from
TAQ.

babm babq babs baby rbabm rbabq rbabs rbaby

babm 0.68 0.70 0.60 0.65 0.57 0.58 0.53
babq 0.66 0.69 0.80 0.68 0.76 0.66 0.70
babs 0.69 0.67 0.83 0.93 0.80 0.82 0.73
baby 0.56 0.79 0.82 0.83 0.96 0.81 0.87

rbabm 0.63 0.66 0.93 0.82 0.86 0.89 0.80
rbabq 0.54 0.75 0.79 0.95 0.85 0.85 0.92
rbabs 0.56 0.64 0.81 0.80 0.89 0.84 0.90
rbaby 0.49 0.68 0.72 0.87 0.79 0.92 0.90

50



1.A. Additional tables and figures

Table A2: full complement to table 1.7. Comparison of annualized Sharpe ratios (SR) and tests of
statistical significance of the di�erence in performance, i.e. H0 : � SR = 0. The table reports Sharpe
ratios of the Betting-Against-Betas (BAB) portfolios based on low-frequency betas (SRLF) and high-
frequency betas (SRHF), the high-minus-low di�erence (� SR = SRHF ≠ SRLF), the Jobson and Korkie
(1981) p-value with correction by Memmel (2003), and the Ledoit and Wolf (2008) bootstrapped p-value
with their default specification. Stocks are first sorted into quintiles by the illiquidity measure of Amihud
(2002) and BAB portfolios are constructed from low- and high-frequency betas estimated over the past
month, quarter, semester and a year, for a total of 20 combinations. For a detailed description of the
methodology see section 1.3.

SRLF SRHF � SR JK pval LW pval

month

liquid 0.218 0.252 0.034 0.801 0.808
2 0.615 0.554 -0.061 0.740 0.744
3 0.588 0.464 -0.124 0.565 0.597
4 0.795 0.630 -0.165 0.594 0.618
illiquid -0.210 0.349 0.559 0.017 0.029

quarter

liquid 0.197 0.261 0.063 0.482 0.529
2 0.469 0.560 0.091 0.417 0.480
3 0.500 0.547 0.047 0.702 0.727
4 0.318 0.574 0.256 0.058 0.064
illiquid -0.063 0.371 0.434 0.015 0.039

semester

liquid 0.243 0.305 0.062 0.399 0.391
2 0.491 0.574 0.083 0.405 0.397
3 0.389 0.505 0.116 0.228 0.270
4 0.539 0.697 0.159 0.280 0.329
illiquid 0.033 0.379 0.346 0.024 0.109

year

liquid 0.256 0.313 0.056 0.395 0.396
2 0.577 0.608 0.031 0.695 0.699
3 0.554 0.537 -0.017 0.799 0.780
4 0.722 0.767 0.045 0.664 0.680
illiquid 0.215 0.424 0.209 0.110 0.158
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Figure A1: monthly cumulated returns, after decimalization of stock quotes in April 2001, of the low-beta
(cross-marked), high-beta (plus-marked), and the Betting-Against-Beta (BAB) portfolios (no markers).
On the left (right) side, portfolios are formed on low(high)-frequency betas. Betas are estimated, from
top to bottom, over the past month, quarter, semester and a year. Specifically, at month-end, stocks
are sorted by the rank of their market beta into low- and high-beta portfolios, with weights linearly
increasing in the distance of each rank from the average rank (see equation (1.12) and figure 1.8). The
BAB factor is the di�erence in excess returns of the levered versions of the low- minus high-beta portfolios
(see equation (1.13)). Stocks are held for a full month. Low-frequency betas are calculated from simple
linear regressions of stock excess returns on market excess returns. High-frequency betas are calculated
as the ratio of realized covariance between stock and market intraday returns over the realized variance of
the market. All portfolios are re-based to one. The sample covers common US equities and daily returns
are from CRSP and intraday returns are from TAQ.
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1.A.1 TAQ overnight returns

The TAQ database does not adjust price series for corporate events like splits or distribution

of dividends. However, in order to retrieve the overnight return we need to take these

events into account. A simple and intuitive way to calculate this overnight component is

to define it as the residual return from CRSP’s daily total return minus TAQ’s open-to-

close return. This method, while algebraically equivalent to manually adjusting the price

series, has two advantages: it needs only daily and high-frequency returns, and it avoids

date synchronization issues coming from the CRSP’s time series for the price adjustment

factor and corporate distributions.

CRSP defines the adjusted daily total return, Rt, as

Rt = P c

t Ft + Dt

P c

t≠1
≠ 1 (1.16)

where the current close price, P c

t , is adjusted for stock events by the factor Ft and is

gross of current distributions Dt, and the previous close price, P c

t≠1, usually belongs to the

previous day but could go as far back as ten days due to missing or invalid observations.15

Let TAQ’s open-to-close return be Roc
t , then the simple overnight return Ron

t can be

backed out from the following identity

1 + Rt = (1 + Ron

t )(1 + Roc
t )

1 + Ron

t = 1 + Rt

1 + Roc
t

. (1.17)

The log-return for the overnight component is then

ron

t ©

Y
__]

__[

ln(1 + Ron

t ) for t = 1, ..., T

0 for t = 0
. (1.18)

15In the case of a longer period of missing prices or in other special situations, CRSP fills in specific
return codes which are listed in section 1.A.3.
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1.A.2 Extending the link between TAQ and CRSP

This section describes an extended procedure that matches securities across TAQ and

CRSP. As mentioned in section 1.2, an average of 98% TAQ daily observations are matched

just by the first step, i.e. using the cusip. Nonetheless, additional steps might be used to

increase the number of matched series if analysis aims to include short-lived securities and

special issues.

Most of the following steps are in line with the WRDS linking procedure, from which

I borrow the scoring mechanism.16 The additional matching steps are applied in order of

their presumed reliability. The rule that produces the least amount of false positive matches

is assigned a lower score. The next rule is applied to the set of unmatched observations

and produces a higher (worse) score. The procedure is applied until there are no rules or

unmatched observations. The sample of interest can then be selected by the desired score.

1. CUSIP

(a) Match TAQ’s cusip, truncated to 8 characters, with the CRSP’s ncuisp;

(b) propagate the match to records having the same name;

(c) if the propagated match to same-name records discovers a new cusip, propagate

the match through it.

2. Exact symbol and date: exact match between symbols and TAQ’s date within

CRSP’s start and end dates.

3. Partial symbol, name and monthly dates

16The WRDS tclink sas macro by Rabih Moussawi is available on https://wrds-web.wharton.upenn.

edu/wrds/research/macros/sas_macros/tclink.cfm.
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(a) match partial TAQ symbol in CRSP and name with lowest Levenshtein distance

while TAQ’s month is within CRSP’s start and end months;

(b) expand match through cusip.

4. Partial name and monthly dates

(a) Match names with lowest Levenshtein distance with month condition;

(b) expand match through cusip.

Rules are ranked from lowest to highest rate of false positives which is logically inferred

from the presumed precision of their informative content. For example, the cusip uniquely

identifies an issue of a specific firm, no matter the period of time in consideration. Hence,

the date field is irrelevant since a cusip cannot be recycled by other issues/firms. Therefore,

even if a match is misaligned in time, i.e. the cusip matches on both ends of the link but

the date does not, the identifier is still reliably referring to the same security, unless is has

been misplaced in one or both datasets. However, even in the case of erroneous attribution

of the identifier, matching cusips is preferred to a joint match of the symbol and date. In a

similar fashion, the symbol itself can be misplaced and even if it is correct, a misalignment

in the dates can actually identify di�erent companies (because the symbol is recyclable).

In simple words, we have less degrees of freedom in the latter match.

The propagations of the match are carried out through subsequent links on the meta-

characteristics of the matched records. For example, step 1b applies to e.g. records that

both have the same name but only one reports the cusip. The record with the missing

cusip inherits the permno from the record with the matched cusip. I assume this pro-

pagation to be more reliable than the joint match on symbol and date because names are

longer and incorporate higher literal variation than symbols. Thus, the Levenshtein dis-

tance, which is defined as the minimum number of single-character edits to achieve equality

of two strings (i.e. insertions, deletions or substitutions), performs better on longer texts.
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In step 3a I allow partial matches on the symbol and coarser matches on the date and

complement the loss in precision by adding a partial match on the name. While the symbol

should match a leading substring from either end of the link, the name should satisfy a hard

threshold on the Levenshtein metric. The design of the rule reflects the structure of the

TAQ symbols and their su�xes. For instance, we might have a single CRSP symbol which

corresponds to the first common issue of a company. TAQ on the other hand might track

other issues too and will list the same CRSP symbol with a trailing letter to di�erentiate

among issues. On the other hand, the name might contain some typos in any position of

the string or can have repeated spaces on one side of the link.

The last step is mainly included to address unmatched records which do not have a

symbol or a cusipand is the least reliable.

1.A.3 CRSP special return codes

Special return codes for missing price observations filled in by CRSP and corresponding

SAS codes used by WRDS in their datasets. I handle those codes by replacing them with

a NaN.

CRSP code SAS code Description

-44 .E No valid comparison for an excess return
-55 .D No listing information
-66 .C No valid previous price or >10 periods before
-77 .B Not trading on the current exchange
-88 .A No data available to calculate returns
-99 . No valid price (usually suspended or trading on unknown exchange)
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Intraday momentum

2.1 Introduction

A recent study by Gao et al. (2015) suggests the existence of time-series intraday predic-

tability in the S&P500 index. They show that the return of the first half-hour of trading

predicts the return of the last half-hour. I re-examine this evidence using all common

US stocks from 1993 until 2010 in order to assess if and how the predictability patterns

extend to the whole cross-section. I find similar statistical predictability in the time-series,

which however does not translate into economic profitability. In fact, I conclude that the

observed pattern is of cross-sectional nature and does not come from the time-series. In

other words, cross-sectional sorts on past performance see stocks, which lost or won the

most in the morning, earn positive returns and above the rest of the cross-section in the

afternoon, and especially during the last half-hour of trading. Moreover, the documented

e�ect shows some dependence on the interval of the holding period and the horizon of

analysis, suggesting that specific market mechanisms or frictions play a relevant role in

price formation.

While the literature has examined intraday returns at the unconditional level, e.g.

providing a simple breakdown of averages by half-hours or hours, studies about intraday
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predictability in returns are limited to two contributions.1 On one hand, Heston, R. A.

Korajczyk, and Sadka (2010) (henceforth HKS) apply the well-known “cross-sectional”

momentum by Jegadeesh and Titman (1993) to a high-frequency setting. The authors

analyse return periodicity in the cross-section and find patterns of continuation at half-

hour intervals that are multiple of one day and last up to 40 trading days. In other

words, any half-hour today is e.g. positively predicted by the same half-hour yesterday.

On the other hand, Gao et al. (2015) investigate the intraday time-series dimension of

momentum. The e�ect, first documented at the monthly frequency and across several

asset classes by Moskowitz, Ooi, and Pedersen (2012), concerns individual securities and

anticipates continuation of past performance. Gao et al. (2015) concentrate on the time-

series predictability of the S&P 500 ETF and find that the first half-hour return predicts

the return of the last half-hour.

My work di�ers from the previous two in several aspects: while Gao et al. (2015) use an

aggregate index, I look at the whole cross-section and thus I am able to identify additional

patterns of time-series predictability. Moreover, I disentangle the overnight return from

the first half-hour and analyse its impact separately. With respect to the work by Heston,

R. A. Korajczyk, and Sadka (2010), the main di�erence is in the formation period: they

look at the impact of half-hours lagged by more than a day while I concentrate on same-

day intervals. HKS dismiss the same-day focus on the ground of mechanical negative

autocorrelation induced by microstructure. However, I show that this e�ect is only present

across two contiguous half-hours and skipping one interval gets rid of the bias. Moreover,

their study covers the period from 2001 until 2005, much shorter than the 1993 until 2010

horizon used here.

Hence, the current work contributes to the literature in three ways: first, it clarifies

that the time-series pattern documented by Gao et al. (2015) is of cross-sectional nature.

1A partial list documenting intraday average returns includes Wood, McInish, and Ord (1985), Harris
(1986) and Jain and Joh (1988).
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Second, it relates this e�ect to the work by Heston, R. A. Korajczyk, and Sadka (2010),

complimenting it with an intraday analysis contained within the same day and finally it

uncovers a structural break in 2001, which drives the results of the statistical predictability

in the time-series approach.

To establish the first contribution, consistent with prior literature, I divide the trading

session in 13 half-hours and focus entirely on patterns in returns within the day. The

impact of the overnight return is considered separately. I look at which half-hours are

statistically predicted by past half-hours of the same day. I use the methodology of pooled

regressions with clustered standard errors by Moskowitz, Ooi, and Pedersen (2012). In line

with Gao et al. (2015), I find that the last interval is predicted by the first and, in a more

flexible specification, by the larger interval from 9:30 until 12:00. I name this pattern last.2

Additionally, I observe that the second half of the trading day, namely from 13:30 until

15:30 is negatively related to the morning period from 9:30 to 13:00. I name this pattern

afternoon.

Then, to gauge the periodicity shown by the time-series regressions, I sort stocks in

two groups, those with positive and those with negative returns in the morning, and form

equal-weighted portfolios. The return of these portfolios is calculated in the afternoon

according to the two specifications summarized above. While last anticipates continua-

tion and afternoon reversal, the performance of the two portfolios is inconsistent with both

specifications. The evolution of the strategies over-time clearly shows that stocks, indepen-

dent of their past performance, appreciate in the second half of the trading day. Moreover,

morning losers exhibit higher returns than their winning counterparts, hence suggesting

the existence of systematic di�erences in the cross-section. Additionally, a winners-minus-

losers strategy exhibits a clear structural break around the beginning of 2001. While the

date coincides with decimalization of stock quotes, I do not investigate a causal link within

2I will interchangeably refer to the set of formation and holding periods with pattern, configuration or
specification.
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the scope of this research.

The second contribution is motivated by the inconsistencies between economic per-

formance and time-series predictability. Hence, I explore di�erences in returns from a

cross-sectional perspective for both the last and afternoon configurations. I sort stocks

into ten groups based on their performance during the intraday formation period and form

ten equal-weighted portfolios. The return to those portfolios is calculated over the after-

noon and last half-hour. I find a U-shaped pattern in average returns where stocks that

lost or gained the most in the morning, earn higher and positive returns in the second half

of the trading day, and especially during the last half-hour.

The U-shaped pattern in average returns to portfolios sorted on past performance is

robust to stock characteristics (I consider size, traded volume, illiquidity, tick size, volatility

and skewness), the day-of-week e�ect, variations to formation and holding periods, but

exhibits some dependence on the sample period (which implies the last contribution).

Namely, under afternoon, returns to cross-sectional portfolios before the decimalization in

2001 are systematically di�erent from the returns after that date. On the other hand, the U-

shaped pattern in returns under the last configuration appears more resilient. Nonetheless,

the general observation is that morning winners are more profitable than morning losers

before 2001 but these circumstances are reversed afterwards, and the change is radical

under afternoon.

I also assess the impact of including the overnight component into the formation period

and I find that returns to the extreme winners and losers are amplified in a way which

makes reversal a profitable strategy. That is, stocks that lost the most in the morning,

inclusive of the overnight return, earn even higher returns in the afternoon, while stocks

that won the most, now gain less. The outcome is independent of the holding period, i.e.

persists under last and afternoon, and raises the economic opportunity to go long past

losers and to short past winners.
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The remainder of the study is organized as follows: section 2.2 describes the data and pre-

sents preliminary results on intraday unconditional average returns. Section 2.3 examines

time-series predictability and implements market timing strategies. Section 2.4 moves the

focus from the time-series dimension to the cross-sectional one, documents the U-shaped

pattern in average returns of portfolios formed on morning performance and tests the ro-

bustness of this pattern. Finally, Section 2.5 concludes and suggests directions for further

research.

2.2 Data and preliminary results

This section describes the sample and presents preliminary results on the unconditional

average returns by half-hour.

The sample includes all US equities that belong to both the Center for Research in

Security Prices (CRSP) and the Trades And Quotes (TAQ) databases, with a coverage

that extends to the New York Stock Exchange (NYSE), the American Stock Exchange

(AMEX or currently NYSE MKT), the NYSE Arca exchange and NASDAQ’s National

Market System (NMS, limited to OTC trades by TAQ).

I only keep common stocks, i.e. series with CRSP Share Type Code of 10 or 11, and

exclude observations that belong to microcaps in order to mitigate the spurious e�ects

induced by microstructure issues. That is, holding period returns do not include obser-

vations from stocks which, on the previous day, either had a price below $5 or a market

capitalization in the lowest New York Stock Exchange (NYSE) decile. Moreover, to allevi-

ate the impact of stale prices, I require stocks to be su�ciently liquid. Specifically, I only

keep the stock-date pairs that had at least 79 observations on the preceding day, which is

equivalent to a security being traded on average every 5 minutes during the 9:30 to 16:00

session. The resulting sample has a total of 8924 equities with an average of more than

1800 stocks per day, and covers the period from January 1993, first date of availability of
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the TAQ, until May 2010.3

High-frequency data from TAQ are cleaned of irregular and misreported trades following

the usual rules from Barndor�-Nielsen, P. R. Hansen, et al. (2009) and Bollerslev, Li, and

Todorov (2016), and are assigned permnos from CRSP. The link between the two datasets

is established through the historical cusip and matches on average 98% of the daily TAQ

observations.4 Intraday prices are used to calculate half-hour returns by splitting the 9:30

to 16:00 trading day into 13 non-overlapping intervals.5 I keep the overnight return separate

from the first interval and I avoid backfilling the first price of the day to the opening of the

session. In addition to returns, I also calculate the realized volatility over each half-hour

of interest using prices sampled at 5-minute intervals.

2.2.1 Unconditional moments of intraday returns

This section explores patterns in the unconditional average and standard deviation of

half-hour returns and compares the evidence to existing literature. For instance, Wood,

McInish, and Ord (1985) and Jain and Joh (1988) find that returns are higher at the

beginning and end of the trading day, with a similar pattern applying to volatility. However,

Harris (1986) shows that the initial positive returns are driven by the previous close-to-open

appreciation, and that generally, returns are negative right after the open.6 Moreover, while

the author does not address di�erences in standard deviation, I provide such decomposition.

Figure 2.1 shows in the top plot the cross-sectional dispersion in intraday returns for

the 13 half hours and the overnight interval. For each stock and sub-interval, I calculate the

average return across days. Then, for each half-hour, the 25th, 50th and 75th percentiles
3Days with partial trading times, either due to recurring festivities like Christmas’ Eve, or due to major

disruptions like the power outage of 2003/08/15, are excluded from the analysis.
4For a detailed and general description of the linking procedure between TAQ and CRSP, the cleaning

and sampling of high-frequency data, refer to Komarov (2016).
5All intervals are of the lb Æ x < ub type except for the last that half-hour which also includes the

upper bound.
6Henceforth, I will refer interchangeably to previous close-to-open return as overnight.
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of the cross-sectional distribution are respectively denoted in the plot by the lower bar, the

marker and the upper bar. The bottom graph plots the cross-sectional dispersion in the

standard deviation, calculated across days, for the half-hour and overnight returns. All

values are annualized.

Figure 2.1: cross-sectional dispersion of annualized averages (top) and standard deviations (bottom) of
half-hour and overnight returns. The trading day is partitioned in 13 half-hours and for every stock the
time-series average and standard deviation of returns are calculated for each sub-period and the overnight
time. Then, the lower bar represent the 25th percentile of the cross-sectional dispersion for a given half-
hour, while the marker (x) and the upper bar, respectively delimit the median and the 75th percentile.
The time on the x-axis marks the start of a half-hour. Values are expressed in percentage. The sample
consists of all common NYSE stocks excluding microcaps, i.e. stocks with a price below 5$ or market
capitalization in the bottom decile, and covers the period from January 1993 to May 2010.

The pattern in unconditional returns is consistent with the results from Harris (1986).

The first two half-hours record a median annualized return of -9.2% and -5.9%, with the

lower bars stretching much further than the upper ones, indicating a general trend of

negative returns at the beginning of the trading day. The last half-hour exhibits the

opposite behaviour, with a value of 8.9% and a much longer upper bar than the negative

one, showing overall very high returns near close-of-day. The intermediate half-hours, i.e.

from 10:30 until 15:30, show absence of strong trends and exhibit contained and symmetric
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dispersion with median values that range from -1.4% to 2.5% circa. The overnight return

exhibits the highest annualized value, at 20.1%, and the biggest dispersion, with the upper

bar stretching four times as high as the median and the lower bar going negative but close

to zero.

In related works, Kelly and Clark (2011) document a risk premium for the overnight

return at about 23% whereas Lou, Polk, and Skouras (2016) find that return to momentum

strategies are mostly realized overnight, which they estimate at about 11%. Meanwhile,

the intraday return is either strongly negative or relatively negative in both studies, thus

confirming the magnitude and shape of the results presented by figure 2.1. Additionally,

the reported time-series averages are not driven by a specific period of time. Figure A1

plots cross-sectional averages over time and shows that returns at beginning of the day are

usually lower than those at the end, and that the overnight return is the highest.

The lower plot in figure 2.1, instead of averages, shows the cross-sectional dispersion

in standard deviations. The intraday volatility draws a u-shaped pattern, with annualized

median standard deviations of e.g. 27.4%, 12.5% and 17.6% for the first, middle and last

half hour. The close-to-open period exhibits similar median and dispersion to the first half-

hour. Overall, the di�erences among each sub-interval are less drastic if compared to the

distribution of the averages. Nonetheless, the cross-sectional variability is still significant,

with the di�erence between the 90th and 10th percentiles exceeding 40% volatility.

To summarize, the sample includes US common stocks matched in both the TAQ and

CRSP databases and excludes microcaps, i.e. those stocks with a price below $5 or a

market capitalization in the bottom NYSE decile. Results on unconditional average returns

by half-hour see negative returns in the first two intervals, positive and extremely positive

returns in the last and overnight intervals respectively. The evidence is consistent with

prior literature.
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2.3 Time series momentum

In this section I build on the pattern in unconditional intraday returns from section 2.2 by

examining intraday time-series predictability of equity returns. After identifying two main

patterns, I explore their economic significance by implementing intraday timing strategies.

2.3.1 Intraday predictability

To examine intraday predictability I use pooled panel regressions with standard errors

clustered by time as in Moskowitz, Ooi, and Pedersen (2012).

Methodology. I split the trading day, which starts at 9:30 and ends at 16:00, in 13 disjoint

half-hours and denote the intervals with h = 1, . . . , 13. I then regress the return rú
h,t of

half-hour h in day t on same-day returns of all previous half-hours except the contiguous

interval h ≠ 1:7

rú
h,t = a + b1 rú

1,t + . . . + bh≠2 rú
h≠2,t + eh,t = a +

h≠2ÿ

k=1
bk rú

h,t + eh,t. (2.1)

Returns are scaled by ex-ante volatility, i.e. rú
h,t = rh,t/‡h,t≠1, where the ex-ante variance

‡2
h,t≠1 is calculated as the exponential average of daily realized variances RVh,t for the

half-hour of interest:8

‡2
h,t≠1 =

Œÿ

i=0
–(1 ≠ –)i RVh,t≠1≠i

and – is chosen such that 83% of the weight is given to the first 60 days, i.e. – = 2/(60+1).

The use of standardized returns is justified by the evident cross-sectional di�erences in

7The inclusion of the contiguous interval h ≠ 1 among the explanatory variables does not a�ect the
main results, but introduces the spurious e�ect of the bid-ask bounce described by Roll (1984). In other
words, large and negative t-statistics are limited to the contiguous interval, while everything else remains
unchanged. Results are reported in table A1.

8An overview of the literature on realized measures is given in Komarov (2016). For this application,
daily realized variances are calculated for each half-hour as the sum of squared returns sampled at the
5-minute frequency.
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volatility plotted in figure 2.1. Nonetheless, the specification in equation (2.1) is robust to

the use of unscaled returns rh,t, as sustained by results in table A1.

Results. Table 2.1 reports t-statistics and scaled coe�cients (by 100) of time-series pre-

dictability regressions. Each row represents a pooled panel regression described by equa-

tion (2.1), where the explained half-hour is indicated by the row header and the predicting

intervals are specified in the columns. For example, the first row regresses the return re-

alized over the 15:30 – 16:00 interval onto the half-hour returns that go from 9:30 until

15:00. The second row regresses the 15:00 – 15:30 interval onto half-hours from 9:30 until

14:30, and so forth. The dependent variable from the last row is the return over the 10:30

– 11:00 interval.

Results are laid out to allow the column-wise inspection of the impact of a single half-

hour on several future intervals. At the same time, the multivariate regression favours

the interpretation of a predictive interval composed by several half-hours. Nevertheless,

estimates are robust to the univariate equivalent of equation (2.1) and are reported in

table A1. Similarly, rows also can be pooled together into an interval that spans several

half-hours, granted an appropriate cuto� is selected for the predictive period. In this

fashion, I identify two main patterns from the t-statistics in table 2.1:

• from the first row, the 15:30 – 16:00 return is positively predicted by the interval from

9:30 to 12:00. I will commonly refer to this combination of predictive and predicted

interval as the last specification;

• the return from 13:30 to 15:30 is negatively predicted by the interval from 9:30 until

13:00. I will refer to this combination as the afternoon specification.

In particular, the predictive regression for the last half-hour lists t-statistics of 2.24 and

2.44 for the (explanatory) half-hours starting respectively at 9:30 and 11:30, and exhibits

statistical significance at the 10% level in the 10:00 and 10:30 periods. However, the highest
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2.3. Time series momentum

Table 2.1: t-statistics and coe�cients from time-series predictability regressions. Each row is a pooled
panel regression of the return from the half-hour denoted by the row-header onto a constant and all, but
the contiguous, half-hour returns of the same day that precede it. Returns are scaled by ex-ante volatility,
which is measured by the exponential average of the 5-minute realized volatilities calculated over the
respective half-hour. The centre of mass of the exponential average is fixed at 60 days. The t-statistics are
computed from standard errors clustered by time at the daily level. Darker colours highlight statistical
significance at the 1% level and lighter colours that at the 5%. The sample consists of all common NYSE
stocks excluding microcaps, i.e. stocks with a price below 5$ or market capitalization in the bottom decile,
and covers the period from January 1993 to May 2010.

t-statistics
c 09:30 10:00 10:30 11:00 11:30 12:00 12:30 13:00 13:30 14:00 14:30

15:30 3.46 2.24 1.92 1.77 0.78 2.44 1.12 -1.32 -0.10 -0.01 0.89 1.47
15:00 2.00 -2.04 -1.13 -2.70 -0.87 -0.32 -2.05 -2.05 0.33 -0.58 0.91
14:30 2.58 -0.04 -0.92 1.39 0.97 0.64 0.67 0.69 2.48 0.81
14:00 -0.87 -2.03 -0.76 -0.72 -0.49 -0.71 -0.33 -0.28 0.83
13:30 0.11 -0.11 0.29 -1.39 -2.12 -1.31 -0.72 -1.00
13:00 1.76 1.55 0.09 0.36 0.21 -1.67 -0.78
12:30 2.47 0.68 0.22 0.69 -1.02 -0.69
12:00 0.97 0.86 1.16 1.32 1.35
11:30 0.10 0.75 -1.32 1.82
11:00 -0.96 1.02 -1.76
10:30 -0.10 -2.08

coe�cients * 100
c 09:30 10:00 10:30 11:00 11:30 12:00 12:30 13:00 13:30 14:00 14:30

15:30 2.43 0.74 0.72 0.86 0.38 1.24 0.57 -0.75 -0.07 0.00 0.64 1.00
15:00 1.45 -0.74 -0.44 -1.46 -0.48 -0.18 -0.95 -1.28 0.24 -0.35 0.71
14:30 1.75 -0.01 -0.31 0.59 0.44 0.30 0.27 0.31 1.21 0.36
14:00 -0.60 -0.61 -0.29 -0.32 -0.21 -0.36 -0.14 -0.16 0.50
13:30 0.07 -0.03 0.09 -0.56 -0.89 -0.64 -0.32 -0.56
13:00 1.07 0.40 0.03 0.16 0.09 -0.75 -0.37
12:30 1.39 0.18 0.07 0.27 -0.42 -0.32
12:00 0.55 0.23 0.34 0.53 0.57
11:30 0.06 0.21 -0.47 0.75
11:00 -0.57 0.29 -0.61
10:30 -0.06 -0.58
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impact is captured by the intercept with a scaled coe�cient of 2.43 basis points (bp) per

day and a t-statistic of 3.46. The afternoon combines predicted sub-intervals from 13:30

to 15:30 and loads throughout the morning more sparsely than last, but exhibits stronger

statistical significance (all t-statistics are below -2). For instance, the half-hours starting

at 9:30, 10:30, 12:00 and 12:30 negatively predict the 15:00 – 15:30 interval. The 9:30

period is also relevant for the prediction of the 14:00 – 14:30 interval, while the half-hour

starting at 11:00 exhibits a t-statistic of -2.12 for the 13:30 – 14:00 period. As with last,

the intercept is significant and has a positive sign for two of the predicted sub-intervals.

While the choice of the predictive and predicted intervals is to some extent discretionary,

the focus is on identifying a general and preferably robust regularity in returns rather than

on finding the optimal timing strategy.9 In this spirit, the last and afternoon configuration

aim to capture the tendency suggested by the t-statistics of morning returns predicting

reversal in afternoon returns, but with a strong exception for the last half-hour, characte-

rized instead by continuation. Nevertheless, section 2.3.2 covers alternative specifications

and compares results with Gao et al. (2015).

Finally, for completeness, R2 from the regressions of table 2.1 are included in the first

column of table A2. Values range from 0.063% for the prediction of the half-hour starting

at 15:00, to 0.003% for the half-hour at 10:30. In comparison, e.g. Campbell (1991)

documents a R2 of 2.5% for monthly regressions from 1926 in equities. Considering that

to longer holding periods correspond larger R2 (see, e.g. Fama and French (1988) and

Cochrane (2008)), the values of my analysis remain reasonable.

2.3.2 Timing strategies

Next, I investigate the profitability of trading strategies based on the timing patterns

defined by last and afternoon in the previous section. For each stock and day, I calculate
9In the context of a timing strategy, the predictive interval will constitute the formation period while

the predicted interval will be the holding period.
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the return of the intraday formation period. For last, it is the return through half-hours 1

to 5, i.e. from 9:30 until 12:00, and for afternoon it is the return through half-hours 1 to 7,

i.e. from 9:30 until 13:00. Then, I sort stocks into those which had positive and negative

returns in the morning and form two equal-weighted portfolios. For the afternoon strategy

I hold positions through half-hours 9 to 12, i.e. from 13:30 until 15:30, while for the last

strategy, stocks are kept for the last half-hour only, i.e. from 15:30 until close at 16:00.

Mathematically this can be summarized as:

afternoon :

Y
__]

__[

rwin
t = 1

N
win

qN
win

i=1 r9:12,i if r1:7,i > 0

rlose
t = 1

N
lose

qN
lose

i=1 r9:12,i if r1:7,i < 0

last :

Y
__]

__[

rwin
t = 1

N
win

qN
win

i=1 r13,i if r1:5,i > 0

rlose
t = 1

N
lose

qN
lose

i=1 r13,i if r1:5,i < 0

(2.2)

where Nú is the number of stocks with positive or negative returns in the formation period

and rstart:end is short-hand for intraday return of day t through half-hours h = start, . . . , end.

The winners-minus-losers and long-only portfolios are simply the di�erence and the sum

of the win and lose portfolios:

rWML
t = rwin

t ≠ rlose
t

rlong
t = rwin

t + rlose
t .

(2.3)

Table 2.2 reports descriptive statistics of daily returns earned by the equal-weighted

portfolios of morning losers (lose) and winners (win), the winners-minus-losers (WML)

timing strategy and the long-only portfolio (win plus lose) from equation (2.3). Among

other statistics, I list the average return (avgret) and standard deviation (std), the Newey

and West (1987) standard error of the average with default-bandwidth (se) and its pvalue

(pval), the annualized return, standard deviation and Sharpe Ratio (annret, annstd and
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Table 2.2: descriptive statistics of daily returns earned by the equal-weighted portfolio of morning losers
(lose), winners (win), the winners-minus-losers (WML) timing strategy and the long-only variant (win
plus lose). Specifically, stocks are sorted every day into winners and losers based on the performance over
the intraday formation period, and the return of equal-weighted portfolios is calculated for the holding
period. The table is organized in two panels. On the left is the last timing specification, with formation
period from 9:30 until 12:00 and holding period from 15:30 to 16:00, and on the right is the afternoon
timing specification, with formation period from 9:30 until 13:00 and holding period from 13:30 to 15:30.
The table lists in this order: the average return (avgret), standard deviation (std), the default-bandwidth
Newey-West standard error of the average (se) and its pvalue (pval), the annualized return, standard
deviation and Sharpe Ratio (annret, annstd and SR), the annualized downside deviation with return
threshold at 0 (downstd), the minimum, median and maximum returns (minret, medret and maxret),
skewness and kurtosis (skew and kurt), the maximum drawdown return, its length in months and the
number of months that the price series took to recover from it (mdd, mddlen and reclen), the sortino ratio
(sortino), and the time-series average of the cross-sectional averages of returns during the formation period
(avgsignal). Asterisks in the reclen value indicate truncation from end-of-sample period. The average
signal for WML and long-only is omitted. Returns and related measures are expressed in percentage. The
sample consists of all common NYSE stocks excluding microcaps, i.e. stocks with a price below 5$ or
market capitalization in the bottom decile, and covers the period from January 1993 to May 2010.

last afternoon
win lose WML long win lose WML long

avgret 0.037 0.038 -0.001 0.075 0.025 0.007 0.018 0.032
std 0.354 0.365 0.106 0.712 0.569 0.611 0.227 1.159
se 0.005 0.005 0.002 0.010 0.007 0.008 0.004 0.014
pval 0.000 0.000 0.680 0.000 0.001 0.326 0.000 0.022
annret 9.318 9.527 -0.209 18.846 6.304 1.861 4.443 8.164
annstd 5.621 5.798 1.675 11.297 9.036 9.706 3.600 18.406
SR 1.658 1.643 -0.125 1.668 0.698 0.192 1.234 0.444
downstd 3.756 3.802 1.252 7.498 6.147 6.423 2.808 12.413
minret -3.260 -3.269 -1.077 -6.358 -3.671 -3.957 -7.457 -7.628
medret 0.040 0.035 -0.001 0.080 0.050 0.013 0.014 0.065
maxret 3.346 3.511 1.259 6.857 7.003 8.380 1.937 13.348
skew -0.106 0.044 -0.784 -0.078 0.615 1.392 -8.757 0.836
kurt 20.019 19.580 19.776 19.973 15.357 22.737 282.823 16.194
mdd 14.529 9.253 33.958 23.132 13.620 53.671 54.608 30.398
mddlen 637 380 3620 637 1107 2828 3506 1121
reclen 477 28 9* 46 728 3073 4* 714
sortino 2.481 2.506 -0.167 2.514 1.025 0.290 1.582 0.658
avgsignal 0.016 -0.016 - - 0.017 -0.017 - -
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SR), skewness and kurtosis (skew and kurt), and the time-series average of the cross-

sectional averages of returns during the formation period (avgsignal).10 Returns and

related measures are expressed in percentage. The table summarizes results for the last

and afternoon specifications respectively on the left and right sides.

First, the average daily return of the lose portfolio under the last specification is incon-

sistent with the predictability results from table 2.1. Instead of continuing the negative

performance, morning losers earn an average of 3.8 bp per day. Second, the reversal pre-

dicted with the afternoon pattern is also not supported by the profitability of the morning

winners and losers. The former group, instead of the anticipated negative performance,

exhibits a positive return of 2.5 bp per day, and the latter group records a statistically

insignificant daily value of 0.7 bp. In terms of WML returns, the last and afternoon re-

spectively record an average of -0.1 and 1.8 bp, hence, denying continuation in the former

case and reversal in the latter. Finally, the long-only variant suggests that, no matter the

performance recorded in the morning, stocks appreciate in the second half of the day, and

especially so in the last half-hour. The evidence strongly suggests absence of predictability

and confirm the unconditional pattern in intraday returns shown in figure 2.1.

The summary statistics of equal-weighted portfolios do not o�er any insight on the

evolution of the strategies over-time. For this purpose, figure 2.1 plots the monthly cu-

mulated returns earned by equal-weighted portfolios of morning winners and losers, of the

winners-minus-losers (WML) trading strategy and the long-only variant.

The portfolio with the morning losers from the last strategy constantly appreciates over-

time, strengthening the conclusions drawn from table 2.2 and again rejecting any pattern

of performance continuation. For the afternoon specification, the win and lose portfolios

display momentum until 2001 but reversal afterwards, the latter being consistent with

the predictability results. However, rather than a convergence to the expected behaviour,

10Daily returns are annualized by a factor of 252 and daily standard deviations by the square root of
252.
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Figure 2.1: monthly cumulated returns earned by equal-weighted portfolios of morning winners (cross-
marked) and morning losers (circle-marked), the winners-minus-losers (WML) trading strategy (triangle-
marked) and the long-only variant (winners plus losers, no markers). Shaded areas denote NBER recessi-
ons. Specifically, stocks are sorted every day into winners and losers based on the performance over the
intraday formation period, and the return of equal-weighted portfolios is calculated for the holding period.
In the top plot is the last timing specification, with formation period from 9:30 until 12:00 and holding
period from 15:30 to 16:00, and in the bottom plot is the afternoon timing specification, with formation
period from 9:30 until 13:00 and holding period from 13:30 to 15:30. The sample consists of all common
NYSE stocks excluding microcaps, i.e. stocks with a price below 5$ or market capitalization in the bottom
decile, and covers the period from January 1993 to May 2010.

the afternoon strategy is now mimicking last, where morning losers appreciate faster than

the winners. The absence of predictability is also confirmed by the low average rate of

correct predictions under afternoon, which is equal to 45.1% for the whole sample and

to a slightly higher 48.0% after 2001. Similar estimates come from last, with averages of

43.7% and 49.1% for the whole sample and for the period after 2001. Predictability aside,

figure 2.1 suggests the presence of a structural break in January 2001, which coincides

with the introduction of decimalization in stock prices.11 While decimalization had an

undeniably strong economic impact on financial markets, it is outside the scope of this

11The decimalization was launched as a pilot in September 2000 following orders by SEC (2000b) and
SEC (2000a), and was fully implemented by NYSE in January 2001. NASDAQ and other regional markets
followed at the end of March 2001.
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analysis to discuss the microeconomic foundations that might support (or not) intraday

predictability.12 Notwithstanding, the patterns in the t-statistics from table 2.1 only really

appear after 2001, as the sub-period analysis of predictability suggests in table A1.

Alternative specifications. In related work, Gao et al. (2015) find that the return of the

first half-hour predicts the return of the last half-hour. Their work di�ers in a few aspects:

first, their analysis is based on the SP500 ETF only, second, they include the overnight

return in the definition of the first half-hour return and finally, they cover the sample

period from 1993 until 2013.13 Even though I am able to closely match their predictability

results, using the first half-hour as the sole predictive interval still produces inconsistent

results in terms of win and lose portfolios. Moreover, the inclusion of the overnight return,

while marginal in terms of predictability (see table A1), produces an unexpected reversal

e�ect with average returns for the lose, win and WML portfolios of 1.6 (3.7), 5.7 (3.8)

and -4.2 (-0.1) bp per day (values in parenthesis are from table 2.2). The impact of the

overnight return is analysed in more detail in section 2.4.4.

Additionally, I implement other strategies and report the correlations with the last and

afternoon in table 2.6. For instance, I exclude the first half-hour from the formation pe-

riod of the last specification, setting it to the interval from 10:30 until 12:00. Next, since

the second-last half-hour, i.e. the one starting at 15:00, has the most of the significant

t-statistics among the whole afternoon, I set it aside in a separate specification (the for-

mation period remains from 9:30 to 13:00). I also check the relevance of the first half-hour

in predicting the second-last half-hour by excluding it from the formation period. The
12For an analysis of the impact of the decimalization on market quality, see Bessembinder (2003), while

for a more general overview see SEC (2012). In general, tick-size reduction plays a fundamental role in
liquidity provision and its e�ects have been analysed by Goldstein and A. Kavajecz (2000) after prices, in
1997, went from being quoted in eights to sixteenths. From another perspective, Angel (1997) and Schultz
(2000) give evidence that (wider) relative tick-sizes act as incentive for the market dealer and that strategic
splits can promote trading in the stock. Hence the connection between optimal tick sizes and liquidity. In
this respect, C. A. Ball and Chordia (2001) show that the optimal spread for large stocks was bound by
the tick-size prior to decimalization.

13They also exclude days with less than 500 trades which e�ectively sets the beginning of their sample
period to 1997.
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evidence from the correlations in table 2.6 is examined in more detail in the next section,

but confirms that alternative specifications are only marginally di�erent from last and

afternoon.

To summarize, I investigate the existence of intraday predictability in returns and im-

plement timing strategies based on the last and afternoon patterns. The former predicts

continuation of morning performance in the last half-hour, while the latter predicts rever-

sal of morning performance in the afternoon (excluding the last interval). However, the

economic performance of the trading strategies is inconsistent with the results from the

predictability regressions. In fact, I observe a general tendency of stocks to earn positive

returns in the afternoon, especially in the last half-hour, and morning losers to appreciate

faster than morning winners. The evidence is consistent with the pattern of unconditional

returns from figure 2.1 and hints at a cross-sectional phenomenon rather than a time-series

one. Additionally, the evolution of the timing strategies uncover a structural break at the

beginning of 2001 which coincides with the price decimalization of US stocks.

2.4 Cross-sectional patterns

Section 2.3 does not find economic evidence supporting intraday predictability. However,

the systematic appreciation that stocks exhibit in the second half of the day, with past

winners earning higher returns than past losers, raises the question whether there are

significant and systematic cross-sectional di�erences. I address this question in this section

and sort stocks on their performance and on several stock characteristics. I find that stocks

which either performed very poorly or extremely well in the morning, keep earning in the

afternoon more than others. I also investigate how the uncovered pattern behaves before

and after the decimalization in 2001, whether it is exclusive to a particular day of the week

and how it is a�ected by the inclusion of the overnight return in the formation signal.
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Methodology. I use the last and afternoon specifications from section 2.3 to be con-

sistent with the time-series analysis, and explore variations to those in section 2.4.4. As

in section 2.3.2, for each stock and day I calculate the return of the intraday formation

period. For last, it is the return from 9:30 until 12:00, and for afternoon it is the return

from 9:30 until 13:00. Then, I sort stocks into deciles based on their performance and form

ten equal-weighted portfolios. Finally, the performance of the ten portfolios is measured

from 13:30 until 15:30 according to the afternoon timing, and over the last half-hour of the

trading day as defined by the holding period in last.

Results. Table 2.1 reports descriptive statistics of daily returns (akin to table 2.2) earned

by decile portfolios formed on past performance and by an equal-weighted portfolio of all

stocks. Portfolios are ordered from lose to win, i.e. in ascending order of the formation

signal. In particular, the table lists the average return (avgret) and its Newey and West

(1987) standard error with default-bandwidth (se), the annualized return, standard devia-

tion and Sharpe Ratio (annret, annstd and SR), skewness and kurtosis (skew and kurt),

and the time-series average of the cross-sectional averages of returns during the formation

period (avgsignal). Returns and related measures are expressed in percentage. The table

summarizes results for the last and afternoon specifications respectively in the top and

bottom panels.

First, the annualized average return of 9.4% earned by the portfolio of all stocks under

the last definition is in line with the median value of 8.9% provided in section 2.2.1 by

the unconditional average return of the last half-hour. Second and most importantly, the

average returns of the ten portfolios form a U-shaped pattern, i.e. stocks that lost or gained

the most in the morning, tend to earn higher and positive returns in the second half of the

trading day, and especially during the last half-hour. For instance, under last the lose and

win portfolios respectively earned an impressive 6.2 and 7.7 bp per day, which translate

to 15.6 and 19.4% in annualized terms. On the other hand, most of the intermediate
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portfolios, with stocks belonging to deciles 2 through 9, recorded average returns below 3

bp and never higher than 4 bp per day. It is also worth pointing out that standard errors

create a similar U-shape, and while the lose and win portfolios exhibit larger dispersion

in average returns than the intermediate deciles, the second moments are not big enough

to o�set the superior performance. In fact, not only the win and lose portfolios have the

highest Sharpe Ratios, they also have positive skewness, unlike portfolios 3 through 7, and

the lowest values of kurtosis. In other words, stocks belonging to the two extreme deciles,

earn positive returns during the last half-hour more consistently than those from the other

deciles.

In regard to afternoon, the U-shaped pattern in average returns uncovered by last is

slightly weaker. The lose and win portfolios still have the highest values at 6.2 and 2.2 bp

but the latter return is much lower than the 7.7 bp from the last equivalent. This indicates

that morning losers keep earning superior returns in the afternoon, i.e. from 13:30 until

15:30, but past winners are closer to stocks from intermediate deciles. Most indicative of

this di�erence in the cross-sectional behaviour are skewness and kurtosis: portfolios exhibit

monotonically decreasing values in both moments. For example, skewness goes from 3.88

to -0.05 from lose-to-win of the cross-sectional deciles. Similarly, kurtosis starts at 78.43

on the first decile and ends at 10.86 on the last decile, with the first (last) five portfolios

having higher (lower) estimates than those shown under last. In short, the upside potential

of morning winners is somewhat more limited during the interval from 13:30 to 15:30 than

in the last half-hour of trading.
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Table 2.1: descriptive statistics of daily returns earned by equal-weighted decile portfolios formed on
past performance. Every day, stocks are sorted into ten groups based on their performance during the
intraday formation period. Then, ten equal-weighted portfolios are formed and their return is calculated
over the holding period. Additionally, the return for an overall equal-weighted portfolio is reported in
the last column. The table is organized in two panels. In the top panel is the last timing specification,
with formation period from 9:30 until 12:00 and holding period from 15:30 to 16:00, and in the bottom
panel is the afternoon timing specification, with formation period from 9:30 until 13:00 and holding period
from 13:30 to 15:30. The table lists in this order: the average return (avgret) and the default-bandwidth
Newey-West standard error of the average (se), the annualized return, standard deviation and Sharpe Ratio
(annret, annstd and SR), the minimum, median and maximum returns (minret, medret and maxret),
skewness and kurtosis (skew and kurt), and the time-series average of the cross-sectional averages of returns
during the formation period (avgsignal). Returns and related measures are expressed in percentage. The
sample consists of all common NYSE stocks excluding microcaps, i.e. stocks with a price below 5$ or
market capitalization in the bottom decile, and covers the period from January 1993 to May 2010.

last
lose 2 3 4 5 6 7 8 9 win all

Avgret 0.062 0.040 0.030 0.028 0.026 0.025 0.024 0.026 0.033 0.077 0.037
Se 0.007 0.006 0.005 0.005 0.005 0.005 0.004 0.005 0.005 0.007 0.005
Annret 15.625 10.085 7.553 6.984 6.496 6.245 5.949 6.628 8.234 19.413 9.423
Annstd 7.473 6.454 5.819 5.562 5.402 5.352 5.334 5.441 5.830 7.068 5.691
SR 2.091 1.563 1.298 1.256 1.203 1.167 1.115 1.218 1.412 2.747 1.656
Minret -3.500 -3.441 -3.359 -3.290 -3.431 -3.092 -3.007 -3.074 -3.047 -3.744 -3.203
Medret 0.050 0.038 0.033 0.028 0.032 0.029 0.026 0.028 0.033 0.074 0.039
Maxret 4.349 4.349 3.603 3.245 3.174 3.424 3.444 3.388 3.771 6.036 3.468
Skew 0.648 0.513 -0.153 -0.185 -0.212 -0.238 -0.136 0.068 0.045 0.455 -0.045
Kurt 15.579 20.457 21.167 21.487 20.928 21.451 20.989 20.739 18.335 19.623 20.039
Avgsignal -0.038 -0.018 -0.011 -0.007 -0.003 0.001 0.005 0.009 0.016 0.038 0.000

afternoon
lose 2 3 4 5 6 7 8 9 win all

Avgret 0.062 0.009 0.000 0.000 0.003 0.009 0.012 0.020 0.021 0.022 0.016
Se 0.011 0.009 0.008 0.007 0.007 0.007 0.007 0.007 0.008 0.010 0.007
Annret 15.620 2.146 0.106 0.027 0.828 2.328 2.972 4.992 5.182 5.666 4.046
Annstd 14.333 11.328 10.199 9.063 8.604 8.320 8.346 8.618 9.509 11.689 9.454
SR 1.090 0.189 0.010 0.003 0.096 0.280 0.356 0.579 0.545 0.485 0.428
Minret -5.361 -5.238 -4.050 -3.921 -3.810 -3.891 -3.587 -3.679 -4.062 -5.382 -3.901
Medret 0.048 0.016 0.005 0.013 0.003 0.023 0.020 0.034 0.044 0.072 0.034
Maxret 20.770 16.698 13.892 9.293 6.764 6.250 6.988 6.928 7.036 7.524 7.558
Skew 3.884 3.667 3.445 1.986 1.371 1.049 1.085 0.795 0.519 -0.046 1.251
Kurt 78.426 82.276 67.662 33.455 22.733 18.962 20.011 17.176 14.073 10.862 21.230
Avgsignal -0.041 -0.019 -0.012 -0.007 -0.003 0.001 0.005 0.010 0.018 0.042 0.000
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2.4.1 Stock characteristics

The previous section uncovered the U-shaped pattern in the cross-section of average re-

turns, with morning winners and losers earning more in the afternoon, and especially during

the last half-hour, than stocks from intermediate deciles. In this section, I explore if this

pattern is driven by cross-sectional di�erences in stock characteristic like e.g. size.

Selecting stock features. Among the numerous stock characteristics I pick a classical

one like size (size), others which are strongly related to intraday activity like illiquidity

(illiq), volume (vol) and tick-size (tick), a feature emerging from recent results, i.e. the

realized skewness (skew), and for a purely descriptive perspective the realized volatility

(std).14 I use the logarithm of market capitalization from the previous month to proxy for

size, the logarithm of the previous-month illiquidity measure of Amihud (2002) for illiq,

the logarithm of the average daily volume for vol, and the average of the relative tick-size

for tick.15 For skew, I take the average of the daily realized skewness calculated as in

Amaya et al. (2015) and std is defined as the average of daily realized volatilities. Averages

are taken over the past quarter and rolled on a daily basis. Finally, realized measures are

calculated with intraday returns sampled at the 5-minute frequency.

Since many of the proposed characteristics are related to each other, only relevant stock

attributes are considered for the double sorts in order to avoid redundancy in the results.

14Banz (1981) finds that small stocks outperform bigger stocks. Amihud (2002) suggests that an increase
in expected illiquidity should be compensated with higher returns. Similarly, Amihud and Mendelson
(1986) show that stock returns increase in the bid-ask spread, and hence in the relative tick-size which sets
the lower boundary for the spread. Admati and Pfleiderer (1988) propose a theoretical framework where
liquidity and informed traders will trade during periods of high volume. Amaya et al. (2015) find stock
returns with lower realized skewness outperform those with higher skewness.

15The Amihud illiquidity measure is defined as:

illiqt = 1
252

252ÿ

n=0

|rt≠n|
volt≠n pt≠n

.

The absolute tick size was fixed at 1/8 of a dollar until June 1997 when it was reduced to a 1/16 and
finally to a 1/100 in April 2001. The tick is then the size of the tick divided by the price from the previous
close.
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2.4. Cross-sectional patterns

For this purpose, table 2.2 displays the time-series average of cross-sectional correlations

between stock characteristics. The table has two types of correlations, with Spearman’s

rank coe�cients appearing above the main diagonal and the conventional Pearson’s coef-

ficients below the main diagonal. Specifically, at each point in time, I calculate the cross-

sectional correlation between the values of two characteristics. This produces a time-series

of coe�cients for each pairing which I then average and summarize in the table.

Table 2.2: time-series average of cross-sectional correlations between stock characteristics. Spearman’s
rank correlations appear above the main diagonal and Pearson’s coe�cients are below the main diagonal.
Definition of characteristics: size is the logarithm of the previous-month market capitalization; vol is the
logarithm of the average daily volume; skew is the average of the daily realized skewness from Amaya
et al. (2015); illiq is the logarithm of the previous-month illiquidity measure from Amihud (2002); tick is
the average of the relative tick-size; std is the average of the daily realized volatility. Average values are
computed over the past quarter and rolling on a daily basis. Realized measure are calculated with intraday
returns sampled at the 5-minute frequency. Colours highlight coe�cients above 0.5 (green) and below -0.5
(orange). The sample consists of all common NYSE stocks excluding microcaps, i.e. stocks with a price
below 5$ or market capitalization in the bottom decile, and covers the period from January 1993 to May
2010.

size vol skew illiq tick std

size 0.55 0.16 -0.87 -0.60 -0.67
vol 0.59 0.04 -0.65 -0.09 -0.12
skew 0.14 0.05 -0.11 -0.09 -0.12
illiq -0.88 -0.62 -0.12 0.63 0.63
tick -0.45 -0.14 -0.11 0.50 0.62
std -0.58 -0.11 -0.14 0.57 0.59

From the first row, size is positively correlated to vol, with a coe�cient of 0.55, and

is negatively correlated to illiq, tick and std, with values of -0.87, -0.60 and -0.67, corre-

spondingly. This type of strong a�nity is expected since small stocks tend to be illiquid,

hence sporting less trading volume, to be more volatile and have wider relative tick-sizes

in order to attract market dealer’s interest (see Angel (1997) and Schultz (2000)). The

implications just outlined between market capitalization and the other features naturally

translates into the negative dependence between illiq and vol, with a Spearman correlation

of -0.65, and positive pairwise associations between illiq, tick and std, with values that
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fare in the low 0.60s.16 The skew remains orthogonal to all other characteristics since it

preserves the sign, in contrast with std, and because it describes past returns rather than

company qualities.

From the analysis of correlations, I choose to report results from the double sorts for

size, since it is easier to interpret than illiq and has longer-standing contributions in the

literature, for skew, because of its orthogonality to the other features, and for std, which

diversifies on the evidence. On the other hand, I do not report results from the double

sorts on attributes related to trading activity since they do not add qualitative information

on top of that provided by the sort on market capitalization.

Double sorts. Every day, stocks are sorted into five groups based on their performance

during the intraday formation period. Stocks are also allocated independently to three

groups sorted on either size, std or skew. The intersection of the two sorts produces 15

groups which will form equal-weighted portfolios. The return of the portfolios is calculated

over the holding period. As explained at the beginning of this section, formation and

holding periods are defined by the last and afternoon configurations.

Table 2.3 collects average annualized returns earned by equal-weighted portfolios formed

on past performance and a stock attribute, and reports t-statistics in parentheses. Each

combination yields 15 values arranged into three-row by five-column matrices. Columns

are sorted from lose to win, i.e. in ascending order of the return realized in the formation

period, and rows are sorted in ascending order of the stock characteristic, e.g. for the size

characteristic into small, medium and large stocks. The table summarizes results for the

last specification on the left and for afternoon on the right side.

A general inspection of the table shows that the U-shaped pattern from the cross-

sectional sort on performance (see table 2.1), also persists after controlling for stock at-

tributes. For example, let us consider the last specification: the shape of average returns
16The negative dependence between volume and illiquidity arises mechanically since the former appears

in the denominator of the Amihud measure.
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across the small, medium and large size groups is clearly parabolic, i.e. extreme morning

winners and losers earn more than the intermediate portfolios. More specifically, small

stocks from the first (lose), third and fifth (win) groups, have an annualized return of 19.1,

12.6 and 21.5%, on average. As a side note, the same findings extend to vol, illiq and tick,

but are omitted for conciseness.17

A minor exception to the usual U-pattern, which I will explore in more detail in the next

section, arises for the low-volatility group. Returns decrease monotonically as morning

performance improves. In particular, while morning losers yield 7.9% in the afternoon,

morning winners average at 1.1% only. Otherwise, the medium- and high-volatility groups

conform with the previous results. This description suggests that the less volatile stocks

can recover from a drawdown with a sudden surge, but are not likely to jump up if they

were already earning a profit.

The U-pattern aside, size, std and the unreported features are still responsible for cross-

sectional variation in returns. Considering market capitalization again, e.g. the lose group

exhibits decreasing returns of 19.1, 9.6 and 7.4%, as we look at small, medium and then

large stocks. However, the influence of skew on the cross-section is less pronounced, but

at the same time the U-shape is clearly outlined. For instance, the maximum di�erence

in returns between the low- and high-skewness groups is of only 2.1% (win column). In

contrast, size sets a distance of 16.3% between small and large stocks (win column), and

std gets an even bigger 18.8% between the low and high portfolios (win column).

Most of the conclusions drawn for last also apply to the afternoon specification, with

two caveats. First, returns are generally lower, consistently with the unconditional results

by half-hour (section 2.2), and, as observed in table 2.1, the parabolic pattern is weaker.

For example, low-skewness stocks from the first (lose), third and fifth (win) performance

groups, exhibit estimates of 7.0, -0.2 and 3.2% respectively, sign that the pattern is not as

well defined as under last, where the profit of the win group is on par with that of the losers.

17Results for double sorts on the excluded characteristics are available upon request.
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Second, the impact of features on average returns is not always coherent across performance

groups, which is probably also due to lower statistical significance as t-statistics are often

smaller than 2 in absolute terms. Let us consider size: smaller stocks are more lucrative

than bigger ones in the first and last portfolios but this scenario is reversed for the second

and third group. Similarly, average returns are inversely proportional in the std for all

but the win portfolio which behaves just the opposite. On the other hand, the e�ect of

skew is largely consistent across groups formed on morning returns but it is proportionally

increasing in the values of skewness, which is in opposition with the influence shown under

last.
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Table 2.3: average annualized returns earned by equal-weighted portfolios formed on past performance
and stock characteristics. Every day, stocks are sorted into five groups based on their performance during
the intraday formation period. Stocks are allocated independently to three groups sorted on either size,
std or skew. The intersection of the two sorts produces 15 equal-weighted portfolios and their return is
calculated over the holding period. Definition of characteristics: size is the logarithm of the previous-month
market capitalization, std is the average of the daily realized volatility and skew is the average of the daily
realized skewness from Amaya et al. (2015). Average values are computed over the past quarter and rolling
on a daily basis. Realized measure are calculated with intraday returns sampled at the 5-minute frequency.
In parentheses are t-statistics calculated from the default-bandwidth Newey-West standard errors of the
average. The table is organized in two panels. In the left panel is the last timing specification, with
formation period from 9:30 until 12:00 and holding period from 15:30 to 16:00, and in the right panel is
the afternoon timing specification, with formation period from 9:30 until 13:00 and holding period from
13:30 to 15:30. Returns are expressed in percentage. The sample consists of all common NYSE stocks
excluding microcaps, i.e. stocks with a price below 5$ or market capitalization in the bottom decile, and
covers the period from January 1993 to May 2010.

last afternoon
lose 2 3 4 win lose 2 3 4 win

size
small 19.1 13.1 12.6 13.3 21.5 10.5 -3.4 1.2 3.9 6.8

[10.7] [8.3] [8.4] [8.9] [12.0] [4.0] [-1.6] [0.6] [1.9] [2.8]

medium 9.6 6.3 5.5 5.6 10.8 8.8 1.0 0.9 3.2 3.0
[6.4] [5.2] [4.9] [5.0] [7.5] [3.5] [0.5] [0.5] [1.9] [1.3]

large 7.4 4.5 2.7 1.9 5.3 7.5 2.8 2.3 3.9 4.3
[4.7] [4.1] [2.7] [1.8] [3.9] [2.8] [1.5] [1.5] [2.4] [2.0]

std
low 7.9 3.8 2.0 0.7 1.1 17.2 5.2 3.0 3.1 -0.1

[6.0] [3.8] [2.1] [0.8] [1.0] [8.1] [3.4] [2.2] [2.2] [-0.1]

medium 9.4 6.3 5.4 5.2 8.1 11.1 0.9 1.9 3.0 4.2
[6.5] [4.9] [4.5] [4.4] [5.8] [4.5] [0.5] [1.1] [1.7] [2.0]

high 16.4 13.1 13.4 13.8 19.9 4.2 -5.7 -3.8 1.9 4.9
[8.9] [7.7] [8.2] [8.6] [10.7] [1.5] [-2.3] [-1.6] [0.8] [1.8]

skew
low 12.8 7.8 6.5 6.4 13.6 7.0 -0.4 -0.2 3.9 3.2

[7.8] [6.1] [5.6] [5.4] [9.0] [2.8] [-0.2] [-0.1] [2.2] [1.4]

medium 11.5 6.7 6.0 6.4 12.2 8.4 0.4 1.3 2.0 5.0
[7.4] [5.4] [5.3] [5.6] [8.1] [3.1] [0.2] [0.8] [1.2] [2.2]

high 11.1 6.3 4.9 4.8 10.1 9.4 0.8 2.1 3.9 5.0
[7.1] [5.2] [4.5] [4.3] [7.1] [3.7] [0.4] [1.3] [2.3] [2.3]
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2.4.2 Sub-period analysis

In section section 2.3.2 I pinpoint a potential structural break at the beginning of 2001.

Both figure 2.1 and the robustness by sub-period on the predictability analysis covered in

table A1, highlight a change in the behaviour of morning winners and losers after the sugge-

sted date. Moreover, the timing coincides with the introduction of the decimalization of US

quotes, which bore deep microstructural implications on day-trading (see e.g. Bessembin-

der (2003)). In this section, I split the horizon at the end of April 2001 in two sub-periods,

and form double-sorts on each interval. Implications for the simple cross-sectional sort on

past performance are easily deduced.18

Table 2.4 reports the sub-period analysis of average annualized returns earned by equal-

weighted portfolios independently formed on past performance and a stock attribute. Met-

hodology and organization of results mimic table 2.3. Additionally, the upper panel pre-

sents estimates for the period up to April 2001 and the lower panel presents estimates for

the subsequent interval. The t-statistics of the averages are listed in table A4.

Two main points arise from a general overview of the estimates. First, the parabolic

pattern in average profits is the strongest before April 2001 and overall under last. While

this is generally true across all stock attributes, small stocks generate the highest observed

returns with e.g. the first (lose), third and fifth (win) groups listing annualized values

of 20.7, 17.4 and 34.4% respectively. Instead, afternoon’s profile takes the shape of a

right-smirk with the first three groups usually yielding negative profits. As an illustration,

low-volatility stocks from the first group generate one of the worst performances with an

annualized value of -10.7%. In summary, unconditional on the timing specification, the

first sub-period favours morning winners.

Second, the period following April 2001 sees morning losers come ahead. Under last,

18Figure A2 plots monthly cumulated returns earned by equal-weighted portfolios formed on past per-
formance. The structural break is particularly visible for the afternoon specification on the win and lose
portfolios.
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while returns are generally lower than during the first sub-period, the U-shaped pattern

morphs into a left-smirk. However, this transition comes from morning losers losing upside

potential as e.g. high-volatility stocks settle onto a new low of 9.2% from a previous value

of 31.9% whereas the annualized profit of morning losers, from the same stock category,

is essentially unchanged at 16.3%. The transition is even more pronounced under the

afternoon specification. If earlier, the shape of average annualized profits was that of

a right-smirk, returns are now monotonically decreasing with the win portfolios yielding

between -3.5 and 1.5% (the sole positive estimate).

To conclude, while the U-shaped pattern is strong under last and before April 2001,

it becomes a left-smirk when sorting stocks by std in the second sub-period. Additional

investigations on the reason of this behaviour are warranted. Moreover, the (weaker)

parabolic profile under afternoon in table 2.3 is the combination (average) of the right-

smirk and decreasing monotonic patterns from the two estimation intervals.
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Table 2.4: sub-period analysis of average annualized returns earned by equal-weighted portfolios inde-
pendently formed on past performance and stock characteristics. The sorts are formed as in table 2.3.
The sample period is split at the end of April 2001. Definition of characteristics: size is the logarithm of
the previous-month market capitalization, std is the average of the daily realized volatility and skew is the
average of the daily realized skewness from Amaya et al. (2015). Average values are computed over the past
quarter and rolling on a daily basis. Realized measure are calculated with intraday returns sampled at the
5-minute frequency. The table is organized in two panels. In the left panel is the last timing specification,
with formation period from 9:30 until 12:00 and holding period from 15:30 to 16:00, and in the right panel
is the afternoon timing specification, with formation period from 9:30 until 13:00 and holding period from
13:30 to 15:30. Returns are expressed in percentage. The sample consists of all common NYSE stocks
excluding microcaps, i.e. stocks with a price below 5$ or market capitalization in the bottom decile, and
covers the period from January 1993 to May 2010.

last afternoon
lose 2 3 4 win lose 2 3 4 win

Pre April 2001

size
small 20.7 17.1 17.4 18.6 34.4 -1.7 -15.9 -4.8 1.0 12.6
medium 12.5 8.8 7.9 8.5 18.3 -3.7 -9.0 -5.2 2.4 10.0
large 9.2 5.8 3.2 2.6 8.5 -0.1 -3.1 -1.9 3.5 9.1

std
low 12.4 6.0 3.0 1.0 1.5 12.5 -0.8 -1.1 2.7 1.8
medium 11.4 8.4 7.8 8.1 14.7 -2.6 -9.9 -3.0 2.3 11.8
high 16.5 15.6 17.2 19.1 31.9 -10.7 -17.8 -14.3 -2.6 11.0

skew
low 15.1 10.6 8.8 8.7 22.5 -6.3 -10.8 -8.2 2.4 8.0
medium 13.8 9.3 8.2 9.5 19.8 -3.4 -8.6 -3.9 0.0 12.0
high 12.3 7.9 6.2 6.4 15.2 -3.3 -7.9 -2.1 3.1 11.6

Post April 2001

size
small 17.6 9.5 8.4 8.4 9.6 21.7 8.1 6.6 6.5 1.5
medium 6.9 3.9 3.2 2.9 4.0 20.3 10.2 6.4 3.9 -3.5
large 5.7 3.4 2.3 1.2 2.3 14.5 8.1 6.2 4.3 -0.1

std
low 3.8 1.9 1.1 0.5 0.7 21.4 10.5 6.7 3.4 -1.9
medium 7.7 4.3 3.4 2.6 2.3 23.3 10.6 6.3 3.7 -2.6
high 16.3 10.8 10.1 9.0 9.2 17.6 5.1 5.5 6.0 -0.5

skew
low 10.8 5.2 4.5 4.4 5.6 18.8 9.0 7.1 5.3 -1.0
medium 9.4 4.4 4.0 3.6 5.4 18.9 8.5 6.0 3.9 -1.2
high 10.0 4.8 3.7 3.4 5.6 20.7 8.6 5.8 4.7 -0.9
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2.4.3 Day of the week

French (1980) finds that returns are lower on Monday than on other days of the week.

While I have investigated the impact of stock characteristics and the period of analysis

on stocks sorted by morning performance, the substantial di�erence documented across

days of the week might constitute a relevant driver of the patterns observed so far. In this

section, I investigate the di�erence in returns by day of the week and by sub-period and

find that the U-shaped pattern is not caused by a specific day.

Table 2.5 reports average annualized returns earned by equal-weighted portfolios formed

on past performance and grouped by day of the week. Every day, stocks are sorted into

five groups based on their performance during the intraday formation period (see last and

afternoon specifications). Then, five equal-weighted portfolios are formed and their return

is calculated over the holding period and reported for each day of the week. The analysis

is carried out on the whole horizon and on the two sub-periods created by splitting the

sample at the end of April 2001. The t-statistics are listed in table A5.

The estimates on the whole sample are consistent with the weekend e�ect. Under last,

Monday returns are economically lower with e.g. the lose portfolio recording a mere 5.5%

while the same group on Friday scores 19.2%, in annualized terms. For the afternoon

specification, the phenomenon is even stronger since the equal-weighted portfolios yield

negative estimates between -1.5 and -9.1%, while on the other days, performance is always

positive. The pattern in average profits is parabolic on all days during the last half-hour and

for afternoon from Wednesday onwards, Monday being the biggest exception with negative

but increasing returns. This is in line with the findings from the previous sections.

The estimates for the days of the week combined with the sub-period analysis are

consistent with the observations from section 2.4.2. For example, average returns for the

afternoon configuration change in shape from a right-smirk to a monotonically decreasing

pattern. These results from the previous section simply combine with the Monday e�ect.
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Table 2.5: average annualized returns earned by equal-weighted portfolios formed on past performance
and grouped by day of the week. Every day, stocks are sorted into five groups based on their performance
during the intraday formation period. Then, five equal-weighted portfolios are formed and their return is
calculated over the holding period and reported for each day of the week. The analysis is carried out on
the whole horizon and on the two sub-periods created by splitting the sample at the end of April 2001. The
table is organized in two panels. In the left panel is the last timing specification, with formation period
from 9:30 until 12:00 and holding period from 15:30 to 16:00, and in the right panel is the afternoon timing
specification, with formation period from 9:30 until 13:00 and holding period from 13:30 to 15:30. Returns
are expressed in percentage. The sample consists of all common NYSE stocks excluding microcaps, i.e.
stocks with a price below 5$ or market capitalization in the bottom decile, and covers the period from
January 1993 to May 2010.

last afternoon
lose 2 3 4 win lose 2 3 4 win

Whole sample

Mon 5.5 3.6 3.2 3.7 10.6 -7.8 -9.1 -4.5 -1.5 -2.5
Tue 10.2 6.2 5.8 6.4 13.6 9.8 0.8 1.8 4.2 3.5
Wed 14.4 7.6 5.7 6.2 12.7 12.4 1.5 3.3 7.6 12.4
Thu 14.8 8.5 7.9 7.8 15.7 9.4 2.3 1.8 4.6 7.1
Fry 19.2 10.6 8.4 8.0 16.4 19.7 4.5 3.9 4.4 5.9

Pre April 2001

Mon 1.4 3.6 3.3 5.2 17.5 -18.3 -15.3 -6.2 1.4 8.1
Tue 11.4 7.3 6.9 8.3 19.4 0.4 -9.9 -6.3 -1.1 3.8
Wed 20.0 12.7 9.7 10.3 22.6 -0.9 -8.9 -2.6 7.5 20.6
Thu 17.6 10.3 9.4 10.2 24.3 0.5 -3.9 -2.6 5.0 15.1
Fry 24.8 14.8 12.2 11.3 27.2 4.8 -8.3 -2.8 2.0 11.4

Post April 2001

Mon 9.2 3.7 3.1 2.4 4.3 1.9 -3.3 -3.1 -4.2 -12.2
Tue 9.0 5.1 4.7 4.7 8.1 18.5 10.8 9.4 9.2 3.2
Wed 9.3 2.9 2.1 2.3 3.6 24.7 11.2 8.8 7.6 4.8
Thu 12.1 6.9 6.4 5.7 7.8 17.6 8.0 5.8 4.2 -0.3
Fry 14.1 6.8 5.0 4.9 6.4 33.3 16.3 10.1 6.5 0.9
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As for the whole period, Mondays report lower returns across all performance groups under

afternoon, and for the win group during the first sub-period and for the lose group after

April 2001 under last.

The evidence does not suggest that the U-shaped pattern concentrates on a particular

day of the week.

2.4.4 Overnight return and alternative specifications

In this section, I consider alternatives to the last and afternoon specifications introduced in

section 2.3.2. First, I assess how the inclusion in the signal of the overnight return a�ects the

performance of the cross-sectional equal-weighted portfolios. Second, I introduce variations

in the formation and holding periods by e.g. excluding the first half-hour from the signal,

or by investing only during the second-last half-hour.

Overnight return. Rogalski (1984) and Harris (1986) give an early account about the

relevance of the overnight return in the context of the weekend e�ect. More recently, Kelly

and Clark (2011) estimate the magnitude of investing during trading hours against the

non-trading periods and find the latter case to be overwhelmingly more profitable than

the former, and Lou, Polk, and Skouras (2016) find similar evidence in an application to

momentum strategies. Moreover, the unconditional breakdown of the day into half-hours

and the overnight component in figure 2.1, confirms these findings. Hence, it is natural

to ask how the cross-sectional sorts are a�ected when last and afternoon compound the

overnight return into their definition of morning signals.

Figure 2.1 plots monthly cumulated returns earned by equal-weighted quintile portfolios

formed on past performance with (dashed line) or without the overnight return (solid line).

For clarity, I only show the bottom and top quintiles. The last and afternoon configurations

are respectively displayed in the top and bottom axes.

The impact of the overnight return on the cross-sectional sorts is unequivocal and
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Figure 2.1: monthly cumulated returns earned by equal-weighted quintile portfolios formed on past
performance including the overnight return (dashed lines) and without it (solid lines). Only the bottom
and top quintiles are displayed. Shaded areas denote NBER recessions. Specifically, stocks are sorted
every day into five equally populated groups based on the performance over the intraday formation period
plus the eventual overnight component. Then, the return of equal-weighted portfolios is calculated for the
holding period. In the top plot is the last timing specification, with formation period from 9:30 until 12:00
and holding period from 15:30 to 16:00, and in the bottom plot is the afternoon timing specification, with
formation period from 9:30 until 13:00 and holding period from 13:30 to 15:30. The sample consists of all
common NYSE stocks excluding microcaps, i.e. stocks with a price below 5$ or market capitalization in
the bottom decile, and covers the period from January 1993 to May 2010.

independent of the specification: the returns of the equal-weighted portfolios are amplified

in a way which makes trading on reversal profitable. The lose portfolios (first quintiles)

average at 5.1 and 3.5 bp per day on the last and afternoon specifications without the

overnight component (solid lines) but improve by about 50% to 8.6 and 5.3 bp when the

close-to-open return is included in the signals (dashed lines). The win portfolios (fifth

quintiles), on the other hand, average at 5.4 and 2.1 bp per day on the two intraday

specifications and worsen on average by 45% to 2.6 and 1.3 bp after the inclusion of

the overnight return. Hence, the inclusion of the overnight return in the signal creates

the opportunity for a cross-sectional reversal where a losers-minus-winners strategy would

yield between 6-7 bp per day, whether positions are held from 1:30 to 15:30 or only during
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the last half-hour of trading.

Alternative formation and holding periods. This section builds on the predictability

patterns from section 2.3 and defines additional intraday specifications as variations to

the commonly used last and afternoon. To recall, the former defines the formation period

from 9:30 until 12:00 and the holding period from 15:30 to 16:00. The latter defines the

formation period from 9:30 until 13:00 and the holding period from 13:30 to 15:30.

In modifications to last, the formation period is adjusted to the interval from 10:30 to

13:00, or to only include the first half-hour as in Gao et al. (2015), while the holding period

is kept unchanged in both variants. As an alternative to afternoon, its holding period

is shortened to the second-last half-hour, and in one case the formation period remains

unchanged while in the other I use the 10:30 to 13:00 interval (excludes first half-hour).

Table 2.6 reports correlations between timing strategies of winners-minus-losers (WML)

and cross-sectional quintile portfolios based on alternative intraday specifications. WML

portfolios are formed for each specification as in table 2.2, and pairwise correlations between

di�erent strategies are reported under the time-series panel. Likewise, five cross-sectional

portfolios are formed for each specification as in table 2.1, and five correlation matrices

are calculated between alternative specifications of the same quintile. Then, the average

correlation across quintiles is displayed under the cross-sectional panel.

Conclusions are similar for both time-series and cross-sectional portfolios. As expected,

high coe�cients cluster around the last and afternoon specifications showing that alterna-

tive intraday strategies are only marginally di�erent from the base cases. This is especially

true for the cross-sectional sorts, where all variations of the last configuration correlate

above 0.90 among each other, while estimates from alternatives to afternoon all score

above 0.60. On the other hand, (cross) combinations of last and afternoon variants record

values in the low 0.20 or below.
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2.5 Conclusion and further research

Literature on intraday predictability in returns is limited to a cross-sectional contribution

by Heston, R. A. Korajczyk, and Sadka (2010) and a time-series investigation by Gao

et al. (2015). Motivated by this scarcity of evidence I provide new and complimentary

findings by using US common stocks data from 1993 until 2010. I divide the trading

day in half-hours and study how returns in the afternoon are predicted by those in the

morning. I find similar patterns of statistical predictability to those in Gao et al. (2015),

i.e. morning returns anticipate continuation in the last half-hour, and I extend them with

additional evidence of reversal in the afternoon. However, the economic profitability of

timing strategies based on such periodicities turns out to be inconsistent with the statistical

estimates. Moreover, the performance of these strategies over time suggests the existence

of systematic di�erences in the cross-section.

By looking at the average return of ten cross-sectional portfolios formed on morning

performance, I uncover a U-shaped pattern in average returns where stocks that lost or

gained the most in the morning, earn higher and positive returns in the second half of the

trading day, and especially during the last half-hour. For example, stocks that ranked in

the bottom and top decile, respectively earn in the last half-hour 6.2 and 7.7 bp per day

or about 15.6 and 19.4% in annualized terms. The finding is fundamentally di�erent from

the evidence documented by Heston, R. A. Korajczyk, and Sadka (2010), and is robust

to: stock characteristics (I consider size, traded volume, illiquidity, tick size, volatility and

skewness), the day-of-week e�ect, and variations to formation and holding periods. Howe-

ver, the pattern shows some dependence on the period of analysis. Specifically, morning

winners are more profitable than morning losers before the decimalization in 2001, but

these circumstances are reversed afterwards.

What is causing the cross-sectional U-shaped pattern in average returns during the last

half-hour of trading remains an open question. I conjecture two interrelated e�ects. First,
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institutional trading by e.g. indexed funds might induce significant positive price pressure,

and second, trading mechanisms, such as the closing auction, and/or limits to speculative

short sales and excessive depreciations establish a floor on the losses and leave the upside

potential untouched. This latter e�ect would then be responsible for the di�erences obser-

ved in the average returns of the cross-section. There is established literature for most of

the elements in the conjecture. For example, the last minutes of trading account for most

of the daily return (see Cushing and Madhavan, 2000) and this phenomenon is consistent

with institutional investors strategically timing their activity during periods of high vo-

lume (see Admati and Pfleiderer, 1988), i.e. at the open and close of the session. Moreover,

Edelen and Warner (2001) document that institutional order imbalances bear impact on

contemporaneous returns. Additionally, Amihud and Mendelson (1987) document a sig-

nificant e�ect of trading mechanisms, like the opening auction, on the stock price. More

research is needed to establish whether there is a positive price impact by institutional

investors during the last half-hour of trading and whether market frictions and/or the clo-

sing auction play a role in the superior appreciation of morning losers. The decimalization

of stock quotes in 2001 might prove to be relevant to the latter. Understanding the impact

of decimalization on the U-shaped cross-sectional pattern might also improve statistical

predictability by allowing the inclusion of regime switches, as Pesaran and Timmermann

(1995) suggest.

Studies have investigated the impact of institutional trading on prices (CL1993; LVS1992),

finding some evidence. However, the authors used quarterly data or it covered a short pe-

riod of time. To test whether institutional trading is causing a positive price pressure

at the end of the day, intraday signed volume and daily fund flow is needed for at least

the S&P 500 ETF. By relating these two quantities, it should be possible to verify the

asserted positive price pressure. In particular, since ETFs rebalance daily, price pressure

should follow directly from net fund flow. Alternatively, since such data is proprietary, a

weaker test could be implemented by excluding end-of-month days. As Etula et al. (2016)
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document, most institutional traders rebalance at the end of the month. In the presence

of strong positive fund flow and excluding those days, the price pressure should weaken

significantly.
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Table 2.6: correlations between timing strategies of winners-minus-losers (WML) and cross-sectional
quintile portfolios based on alternative intraday specifications. Alternative holding and formation periods
are defined in the table, where last and afternoon correspond to point A) and E). The vwap variations
define buy and sell prices as 5-minute volume-weighted averages. WML portfolios are formed for each
specification as in table 2.2, and pairwise correlations between di�erent strategies are reported under the
time-series panel. Likewise, five cross-sectional portfolios are formed for each specification as in table 2.1,
and five correlation matrices are calculated between alternative specifications of the same quintile. Then,
the average correlation is displayed under the cross-sectional panel. Coe�cients above 0.45 are highlighted
in green. The sample consists of all common NYSE stocks excluding microcaps, i.e. stocks with a price
below 5$ or market capitalization in the bottom decile, and covers the period from January 1993 to May
2010.

signal hpr
A) 9:30 - 12:00 15:30 - 16:00
B) 9:30 - 12:00 15:30 - 16:00 vwap
C) 10:30 - 13:00 15:30 - 16:00
D) 9:30 - 10:00 15:30 - 16:00
E) 9:30 - 13:00 13:30 - 15:30
F) 9:30 - 13:00 13:30 - 15:30 vwap
G) 9:30 - 13:00 15:00 - 15:30
H) 10:30 - 13:00 15:00 - 15:30

time-series

A) B) C) D) E) F) G) H)
A) 1.00
B) 0.87 1.00
C) 0.53 0.46 1.00
D) 0.66 0.57 0.20 1.00
E) 0.18 0.18 0.13 0.13 1.00
F) 0.21 0.20 0.16 0.14 0.94 1.00
G) 0.15 0.17 0.10 0.11 0.65 0.64 1.00
H) 0.10 0.11 0.06 0.05 0.46 0.46 0.63 1.00

cross-sectional

A) B) C) D) E) F) G) H)
A) 1.00
B) 0.96 1.00
C) 0.96 0.93 1.00
D) 0.98 0.94 0.96 1.00
E) 0.21 0.17 0.21 0.21 1.00
F) 0.20 0.17 0.20 0.20 0.98 1.00
G) 0.23 0.19 0.23 0.23 0.63 0.61 1.00
H) 0.23 0.18 0.22 0.23 0.62 0.60 0.98 1.00
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Appendix

Appendix 2.A Additional tables and figures
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Figure A1: annualized cross-sectional average of half-hour returns over time. The trading day is par-
titioned in 13 half-hours and, at each point in time, the cross-sectional average of returns is calculated
for each sub-period and the overnight time. The top plot focuses on intraday averages by dropping the
overnight return estimate. The time on the x-axis marks the start of a half-hour. Values are expressed
in percentage and darker colours correspond to lower returns. The sample consists of all common NYSE
stocks excluding microcaps, i.e. stocks with a price below 5$ or market capitalization in the bottom decile,
and covers the period from January 1993 to May 2010.
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1 1 1 1 1
1

1
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Figure A2: monthly cumulated returns earned by equal-weighted quintile portfolios formed on past
performance. Shaded areas denote NBER recessions. Specifically, stocks are sorted every day into five
equally populated groups based on the performance over the intraday formation period. Then, the return
of equal-weighted portfolios is calculated for the holding period. For clarity, only the first (lose) and the
fifth (win) quintiles are marked. In the top plot is the last timing specification, with formation period
from 9:30 until 12:00 and holding period from 15:30 to 16:00, and in the bottom plot is the afternoon
timing specification, with formation period from 9:30 until 13:00 and holding period from 13:30 to 15:30.
The sample consists of all common NYSE stocks excluding microcaps, i.e. stocks with a price below 5$ or
market capitalization in the bottom decile, and covers the period from January 1993 to May 2010.
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Table A1: t-statistics from time-series predictability regressions. Each panel assesses the robustness of
the base case (see table 2.1) with respect to single changes in methodology or in the period of analysis. In
this order: A) univariate equivalent of the equation (2.1); B) regressions with non-standardized returns;
C) include all previous half-hour in the RHS of the regression; D) include the overnight return as a
separate regressor; E) excludes period of the financial crisis from December 2007 until May 2009; F) uses
sample until April 2001 (pre-decimalization); G) uses sample after April 2001 (post-decimalization); H)
uses periods from the beginning until end of 2000, then from May 2002 until June 2007 and from start of
2009 until May 2010 (bull markets); I) uses periods from 2000 until May 2002 and from June 2007 until
end of 2009 (bear markets).

A) univariate
c 09:30 10:00 10:30 11:00 11:30 12:00 12:30 13:00 13:30 14:00 14:30

15:30 2.17 1.76 1.71 0.75 2.42 1.17 -1.36 -0.03 -0.06 0.83 1.46
15:00 -2.04 -0.97 -2.66 -0.82 -0.29 -1.95 -1.97 0.47 -0.63 0.96
14:30 0.00 -1.00 1.42 0.94 0.61 0.62 0.51 2.43 0.64
14:00 -2.01 -0.70 -0.68 -0.47 -0.71 -0.32 -0.31 0.84
13:30 -0.12 0.39 -1.37 -2.10 -1.30 -0.66 -0.96
13:00 1.53 0.06 0.33 0.21 -1.66 -0.74
12:30 0.66 0.19 0.69 -1.03 -0.68
12:00 0.82 1.07 1.26 1.32
11:30 0.76 -1.43 1.88
11:00 1.05 -1.77
10:30 -2.08

B) no standardization
c 09:30 10:00 10:30 11:00 11:30 12:00 12:30 13:00 13:30 14:00 14:30

15:30 6.10 1.47 1.80 2.28 1.93 3.52 1.08 -1.42 0.99 1.04 2.00 2.02
15:00 1.55 -0.09 0.93 -1.75 1.37 0.17 -0.48 -1.34 0.67 0.45 1.26
14:30 2.54 1.87 -0.69 1.10 -0.15 -0.63 -0.19 1.09 0.94 -1.75
14:00 -0.57 -0.67 0.32 -1.15 0.01 -1.38 -1.84 -1.47 -1.03
13:30 0.59 -0.90 -0.32 -1.91 -2.26 -1.29 -1.24 -2.06
13:00 2.07 1.88 1.20 -0.02 -0.13 -1.48 -1.66
12:30 1.76 1.95 0.08 0.78 -1.15 -0.12
12:00 0.32 1.57 0.66 -0.07 -0.55
11:30 0.20 0.77 -1.92 -0.46
11:00 -1.74 0.41 -3.87
10:30 0.06 -1.34 continues...
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...continues from table A1
C) no skip

c 09:30 10:00 10:30 11:00 11:30 12:00 12:30 13:00 13:30 14:00 14:30 15:30

15:30 3.53 2.05 1.81 1.53 0.71 2.37 0.99 -1.44 -0.07 -0.05 0.92 1.03 -1.35
15:00 2.08 -2.04 -1.16 -2.64 -0.84 -0.30 -2.02 -2.03 0.40 -0.56 0.78 -3.85
14:30 2.55 -0.09 -0.94 1.36 0.95 0.62 0.66 0.68 2.49 0.59 -3.44
14:00 -0.86 -2.02 -0.75 -0.77 -0.56 -0.75 -0.36 -0.33 0.41 -4.23
13:30 0.23 -0.01 0.30 -1.34 -2.10 -1.41 -0.80 -1.55 -1.89
13:00 1.88 1.59 0.10 0.40 0.16 -1.73 -1.28 -8.96
12:30 2.50 0.71 0.26 0.75 -0.96 -0.93 -3.08
12:00 0.97 0.87 1.12 1.37 1.32 -5.80
11:30 0.10 0.76 -1.33 1.79 -0.89
11:00 -0.96 0.97 -1.99 -4.37
10:30 -0.20 -2.29 -2.43
10:00 -2.61 -5.07

D) overnight
c R

on

09:30 10:00 10:30 11:00 11:30 12:00 12:30 13:00 13:30 14:00 14:30

15:30 2.59 0.53 2.89 2.24 2.13 0.90 2.19 2.04 -0.93 -0.61 -0.18 0.89 1.66
15:00 0.96 0.41 -1.35 -0.61 -2.65 -0.12 -0.06 -1.47 -1.28 1.34 0.42 1.41
14:30 1.88 -0.24 -0.29 -0.75 1.32 1.34 1.05 0.27 0.10 1.92 0.68
14:00 -1.26 -0.84 -0.49 -0.54 -1.16 -0.54 0.04 0.08 -0.34 0.20
13:30 -0.34 0.48 -0.24 -0.14 -1.23 -1.80 -1.27 -0.28 -1.80
13:00 1.53 1.21 3.17 0.63 0.23 0.22 -2.15 -1.46
12:30 1.16 -0.14 -0.96 -0.92 -0.29 -2.27 -0.89
12:00 0.20 0.87 0.16 1.24 0.46 -1.04
11:30 0.72 2.56 0.50 -1.02 0.61
11:00 -0.92 2.10 2.25 -1.60
10:30 0.63 -1.10 -0.60
10:00 -1.56 -3.34

E) exclude crisis 2007-2009
c 09:30 10:00 10:30 11:00 11:30 12:00 12:30 13:00 13:30 14:00 14:30

15:30 4.02 3.17 1.77 1.35 0.82 2.21 -0.06 -0.16 -0.53 -0.19 1.72 0.81
15:00 1.64 -2.38 -1.85 -1.09 -1.12 0.64 -2.29 -0.58 -0.52 -0.67 2.47
14:30 1.50 -0.98 -1.55 0.54 0.98 -0.74 -0.56 1.09 2.19 1.21
14:00 -0.77 -2.76 -1.21 0.39 -0.63 -0.72 0.98 0.00 0.86
13:30 0.95 -0.41 0.38 -0.97 -1.61 -0.84 -0.48 -1.05
13:00 1.70 1.35 0.43 0.91 -0.60 -0.77 -0.64
12:30 3.17 -0.71 0.79 -0.05 -1.57 -0.66
12:00 1.39 0.27 1.08 1.69 1.78
11:30 0.31 1.14 -1.07 1.82
11:00 -0.25 0.88 -1.02
10:30 -0.23 -3.04 continues...
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...continues from table A1
F) pre-decimalization

c 09:30 10:00 10:30 11:00 11:30 12:00 12:30 13:00 13:30 14:00 14:30

15:30 6.10 -1.47 0.06 -0.49 0.00 1.08 -0.73 -0.28 -1.07 -0.80 0.54 0.50
15:00 0.65 -1.96 -0.19 -0.28 2.12 -0.37 0.08 0.46 1.98 1.66 3.05
14:30 -0.11 -1.62 0.04 -0.27 -0.32 -0.26 -0.44 2.10 2.69 -0.68
14:00 -1.32 -0.43 1.58 -0.31 0.91 -0.74 1.21 0.05 -0.66
13:30 0.46 -1.41 -0.82 -1.42 -1.06 -0.75 -0.94 -1.37
13:00 1.13 1.72 1.05 1.21 -0.12 -1.42 0.81
12:30 -0.55 0.88 2.40 1.55 1.45 2.06
12:00 -1.20 2.44 2.00 2.44 3.60
11:30 -1.39 2.09 -0.12 3.01
11:00 -1.59 2.53 1.23
10:30 0.58 2.64

G) post-decimalization
c 09:30 10:00 10:30 11:00 11:30 12:00 12:30 13:00 13:30 14:00 14:30

15:30 1.66 2.86 2.05 1.86 0.80 2.25 1.38 -1.30 0.08 0.10 0.78 1.41
15:00 1.83 -1.63 -1.18 -2.73 -1.47 -0.22 -2.12 -2.28 -0.07 -1.23 0.15
14:30 2.55 0.62 -1.03 1.61 1.10 0.69 0.82 -0.02 1.83 1.10
14:00 -0.53 -1.93 -1.33 -0.58 -0.67 -0.40 -0.67 -0.25 1.13
13:30 -0.09 0.31 0.44 -0.93 -1.94 -1.07 -0.56 -0.45
13:00 1.34 1.02 -0.29 0.03 0.27 -1.35 -0.98
12:30 2.60 0.44 -0.75 0.25 -1.44 -1.67
12:00 1.28 0.20 0.47 0.82 0.67
11:30 0.55 0.11 -1.41 1.03
11:00 -0.39 0.42 -2.46
10:30 -0.27 -3.20 continues...
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...continues from table A1
H) Bull markets

c 09:30 10:00 10:30 11:00 11:30 12:00 12:30 13:00 13:30 14:00 14:30

15:30 3.53 3.55 1.48 0.77 1.35 3.74 2.18 1.30 -1.72 0.21 1.21 0.98
15:00 0.98 -1.89 -0.36 0.11 -1.64 0.22 -2.40 0.15 0.10 -1.33 -0.37
14:30 1.96 0.17 -1.51 1.38 1.08 -0.22 -0.62 0.93 1.46 1.79
14:00 -0.16 -2.12 -1.05 0.91 -0.07 -0.34 1.20 0.93 1.11
13:30 0.70 -0.71 -0.41 -0.55 -0.84 -0.74 0.54 1.40
13:00 1.03 0.70 1.01 0.91 0.47 -0.57 -1.00
12:30 3.14 -1.19 0.17 -0.14 -1.13 -1.52
12:00 2.93 0.40 1.40 1.77 1.34
11:30 -0.17 2.03 0.02 2.19
11:00 0.77 0.92 -0.84
10:30 0.91 -3.64

I) Bear markets
c 09:30 10:00 10:30 11:00 11:30 12:00 12:30 13:00 13:30 14:00 14:30

15:30 1.29 -0.19 1.06 1.22 -0.14 -0.02 0.25 -3.21 1.33 0.17 -0.32 1.62
15:00 1.47 -0.33 -0.04 -2.85 0.07 -1.19 -0.46 -2.88 0.72 -0.01 0.72
14:30 2.06 1.05 0.17 1.13 0.14 0.87 1.35 -0.62 1.46 -0.96
14:00 -1.27 -0.44 0.11 -2.32 -0.59 -0.82 -2.30 -0.74 -0.09
13:30 -1.30 0.16 0.39 -1.48 -1.90 -1.44 -1.31 -1.78
13:00 1.51 1.32 -0.59 -0.19 0.54 -1.43 0.06
12:30 0.39 2.49 -0.12 1.28 -0.07 0.55
12:00 -2.00 0.89 0.85 0.31 -0.07
11:30 0.28 -0.84 -1.72 0.28
11:00 -2.86 0.36 -2.84
10:30 -0.80 1.25 end

Table A2: R-squared coe�cient from predictability regressions. The first column contains coe�cients
from the base-case regressions of table 2.1 and the remaining column represent variants to the base-case
as outlined in table A1, with the exception of variant A), which is not reported for compactness.

B) C) D) E) F) G) H) I)

15:30 0.051 0.093 0.447 0.112 0.039 0.006 0.134 0.083 0.303
15:00 0.063 0.040 0.199 0.081 0.048 0.062 0.144 0.032 0.529
14:30 0.025 0.037 0.094 0.030 0.023 0.023 0.047 0.036 0.092
14:00 0.011 0.044 0.175 0.009 0.016 0.013 0.032 0.023 0.146
13:30 0.017 0.097 0.390 0.039 0.010 0.018 0.024 0.009 0.159
13:00 0.009 0.018 0.316 0.048 0.006 0.010 0.014 0.009 0.031
12:30 0.004 0.009 0.229 0.031 0.007 0.033 0.021 0.011 0.043
12:00 0.007 0.004 0.070 0.011 0.009 0.017 0.005 0.011 0.011
11:30 0.010 0.007 0.012 0.026 0.009 0.022 0.011 0.015 0.033
11:00 0.006 0.019 0.037 0.033 0.002 0.006 0.021 0.003 0.052
10:30 0.003 0.005 0.176 0.007 0.007 0.006 0.016 0.016 0.006
10:00 - - 0.023 0.053 - - - - -
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Table A3: average counts of constituents from portfolios formed independently on past performance and
a stock characteristic. For details, refer to table 2.3.

last afternoon
lose 2 3 4 win lose 2 3 4 win

size
small 156 100 93 105 148 157 101 93 103 149
medium 117 120 120 128 119 117 121 120 127 119
large 89 134 142 143 96 88 134 144 142 95

std
low 68 131 149 143 79 68 131 150 142 79
medium 114 114 109 118 116 114 115 109 117 116
high 161 90 79 92 149 161 91 79 91 149

skew
bottom 123 110 107 113 118 123 110 107 112 118
medium 113 112 113 119 113 113 113 114 118 113
top 106 114 117 122 112 106 114 117 121 112
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Table A4: t-statistics for sub-period analysis of average annualized returns earned by equal-weighted
portfolios independently formed on past performance and stock characteristics from table 2.4.

last afternoon
lose 2 3 4 win lose 2 3 4 win

Pre April 2001

size
small 8.6 8.5 8.8 10.0 15.6 -0.4 -5.3 -1.5 0.4 3.7
medium 6.0 6.4 6.7 7.0 9.9 -1.0 -3.6 -2.7 1.2 3.4
large 3.8 4.0 2.6 2.0 4.2 -0.0 -1.1 -1.0 1.8 3.2

std
low 6.5 5.2 2.9 0.9 1.2 3.7 -0.4 -0.7 1.6 0.9
medium 5.8 5.6 5.6 5.9 8.1 -0.7 -3.9 -1.4 1.1 4.2
high 6.3 6.6 7.4 8.8 12.9 -2.6 -5.1 -4.1 -0.8 2.7

skew
low 6.3 6.7 6.4 6.3 11.5 -1.7 -4.2 -3.8 1.1 2.5
medium 6.5 6.3 6.3 7.0 10.2 -0.8 -3.4 -2.0 0.0 4.0
high 5.7 5.4 5.0 5.0 7.9 -0.8 -3.1 -1.1 1.6 3.9

Post April 2001

size
small 7.1 4.1 3.9 3.8 3.9 6.0 2.7 2.3 2.1 0.4
medium 3.3 2.1 1.8 1.6 1.9 6.0 3.5 2.4 1.4 -1.1
large 3.0 2.0 1.5 0.8 1.3 4.4 3.1 2.4 1.6 -0.0

std
low 2.2 1.2 0.7 0.3 0.4 7.9 4.7 3.0 1.5 -0.7
medium 3.7 2.2 1.8 1.4 1.1 7.2 3.6 2.3 1.3 -0.8
high 6.5 4.6 4.5 4.1 3.7 4.5 1.5 1.6 1.7 -0.1

skew
low 4.9 2.7 2.5 2.3 2.7 5.5 3.2 2.6 1.9 -0.3
medium 4.3 2.3 2.2 2.1 2.6 5.5 3.0 2.2 1.4 -0.4
high 4.6 2.6 2.1 1.9 2.8 6.2 3.1 2.2 1.7 -0.3
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Table A5: t-statistics for average annualized returns earned by equal-weighted portfolios formed on past
performance and grouped by day of the week from table 2.5.

last afternoon
lose 2 3 4 win lose 2 3 4 win

Whole sample

Mon 1.3 1.2 1.2 1.3 2.9 -1.2 -1.8 -1.1 -0.4 -0.5
Tue 3.0 2.2 2.1 2.3 4.0 1.3 0.2 0.4 1.0 0.6
Wed 3.0 1.8 1.5 1.6 2.8 1.8 0.3 0.7 1.6 2.0
Thu 3.9 3.0 3.0 3.0 4.7 1.7 0.5 0.5 1.2 1.5
Fry 5.9 4.5 3.8 3.6 5.8 3.9 1.1 1.0 1.1 1.3

Pre April 2001

Mon 0.2 0.9 1.1 1.5 3.2 -1.8 -2.2 -1.1 0.3 1.1
Tue 2.7 2.5 2.7 3.1 5.3 0.0 -1.2 -1.2 -0.2 0.5
Wed 4.2 4.0 3.8 4.0 6.3 -0.1 -1.4 -0.5 1.4 2.3
Thu 3.3 2.8 3.0 3.1 5.3 0.1 -0.7 -0.6 1.1 2.5
Fry 5.9 5.3 5.0 4.7 8.6 0.8 -1.9 -0.7 0.5 2.0

Post April 2001

Mon 1.6 0.8 0.7 0.5 0.9 0.2 -0.5 -0.5 -0.7 -1.6
Tue 1.7 1.1 1.0 1.0 1.5 2.1 1.5 1.4 1.3 0.4
Wed 1.2 0.4 0.3 0.3 0.5 2.5 1.5 1.3 1.1 0.6
Thu 2.4 1.7 1.7 1.4 1.7 2.1 1.2 0.9 0.6 0.0
Fry 2.9 1.8 1.4 1.3 1.5 4.4 2.5 1.7 1.1 0.1
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Acceleration and reversal

3.1 Introduction

Previous literature has established that historical stock prices may contain information

about future returns. Hence, it is possible to create trading strategies based on signals

extracted from past price changes (returns). In this work, motivated by Xiong and Ibbotson

(2015), we attempt to analyse how the concept of return acceleration fits in the research

picture, and if the long-short strategies based on such concept are profitable in absolute

terms, and relative to simpler momentum strategies which only use cumulative past returns.

Intuitively, we are not just interested in the level that a price path has reached but

also in how this new point has been achieved. From this perspective, a price path could

be categorised into an upward or downward straight line (noise aside) or into an upward

or downward launch ramp. Understanding if these four configurations matter, is relevant

to several fields of literature. For instance, there is evidence of market overreaction, first

documented by De Bondt and R. Thaler (1985) and Howe (1986), which would be consistent

with a ramp-like path. This, in turn, is related to price formation and market e�ciency,

or in other words to how acceleration in returns comes into play and whether it is an

anomaly (see related work by R. Ball and Kothari, 1989; Beaver, Lambert, and Morse,
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1980). Finally, since we are looking at the path in its entirety, we can see if and how

acceleration is related to specific calendar regularities, like the month-end e�ect (seminal

works are by De Bondt and R. H. Thaler, 1987; Lakonishok and Smidt, 1988), and if

institutional trading is the driving force that justifies the whole picture (see Etula et al.,

2016). Further motivation and literature is discussed in section 3.1.1.

We build several empirical measures of acceleration and compare them to other signals

from the academic literature. We show that acceleration measures are mostly independent

from traditional price-based signals such as 1-month reversal and 12-2-month momentum.

Then, we study the properties of equity portfolios formed by sorting stocks into deciles

based on acceleration. We find that there is a large spread in average returns for these

portfolios, and for the low-minus-high (LMH) strategies, which go long stocks whose returns

are decelerating and short stocks whose returns are accelerating. Moreover, the LMH

strategy produces large positive mean returns, even after controlling for transaction costs.

In the next step, we analyse the risk properties of the acceleration portfolios and the

LMH strategy. We show that the classic and contemporary state-of-the-art equity factor

models do not explain the mean returns exhibited by acceleration portfolios. In particular,

even the 1-month reversal, which is fairly similar to acceleration, does not add much

explanatory power. However, the reversal factor constructed on a shorter lookback period

of 5 days, is able to price the acceleration-based portfolios.

The remainder of the paper is organized as follows: this section concludes with the motiva-

tion for the empirical analysis in relation to the current literature. Section 3.2 describes the

data and provides the details on how acceleration measures are constructed. Section 3.3

shows that our acceleration-sorted portfolios produce a robust monotonic pattern in mean

returns. We then present the formal analysis on the risk-return trade-o� in section 3.4.

We conclude the study and provide suggestions for further research in section 3.5.
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3.1.1 Acceleration

Extensive academic literature explores how information from past prices predicts future

returns in the cross-section.1 However, the academic community was predominantly inte-

rested in understanding how price changes can forecast returns. Instead, in this paper we

would like to explore, from a predictability point of view, how helpful are changes in chan-

ges. In particular, we question whether the speed of the price moves adds any information

to the simple content given by the direction and size of these moves (already previously

studied).

From another perspective, if we look at the cumulative return over the formation period

(lookback) of a signal, for example a month, we only get the point of arrival and lose

information in between. In other words, fixing the formation period, it is interesting to

explore if price formation within the period is also useful for the formulation of a trading

strategy. In this context, a study of acceleration becomes a natural candidate since it also

implicitly picks how price has moved during the lookback.

Subsequently, we found that similar work has only been carried-out by Xiong and

Ibbotson (2015), two researchers of the financial industry. They claim that twelve-month

momentum and one-month reversal are two faces of the same phenomenon, which they call

acceleration. In particular, Xiong and Ibbotson (2015) focus on a twelve-month lookback

and define an empirical measure of medium-term acceleration to be the di�erence in the

average returns over the last six months minus the first six months.2 The authors find

that acceleration is informative about the probability and the magnitude of a stock price

reversal.

1Classic references are De Bondt and R. Thaler (1985) for long run reversal, Jegadeesh and Titman
(1993) for medium-term momentum, and Jegadeesh (1990) for short-run reversal.

2This is not the only work that attempts to combine the informative content of momentum and reversal
in order to provide a single-factor explanation. Han, Zhou, and Zhu (2016) also look into combining various
price signals with di�erent lookbacks into a single factor. They call this factor a trend, and show that a
strategy based on it outperforms the traditional short-term reversal, medium-term momentum and long-
run reversal strategies while not being spanned by them.
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Our work is di�erent since we look at a lookback period of one month and the shorter

formation window has two implications. First, if acceleration underlies a deviation of the

price from fundamental values, then such deviation is likely to be transitory, which might

be economically consistent and hence profitabe only in the short term, rather than over

a year. Second, even Xiong and Ibbotson (2015) argue that a contrarian position should

also be profitable, i.e. going long the least accelerated stocks and shorting those that

accelerated the most. If that is the case, it would be relevant to compare which of the two

contrarian strategies – short-run reversal or acceleration – has the most informative signal.

However, for a fair comparison, the strategies should share the same lookback, and it is

preferable to level with reversal since it has been already extensively researched.

We do not exclude ex-ante the possibility that acceleration is related to the traditional

reversal. For instance, Da, Q. Liu, and Schaumburg (2014) argue that not every stock

which has a negative (positive) performance during the previous month, should reverse

in the next period. In particular, signals built on past returns should also account for

fundamentals – news about cashflows and discount rates – in order to lock-in a “cleaner”

reversal. The intuition is as follows: if a stock went down due to a deterioration in expected

profitability, a successive recovery can only follow from an improvement in the profitability

outlook. Separately, di�erences in the cross-section of returns can arise from di�erent

exposures to the risk factor. That is, if a stock outperformed another one simply because

it is riskier, and assuming that the risk factor on average realizes positive returns, there

is no guarantee that the riskier stock will underperform in the following period. Da, Q.

Liu, and Schaumburg (2014) conclude that returns of the “cleaned” reversal strategy are

stronger than the traditional reversal and link the economic motivation to liquidity risk and

investor-sentiment. Since it seems unlikely that prices reflect news every month in a way

that leads to visible acceleration patterns, it could well be the case that our acceleration

measure is capturing in a simpler way the “cleaned” reversal.

We also do not dispute whether any of the theories put forward for reversal could
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actually lie behind acceleration. Hence, we do not take a particular stand on what might

cause acceleration and, as with reversal, there could be competing theories coming both

from the behavioural finance and rational expectations literature.3 Our main task is to

empirically establish whether acceleration is a separate phenomenon as e.g. argued by

Xiong and Ibbotson (2015).

3.2 Data and methodology

This section defines our sample, the period of coverage and the main data used for the

analysis. The methodology on signal construction is outlined next, and a description of the

factor models, used to adjust and test the abnormal returns of our strategies, concludes.

Our sample consists of common stocks from the Center for Research in Security Prices

(CRSP), i.e. those with a share-type code of 10 or 11, and excludes observations from

the holding period which either had, at the end of the previous month, a price below

$5 or a market capitalization in the lowest New York Stock Exchange (NYSE) decile.

Consequently, our panel has a total of 9569 equities with an average of 4052 stocks per

month, and covers the period from January 1993 until December 2014. The CRSP database

provides return data adjusted for firm events, e.g. stock splits or distributions, which we

complement with delisting returns, as in Beaver, McNichols, and Price (2007), to avoid

selection bias.

3Rational expectations theories of reversal are often based on liquidity issues. Avramov, Chordia, and
Goyal (2006) argue that reversal strategy returns are stronger for lower liquidity stocks. Nagel (2012)
suggests average returns to reversal strategy reflect the market maker’s liquidity-bearing capacity; more-
over, there is significant time variation in this liquidity provision. So and S. Wang (2014) find consistent
evidence for this story via inventory risk channel by studying reversal profits around scheduled information
releases. An alternative rational agents story is that by Johnson (2016), who claims that delegated fund
management with performance evaluation versus the benchmark can generate reversal patterns. Finally,
the story in Etula et al. (2016) combines the institutional asset management friction, argued to be related
to the monthly cash management cycle, with the limited liquidity-bearing capacity by market makers to
explain aggregate market-level reversals. There is still an unsettled empirical debate on whether the higher
share of institutional investors increases [Johnson (2016) and Etula et al. (2016)] or decreases [Cheng et al.
(2016)] return reversals.
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Signal construction All signals are built with daily observations at the end of the forma-

tion month which precedes the holding period. We consider five specifications throughout

the analysis and, in particular, we focus on proxies for acceleration in returns.

Our first proxy for acceleration is denoted by acA, which stands for area-of-acceleration,

and its construction is shown in figure 3.1.

Figure 3.1 about here

The figure plots a solid line of hypothetical prices, denoted by P0, P1, . . . , PN , and a dashed

straight line of prices, identified by I1, . . . , IN≠1, which are interpolated between the two

ends of the formation period. Then, the signal estimates the area formed by the two lines

by adding up the deviations of actual prices from the interpolated ones (see the red vertical

lines in the figure). Formally, by defining the interpolated prices with It © PN ≠P
0

N
t, the

signal becomes

acA ©
N≠1ÿ

t=1
(It ≠ Pt), (3.1)

where N counts the number of trading days of the formation month and P0 is the last price

from the preceding month.4 Intuitively, the closer the price series resembles an increasing

parabolic path, much alike that of a jumping ramp, the greater will be the area enclosed

by the interpolated line.

Our second proxy for acceleration, which we call ac5 (acceleration five), is more easily

defined as the di�erence of the average return over the last five days - la5 - minus the

average return over the first five days - fi5 - of the formation month. Hence, the signal is

simply

ac5 © fi5 ≠ la5. (3.2)

By looking again at figure 3.1, we can give a geometric interpretation of equation (3.2)

and highlight the link between ac5 and acA. In fact, the average return in fi5 can be
4The sum in equation (3.1) is taken over days 1, 2, . . . , N ≠ 1 since on the interpolation extremes, i.e.

for t œ {0, N}, the di�erence between the interpolated and actual prices is null by construction
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approximated by the (negative) slope of the line going through P0 and P5. Similarly, la5

can be approximated by the (positive) slope of the line going through prices PN≠5 and

PN . Hence, keeping this geometric representation in mind, if the slope for fi5 steepens,

i.e. in our example becomes more negative, the area enclosed by the path of actual and

interpolated prices, widens. This combined e�ect translates in both ac5 and acA having a

higher signal. Thus, the connection between the two acceleration proxies is established by

noting that the variation in the signals preserves sign and magnitude. The same conclusion

applies to changes in la5 and across di�erent market conditions.

Together with the accelerations proxies, we include fi5 and la5 as standalone signals

in order to give additional insight into which part of the formation period might be con-

tributing towards our strategies. This interpretation is possible thanks to the direct role

that la5 and fi5 play in the construction of ac5 and their implicit connection to acA.

Finally, since we focus on a one-month formation period, a natural choice is to include the

reversal strategy by Jegadeesh (1990). The signal, which we label with rev, is simply the

prior-month return.

As general remarks on signal construction, to avoid the bias induced by the bid-ask

bounce, we use mid-to-mid returns as e.g. in Da, Q. Liu, and Schaumburg (2014) and Lou,

Polk, and Skouras (2016).5 Moreover, we skip stocks that have missing daily observations

during the formation period. Finally, each signal is de-meaned by its industry-average as in

Novy-Marx (2013). We follow standard literature practice, e.g. Goyal (2014), and use the

Standard Industry Classification (SIC) codes from the COMPUSTAT-merged database to

classify each stock into one of the 49 Fama and French industry portfolios, which are taken

from professor Kenneth French’s Data Library.

Transaction costs. We consider a cost-minimization exercise in section 3.3 to gauge

the profitability of our strategies. Here, we briefly present the methodology applied for
5Mid-to-mid returns are calculated from firm-event adjusted data and the procedure is described in

section 3.B.
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the robustness and how the transaction costs (Tcosts) are estimated using bid-ask spre-

ads, henceforth simply spreads, and portfolio turnover.6 Specifically, we calculate the

daily spread of a stock as the di�erence in bid/ask prices at close over the mid price,

i.e. (P Ask
t ≠ P Bid

t )/P Mid
t . Then, at the end of the formation period, we only keep stocks

from the cheapest quintile by spread and construct value-weighted portfolios with those

equities. Our approach is similar to the cost-minimizing methods examined in Novy-Marx

and Velikov (2015). The authors perform conditional double sorts in order to decrease

the bid-ask spread component: for each size decile they keep equities from the lowest

(e�ective) bid-ask spread decile.7 For each portfolio, we calculate its (value-weighted)

average spread and turnover, where the latter captures the percentage change in the

constituents after rebalancing.8 Then, we calculate the cost by portfolio as the pro-

duct between its turnover and average spread. Finally, the Tcost of the LMH is defi-

ned as the sum of the individual costs for the High and Low portfolios. In other words,

TcostsLMH = spreadLow ◊ turnoverLow + spreadHigh ◊ turnoverHigh. Price data are from

CRSP.

Test specifications and risk factors. We consider some of the classical and most recent

models from the empirical equity pricing literature. For instance, we use the well known

Fama and French (1993) 3-factor model with their market (MKT), size (small-minus-big,

SMB) and book-to-market (high-minus-low, HML) factors. We also consider the Fama and

French (2015) extended 5-factor model (FF5), which adds a robust-minus-weak (RMW)

factor, defined as the di�erence in return between stocks with robust and weak profita-

bility, and the conservative-minus-aggressive (CMA) factor, which captures the di�erence

in return between stocks with low and high investment. Another specification borrows
6We assume that the nominal size of our strategies is negligible and hence bears no market impact

during trading.
7The sample preserves the statistical properties reported for the whole universe in table A1.
8The average bid-ask spread by portfolio does not change significantly from one month to another.

Hence, the robustness test is not a�ected whether ex-ante or ex-post costs are taken. Results are available
upon request.
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the so-called q-factors model by Hou, Xue, and Lu Zhang (2015), which in addition to

the market and size, also includes factors based on their own measure of investments

(investment-to-asset, IA) and profitability (ROE). Furthemore, we also test three speci-

fications which extend the FF5. The first model is augmented with the liquidity factor

(LIQ) from Pastor and Stambaugh (2003). The second adds the time-series momentum

(TSMOM) factor from Moskowitz, Ooi, and Pedersen (2012), and the cross-sectional mo-

mentum (UMD) and short-term reversal (STREV) factors from professor Kennet French’s

Data Library. Finally, the last specification adds our own short-term reversal factor based

on la5 i.e. it shorts low-signal stocks and buys high-signal stocks. Models specifications,

factor descriptions and the sources of the data are summarized in table A2.

3.3 Preliminary analysis

This section first shows that acceleration is not a mere proxy for other price-based signals

typically considered in the academic literature. Second, it uncovers a monotonic pattern

in mean returns of portfolios sorted on acceleration, leading to high profitability of low-

minus-high (LMH) strategies which are robust to transaction costs.

Signal comparison. Table 3.1 reports time-series averages of cross-sectional correlations

among signals. Pearson (linear) and Spearman (rank) coe�cients fill respectively the lower

and upper triangular section of the matrix. Since both versions are very similar, hereafter

we will only refer to linear correlations. Numbers in bold indicate a value greater than 0.3

in absolute terms.

Table 3.1 about here

The correlation matrix builds on a broader set of signals (cf. section 3.2) to provide

supporting evidence for a twofold claim: acceleration does not depend on other traditional

signals of the financial literature, but its proxies are correlated among each other.
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To support the first part of the claim, we add mom, trd, std0 and std. The first of

the list is momentum (see Jegadeesh and Titman, 1993), and is defined as return over the

previous twelve months skipping the most recent. The listed trd signal is the regression

coe�cient of prices on a time-trend, i.e. it is the coe�cient b from the time-series regression

specified by Pt = a + bt + Á with t = 1, 2, . . . , N . The last two, measure daily volatility

over the formation month, where the former assumes a null mean, i.e. adds up squared

returns, while the latter is the usual standard deviation.

For the second part of the claim, we include acR and acH. The former is the regression

coe�cient of prices on a quadratic time-trend, i.e. the b2 in Pt = a + b1t + b2t
2 + Á. The

latter is a variation of ac5 where instead of five days we take the last and first half of the

formation month and, eventually, skip one day in between if the number of trading days

(N) is odd.9

Evidence shows that the acceleration signals are uncorrelated with reversal, momentum

or volatility, with correlations coe�cients ranging between -0.05 and 0.07, but they are

correlated among each other, with coe�cients starting at 0.66. Another evident pattern

about acceleration is the positive dependence with la5 compensated by an almost equal

negative correlation with fi5. This behaviour is consistent with the definition of ac5 in

equation (3.2) which takes la5 ≠ fi5, and generalizes to the other acceleration signals.

Hence, acceleration seems to capture information which is not already included in other

traditional signals of the academic literature.

Portfolio sorts and LMH strategies. At the beginning of the holding period, we sort

stocks into deciles based on the signal and form 10 portfolios weighted by market capi-

talization.10 Then, the low-minus-high (LMH) strategy goes long the low-signal portfolio

9In addition to the acceleration proxies reported in the correlation matrix we extensively explored
variants of the ac5 and time-trend regressions. Results do not change qualitatively and are available upon
request.

10Market capitalization is defined as the product between number of outstanding shares and stock price.
Our main conclusions remain unchanged if we use equal-weighted portfolios.
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and shorts the high-signal portfolio. The whole procedure is repeated for each signal, and

portfolios are rebalanced monthly.

Table 3.2 collects monthly gross-of-costs descriptive statistics on decile portfolios and on

the LMH strategies. Panel A reports the average returns of the 10 portfolios, a sparkline

plotting those values and the average return of the LMH strategy. Panel B provides

detailed statistics on the series of LMH returns, where, among others, AC(1) is the lag-one

autocorrelation, SP the Sharpe Ratio, MDD the maximum drawdown, len the length of

the MDD and rec the time it took the strategy to recover afterwards.11 Each row from the

panels refers to a specific signal.

Table 3.2 about here

According to Panel A, signals la5, ac5 and acA show an increasing monotonic pattern

in portfolio returns which translates into economically conspicuous profits for the LMH

strategies, with monthly (annualized) values averaging at 1.59 (19,08), 1.23 (14.76) and

1.22% (14.64%). In contrast, rev’s return profile is flat and the strategy grosses a monthly

negative gain of -0.11%, while rev, at best, exhibits a hump-shaped pattern with the

corresponding LMH strategy settling on a value of 17 bps.12

Panel B focuses on LMH series and their characteristics. All strategies have relatively

high standard deviation, with values ranging between 4.92 and 6.05%. However, as already

anticipated in Panel A, while la5, ac5 and acA compensate volatility with returns, rev and

fi5 fail to do so. Furthermore, if we look at Sharpe Ratios, the gap between la5, acR

and ac5 is only marginal with monthly (annualized) values of respectively 0.27 (0.94), 0.25

(0.87) and 0.24% (0.83%). In strong contrast, the rev and fi5 strategies have negligible

Sharpe Ratios, their monthly minimums are almost four times worse compared to acA and

have they have the worst profiles in terms of maximum drawdown (MDD).
11Detailed descriptive statistics at the portfolio level are reported in the appendix under table A1.
12This result is consistent with Lou, Polk, and Skouras (2016), who look at a very similar sample horizon

and find no profitability in one-month reversal strategy.

115



Chapter 3. Acceleration and reversal

We complement descriptive statistics with a plot of cumulative LMH returns in fi-

gure 3.2. For comparability, all strategies are rebased to zero at the beginning of the

period of analysis and scaled by their respective standard deviation. 13

The figure outlines strong resemblance between la5, acA and ac5 on one side, and rev

and fi5 on the other side. The former group realises steady gains until 2000 when it

increases its pace and makes the most of the dotcom bubble until 2002. Follows a flat

period, whose end in 2009, coincides with the beginning of a new positive cycle, stretching

until the end of the analysis; this last trend sees e.g. acA gaining more than 9% per year.

Moreover, the first group shows countercyclical behaviour and remains profitable during

NBER recessions, which are marked in the figure by the grey bands. Lastly, the di�erences

in MDD, its length and recovery time, which might have favoured the acceleration signals

(see Panel B in table 3.2), materialize during the flat period. It becomes clear from the

graph, that those numbers should be interpreted with caution, since none of the strategies

outperforms the others.

Figure 3.2 about here

The picture is quite di�erent for fi5 and rev, with the former being still except for

the last two years when it closes in negative territory. The reversal strategy, while not

profitable overall, and consistently so with Lou, Polk, and Skouras (2016), at first trends

persistently upwards until mid 2004, but then changes direction and retraces back until the

end of the study. In comparison, la5, which is intuitively the same kind of reversal strategy

but with a formation period of one week, earns money for most of the time when rev does

not. The example seems to suggest that the choice of the lookback length is crucial and

might dependent on the historical period.

Additionally, we examine closer the average holding period return. Figure A1 presents

the breakdown of the holding period by trading days. We notice that acA, and ac5as
13Since strategies in the figure have 1% volatility, they are not representative of the profitability reported

in the tables.
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well as la5earn positive returns beyond the first trading week. On the contrary, rev is

only profitable in the initial five trading days and then fluctuates around zero. This

result is interesting because it suggests the traditional reversal signal with one-month

lookback is only informative about the one-week ahead LMH returns, while the one-week

lookback contains information about the strategy profitability in the subsequent weeks.

This observation gives supporting motivation for keeping the holding period at one month

for la5. Lastly, the mean returns for fi5always stay roughly flat at zero, again hinting that

the signal is uninformative.

Essentially, strategies can be grouped by profitability with la5, acA and ac5 on the

good side and the rev and fi5 on the other side. It might come unexpected, that the la5 is

bunched together with the acceleration strategies, since the former is a short-term variation

of rev. Yet, la5 (together with fi5) is a fundamental constituent of ac5 (see equation (3.2)),

and more so if we consider that fi5 bears no contribution to the profitability of ac5. Hence,

not only la5 is intrinsically related to the acceleration strategies, but evidence suggests that

de facto it might be their only driver. Under this perspective, it is only natural that the

three strategies of the profitable group have similar risk-return profiles.

Profitability net of costs. In the previous section we identified a profitable signal

group in la5, acA, and ac5. Gross-of-costs, only market makers can take advantage of

these investment opportunities by transacting at about mid prices. Here, we show in a

cost-minimization exercise, that LMH returns remain statistically significant even after

transaction costs, such that, also buy-side investors can feasibly earn a profit by imple-

menting acceleration and weekly reversal strategies in the equity market.14 Thus, to keep

LMH profitable in the presence of bid-ask spread (proportional transaction cost), we only

keep stocks from the cheapest quintile and form value-weighted portfolios with the remai-

ning equities. Details on the estimation of portfolio costs, Tcosts, and the methodology
14For an analysis of price impact on reversal strategies see e.g. Avramov, Chordia, and Goyal (2006)

and R. Korajczyk and Sadka (2004).
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for the conditional sorts is outlined in section 3.2.15

Table 3.3 reports the results of the cost analysis in a similar fashion to table 3.2. In

addition to the gross average returns by portfolio, the sparklines and the gross strategy

return (LMH), the table lists the transaction cost (Tcost) of each strategy and its gross

standard error (se). Two implications are evident: first, the return profiles are preserved

even after conditioning on the cheapest quintile. In fact, returns of conditional portfolios

have the same monotonic pattern as that depicted by the whole cross-section and gross

LMH returns are unchanged (compare Panel A of table 3.2). Second, after subtracting the

estimated cost from the LMH of la5, acA and ac5, the obtained di�erence is still greater

than twice its gross se. For instance, the three strategies are left with a di�erence which is

significant at the 5% level, with values (in parenthesis are 1.96 ◊ se) respectively of about

1.40 (0.99), 0.98 (0.86) and 0.88% (0.88%).16 Table 3.3 under Panel B shows that most

companies from the cheapest spread quintile are of large capitalization. There are roughly

ten times more firms from the highest market capitalization quintile than in the lowest.

Hence, stocks that have low quoted bid-ask spread tend to be big firms.

Table 3.3 about here

Our results are di�erent from those of Avramov, Chordia, and Goyal (2006) for the

weekly reversal. In their empirical design, they consider equally-weighted portfolios and

their starting sample does not exclude microcaps as we do. Hence, the di�erence in the

conclusion about transaction costs are mostly coming from small stocks, which have a

larger influence in their design.

To summarize, in opposition to the standard 1-month reversal factor, there is a strong and

increasing monotonic pattern in average portfolio returns for acA, ac5, and la5 as we move

from a low-signal portfolio to a high-signal portfolio. This makes LMH strategies based
15Fixed costs or short-selling costs are assumed to be negligible.
16Our estimates of transaction costs are conservative, as the e�ective bid-ask spread is typically lower

than the quoted analogue (see Avramov, Chordia, and Goyal, 2006).
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o� those signals, which go long the former portfolio and short the latter, very profitable

in gross terms. In fact, we argue that these profits survive the reasonable transaction cost

estimates, provided we impose a cost-minimizing approach which restricts our tradable

stock universe. Finally, we notice from our preliminary analysis that acceleration signals

do not profile better than la5, except for certain stand-alone strategy risk characteristics

such as duration of maximum drawdown. Next, we explore in more detail the risk-return

properties of our return series.

3.4 Spanning by factor models

In this section we look at the risk properties of the LMH strategies and the decile portfolios.

First, we look at risk-adjusted LMH returns by running time-series regressions on some of

the classical and most recent factor models from the empirical equity pricing literature (for

a description see section 3.2).17 Subsequently, we formally test whether the aforementioned

models can price the cross-section of our portfolios. To preview our results, we find that

the risk-adjustment plays in favour of la5, acA and ac5, and that the models struggle to

explain the returns of those strategies. However, when we include the la5’s LMH as a

factor, the puzzle seems to be accounted for. Furthermore, this factor helps pricing the

acceleration and reversal portfolios, suggesting strong dependence in the returns of our

portfolios.

Empirical setting. In the absence of arbitrage opportunities, if test assets are constructed

to be zero-cost, the Euler equation implies that the risk-adjusted return of the i-th asset

should be zero, i.e. Et[Ri,t+1Mt+1] = 0, where Mt is some existing stochastic discount

factor (SDF). We also assume the SDF is a�ne in the factors:

Mt = 1 ≠ (ft ≠ µf )Õb, (3.3)
17Both the dependent and independent variables in the regression are consistently gross-of-costs.
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where ft is the set of pricing factors and µf is their unconditional mean, and the b’s are

the factor loadings. This specification implies a beta-pricing model where the expected

excess-return of the i-th portfolio, the Ri,t, depends on the price of the risk factors, i.e. the

⁄s, and the corresponding risk sensitivities, denoted by —i:

E[Ri,t] = ⁄Õ—i, (3.4)

where the factor prices are obtained from the loadings b and the covariance matrix of factor

returns Vf , i.e. ⁄ © Vfb. The —i are equivalent to the regression coe�cients from the excess

return of the i-th portfolio on the factors plus a constant, i.e. —i © V ≠1
f cov(Ri,t, ft).

Univariate analysis. Table 3.4 displays the results of monthly time-series regressions

of LMH strategy returns on the risk factors and a constant. Model specifications vary

across columns while the risk factors, corresponding to the regression coe�cients, are

labelled along the rows (see table A2 for details). The first row with the – identifies the

constant of the regression, and the last row reports the adjusted R2 coe�cient, i.e. a

measure of goodness of fit. Results are grouped into panels denominated with the signal

underlying the LMH strategy.

table 3.4 about here

The mean excess return of the rev strategy, reported in the first column, is economically

small and statistically insignificant. After controlling for the factors, the risk-adjusted

return captured by the – tends to be negative, although insignificantly so in all but one

case. The excess-return of the strategy does not load on any of the factors, except for

the market return and, unsurprisingly, the reversal factors. However, when we control in

the last specification for our la5, the risk-adjusted return worsens to -60 bp and becomes

significant at the 5% level. Additionally, the adjusted R2 sensibly improves in comparison to

earlier specifications but remains at a modest 16% in absolute terms. The analysis confirms
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the disappointing profitability of the reversal strategy based on a 1-month lookback period.

Similar conclusions hold for fi5. Neither the raw nor the risk-adjusted return are large

enough to be statistically di�erent from zero. The strategy loads positively on the market

and 1-month reversal, and negatively, to some extent, on the cross-sectional momentum

factor (UMD). Since the signal underlying fi5 is independent of la5 (see table 3.1), it does

not come as a surprise that la5’s coe�cient in the last specification is null.

The panel for la5 presents a totally di�erent scenario. The MKT factor loading is only

significantly positive in model (2). At the same time, the loading on the HML factor be-

comes negative and significant and so does the IA factor. Nevertheless, the risk-adjusted

return for la5 tends to be higher than the raw return in almost all cases, although the

standard error increases as well, but the coe�cient remains strongly significant. More re-

levantly, adding other price-related factors does not help explaining the puzzlingly positive

la5 returns, and even the loading on STREV is within one standard error from zero. R2
adj

is again very low across all models with the highest achieved value of 11%.

Finally, acceleration strategies ac5 and acA seem to be largely unrelated to any of the

traditional factors. In contrast to rev and fi5, they do not load positively on the market

and the 1-month reversal factors, and even show some evidence of negative loadings. Also,

they they do not exhibit strong negative coe�cients on the HML and IA factors as does

la5. However, once the 5-day reversal LMH strategy is added as an additional factor to

the model by Fama and French (2015), in place of the 1-month reversal, the monthly –

drops by 80 bps to a low of 40 bps, a three-fold drop. Admittedly, the coe�cient remains

marginally significant. R2
adj also jumps - from below 10% for models (1 ≠ 5) to about 35%

scored on the last model. In factor specification (6), there is also stronger evidence of a

negative loading on the market.

To sum up, the current state-of-the-art empirical equity factor models provide a poor

explanation for the positive returns on the 5-day reversal and acceleration strategies. The

informative content of the latter is not subsumed by standard risk factors, but a large
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proportion of this information seems to be explained by la5. Nonetheless, acceleration

strategies seem to provide some value, especially if considered in a diversification context.

Next, we move from a univariate time-series analysis, to study how well the chosen factor-

models jointly price multiple test assets.

Joint tests. We use time-series and cross-sectional joint tests. Since all our factors are

tradable assets, we can apply the methodology described in Cochrane (2005, ch. 12.1).

In particular, tradability allows us to interpret the intercept, from a time-series regression

of test-asset returns on the returns of the factors, in terms of pricing errors. The null for

these tests assumes all pricing errors are jointly equal to zero. We use the general method

of moments (GMM) by Lars Peter Hansen (1982) applied to the moment conditions in

equation (3.4) to estimate the — parameters and test the null via Hansen’s J-test.18

We also use two versions of the cross-sectional asset-pricing test from (see Cochrane,

2005, ch. 12.2), where the estimation of the ⁄ parameter is part of the objective. First,

we compute the HJ distance measure of Lars P. Hansen and Jagannathan (1997), and

report simulated p-values for the null hypothesis that the HJ distance is equal to zero

as in Jagannathan and Z. Wang (1996). The long-run covariance matrix of the sample

moments is estimated with Newey and West (1987) and the optimal number of lags is

selected according to Andrews (1991). We estimate the parameters of the unconditional

Euler equation (see footnote 18) with the SDF given in equation (3.3) by GMM. One of

the reasons we also calculate the HJ statistic, is that it allows to compare results across

competing models, while the J-test and its analogues do not.

In addition, we also implement the traditional Fama-MacBeth-type two-pass OLS re-

gression. In the first step, we estimate the betas by running time-series regressions of asset

excess-returns on a constant and the returns of the factors:

Ri,t = ai + f Õ
t—i + Ái,t (3.5)

18 We only test the unconditional moments, i.e. the instrument set contains only a constant.
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In the second step, we estimate at each point in time the ⁄t, with cross-sectional regressions

of asset excess-returns on the betas form the first step:

Ri,t = —̂
Õ

i⁄t + –t. (3.6)

We then compute the risk price of the factors as the average of these slope coe�cient

estimates, i.e. ⁄̂ = ET ⁄̂OLS
t .19 The null of the test assumes the cross-sectional pricing

errors Ri,t ≠⁄Õ—i from the beta model in equation (3.4) are jointly equal to zero. Statistical

inference is based on Shanken (1992) errors.

We use the same factors and model specifications as in the univariate time-series analysis

of the LMH strategies (table A2). Table 3.5 collects the results from the tests, with sections

of four rows for each signal studied in the paper. In brackets are the p-values for the

corresponding asset pricing tests. In bold are tests statistically significant at the 5% level.

‰2
T S denotes the results of the time-series tests on the null of jointly zero pricing errors.

The distribution of the statistic is ‰2(N) where N corresponds to the number of test assets

(which in this case is nine). Long-run variance-covariance matrix of the sample moments is

estimated with Newey and West (1987) and optimal number of lags according to Andrews

(1991). ‰2
XS denotes the cross-sectional tests with the null of jointly zero cross-sectional

pricing errors. The distribution of the test statistic is ‰2(N ≠ K) where K degrees of

freedom are lost in the estimation of the K-dimensional parameter ⁄. HJ dist refers to

the Lars P. Hansen and Jagannathan (1997) distance. The null of the corresponding test

assumes the asset pricing model is correctly specified, i.e.HJ dist = 0. To save space, we

do not report the results for rev and fi5 as we previously showed how neither the raw nor

the risk-adjusted return of their LMH strategies create enough spread in mean returns, i.e.

they are already very close to 0. The price of risk estimates and the cross-sectional R2

coe�cients are reported in tables A3 and A4.
19Note that in the second stage regression we do not add a constant to capture the common over- or

under-pricing in the cross section of excess returns.
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table 3.5 about here

The test assets used in the empirical exercise of Panel A are the portfolios 2 ≠ 10 from

the univariate sorts on the signals described in table 3.2. In particular, we fund each long

position in portfolios 2 ≠ 10 out of the corresponding short position in portfolio 1. This

way, our test assets are in excess return form and lever the portfolio exposure to the factor

of interest as an alternative to the risk-free funding.

For la5 we notice from the time-series joint test that neither Fama and French (1993)

nor the more recently proposed factors are able to price the set of nine portfolios. The

null is strongly rejected with p-values scoring lower than 1%. However, the cross-sectional

tests do not support this rejection. We attribute this disagreement to the loss of degrees

of freedom from ⁄’s estimation. For instance, in the case of model specification (5), which

has five factors, the ‰2 test statistic has only 9 ≠ 8 = 1 degrees of freedom. This also

explains why most prices of risk have a large standard error, and the point estimates are

statistically insignificant (table A3). Finally, as we add the LMH based on la5 as a factor

to the Fama and French (2015) in specification (6), even the time-series test cannot reject

the null of a correctly specified model. In fact ⁄’s point estimate for the LMH la5 is

the only statistically significant risk factor and has a value of 1.60 which is economically

indistinguishable from the time-series average for the LMH la5 of 1.59. Since the latter is

the ⁄ estimate in the time-series test, the result is quite comforting.

Test outcomes for portfolios based on acA and ac5 are very similar to those of la5.

In the time-series tests, the traditional factor models struggle at explaining the mean

returns of these portfolios and the pricing errors are jointly statistically di�erent from

zero. Once the la5-based factor is added to the specification, no spreads in mean returns

are left unexplained, with p-values for the acA and ac5 respectively standing at 27% and

18%. Nonetheless, the issue with the cross-sectional tests is visible. Interestingly, the only

significant estimate of risk-price is again that for the la5 factor when we use the test-assets

based on ac5. The point estimate of 2.34, while higher than the time-series average of 1.60,
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stays within one standard error from the latter, which is reassuring.

Since the cross-sectional tests often have insu�cient degrees of freedom, we augment

the set of test-assets with the 32 portfolios, triple-sorted independently on size, operating

profitability and investment, studied by Fama and French (2015). These portfolios are all

in excess of the one-month risk-free rate. The results are presented in table 3.5 under Panel

B.

For la5, the time-series test is again rejected by the traditional models. However, a word

of caution is in order: the null is also rejected when the only test-assets are the 32 Fama-

French portfolios.20 Not surprisingly, even the model specification in (6) is now rejected;

although, we never suggested that adding our la5 factor to the traditional models, should

produce the model which prices all assets. Therefore, it is somewhat of minor interest for

this paper to be able to (not) price two sets of assets at the same time, a task known in

advance to be di�cult.

Instead, we focus our attention on the outcomes of the cross-sectional joint tests: the

first four model specifications are now strongly rejected by the data with p-values all below

1%. Same conclusions are reached by looking at the HJ distance, which is statistically

di�erent from zero for the same group of models;21 for the model by Hou, Xue, and Lu

Zhang (2015), the statistical significance is marginal at the 10% level. The MKT and

HML price of risk estimates are significantly positive for Fama and French (1993) model

(see table A4). Nevertheless, the ⁄ on HML is not di�erent from zero once RMW and

CMA are added as factors (consistent with the conclusions of Fama and French, 2015),

while that on MKT remains significant.22 For the model specifications (5-6), neither of the
20This is in line with Fama and French (2015) who use a similar time-series test based on Gibbons, Ross,

and Jay Shanken (1989, GRS): “The GRS test easily rejects all models considered for all LHS portfolios
and RHS factors. To save space, the probability, or p-value, of getting a GRS statistic larger than the one
observed if the true intercepts are all zero, is not shown. [...] In short, the GRS test says all our models
are incomplete descriptions of expected returns”.

21This is important, considering only Fama and French (1993) model is rejected by the cross-sectional
tests when 32 Fama-French portfolios are considered, while models (2 ≠ 6) are not rejected.

22Interestingly, the SMB price of risk in the Hou, Xue, and Lu Zhang (2015) model is marginally positive.
However, since their model is rejected in many of the tests, we do not pursue its variations any further.
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two cross-sectional tests rejects the null. We see that the HJ distance is 6-11 bps lower

compared to models (1-4) and the p-values are comfortably above the 10% threshold. The

⁄ on la5 is significant at 2.27 which is within one standard error from the time-series

average of 1.60.

Finally, we regard the none-rejection by the cross-sectional test of the specification in

(5) as suspicious because of three reasons. First, it is the specification with the most factors,

and consequently, the most parameters to estimate (less degrees of freedom). Therefore, it

partly reflects the same problem described for the cross-sectional test in Panel A. Second, in

unreported checks, we ran the cross-sectional tests on the Fama and French (2015) factors

plus one factor from UMD, TSMOM and STREV at a time (instead of all three together),

and all the new three specifications were rejected. Third, we noticed in the univariate

time-series analysis that the LMH, based on la5, has a significant alpha with respect to

this model but none of the betas, except for HML, are statistically di�erent from zero.

For ac5 and acA we consistently observe very similar test results to those of la5. We

again notice that models (1-4) tend to be rejected by cross-sectional tests. Nonetheless,

there is less evidence coming from the HJ statistic; admittedly, the point estimates are

close to being borderline significant. Prices of risk of MKT, CMA, and RMW factors are

again significantly positive. Perhaps, most importantly, la5 prices well the acceleration-

sorted portfolios and leaves no significant pricing errors.

To sum up, the evidence from the joint tests is consistent with the univariate time-

series analysis. The traditional models cannot jointly explain the cross section of the very

short-term reversal and acceleration portfolios. However, la5 seems to price well the set of

acceleration portfolios.
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3.5 Conclusion

In this paper, we looked at some claims about the price acceleration providing an infor-

mative trading signal. We built several empirical measures of acceleration and compared

them to the price signals from the previous academic literature. We do find that long-

short (LMH) trading strategy built on acceleration delivers high profits. Moreover, those

profits are not explained by the state-of-the-art equity factor models. However, the LMH

profitability and the cross-sectional variation in mean returns of decile portfolios, built on

acceleration, are explained once we add our la5 factor, a simple reversal strategy with a

lookback of one week. Taken together, our results cast doubt on acceleration representing

a separate phenomenon.

Nonetheless, this study provides the premise for further research in reversal strategies as

a function of the lookback period. In fact, our empirical analysis shows how the demand

for trade immediacy (liquidity) has been met, over time, with increasing supply, thus

shortening the execution of long trades. Hence, it is probable that the lookback period of

a profitable reversal strategy has been shrinking. Previously, Cooper (1999) concludes for

the period 1962-1993: “a security is more likely to have greater reversals if it has incurred

two, rather than just one, consecutive weeks of losses or gains”. However, this claim is not

supported by our sample over the 1993-2015 window.

Moreover, in support of our view of a shrinking optimal lookback, the mean return and

the Sharpe ratio of the 1-month reversal strategy from Kenneth French’s Data Library have

been steadily decreasing. Specifically, during the 1960-1970s, 1980-1990s, and 2000-2015s,

the average return went respectively from 93 bps, to 37 bps and 20bps, and similarly did the

Sharpe ratio, with values of 1.30, 0.53, and 0.16, correspondingly. Therefore, our finding is

not a recent nor cyclical phenomenon, and most likely is part of a long-term trend. Such

analysis should also partly address the debate on whether the reversal strategy returns are

profitable (see Da, Q. Liu, and Schaumburg, 2014) or not (e.g. Avramov, Chordia, and

127



Chapter 3. Acceleration and reversal

Goyal, 2006) – since the profits are bound to change over time, if the lookback window is

held fixed.

Given the trend of diminishing returns in the reversal strategy, and the suggested

connection with the time-varying length of its lookback, is the strategy going to disappear

altogether? In this respect, it would be interesting to verify if our best performing strategy,

the la5, is related to Etula et al. (2016). They claim that reversals are stronger following

a decline in institutional, i.e. informed, trading in a given stock. Assuming this applies

to our context, and continuing to rebalance the la5 at month-end, the optimal lookback

should not be much shorter than three days, which they argue corresponds to the monthly

cash management cycle of institutional investors. Moreover, by adding sorts on liquidity,

this exercise would relate to Avramov, Chordia, and Goyal (2006) and would potentially

extend their results until 2010.
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Figure 3.1: Construction of acceleration signals

The figure illustrates the intuition behind the construction of the accelerations signals. The figure plots a
solid line of hypothetical prices, denoted by P0, P1, . . . , PN , and a dashed straight line of prices, namely
I1, . . . , IN≠1, which are interpolated between the two ends of the lookback period, of length N . The area
enclosed between the interpolated and the price-line proxies for acceleration. The vertical lines, summed
together, constitute the acA signal which is a standardized Riemann sum for the estimation of the area.
The fi5and la5signals are roughly the slopes of the price-line during the first and last five days in the
picture.
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Figure 3.2: Cumulative returns on low-minus-high strategies

The figure presents cumulative returns on low-minus-high (LMH) strategies. All LMH series are rebased
to 1 at the beginning of the period of analysis and scaled by their respective return standard deviation.
Shaded areas denote NBER recessions. For each signal stocks are sorted every month into 10 value-
weighted portfolios and the LMH strategy goes long the low signal portfolio and short the high signal
portfolio. Definitions of signals: rev is the previous month return; fi5 is the average return over the first
five trading days of the previous month; la5 is the average return over the last five trading days of the
previous month; acA is the sum of daily deviations of the price from the linearly interpolated line between
the beginning and the end of the previous month prices; ac5 is the di�erence between la5 and fi5. All
quantities are calculated on a monthly frequency. The equity price data are taken from the Center for
Research in Security Prices (CRSP) database. The sample excludes prices below 5 US dollars and prices
corresponding to market cap below the first NYSE decile at the time of portfolio formation. Signals are
industry-adjusted by subtracting from each raw stock signal its respective industry average signal. The
period of study is from January 1993 to December 2014.
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Table 3.1: Correlations among signals

This table presents the time series averages of the cross-sectional correlations between signals. Specifically,
below the main diagonal are Spearman rank correlations; above the main diagonal are Pearson linear
correlations. Definitions of signals: rev is the previous month return; fi5 is the average return over the
first five trading days of the previous month; la5 is the average return over the last five trading days
of the previous month; acR is the coe�cient from the regression of prices on squared time (including
constant and time) using daily observations over the previous month; acA is the sum of daily deviations
of the price from the linearly interpolated line between the beginning and the end of the previous month
prices; ac5 is the di�erence between la5 and fi5; acH is the di�erence between the average daily returns
in the last half and the first half of the previous month; std0 and std are standard deviations of daily
returns over the previous month - the former assumes zero mean while the latter takes sample mean in
the calculations; mom is the return over the previous 12 months, excluding the most recent month. All
quantities are calculated on a monthly frequency. The equity price data are taken from the Center for
Research in Security Prices (CRSP) database. The sample excludes prices below 5 US dollars and prices
corresponding to market cap below the first NYSE decile at the time of portfolio formation. Signals are
industry-adjusted by subtracting from each raw stock signal its respective industry average signal. The
period of study is from January 1993 to December 2014.

rev trd fi5 la5 acR acA ac5 acH std0 std mom
rev 0.88 0.46 0.42 -0.01 -0.03 -0.04 -0.02 0.05 0.04 0.00
trd 0.90 0.19 0.27 -0.01 0.06 0.05 0.05 0.04 0.03 0.00
fi5 0.50 0.21 -0.01 -0.38 -0.62 -0.69 -0.47 0.03 0.02 0.00
la5 0.45 0.28 0.00 0.49 0.58 0.65 0.44 0.06 0.05 -0.02

acR -0.02 -0.01 -0.41 0.52 0.79 0.63 0.88 0.02 0.02 -0.02
acA -0.03 0.07 -0.65 0.61 0.81 0.88 0.86 0.01 0.01 -0.02
ac5 -0.05 0.04 -0.72 0.68 0.66 0.89 0.67 0.01 0.01 -0.02

acH -0.03 0.05 -0.51 0.47 0.89 0.86 0.70 0.00 0.00 -0.02
std0 0.12 0.10 0.08 0.07 -0.02 -0.03 -0.02 -0.02 0.997 -0.01
std 0.11 0.08 0.08 0.06 -0.02 -0.03 -0.01 -0.02 0.998 -0.01

mom 0.00 0.00 0.00 -0.01 -0.02 -0.01 -0.01 -0.01 -0.06 -0.06
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Table 3.2: Portfolios and low-minus-high strategies - descriptive statistics

This table presents the descriptive statistics on portfolios and low-minus-high (LMH) strategies. For each
signal stocks are sorted every month into 10 value-weighted portfolios and the LMH strategy goes long the
low signal portfolio and short the high signal portfolio. Definitions of signals: rev is the previous month
return; fi5 is the average return over the first five trading days of the previous month; la5 is the average
return over the last five trading days of the previous month; acA is the sum of daily deviations of the
price from the linearly interpolated line between the beginning and the end of the previous month prices;
ac5 is the di�erence between la5 and fi5. Panel A depicts the average portfolio returns. Panel B shows
analysis for LMH strategies. AC1 stands for first order autocorrelation coe�cient. SR is the Sharpe ratio
of the strategy. Min and max denote the minimum and the maximum monthly return, respectively. The
maximum drawdown (MDD) is followed by its duration in months (len) and the number of months it took
the price series to recover after the drawdown (rec). Recoveries marked with an asterisk (*) are incomplete
and match the end of the period of analysis. All quantities are calculated on a monthly frequency and
expressed in percent (except for skew, kurt, AC1, SR, len, and rec). The equity price data are taken
from the Center for Research in Security Prices (CRSP) database. The sample excludes prices below 5
US dollars and prices corresponding to market cap below the first NYSE decile at the time of portfolio
formation. Signals are industry-adjusted by subtracting from each raw stock signal its respective industry
average signal. The period of study is from January 1993 to December 2014.

Panel A: Average returns on signal-sorted portfolios
High 2 3 4 5 6 7 8 9 Low LMH

rev 0.51 0.47 0.66 0.82 0.93 0.87 0.99 1.12 0.87 0.68 0.17
fi5 0.82 0.84 0.87 0.58 0.79 0.93 0.87 0.93 0.82 0.72 -0.11
la5 -0.30 0.42 0.49 0.71 0.80 0.91 0.93 1.03 1.14 1.29 1.59

acA -0.07 0.39 0.63 0.82 0.73 0.90 0.84 0.87 1.32 1.16 1.23
ac5 -0.06 0.64 0.72 0.79 0.88 0.79 0.76 0.88 1.11 1.16 1.22

Panel B: Descriptive statistics on LMH portfolios
mean std med skew kurt AC1 SR min max MDD len rec

rev 0.17 6.05 0.05 0.28 8.17 -0.20 0.03 -25.60 29.10 69.39 106 21*
fi5 -0.11 5.45 -0.10 -0.99 10.49 -0.13 -0.02 -32.10 19.46 66.79 171 15*
la5 1.59 5.80 1.02 1.61 8.67 0.07 0.27 -13.61 30.83 29.93 78 23

acA 1.23 4.92 0.43 1.18 5.91 0.07 0.25 -8.90 25.61 22.26 20 65
ac5 1.22 5.05 0.73 1.44 8.84 0.07 0.24 -11.50 32.30 25.60 9 21
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Table 3.3: Portfolios and low-minus-high strategies - transaction cost analysis

This table presents some descriptive statistics on individual stocks, portfolios, and low-minus-high (LMH)
strategies in the equity universe restricted to the lowest bid-ask spread quintile.. For each signal stocks
are sorted every month into 10 value-weighted portfolios and the LMH strategy goes long the low signal
portfolio and short the high signal portfolio. Definitions of signals: rev is the previous month return;
fi5 is the average return over the first five trading days of the previous month; la5 is the average return
over the last five trading days of the previous month; acA is the sum of daily deviations of the price from
the linearly interpolated line between the beginning and the end of the previous month prices; ac5 is the
di�erence between la5 and fi5. First ten columns depict the average portfolio returns. For each LMH
strategy the tables also shows its mean (gross) return, standard error of the mean (se) computed using
Newey and West (1987), average estimate of transaction costs (Tcost). In bold are the coe�cients that
remain significant net of transaction costs at the 5% level, i.e. when LMH ≠ Tcost > 1.96 ◊ se. Panel
B presents the analysis of the typical stock size in the lowest bid-ask spread quintile. All quantities are
calculated on a monthly frequency and expressed in percent. The equity price data are taken from the
Center for Research in Security Prices (CRSP) database. The sample excludes prices above first bid-ask
spread quintile, below 5 US dollars, and prices corresponding to market cap below the first NYSE decile
at the time of portfolio formation. Signals are industry-adjusted by subtracting from each raw stock signal
its respective industry average signal. The period of study is from January 1993 to December 2014.

Panel A: descriptive statistics for decile and LMH portfolios formed from the lowest BA quintile
High 2 3 4 5 6 7 8 9 Low LMH Tcost se

rev 0.83 0.27 0.93 0.74 0.99 1.02 0.97 1.25 1.06 0.96 0.13 0.34 0.30
fi5 0.90 1.03 0.70 0.77 0.62 0.99 1.02 1.09 1.09 0.50 -0.40 0.34 0.30
la5 -0.48 0.43 0.57 0.62 1.10 0.84 0.99 1.20 1.34 1.26 1.74 0.34 0.51

acA -0.19 0.65 0.50 0.82 0.97 1.26 0.90 1.03 1.24 1.13 1.32 0.34 0.44
ac5 -0.11 0.64 0.79 0.68 1.03 0.74 1.00 1.13 1.06 1.10 1.22 0.34 0.45

Panel B: size-breakdown of stocks in the lowest BA quintile
Size group 0-20% 20-40% 40-60% 60-80% 80-100%

Average count 21 46 84 131 219
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Table 3.4: Risk-adjusted low-minus-high strategies’ returns

This table presents the results of time-series regressions of low-minus-high (LMH) strategies’ returns on
risk factors. For each signal stocks are sorted every month into 10 value-weighted portfolios and the LMH
strategy goes long the low signal portfolio and short the high signal portfolio. Definitions of signals: rev
is the previous month return; fi5 is the average return over the first five trading days of the previous
month; la5 is the average return over the last five trading days of the previous month; acA is the sum of
daily deviations of the price from the linearly interpolated line between the beginning and the end of the
previous month prices; ac5 is the di�erence between la5 and fi5. Factor models used in the analysis are
described in Appendix Table table A2. – coe�cient corresponds to the constant in the regression. Newey
and West (1987) standard errors are shown in parentheses and statistical significance at the 10, 5 and 1%
level is marked respectively with *, ** and ***. All quantities are calculated on a monthly frequency. The
equity price data are taken from the Center for Research in Security Prices (CRSP) database. The sample
excludes prices below 5 US dollars and prices corresponding to market cap below the first NYSE decile at
the time of portfolio formation. Signals are industry-adjusted by subtracting from each raw stock signal
its respective industry average signal. The period of study is from January 1993 to December 2014.

(1) (2) (3) (4) (5) (6)

rev
– 0.17 ≠0.07 ≠0.14 ≠0.09 ≠0.16 N/A ≠0.60úú

(0.317) (0.313) (0.347) (0.301) (0.310) (0.257)

MKT 0.44úúú 0.47úúú 0.45úúú 0.43úúú 0.40úúú

(0.129) (0.137) (0.114) (0.113) (0.110)

SMB ≠0.17 ≠0.09 ≠0.07 ≠0.09 ≠0.04
(0.227) (0.209) (0.196) (0.197) (0.196)

HML 0.01 0.06 0.08 0.16
(0.210) (0.229) (0.233) (0.226)

RMW 0.21 0.19 0.28
(0.207) (0.208) (0.223)

CMA ≠0.27 ≠0.27 ≠0.23
(0.294) (0.292) (0.304)

IA ≠0.08
(0.303)

ROE 0.18
(0.204)

LIQ 0.13
(0.092)

UMD

TSMOM

STREV

la5 0.30úúú

(0.107)

R2
adj 0.09 0.08 0.09 0.09 0.16
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(1) (2) (3) (4) (5) (6)

fi5
– ≠0.11 ≠0.25 ≠0.25 ≠0.21 ≠0.23 ≠0.07 ≠0.29

(0.282) (0.285) (0.318) (0.291) (0.298) (0.278) (0.261)

MKT 0.26úú 0.25úú 0.24úúú 0.24úúú 0.04 0.24úúú

(0.104) (0.102) (0.086) (0.086) (0.084) (0.082)

SMB ≠0.11 ≠0.05 ≠0.05 ≠0.06 ≠0.03 ≠0.05
(0.163) (0.149) (0.165) (0.167) (0.154) (0.162)

HML 0.00 0.08 0.09 ≠0.14 0.10
(0.219) (0.165) (0.172) (0.141) (0.164)

RMW 0.09 0.08 0.11 0.10
(0.277) (0.282) (0.240) (0.282)

CMA ≠0.27 ≠0.27 ≠0.03 ≠0.27
(0.287) (0.286) (0.206) (0.288)

IA ≠0.06
(0.295)

ROE 0.05
(0.255)

LIQ 0.03
(0.101)

UMD ≠0.21ú

(0.115)

TSMOM ≠0.08
(0.108)

STREV 0.52úúú

(0.131)

la5 0.05
(0.105)

R2
adj 0.03 0.02 0.03 0.03 0.20 0.03

la5
– 1.60úúú 1.59úúú 1.92úúú 1.73úúú 1.69úúú 1.84úúú N/A

(0.421) (0.424) (0.471) (0.473) (0.482) (0.513)

MKT 0.20úú 0.08 0.14 0.14 0.09
(0.090) (0.115) (0.108) (0.107) (0.105)

SMB ≠0.06 ≠0.07 ≠0.12 ≠0.13 ≠0.11
(0.165) (0.161) (0.137) (0.137) (0.139)

HML ≠0.46úúú ≠0.33úú ≠0.32úú ≠0.41úú

(0.164) (0.159) (0.153) (0.166)

RMW ≠0.23 ≠0.24 ≠0.21
(0.284) (0.281) (0.305)

CMA ≠0.14 ≠0.14 ≠0.07
(0.281) (0.283) (0.298)

IA ≠0.76úúú

(0.233)

ROE ≠0.26
(0.161)

LIQ 0.08
(0.076)

UMD ≠0.06
(0.126)

TSMOM ≠0.08
(0.113)

STREV 0.13
(0.172)

la5

R2
adj 0.09 0.11 0.09 0.09 0.09
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(1) (2) (3) (4) (5) (6)

acA
– 1.23úúú 1.34úúú 1.40úúú 1.29úúú 1.33úúú 1.27úúú 0.40ú

(0.361) (0.374) (0.410) (0.383) (0.394) (0.377) (0.230)

MKT ≠0.06 ≠0.07 ≠0.04 ≠0.03 0.07 ≠0.11ú

(0.085) (0.089) (0.079) (0.076) (0.091) (0.065)

SMB ≠0.15 ≠0.12 ≠0.14 ≠0.13 ≠0.15 ≠0.08
(0.116) (0.127) (0.118) (0.119) (0.114) (0.106)

HML ≠0.19 ≠0.24 ≠0.25 ≠0.13 ≠0.06
(0.188) (0.168) (0.170) (0.150) (0.143)

RMW 0.06 0.07 0.06 0.18
(0.258) (0.259) (0.234) (0.162)

CMA 0.08 0.08 ≠0.04 0.15
(0.287) (0.283) (0.255) (0.215)

IA ≠0.32
(0.249)

ROE 0.04
(0.168)

LIQ ≠0.07
(0.085)

UMD 0.13
(0.100)

TSMOM ≠0.02
(0.109)

STREV ≠0.25úú

(0.124)

la5 0.52úúú

(0.063)

R2
adj 0.01 0.01 0.00 0.00 0.05 0.34

ac5
– 1.24úúú 1.40úúú 1.51úúú 1.37úúú 1.40úúú 1.36úúú 0.46úú

(0.353) (0.358) (0.423) (0.384) (0.396) (0.368) (0.213)

MKT ≠0.12 ≠0.14 ≠0.11 ≠0.10 0.01 ≠0.18úúú

(0.088) (0.100) (0.085) (0.080) (0.085) (0.067)

SMB ≠0.14 ≠0.14 ≠0.15 ≠0.14 ≠0.16 ≠0.09
(0.104) (0.117) (0.112) (0.115) (0.114) (0.100)

HML ≠0.26 ≠0.30úú ≠0.31úú ≠0.18 ≠0.12
(0.193) (0.151) (0.155) (0.131) (0.122)

RMW ≠0.01 0.00 ≠0.01 0.12
(0.270) (0.271) (0.249) (0.167)

CMA 0.09 0.09 ≠0.03 0.17
(0.286) (0.284) (0.259) (0.217)

IA ≠0.35
(0.268)

ROE ≠0.07
(0.212)

LIQ ≠0.06
(0.092)

UMD 0.14
(0.092)

TSMOM ≠0.02
(0.105)

STREV ≠0.26ú

(0.142)

la5 0.53úúú

(0.075)

R2
adj 0.02 0.02 0.02 0.02 0.07 0.35
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Table 3.5: Asset pricing tests

The table presents asset pricing results. Each section of four rows corresponds to a particular signal. For
each signal stocks are sorted every month into 10 value-weighted portfolios. In Panel A portfolios 2-10 in
excess of portfolio 1 serve as test assets; in Panel B Fama and French (2015) 32 portfolios - triple-sorted on
size, operating profitability, and investment and taken in excess of the 1-month risk-free rate - are added
to the set of test assets from Panel A. Definitions of signals: fi5 is the average return over the first five
trading days of the previous month; la5 is the average return over the last five trading days of the previous
month; acA is the sum of daily deviations of the price from the linearly interpolated line between the
beginning and the end of the previous month prices; ac5 is the di�erence between la5 and fi5. For each
set of test assets the columns of the table report asset pricing results for six asset pricing models described
in Appendix Table A2. In brackets are the p-values for the corresponding asset pricing tests. The bolded
numbers indicate p-values lower or equal to 0.05. ‰2

T S denotes the time-series asset pricing test obtained via
general method of moments (GMM) procedure with the null of jointly zero pricing errors from time-series
regressions (see Cochrane, 2005, ch. 12.1). Long run variance-covariance matrix of the sample moments
is estimated with Newey and West (1987) and optimal number of lags according to Andrews (1991). ‰2

XS

denotes the cross-sectional Fama-MacBeth-type asset pricing test using Shanken (1992) standard errors
with the null of jointly zero cross-sectional pricing errors (see Cochrane, 2005, ch. 12.2-3). HJ dist
refers to the Lars P. Hansen and Jagannathan (1997) distance; the null of the corresponding test is that
asset pricing model is correctly specified (HJ dist = 0). For the corresponding price of risk estimates
please consult Tables A3-A4 in Appendix. The equity price data are taken from the Center for Research in
Security Prices (CRSP) database. The sample excludes prices below 5 US dollars and prices corresponding
to market cap below the first NYSE decile at the time of portfolio formation. Signals are industry-adjusted
by subtracting from each raw stock signal its respective industry average signal. The period of study is
from January 1993 to December 2014.

(1) (2) (3) (4) (5) (6)
Panel A: 9 test assets

la5
‰2

T S test [0.00] [0.00] [0.01] [0.01] [0.01] [0.14]
‰2

XS test [0.99] [0.97] [0.94] [0.91] [0.51] [0.92]
HJ dist 0.21 0.23 0.19 0.15 0.18 0.06
HJ test [0.91] [0.87] [0.75] [0.77] [0.23] [0.93]

acA

‰2
T S test [0.00] [0.03] [0.04] [0.04] [0.03] [0.27]

‰2
XS test [0.55] [0.67] [1.00] [0.99] [0.91] [0.99]

HJ dist 0.27 0.25 0.04 0.04 0.02 0.04
HJ test [0.18] [0.15] [1.00] [0.99] [0.90] [0.99]

ac5
‰2

T S test [0.00] [0.02] [0.04] [0.05] [0.02] [0.18]
‰2

XS test [0.54] [0.45] [0.33] [0.95] [0.47] [0.44]
HJ dist 0.22 0.23 0.21 0.12 0.13 0.12
HJ test [0.31] [0.33] [0.16] [0.95] [0.51] [0.34]

Panel B: 9 + FF 32 test assets
la5

‰2
T S test [0.00] [0.00] [0.00] [0.00] [0.00] [0.00]

‰2
XS test [0.00] [0.00] [0.00] [0.00] [0.25] [0.23]

HJ dist 0.54 0.50 0.49 0.49 0.42 0.43
HJ test [0.01] [0.06] [0.03] [0.03] [0.71] [0.21]

acA

‰2
T S test [0.00] [0.00] [0.00] [0.00] [0.00] [0.00]

‰2
XS test [0.00] [0.03] [0.03] [0.03] [0.44] [0.64]

HJ dist 0.50 0.45 0.45 0.45 0.40 0.38
HJ test [0.05] [0.25] [0.14] [0.13] [0.56] [0.55]

ac5
‰2

T S test [0.00] [0.00] [0.00] [0.00] [0.00] [0.00]

‰2
XS test [0.00] [0.01] [0.01] [0.03] [0.29] [0.46]

HJ dist 0.50 0.47 0.46 0.45 0.41 0.40
HJ test [0.04] [0.12] [0.10] [0.17] [0.49] [0.39]
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rev

fi5

la5

acA

ac5

1 5 10 15 20

LMH High Low

Figure A1: Average returns on low-minus-high strategies – breakdown by day

The figure presents average holding-period returns on low-minus-high (LMH) strategies. The monthly
holding period is broken down by trading days with each bar representing the average return on a particular
day. The y-axis ranges between -0.5% - 0.5% for all signals. For each signal, stocks are sorted every month
into 10 value-weighted portfolios and the LMH strategy goes long the low-signal portfolio and short the
high-signal portfolio. Definitions of signals: rev is the previous month return; fi5 is the average return
over the first five trading days of the previous month; la5 is the average return over the last five trading
days of the previous month; acA is the sum of daily deviations of the price from the linearly interpolated
line between the beginning and the end of the previous month prices; ac5 is the di�erence between la5
and fi5. All quantities are calculated on a monthly frequency. The equity price data are taken from the
Center for Research in Security Prices (CRSP) database. The sample excludes prices below 5 US dollars
and prices corresponding to market cap below the first NYSE decile at the time of portfolio formation.
Signals are industry-adjusted by subtracting from each raw stock signal its respective industry average
signal. The period of study is from January 1993 to December 2014.
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Table A1: Descriptive statistics on portfolios

rev High 2 3 4 5 6 7 8 9 Low
mean 0.51 0.47 0.66 0.82 0.93 0.87 0.99 1.12 0.87 0.68

std 6.63 4.90 4.48 4.33 4.31 4.47 4.78 5.46 6.29 8.24
med 1.54 0.86 1.41 1.44 1.43 1.23 1.43 1.73 1.19 1.59
skew -0.21 -0.51 -0.81 -0.69 -0.55 -0.52 -0.67 -0.96 -0.56 -0.91
kurt 6.61 4.39 4.31 4.02 4.75 4.71 5.20 5.77 5.67 6.57
AC1 0.06 0.02 0.12 0.10 0.08 0.02 0.07 0.15 0.01 0.07
turn 0.88 0.90 0.90 0.89 0.89 0.89 0.89 0.91 0.90 0.86

Tcost 0.52 0.44 0.43 0.45 0.45 0.45 0.47 0.47 0.50 0.61
fi5 High 2 3 4 5 6 7 8 9 Low

mean 0.82 0.84 0.87 0.58 0.79 0.93 0.87 0.93 0.82 0.72
std 7.28 5.38 4.44 4.48 4.58 4.45 4.53 5.07 6.27 8.14

med 1.16 1.50 1.57 1.32 1.33 1.38 1.67 1.73 1.34 1.30
skew 0.05 -0.59 -0.49 -0.85 -0.82 -0.92 -0.48 -0.73 -1.09 -0.74
kurt 8.41 4.95 4.28 4.42 5.09 5.32 4.27 6.41 7.44 7.33
AC1 0.07 0.01 0.04 0.12 0.09 0.12 0.10 0.07 0.13 0.08
turn 0.87 0.90 0.90 0.89 0.89 0.89 0.90 0.90 0.90 0.86

Tcost 0.54 0.46 0.45 0.45 0.46 0.45 0.45 0.46 0.49 0.54
la5 High 2 3 4 5 6 7 8 9 Low

mean -0.30 0.42 0.49 0.71 0.80 0.91 0.93 1.03 1.14 1.29
std 6.61 5.22 4.74 4.43 4.26 4.41 4.70 4.86 5.77 8.06

med 0.97 1.28 1.13 1.18 1.31 1.46 1.59 1.45 1.56 1.61
skew -1.06 -1.03 -0.99 -0.54 -0.65 -0.81 -0.92 -0.85 -0.83 -0.14
kurt 5.38 6.05 5.28 4.11 4.83 5.36 5.54 5.81 5.19 6.89
AC1 0.17 0.04 0.09 0.10 0.11 0.05 0.12 0.10 0.09 0.00
turn 0.86 0.90 0.90 0.89 0.89 0.89 0.89 0.90 0.90 0.86

Tcost 0.57 0.47 0.45 0.47 0.46 0.46 0.46 0.46 0.45 0.59
acA High 2 3 4 5 6 7 8 9 Low

mean -0.07 0.39 0.63 0.82 0.73 0.90 0.84 0.87 1.32 1.16
std 7.57 5.58 4.76 4.45 4.41 4.32 4.46 4.76 5.58 7.50

med 0.70 1.06 1.43 1.36 1.42 1.43 1.55 1.55 1.68 1.18
skew -1.04 -0.69 -1.00 -0.77 -0.73 -0.66 -0.63 -0.78 -0.60 0.16
kurt 5.46 5.65 5.21 4.28 4.41 4.37 3.74 4.38 5.69 7.08
AC1 0.15 0.11 0.13 0.08 0.13 0.01 0.13 0.09 0.04 0.03
turn 0.85 0.89 0.90 0.89 0.89 0.89 0.90 0.90 0.89 0.86

Tcost 0.59 0.48 0.47 0.45 0.45 0.44 0.44 0.46 0.47 0.57
ac5 High 2 3 4 5 6 7 8 9 Low

mean -0.06 0.64 0.72 0.79 0.88 0.79 0.76 0.88 1.11 1.16
std 7.68 5.57 4.86 4.62 4.19 4.26 4.49 4.97 5.70 7.39

med 0.85 1.36 1.42 1.25 1.14 1.46 1.53 1.32 1.49 1.60
skew -0.98 -0.86 -0.92 -0.75 -0.59 -0.54 -0.97 -0.89 -0.69 -0.05
kurt 5.91 5.50 4.70 5.16 3.89 4.88 4.78 5.44 5.67 6.34
AC1 0.13 0.08 0.16 0.06 0.10 0.04 0.12 0.11 0.01 0.04
turn 0.85 0.90 0.90 0.89 0.89 0.89 0.89 0.90 0.90 0.85

Tcost 0.60 0.47 0.47 0.44 0.45 0.45 0.44 0.46 0.47 0.59
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Table A2: Description of factor models

MKT SMB HML RMW CMA IA ROE LIQ UMD TSMOM STREV la5
(1) x x x
(2) x x x x
(3) x x x x x
(4) x x x x x x
(5) x x x x x x x x
(6) x x x x x x

References to related academic works
(1) Fama and French (1993)
(2) Hou, Xue, and Lu Zhang (2015)
(3) Fama and French (2015, FF5)
(4) FF5, Pastor and Stambaugh (2003)
(5) FF5, Jegadeesh and Titman (1993), Moskowitz, Ooi, and Pedersen (2012), Jegadeesh (1990)
(6) FF5, Lehmann (1990)

Brief description of the underlying factor exposure Data source
MKT broad market minus risk-free rate website of Kenneth French
SMB small minus big website of Kenneth French
HML high book/market minus low book/market website of Kenneth French
RMW robust minus weak operating profitability website of Kenneth French
CMA conservative minus aggressive investment policy website of Kenneth French
IA low minus high percentage of investments to assets courtesy of professor Lu Zhang
ROE high minus low return on equity courtesy of professor Lu Zhang
LIQ high minus low exposure to market liquidity website of Lubos Pastor
UMD XS momentum (winners minus losers), 12-2m lookback website of Kenneth French
TSMOM TS momentum (via futures market), 12m lookback website of Applied Quantitative Research (AQR)
STREV XS reversal (losers minus winners), 1m lookback website of Kenneth French
la5 XS reversal (losers minus winners), 5d lookback authors’ own calculations
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Table A3: Asset pricing tests - price of risk estimates (corresponding to Table 3.5 Panel A)

In addition, the table also shows R2 from the second stage (cross-sectional) regression.

(1) (2) (3) (4) (5) (6)

rev
MKT 0.62 1.06 0.59 0.67 0.49 ≠0.57

(0.805) (0.804) (1.148) (1.131) (1.890) (1.446)

SMB ≠0.03 0.03 0.28 0.22 ≠0.88 0.58
(0.706) (0.986) (0.982) (0.956) (1.117) (1.024)

HML 0.80 ≠0.55 ≠0.18 ≠0.05 ≠1.19
(0.635) (1.150) (1.197) (1.358) (1.424)

RMW 0.60 ≠0.23 0.22 0.84
(1.061) (1.231) (1.592) (1.253)

CMA 0.67 0.92 ≠0.18 0.59
(0.630) (0.648) (1.337) (0.717)

IA 0.96
(0.634)

ROE ≠0.94
(1.942)

LIQ 1.41
(1.335)

UMD 3.22
(3.181)

TSMOM 1.46
(3.723)

STREV 0.26
(0.581)

la5 1.77
(2.263)

R2
adj 0.08 0.26 0.47 0.46 0.13 0.51
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(1) (2) (3) (4) (5) (6)

fi5
MKT 0.03 0.07 0.26 0.29 0.27 0.23

(1.588) (1.502) (2.913) (3.043) (10.911) (2.610)

SMB 0.65 0.54 ≠2.41 ≠2.40 ≠2.64 ≠2.38
(1.083) (0.580) (2.764) (2.766) (3.602) (3.566)

HML 0.43 ≠2.35 ≠2.36 ≠2.58 ≠2.31
(1.271) (3.018) (3.035) (4.620) (4.514)

RMW 0.10 0.13 0.14 0.08
(1.287) (1.548) (2.103) (1.534)

CMA 0.41 0.42 0.36 0.41
(0.845) (0.870) (1.563) (0.815)

IA 0.58
(0.493)

ROE ≠0.80
(0.645)

LIQ 0.08
(2.386)

UMD 1.41
(3.516)

TSMOM 0.46
(7.391)

STREV ≠0.44
(2.919)

la5 1.11
(4.368)

R2
adj ≠0.08 0.17 0.90 0.88 0.76 0.87

la5
MKT ≠8.74 ≠2.21 ≠7.61 ≠7.65 ≠9.45 ≠0.27

(7.852) (5.996) (11.434) (11.188) (19.127) (3.977)

SMB ≠5.27 ≠4.04 ≠5.28 ≠4.08 ≠6.32 ≠1.94
(3.558) (3.045) (3.617) (2.935) (7.688) (1.243)

HML ≠6.28 ≠5.55 ≠4.54 ≠6.86 ≠0.97
(4.984) (6.440) (5.607) (12.905) (2.292)

RMW 0.71 0.01 1.06 0.04
(4.883) (4.601) (8.693) (2.081)

CMA ≠1.24 ≠1.71 ≠0.65 0.63
(5.149) (5.323) (10.166) (2.078)

IA ≠4.52
(3.729)

ROE 7.61
(6.404)

LIQ 4.71
(7.077)

UMD 2.14
(21.396)

TSMOM 3.54
(15.189)

STREV ≠4.52
(9.111)

la5 1.60úúú

(0.360)

R2
adj 0.52 0.48 0.29 0.51 ≠1.07 0.97
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(1) (2) (3) (4) (5) (6)

acA
MKT ≠3.62 ≠4.26 ≠0.26 ≠0.38 ≠0.57 ≠0.37

(2.230) (2.788) (3.542) (3.711) (4.520) (4.017)

SMB ≠2.93úú ≠0.21 ≠2.62 ≠2.59 ≠1.35 ≠2.78
(1.490) (1.775) (2.702) (2.706) (5.848) (3.808)

HML ≠3.24ú ≠3.26 ≠3.33 ≠2.75 ≠3.59
(1.665) (2.468) (2.552) (3.347) (5.675)

RMW 0.89 0.98 1.66 1.02
(3.076) (3.216) (3.928) (3.864)

CMA 0.53 0.39 0.14 0.46
(2.947) (3.213) (3.668) (3.268)

IA ≠2.43ú

(1.309)

ROE 3.40ú

(1.745)

LIQ 0.73
(2.982)

UMD 2.19
(10.479)

TSMOM 0.11
(3.133)

STREV ≠1.36
(4.300)

la5 0.96
(2.147)

R2
adj 0.36 0.21 0.98 0.98 0.99 0.98

ac5
MKT ≠2.10ú ≠1.76 ≠1.95 0.57 1.19 ≠0.30

(1.268) (1.890) (1.460) (3.599) (6.139) (0.995)

SMB ≠2.65úú ≠3.51 ≠2.50ú 0.14 0.03 ≠0.32
(1.227) (2.370) (1.373) (2.960) (3.366) (0.889)

HML ≠2.05úú ≠2.20úú ≠2.85 ≠1.67 0.27
(0.929) (0.961) (2.388) (2.730) (0.929)

RMW 0.96 2.68 2.65 0.44
(0.920) (2.898) (3.509) (0.690)

CMA ≠0.91 0.87 ≠2.02 ≠0.38
(0.933) (2.565) (3.198) (0.645)

IA ≠1.41
(1.061)

ROE 0.86
(2.016)

LIQ ≠6.11
(7.541)

UMD 5.95
(6.987)

TSMOM 7.76
(16.022)

STREV ≠0.43
(4.638)

la5 2.34úúú

(0.800)

R2
adj 0.02 ≠0.67 ≠0.45 0.46 ≠1.29 0.54
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Table A4: Asset pricing tests - price of risk estimates (corresponding to Table 3.5 Panel B)

In addition, the table also shows R2 from the second stage (cross-sectional) regression.

(1) (2) (3) (4) (5) (7)

rev
MKT 0.84úúú 0.84úúú 0.88úúú 0.90úúú 0.90úúú 0.85úúú

(0.272) (0.275) (0.272) (0.272) (0.273) (0.273)

SMB 0.12 0.37ú 0.19 0.18 0.17 0.18
(0.200) (0.213) (0.199) (0.199) (0.199) (0.199)

HML 0.81úúú 0.09 0.16 0.33 0.16
(0.237) (0.269) (0.270) (0.316) (0.280)

RMW 0.37úú 0.36úú 0.33ú 0.42úú

(0.175) (0.175) (0.175) (0.175)

CMA 0.34úú 0.34úú 0.30úú 0.35úú

(0.137) (0.137) (0.138) (0.138)

IA 0.27ú

(0.142)

ROE 0.60úú

(0.257)

LIQ ≠0.69
(0.662)

UMD 2.01úúú

(0.637)

TSMOM 1.40
(0.862)

STREV ≠0.18
(0.910)

la5 2.28úú

(1.144)

R2
adj 0.84 0.91 0.91 0.91 0.96 0.92
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(1) (2) (3) (4) (5) (7)

fi5
MKT 0.84úúú 0.84úúú 0.88úúú 0.90úúú 0.90úúú 0.85úúú

(0.272) (0.275) (0.272) (0.272) (0.273) (0.273)

SMB 0.12 0.37ú 0.19 0.18 0.17 0.18
(0.200) (0.213) (0.199) (0.199) (0.199) (0.199)

HML 0.81úúú 0.09 0.16 0.33 0.16
(0.237) (0.269) (0.270) (0.317) (0.280)

RMW 0.37úú 0.36úú 0.33ú 0.42úú

(0.175) (0.175) (0.175) (0.175)

CMA 0.34úú 0.34úú 0.30úú 0.35úú

(0.137) (0.137) (0.138) (0.138)

IA 0.27ú

(0.142)

ROE 0.60úú

(0.257)

LIQ ≠0.69
(0.662)

UMD 2.00úúú

(0.638)

TSMOM 1.40
(0.865)

STREV ≠0.19
(0.925)

la5 2.28úú

(1.146)

R2
adj 0.84 0.91 0.91 0.91 0.96 0.92

la5
MKT 0.84úúú 0.84úúú 0.88úúú 0.90úúú 0.90úúú 0.85úúú

(0.272) (0.275) (0.272) (0.272) (0.273) (0.273)

SMB 0.12 0.37ú 0.19 0.18 0.17 0.18
(0.200) (0.213) (0.199) (0.199) (0.199) (0.199)

HML 0.81úúú 0.09 0.16 0.33 0.16
(0.237) (0.269) (0.270) (0.317) (0.280)

RMW 0.37úú 0.36úú 0.33ú 0.42úú

(0.175) (0.175) (0.175) (0.175)

CMA 0.34úú 0.34úú 0.30úú 0.35úú

(0.137) (0.137) (0.138) (0.138)

IA 0.27ú

(0.142)

ROE 0.60úú

(0.257)

LIQ ≠0.69
(0.662)

UMD 2.00úúú

(0.638)

TSMOM 1.40
(0.865)

STREV ≠0.18
(0.927)

la5 2.27úú

(1.132)

R2
adj 0.83 0.91 0.91 0.91 0.96 0.92
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(1) (2) (3) (4) (5) (7)

acA
MKT 0.84úúú 0.84úúú 0.88úúú 0.90úúú 0.90úúú 0.85úúú

(0.272) (0.275) (0.272) (0.272) (0.273) (0.273)

SMB 0.12 0.37ú 0.19 0.18 0.17 0.18
(0.200) (0.213) (0.199) (0.199) (0.199) (0.199)

HML 0.81úúú 0.09 0.16 0.33 0.16
(0.237) (0.269) (0.270) (0.317) (0.280)

RMW 0.37úú 0.36úú 0.33ú 0.42úú

(0.175) (0.175) (0.175) (0.175)

CMA 0.34úú 0.34úú 0.30úú 0.35úú

(0.137) (0.137) (0.138) (0.138)

IA 0.27ú

(0.142)

ROE 0.60úú

(0.257)

LIQ ≠0.69
(0.662)

UMD 2.00úúú

(0.638)

TSMOM 1.40
(0.865)

STREV ≠0.19
(0.928)

la5 2.28úú

(1.141)

R2
adj 0.84 0.91 0.91 0.91 0.96 0.92

ac5
MKT 0.84úúú 0.84úúú 0.88úúú 0.90úúú 0.90úúú 0.85úúú

(0.272) (0.275) (0.272) (0.272) (0.273) (0.273)

SMB 0.12 0.37ú 0.19 0.18 0.17 0.18
(0.200) (0.213) (0.199) (0.199) (0.199) (0.199)

HML 0.81úúú 0.09 0.16 0.33 0.16
(0.237) (0.269) (0.270) (0.317) (0.280)

RMW 0.37úú 0.36úú 0.33ú 0.42úú

(0.175) (0.175) (0.175) (0.175)

CMA 0.34úú 0.34úú 0.30úú 0.35úú

(0.137) (0.137) (0.138) (0.138)

IA 0.27ú

(0.142)

ROE 0.60úú

(0.257)

LIQ ≠0.69
(0.662)

UMD 2.00úúú

(0.638)

TSMOM 1.41
(0.865)

STREV ≠0.19
(0.928)

la5 2.28úú

(1.141)

R2
adj 0.84 0.91 0.91 0.91 0.96 0.92
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Appendix 3.B Returns from trading at mid, bid or

ask

Returns are usually defined at close prices as

rt := Pt

Pt≠1
≠ 1,

but we can similarly define them at mid prices, P M, as

rM
t := P M

t

P M
t≠1

≠ 1. (3.7)

Since we are interested in working with returns rather than with prices, for reasons that

will be clarified in the next section, we adjust the close-to-close return on both the current

and previous days by its residual close-to-mid component which is defined as

rCM
t := P M

t

Pt

≠ 1. (3.8)

We can re-arrange the previous equation in terms of mid prices

P M
t = (1 + rCM

t )Pt

and substitute it back into equation (3.7) to get an expression for the mid-to-mid return

rM
t = 1 + rCM

t

1 + rCM
t≠1

(Pt/Pt≠1) ≠ 1,

= 1 + rCM
t

1 + rCM
t≠1

(1 + rt) ≠ 1. (3.9)

Equation (3.9) does not depend on prices because it corrects the close-to-close return for

the distance between P M and P which is itself a return. Since the adjustment uses same-
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day quantities, it is approximately not a�ected by company events like stock splits or

distributions.

3.B.1 Magnitude of the approximation

As mentioned earlier, we prefer working directly with adjusted returns because it spares

us a series of manual manipulations related to company events that we would otherwise

need to perform if we were to use prices.23 Instead, we can use CRSP returns and apply

our correction at the cost of a negligible approximation which is shown below.

Given CRSP’s definition of adjusted return24

rt := PtFt + Dt

Pt≠1
≠ 1,

where Ft is a factor that adjusts the price for eventual splits and Dt is the amount of the

distribution, we can express it in terms of mid prices and apply the substitution with the

re-arranged equation (3.8) to get

rM
t = P M

t Ft + Dt

P M
t≠1

≠ 1,

= (1 + rCM
t )PtFt + Dt

(1 + rCM
t≠1)Pt≠1

≠ 1,

= 1 + rCM
t

1 + rCM
t≠1

Q

cca
PtFt + Dt

1+r
CM

t≠1

1+r
CM

t

Pt≠1

R

ddb ≠ 1, (3.10)

¥ 1 + rCM
t

1 + rCM
t≠1

(1 + rt) ≠ 1.

Equation (3.10) shows that our correction is invariant to splits, i.e. the multiplicative

factor, but bears an approximation in the additive term due to stock distributions. The

23Although, adjusting prices for company events is not complicated per se, there are many edge cases
that need to be considered in order to obtain the same results provided by CRSP.

24For additional details and the exact definition see the CRSP manuals.
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last approximate equality holds strictly on all but the dividend days and on those dates

only if

Dt

1 + rCM
t≠1

1 + rCM
t

= Dt.

Hence the approximation is limited to a few days per year and is also small in magnitude.

In fact, close-to-mid returns do not change much over time and consequently their day-

to-day ratio stays close to 1. Moreover, the dividend itself is usually small relative to the

daily return and bears a negligible overall impact. In light of these considerations, we can

simply use equation (3.9).
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