
Extracting OWL Ontologies from
Relational Databases Using Data Analysis

and Machine Learning

Lama AL KHUZAYEM a,b,1 and Peter MCBRIEN a

a Department of Computing, Imperial College, London SW7 2AZ, UK
b Computer Science Department, Faculty of Computing and IT, King Abdulaziz

University, Jeddah 21583, Saudi Arabia

Abstract. Extracting OWL ontologies from relational databases is extremely help-

ful for realising the Semantic Web vision. However, most of the approaches in this

context often drop many of the expressive features of OWL. This is because highly

expressive axioms can not be detected from database schema alone, but instead

require a combined analysis of the database schema and data. In this paper, we

present an approach that transforms a relational schema to a basic OWL schema,

and then enhances it with rich OWL 2 constructs using schema and data analy-

sis techniques. We then rely on the user for the verification of these features. Fur-

thermore, we apply machine learning algorithms to help in ranking the resulting

features based on user supplied relevance scores. Testing our tool on a number of

databases demonstrates that our proposed approach is feasible and effective.

Keywords. Ontology Learning, OWL 2 Ontologies, Data Analysis, Machine

Learning.

1. Introduction

Constructing ontologies, which are the basic building blocks of the Semantic Web (SW),

from scratch is tedious, error-prone, time-consuming, and requires deep understanding of

the domain [1,2,3]. Attention has therefore shifted towards the generation of ontologies

from existing data. The work in this paper focuses on extracting ontologies from rela-

tional models. The issue that arises in this context is that only ontologies with limited ex-

pressivity can be obtained in an automated fashion. Although leading ontology definition

languages such as the Web Ontology Language (OWL) [4] have great expressive capa-

bilities, they are currently not used to their full potential. This is because richer and more

expressive axioms like PropertyChain, TransitiveProperty and SymmetricProperty re-

quire more advanced detection techniques than just analysing the database schema. Most

previous work (e.g., [1,2,5,6]) have avoided this extra task, leaving it for the users to

manually detect and insert the desired axioms.

1Corresponding Author: Lama Al Khuzayem, Department of Computing, Imperial College London, 180

Queen’s Gate, London SW7 2AZ, United Kingdom; E-mail: l.al-khuzayem11@imperial.ac.uk.

Databases and Information Systems IX
G. Arnicans et al. (Eds.)
© 2016 The authors and IOS Press.
This article is published online with Open Access by IOS Press and distributed under the terms
of the Creative Commons Attribution Non-Commercial License 4.0 (CC BY-NC 4.0).
doi:10.3233/978-1-61499-714-6-43

43

The approach described in this paper, which is developed as a tool called OWLRel2,

takes this additional step and aims at finding more complex axioms through applying

a combination of schema and data analysis techniques. This paper extends the work

presented in [7], in which it was demonstrated how to automatically extract an OWL

ontology from a relational schema by generating a Bidirectional Transformation (BT),

using the Hypergraph Data Model (HDM) [8], then enriching the OWL schema with

more expressive axioms using schema and data analysis. Because of the subjective nature

of the domain, we rely on users to validate these suggested axioms. Thus, our approach

benefits from the two aspects that must be taken into consideration in this context [3]:

human intervention and database content analysis.

For example, consider the Emp table shown in the database schema depicted in

Figure 1. From the database schema, we can generate an ontology that contains an Emp
class from the Emp table. The EID column will be transformed into a data property.

The RTo? column will be transformed into an object property. The schema does not say

anything about the characteristics of the object property. However, by doing an inspection

on the data, one can detect that the RTo object property is an AsymmetricProperty (if

someone reports to his/her manager, the manager does not report back to that person)

and an IrreflexiveProperty (a person does not report back to himself). Our approach

also applies schema analysis heuristics, which detects that chaining the property RTo
with itself, or with its inverse, produces new properties that could possibly be useful

or interesting. For instance, chaining RTo with RTo produces a property that relates

employees with their second line managers, while chaining RTo with RTo− produces a

property that contains the employees that are colleagues of each other. These proposals

would not be possible without the use of schema and data analysis.

One problem that arises in this situation is that the large number of suggested axioms

(where the schema is large) might overwhelm the user. Hence, in this paper, we focus

on how we can help the users by filtering or sorting the suggestions according to their

relevance. Since relevance is very subjective, Machine Learning (ML) algorithms were

used to rank the suggested axioms taking into consideration knowledge gathered from

previous users over multiple sessions. Our tool is also able to continuously learn from its

new users, which helps in improving the results over time.

The remainder of this paper is structured as follows. Section 2 reviews the HDM

and how the relational model is presented in HDM. Section 3 describes our automatic

ontology extraction approach and in Section 4, we demonstrate our ontology enrichment

process. Section 5 explains how we apply machine learning to our extraction approach

followed by related work in Section 6. Finally, Section 7 concludes this paper.

2. Preliminaries

An overview of the HDM [8,9,10], and how the relational model is represented in the

HDM is given here. An HDM schema S is defined as a tuple 〈Nodes,Edges,Cons,Types〉
where:

• Nodes is a set of nodes in the graph such that each node node:〈〈n,t〉〉 is identified

by its name n, and it is given an associated type t ∈ Types. A node can also be

referred to by a shorthand node:〈〈n〉〉.

2automed.doc.ic.ac.uk/releases/jars/OWLRel-rel-0-1.jar

L. Al Khuzayem and P. McBrien / Extracting OWL Ontologies from Relational Databases44

Table 1. Rules for Representing a Relational Schema as an HDM Schema (Sr → Shr)

Relational Construct HDM Representation

table〈〈T 〉〉 node:〈〈T,any〉〉

column〈〈T,C,N,U,t〉〉 node:〈〈T:C,t〉〉,edge:〈〈 ,T,T:C〉〉,cons:〈〈�,〈〈T:C〉〉,〈〈 ,T,T:C〉〉〉〉,

cons:〈〈�,〈〈T〉〉,〈〈 ,T,T:C〉〉〉〉

N = notnull cons:〈〈�,〈〈T〉〉,〈〈 ,T,T:C〉〉〉〉

U = unique cons:〈〈�,〈〈T:C〉〉,〈〈 ,T,T:C〉〉〉〉

primary key〈〈T,C〉〉 cons:〈〈
id
→,〈〈T〉〉,〈〈 ,T,T:C〉〉〉〉

primary key〈〈T,C1,C2〉〉 cons:〈〈
id
→,〈〈T〉〉,〈〈 ,T,T:C1〉〉� 〈〈 ,T,T:C2〉〉〉〉

foreign key〈〈FK,T,C,Tf ,Cf 〉〉 cons:〈〈⊆,π〈〈T:C〉〉〈〈 ,T,T:C〉〉,π〈〈Tf:Cf〉〉
〈〈 ,Tf ,Tf :Cf 〉〉〉〉

• Types is a tuple that contains a finite set of types and a subset of the set of all

possible data values consistent with this type.

• Edges is a set of edges in the graph such that each edge has the following scheme:

edge:〈〈e1,n1,n2〉〉, where e1 is the edge’s name (can also be unnamed as “ ”) and

n1 and n2 are the two nodes that it connects.

• Schemes is the union of Nodes and Edges.

• Cons is a set of boolean-valued functions (constraints) where they form the HDM

constraint language. The set of constraints used in this paper are:

∗ cons:〈〈⊆,s1,s2〉〉 is the inclusion constraint which states that scheme s1 is al-

ways a subset of scheme s2.

∗ cons:〈〈�∩,s1, . . . ,sn〉〉 is the exclusion constraint which states that all the asso-

ciate schemes are disjoint from each other.

∗ cons:〈〈∪,s,s1, . . . ,sn〉〉 is the union constraint stating scheme s as the union of

schemes s1, . . . ,sn.

∗ cons:〈〈�,s1, . . . ,sm,s〉〉 is the mandatory constraint stating that every com-

bination of the values that appears in schemes s1, . . . ,sm must appear in the

edge s connecting those schemes.

∗ cons:〈〈�,s1, . . . ,sm,s〉〉 is the unique constraint stating that every combination

of the values that appears in schemes s1,. . .,sm must appear no more than once

in the edge s connecting those schemes.

∗ cons:〈〈
id
→,s1,s〉〉 is the reflexive constraint, stating that any value in s1 must

appear reflexively in the edge s that connects it to s1.

In addition to referring to schemes directly, constraints may also take joins, projec-

tions and selections of schemes as arguments.

2.1. Representing the Relational Model in the HDM

A method, summarised in Table 1, for mapping relational schemas to HDM was defined

in [8] and [9]. To illustrate the method, consider the relational schema Sr, depicted in

Figure 1 (where primary keys are underlined, and nullable column names are suffixed by

a question mark), which represents a subset of the Northwind database3.

Each table is represented as an HDM node (illustrated in Figure 2 by a black outlined

circle) with HDM type any. For example, the Emp table is represented by the HDM node

node:〈〈Emp,any〉〉.

3https://northwinddatabase.codeplex.com/

L. Al Khuzayem and P. McBrien / Extracting OWL Ontologies from Relational Databases 45

Each column is represented by a node that has an HDM type based on its relational

type. For example, column Emp.EID has the type INTEGER, so it is represented in the

HDM as node:〈〈Emp:EID, int〉〉. Moreover, Emp.EID will be connected via an HDM edge,

edge:〈〈 ,Emp,Emp:EID〉〉 (illustrated in Figure 2 with a thick black line), to the node that

represents the column’s table. Since column values only appear with an instance of a

table tuple, the edge has a mandatory constraint (illustrated with grey lines) from the

column node as cons:〈〈�,node:〈〈Emp:EID〉〉,edge:〈〈 ,Emp,Emp:EID〉〉〉〉. Furthermore, the

unique constraint cons:〈〈�,node:〈〈Emp〉〉,edge:〈〈 ,Emp,Emp:EID〉〉〉〉 ensures that each col-

umn has a single value per row.

If a column is not nullable, then it must also have a mandatory constraint. Thus,

Emp.EID has cons:〈〈�,node:〈〈Emp〉〉,edge:〈〈 ,Emp,Emp:EID〉〉〉〉. If the column is key, then

we state that the column’s edge is reflexive. This also applies to column Emp.EID:

cons:〈〈
id
→,node:〈〈Emp〉〉,edge:〈〈 ,Emp,Emp:EID〉〉〉〉.

Finally, foreign keys are represented as inclusion constraints. Thus, for the for-

eign key between Emp.RTo and Emp.EID, we create the following HDM constraint:

cons:〈〈⊆,node:〈〈Emp:RTo〉〉,node:〈〈Emp:EID〉〉〉〉.

The result of these transformations is an HDM graph (depicted in Figure 2) that is a

forest of two-level trees, with subset constraints linking the leaf nodes.

Ter
TID TDes RID
’20852’ ’Rockville’ 1
’30346’ ’Atlanta’ 4
’01833’ ’Georgetow’ 1
’01730’ ’Bedford’ 1
’06897’ ’Wilton’ 1
’02903’ ’Providence’ 1
’85014’ ’Phoenix’ 2

Emp
EID RTo?
1 2
2 NULL
3 2
4 2
5 2
6 5
7 5

ET
EID TID
1 ’06897’
2 ’01730’
2 ’01833’
3 ’30346’
4 ’20852’
5 ’02903’
6 ’85014’

Reg
RID RDes
1 ’E’
2 ’W’
3 ’N’
4 ’S’

Emp(RTo)
f k
⇒ Emp(EID)

Ter(RID)
f k
⇒ Reg(RID)

ET(TID)
f k
⇒ Ter(TID)

ET(EID)
f k
⇒ Emp(EID)

Figure 1. Sr , Fragment of the Northwind Relational Database Schema and Data. Entries in the Employee table

are related to entries in the Territories table via ET. Each employee may optionally (indicated by a question

mark) be recorded as reporting to another employee by the RTo. Each territory is in exactly one Region.

3. The Automatic Relational to OWL Transformation

Our automatic ontology extraction approach is performed via a number of steps: i) trans-

form the relational constructs to HDM producing Shr, which was described in Sec-

tion 2.1, ii) perform intermodel transformations on the HDM schema producing Sho and

finally, iii) translate the Sho to an OWL schema. The subsections below, review the final

two steps which were explained in [7].

3.1. The HDM Intermodel Transformations

Our HDM intermodel transformation process aims at overcoming the fundamental differ-

ences between the relational and OWL modelling languages. We use a set of equivalence

L. Al Khuzayem and P. McBrien / Extracting OWL Ontologies from Relational Databases46

Emp:

EID
int

�

Emp
any

id
→

��

Emp:

RTo
int

�

�

⊆

ET:
EID
int

�

ET
any

ET:
TID
int

�

⊇

id
→

��
�

�

�

�

�

Ter:
TDes

str

�

id
→

��

Ter
any

Ter:
TID
int

�

⊆

Ter:
RID
int

�

⊆
Reg:

RID
int

�

Reg
any

id
→

��

Reg:

RDes
str

�

�

�

Figure 2. Shr , HDM Representation of Schema Sr

both-as-view (BAV) mappings [11], presented in [9], to transform the HDM schema, Shr

(depicted in Figure 2) which represents the relational schema, to an equivalent (in terms

of information capacity) HDM graph which represents the OWL schema.

(A) Transform an attribute that is a foreign key, but not a primary key, into an

ObjectProperty. This can be achieved using two BAV equivalence rules: Inclusion

Merge and Unique-Mandatory Redirection. For instance, using the rules shown be-

low, we can transform the foreign key represented by the inclusion constraint between

node:〈〈ET:EID〉〉 and node:〈〈Emp:EID〉〉, to become an object property represented by the

edge edge:〈〈 ,ET,Emp〉〉. All other foreign keys of this type are transformed similarly.
1 inclusion merge(node:〈〈Emp:EID〉〉,edge:〈〈ET:EID,ET,ET:EID〉〉)

2 unique mandatory redirection(edge:〈〈ET Emp:EID,ET,Emp:EID〉〉,edge:〈〈ET Emp,ET,Emp〉〉)

(B) Transform an attribute that is a foreign key and a primary key as a SubClassOf
axiom. This can be achieved by using the BAV equivalence rule, Identity Node Merge.

The Northwind database, however, does not include an example of this particular case.

(C) Transform a many-to-many binary relationship table to an ObjectProperty. This

can be achieved using the Identity Edge Merge rule. For instance, the rule shown below

allows us to replace node:〈〈ET〉〉, edge:〈〈 ,ET,Emp〉〉 and edge:〈〈 ,ET,Ter〉〉 with a single

edge:〈〈Emp Ter,Emp,Ter〉〉. This newly created edge represents an object property since

it connects two class nodes.

3 identity edge merge(edge:〈〈ET Emp,ET,Emp〉〉,edge:〈〈ET Ter,ET,Ter〉〉)

Figure 3, illustrates the result of these transformations. Remaining nodes and edges

do not need to be transformed as they will be interpreted as classes, datatypes and data

properties in the OWL model, as will be described in the next section.

3.2. Transforming the HDM Schema to an OWL Schema

We now review how HDM schemas in ‘OWL Compatible’ form, such as Sho and Sho+ ,

can be translated to corresponding OWL files So and So+ , respectively. In Table 2, we list

L. Al Khuzayem and P. McBrien / Extracting OWL Ontologies from Relational Databases 47

Emp:

EID
int

�

Emp
any

id
→

��

�

�

Ter:
TID
int

�

�

id
→

��

�

�

Ter
any

Ter:
TDes

str

Reg:

RID
int

�

Reg
any

id
→

��

Reg:

RDes
str

�

�

�

Emp Ter Ter Reg

Reg RDes
Ter TID

Ter TDes

RTo

Emp EID Reg RID

Figure 3. Sho, HDM Representation of Schema So

some OWL 2 constructs and how we translate them into HDM. The four more important

transformations are:

1. HDM nodes without a type restriction are transformed to OWL classes. Thus, the

nodes node:〈〈Emp〉〉, node:〈〈Ter〉〉 and node:〈〈Reg〉〉 with HDM type any in Figure 3

are mapped to the OWL classes: Emp, Ter and Reg.

2. HDM nodes with HDM types are transformed to datatypes. For example, the node

node:〈〈Emp EID〉〉 with HDM type int is mapped to xsd:integer.

3. Edges which connect two HDM nodes, both without type restrictions, are trans-

formed to object properties. For example, edge:〈〈Emp Ter,Emp,Ter〉〉 is mapped to

the ObjectProperty Emp Ter.

4. Edges which connect nodes without type restriction, to nodes with a type restric-

tion, are transformed to data properties. For example, the DataProperty Emp EID,

represents the edge:〈〈Emp EID,Emp,Emp:EID〉〉.

Subsequently, combinations of HDM constraints are considered to represent more

complex OWL 2 constructs, according to the mappings listed in Table 2. For instance,

the combination of the following constraints cons:〈〈�,EID,〈〈Emp EID,Emp,EID〉〉〉〉,

cons:〈〈�,EID,〈〈Emp EID,Emp,EID〉〉〉〉 and cons:〈〈
id
→,EID,〈〈Emp EID,Emp,EID〉〉〉〉, gener-

ates HasKey(Emp,Emp EID). The complete OWL schema resulting from transforming

Sho is listed in Figure 4.

4. HDM Schema Enhancement

This section presents an extension to the schema enhancement approach, presented in [7],

in which we explain new heuristics. Our schema enhancement process applies schema

analysis and data analysis heuristics on the HDM schema Sho producing an enriched

schema Sho+ .

L. Al Khuzayem and P. McBrien / Extracting OWL Ontologies from Relational Databases48

Table 2. HDM Representations for Some OWL 2 Constructs

OWL 2 Construct DL Syntax HDM Representation

Class C node:〈〈C〉〉

SubClassOf C1 C2 cons:〈〈⊆,C1,C2〉〉

ObjectProperty P edge:〈〈P,C1 ,C2〉〉

DataProperty R edge:〈〈R,C1,rdfs:Literal〉〉

FunctionalProperty � (≤1 P) cons:〈〈�,C1,〈〈P,C1 ,C2〉〉〉〉

TransitiveProperty P ◦ P P cons:〈〈⊆,π〈P/P1.C1,P/P2.C2〉
P��P,〈〈P,C1 ,C2〉〉〉〉

IntersectionOf C1� C2 node:〈〈NC1〉〉, cons:〈〈�∩,C1 ,NC1〉〉,

cons:〈〈∪,owl:Thing,C1 ,NC1〉〉, node:〈〈NC2〉〉,

cons:〈〈�∩,C2 ,NC2〉〉, cons:〈〈∪,owl:Thing,C2 ,NC2〉〉,

node:〈〈UNC1 NC2〉〉, cons:〈〈∪,UNC1 NC2,NC1,NC2〉〉,

node:〈〈IC1 C2〉〉, cons:〈〈�∩, IC1 C2,UNC1 NC2〉〉,

cons:〈〈∪,owl:Thing, IC1 C2,UNC1 NC2〉〉

HasValue ∃ P.{a} node:〈〈VP.a〉〉, edge:〈〈P IE,VP.a,a〉〉,

cons:〈〈�,VP.a,〈〈P IE,VP.a,a〉〉〉〉,

cons:〈〈⊆,〈〈P IE,VP.a,a〉〉,〈〈P,C1,C2〉〉〉〉

Cardinality = nP node:〈〈=nP〉〉, edge:〈〈P IE,=nP,owl:Thing〉〉,

cons:〈〈�n,=nP,〈〈P IE,=nP,owl:Thing〉〉〉〉,

cons:〈〈�n,=nP,〈〈P IE,=nP,owl:Thing〉〉〉〉,

cons:〈〈⊆,〈〈P IE,=nP,owl:Thing〉〉,〈〈P,C,D〉〉〉〉

MinCardinality ≥ nP node:〈〈≥nP〉〉, edge:〈〈P IE,≥nP,owl:Thing〉〉,

cons:〈〈�n,≥nP,〈〈P IE,≥nP,owl:Thing〉〉〉〉,

cons:〈〈⊆,〈〈P IE,≥nP,owl:Thing〉〉,〈〈P,C1,C2〉〉〉〉

MaxCardinality ≤ nP node:〈〈≤nP〉〉, edge:〈〈P IE,≤nP,owl:Thing〉〉,

cons:〈〈�n,≤nP,〈〈P IE,≤nP,owl:Thing〉〉〉〉,

cons:〈〈⊆,〈〈P IE,≤nP,owl:Thing〉〉,〈〈P,C1,C2〉〉〉〉

HasKey (Key) cons:〈〈�,C1,〈〈P,C1 ,C2〉〉〉〉, cons:〈〈�,C1,〈〈P,C1,C2〉〉〉〉,

cons:〈〈
id
→,C1 ,〈〈P,C1,C2〉〉〉〉

∃ RTo.� Emp (1)
� ∀ RTo.Emp (2)
� (≤1 RTo) (3)

∃ Emp EID.� Emp (4)
� ∀ Emp EID.xsd:integer (5)

� (≤1 Emp EID) (6)
∃ Emp Ter.� Emp (7)
� ∀ Emp Ter.Ter (8)
∃ Ter TID.�Ter (9)

� ∀ Ter TID.xsd:string (10)
� (≤1 Ter TID) (11)

∃ Ter TDes.�Territories (12)
� ∀ Ter TDes.xsd:string (13)
� (≤1 Ter TDes) (14)
∃ Ter Reg.�Ter (15)
� ∀ Ter Reg.Reg (16)
� (≤1 Ter Reg) (17)

∃ Reg RID.� Reg (18)

� ∀ Reg RID.xsd:integer (19)
� (≤1 Reg RID) (20)
∃ Reg RDes.� Reg (21)

� ∀ Reg RDes.xsd:string (22)
� (≤1 Reg RDes) (23)

HasKey(Emp,Emp EID) (24)
HasKey(Ter,Ter TID) (25)
HasKey(Reg,Reg RID) (26)
Emp = 1 Reg RID (27)
Ter = 1 Ter TDes (28)

Figure 4. So, OWL Schema (in DL syntax) Representing Schema Sr

4.1. Schema Analysis

Our Schema Analysis (SA) heuristic rules, presented in this section, take the form pat-
tern � action, where pattern is a pattern to match against the constructs of Sho, and

action is either a set of BAV transformations to apply to Sho, or instructions to perform

further data analysis (which if positive, will add BAV transformations to Sho). Below, we

list some of the SA heuristics we have implemented in our prototype.

L. Al Khuzayem and P. McBrien / Extracting OWL Ontologies from Relational Databases 49

Object Property Characteristics Heuristics: In OWL, the domain and range of

Symmetric and Transitive properties must match [12]. Hence, when we search for such

constraints on properties, we only need to consider a property P between a class D and

itself, or between D and a superclass C of D. In addition, we propose the heuristic that

Reflexive is most likely to occur on the same type of property, hence also search for it.

Given the above, we now consider whether P is Functional or not. A Functional
property cannot be Transitive [12], and is not useful if Reflexive (since it would only

relate instances to themselves). Finally, Symmetric properties are less likely to be Func-
tional, since it would restrict the instances to be in pairs. Hence, we only search for these

three types of property constraints when the edge is non-functional:
SA1: edge:〈〈P,D,D〉〉∧¬ cons:〈〈�,D,P〉〉�

DAsymm(edge:〈〈P,D,D〉〉);DArefl(edge:〈〈P,D,D〉〉);DAtran(edge:〈〈P,D,D〉〉)
SA2: edge:〈〈P,C,D〉〉∧¬ cons:〈〈�,C,P〉〉∧ cons:〈〈⊆,D,C〉〉�

DAsymm(edge:〈〈P,C,D〉〉);DArefl(edge:〈〈P,C,D〉〉);DAtran(edge:〈〈P,C,D〉〉)

Note that DAsymm, DArefl, and DAtran are data analysis heuristics that will be described

in the next section.

If circumstances where a property might be Symmetric or Reflexive, we consider it

sensible to also identify whether they are Asymmetric or Irreflexive properties. Here, it is

possible that the property might be Functional, so there is no restriction on the property

being Functional in the rules.
SA3: edge:〈〈P,D,D〉〉�

DAasym(edge:〈〈P,D,D〉〉);DAirre(edge:〈〈P,D,D〉〉)
SA4: edge:〈〈P,C,D〉〉∧ cons:〈〈⊆,D,C〉〉�

DAasym(edge:〈〈P,C,D〉〉);DAirre(edge:〈〈P,C,D〉〉)

Again, DAasym and DAirre are further data analysis heuristics that will later be described.

Property Cardinality Restriction Heuristic: MinCardinality and MaxCardinality
axioms can be proposed on any non-Functional/ non-InverseFunctional edge. We rely on

data analysis to confirm the MaxCardinality of the instances of the class on this property.
SA5: edge:〈〈P,C,D〉〉∧¬ cons:〈〈�,C,P〉〉�

DAcard(edge:〈〈P,C,D〉〉)

Class Axioms Heuristic: An IntersectionOf expression can be between classes or

between classes and other expressions such as the HasValue expression. Although an

IntersectionOf expression that contains a HasValue expression is complicated to search

for, nevertheless, it can be found in relational databases by exploiting schema and data

analysis. Here, the condition is that the schema should include a hierarchy (at least one

SubClassOf) and the action is a data analysis heuristic.
SA6: cons:〈〈⊆,D,C〉〉�

DAinterHasValue(node:〈〈C〉〉,node:〈〈D〉〉)

4.2. Data Analysis

Each Data Analysis (DA) heuristic rule has the form pattern : condition | probability
� action where pattern is a pattern to match a DA instruction from SA, condition is a

query to execute against Sho that must return true, and probability is a query generating

a number [0,1]. We rely on a domain expert to validate that proposed additions in action

L. Al Khuzayem and P. McBrien / Extracting OWL Ontologies from Relational Databases50

to the ontology are correct (guided by the probabilities associated with each rule).

Transitive Heuristic: DA heuristics such as DAsymm, DAasym, DArefl, DAirre and

DAtran all take the same general form. We illustrate the approach by presenting DAtran.

In the rule below, the notation P/P1 indicates aliasing of P as P1.
DAtran(edge:〈〈P,C,D〉〉): totalT �= notT | totalT−notTtotalT �

addCons(〈〈��P/P1 .D=P/P2 .C,〈〈P,C,D〉〉,〈〈P,C,D〉〉〉〉);

addCons(〈〈π〈P/P1 .C,P/P2 .D〉
,〈〈��P/P1 .D=P/P2 .C,〈〈P,C,D〉〉,〈〈P,C,D〉〉〉〉〉〉);

addCons(〈〈⊆,〈〈π〈P/P1 .C,P/P2 .D〉
,〈〈��P/P1 .D=P/P2 .C,〈〈P,C,D〉〉,〈〈P,C,D〉〉〉〉〉〉,〈〈P,C,D〉〉〉〉)

where totalT is the number of transitive instances of P calculated as:

totalT= |{〈x,z〉|〈x,y〉 ∈ 〈〈P, C, D〉〉;〈y,z〉 ∈ 〈〈P, C, D〉〉}|

and notT is the number of non-transitive instances of P, calculated as:

notT= |{{〈x,z〉|〈x,y〉 ∈ 〈〈P, C, D〉〉;〈y,z〉 ∈ 〈〈P, C, D〉〉}−〈〈P, C, D〉〉}|.

The Transitive heuristic, was found not to apply to the Northwind database.

Min/Max Cardinality Heuristic: The MaxCardinality axiom can be proposed from

counting the instances of data involved in properties while a MinCardinality axiom of 1

can be added on any non-Functional / non-InverseFunctional property. The action below

pertains to the MaxCardinality axiom. The BAV transformations for adding a MinCardi-
nality axiom is very similar and can be found in Table 2.
DAcard(edge:〈〈P,C,D〉〉): N= count〈〈P,C,D〉〉 | 1 �

addNode(〈〈≤NP〉〉);addEdge(〈〈P IE, ≤ N P, D〉〉);addCons(〈〈�N , ≤ N P, 〈〈P IE〉〉〉〉);
addCons(〈〈⊆, P IE, P〉〉)

Suppose that we count the maximum number of territories that an employee can

work in is 8, therefore we can propose to add to the HDM schema a MaxCardi-
nality constraint between the node 〈〈Emp〉〉 and the edge 〈〈Emp Ter, Emp, Ter〉〉.
The MaxCardinality construct can then be added to the ontology as in the DL rule:

Emp≤ 8 Emp Ter.Ter.

IntersectionOf including HasValue Heuristic: The DA heuristic for finding an In-
tersectionOf that contains a HasValue expression is different than the previous heuris-

tics. In here, the condition is an algorithm (presented in Algorithm 1) that returns a set

of axioms.
DAinterHasValue(node:〈〈C〉〉,node:〈〈D〉〉): checkIntersectionO f HasValue(C,D) �= Ø | 1 �

addNode(〈〈VP.a〉〉);addEdge(〈〈P IE, VP.a, a〉〉);addCons(〈〈�,VP.a,〈〈P IE,VP.a,a〉〉〉〉);
addCons(〈〈⊆,〈〈P IE,VP.a,a〉〉,〈〈P,C1,C2〉〉〉〉);addNode(〈〈NVP.a〉〉);
addCons(〈〈�∩,VP.a,NVP.a〉〉);addCons(〈〈∪,owl:Thing,VP.a,NVP.a〉〉);
addNode(〈〈NC〉〉);addCons(〈〈�∩,C,NC〉〉);addCons(〈〈∪,owl:Thing,C,NC〉〉);
addNode(〈〈UNVP.a NC〉〉);addCons(〈〈∪,UNVP.a NC,NVP.a,NC〉〉);
addNode(〈〈IC VP.a〉〉);addCons(〈〈�∩, IC VP.a,UNVP.a NC〉〉);
addCons(〈〈∪,owl:Thing, IC VP.a,UNVP.a NC〉〉)

The algorithm loops all properties in the schema and for each property queries the

schema to find the y values of members of the parent class (i.e., node:〈〈C〉〉) which par-

ticipate in the property denoted as PValue. Then, it queries the schema again to find the

y values of members of the child class (i.e., node:〈〈D〉〉) which participate in the same

property denoted as CValue. If there is only one CValue and more than one PValue,

L. Al Khuzayem and P. McBrien / Extracting OWL Ontologies from Relational Databases 51

Algorithm 1. checkIntersectionOfHasValue

1: procedure CHECKINTERSECTION

2: inputs: Parent, Child

3: Axioms← /0

4: for P ∈ SchemaProperties do

5: PMember← {〈x,y〉 | 〈x,y〉 ∈ edge:〈〈P〉〉;〈x〉 ∈ node:〈〈Parent〉〉}
6: PValue←{y | 〈x,y〉 ∈ PMember}
7: CMember←{〈x,y〉 | 〈x,y〉 ∈ edge:〈〈P〉〉;〈x〉 ∈ node:〈〈Child〉〉}
8: CValue←{y | 〈x,y〉 ∈CMember}
9: if |CValue|= 1∧|PValue|> 1 then

10: Axioms← Axioms∪ (Child ≡ Parent�P.CValue)
11: end if

12: end for

13: return Axioms

14: end procedure

the algorithm returns an axiom. For instance, if we envisage that the schema in Fig-

ure 1 also includes a table Mgr(MID) with Mgr(MID)
f k
⇒ Emp(EID), and that the table

has only the data (6,7), then using this heuristic we could detect the following axiom:

Mgr≡ Emp�RTo.{5}.

5. Applying Machine Learning

This section explains how the machine learning module has been implemented and inte-

grated with the OWLRel tool. It is structured in such a way that it follows a data pipeline,

from the way data is collected and processed to how it is used in forecasting. This encom-

passes the data collection step, the reconstruction of the HDM graph in an in memory

representation which facilitates the feature extraction process, and finally the training of

the prediction model.

The general assumption behind our approach is to find patterns that transcend the

particularities of individual users, which then can be used to produce a universal score

of relevance for any axiom. In order to find such patterns, the users’ interaction with

the OWLRel tool is recorded in log files. During the execution, in each iteration when

axioms are being suggested, they are first processed through the aforementioned pipeline.

Then, the models are used to predict whether an axiom will be selected as interesting or

not, and this prediction takes the form of a probability that will be displayed to the user

through the GUI shown in Figure 5.

5.1. Data Collection

As the tool suggests axioms to its users, their answers are stored in log files. These log

files contain information such as the suggested axiom name, whether it was marked as

interesting or not, and the iteration number in which it has appeared and been clicked on.

Any entry from a log file would therefore have the following schema: [axiom, clickedIn-
teresting, clickedUninteresting, iterationAppeared, iterationClicked], and example for

the Northwind database being [irreflexiveproperty:〈〈RTo,Emp,Emp〉〉, 1, 0, 0, 1]. The

L. Al Khuzayem and P. McBrien / Extracting OWL Ontologies from Relational Databases52

axiom is suggesting that the property RTo is an IrreflexiveProperty. The axiom has been

clicked as interesting by the user in the second iteration, and it was suggested in the first

iteration.

5.2. Internal Graph Reconstruction

After collecting the log files, the next step is to extract features that allow interesting

axioms to be distinguished from uninteresting ones. As a prerequisite to compute such

features, the graph representation of the ontology is reconstructed in memory. The initial

state of the graph is given by the original ontology (such as the one presented in Figure

3), and with each interaction the graph is updated, enriching the ontology, and therefore

changing the features for subsequent axioms. Accepting a suggested axiom from the GUI

will inevitably change the properties of the underlying edges and nodes.

For example, acknowledging that RTo is an IrreflexiveProperty, will update the list

of characteristics of that particular edge. At this stage, the Emp class, represented as a

node, has two properties: RTo and Emp Ter, which are in return represented as edges. If

a new axiom, for example a PropertyChain, would be suggested and accepted, it would

introduce a new property i.e., a new edge in the graph. These structural changes will

then change the features derived from the graph. In the case of the PropertyChain, it will

among other things, increase the number of connections a node has. As a consequence

of working with a graph, features can now be derived separately for any node and edge.

5.3. Feature Engineering

The internal graph representation allows the system to extract features that best describe

an axiom. The feature set of an axiom is based on information about the classes and prop-

erties that appear in that axiom. The features collected from nodes are: (1) importance,

(2) number of connections, (3–5) number of inclusions in UnionOf, IntersectionOf, Dis-
jointWith and (6–7) to how many other nodes it is a super class or sub class of. The

importance is governed by how many times the user has selected an axiom that directly

affects the node, while the number of connections is the number of edges connecting

to the node. With respect to the previous example of the IrreflexiveProperty, the feature

vector derived for the Emp class is Featuresclass = [0,2,0,0,0,0,0]. The only non-zero

value is the number of connections, since the class has two properties. Otherwise, the

class is not part of a UnionOf, IntersectionOf, DisjointWith or SubClassOf.
The features extracted for properties are: (1) the number of characteristics it con-

tains (SymmetricProperty, TransitiveProperty, etc.), (2–4) the presence of MinCardi-
nality, MaxCardinality and HasValue, (5) number of properties it is an InverseOf, (6) its

importance (as defined for nodes) and (7) the iteration it appeared in. In contrast to the

nodes, new properties can dynamically appear if a PropertyChain is being chosen from

the suggested axiom list. For the same example, the feature vector for the RTo property

is Featuresproperty = [1,0,0,0,0,0,0]. Here, the only non-zero value is the number of

characteristics, since the property is a FunctionalProperty.

When a user selects an axiom, it enriches the ontology such that the features for all

other axioms referring to nodes or edges in the neighborhood are being affected. With

the addition of a new property the number of edges change, and some nodes gain in

importance. Therefore, the relevance is being recomputed after each enrichment and all

the suggested axioms will have different scores.

L. Al Khuzayem and P. McBrien / Extracting OWL Ontologies from Relational Databases 53

As we now have the features for classes and properties, it is possible to derive the

complete feature vectors for axioms. Axioms such as cardinality, property characteris-

tics, InverseOf and HasValue always affect properties between two classes. Therefore,

they can be represented by the information of the affected nodes and edges. A Prop-
ertyChain axiom, on the other hand, affect two sets of nodes and edges. This can be

converted to the previously mentioned feature space by taking the average of the edge

and node features. UnionOf, IntersectionOf and DisjointWith axioms do not refer to an

existing property, and thus cannot be modelled together with the previous axioms. Be-

cause of this, two machine learning models have been used: one that focuses on prop-

erty characteristics, PropertyChain, InverseOf, HasValue and cardinality, and another

model that focuses only on the UnionOf, IntersectionOf and DisjointWith axioms. The

first machine learning model receives as input the averaged features of all the nodes

and properties it affects. The second model acts only on nodes, so it receives solely the

averaged features of these. Additionally, each observation receives a categorical vari-

able describing the type of axiom, along with two variables quantifying in which itera-

tion it has appeared and when has it been clicked as interesting. Each observation gath-

ered from the log file will therefore be processed to contain 10 features in the case of

UnionOf, IntersectionOf and DisjointWith axioms, while 17 for the other axiom types.

For an axiom affecting classes and properties the feature vector would be Featuresaxiom =
[Avg(Featuresclass),Avg(Featuresproperty), itApp, itClick,axiomType]. Finally, the fea-

ture vector given to the machine learning algorithms for the RTo IrreflixeProperty has

the following value: [0,2,0,0,0,0,0,1,0,0,0,0,0,0,0,1, Irreflexive].

5.4. Training and Validation

The nature of the collected data allows for supervised learning methods to be deployed,

as the ‘correct’ label for each suggested axiom has been recorded. The machine learning

models taken into consideration for this task were the Naive Bayes classifier and the

Logistic Regression due to their simplicity, and the fact that they output probabilities

rather than just class labels. The Logistic Regression model is defined as in equation

(29) where the linear model described by the coefficients beta is applied onto the input

variables xi (e.g., the feature vector) after which it is being squashed by the logistic

function to output a probability.

y =
1

1+ eβ0+β1x1+β2x2+...+βpxp
(29)

Data has been collected from three users enriching the Wine Ontology4 with axioms

proposed from the schema enhancement phase described in Section 4. The total amount

of axioms interacted with, amounts to roughly 300. Using the Weka toolkit5, the ma-

chine learning algorithms were run with the default model and regularization parameters

provided. The performance of the models was assessed using a standard 10-Fold Cross

Validation leading to the conclusion that the Logistic Regression is the better choice,

since it obtained an average accuracy of 86%. Besides of the standard, numerical eval-

uation method, the applicability of the models has been assessed in practice by manual

4http://www.w3.org/TR/owl-guide/wine.rdf
5http://www.cs.waikato.ac.nz/ml/weka/

L. Al Khuzayem and P. McBrien / Extracting OWL Ontologies from Relational Databases54

inspection, showing no significant discrepancy between the predicted relevance and the

users’ actual preference.

Figure 5. Ontology Enrichment using OWLRel Editor

6. Related Work

Most of the approaches that extract a domain-specific ontology from a relational

database, such as: [13], [14] and [5], suffer from one or more of the following problems

[15]: 1) Do not map highly expressive OWL features. 2) Miss interpret primary keys. 3)

Do not properly identify class hierarchies.

The survey [15] points out that transforming a relational schema on its own is not

enough, and some sort of data inspection is needed in order to solve problems 1 and 3.

Problem 3 was addressed by the work of [14] and [16] in which they apply data mining

techniques to detect class hierarchies. Moreover, primary keys have been interpreted in

various ways in the OWL model. Some approaches translate a PK into an InverseFunc-
tional DataProperty with MinCardinality 1, or use MinCardinality and MaxCardinality
1, or use FunctionalProperty and Cardinality 1. Only a few, like us, have considered us-

ing the HasKey construct such as [13] and [17]. Furthermore, eliciting the highly expres-

sive constructs of OWL, such as HasValue, TransitiveProperty and SymmetricProperty,

was only considered by [6]. However, their rules for generating these constructs are am-

biguous and do not rely on the analysis of the data. In contrast to this, we have proposed

an approach that analyses the schema and the data to suggest possible highly expressive

OWL 2 features for a given relational database and represented primary keys using the

HasKey construct, thus providing solutions for problems 1 and 2 above. Moreover, our

approach applies machine learning to the extraction of OWL ontologies from relational

databases, something that was not considered by any of the existing state-of-the-art ap-

proaches.

L. Al Khuzayem and P. McBrien / Extracting OWL Ontologies from Relational Databases 55

7. Conclusions and Future Work

This paper has presented an approach that extracts OWL ontologies from relational

databases using a combination of data analysis and machine learning. The data analy-

sis technique used helped in producing rich ontologies that contain more semantic in-

formation than found in the relational databases. Applying machine learning algorithms

to the extraction of ontologies helped in ranking the large number of suggestions pro-

duced by the data analysis technique. Testing our approach showed that it is feasible

and promising. Future work will be directed towards enhancing our heuristics and the

machine learning algorithms used.

References

[1] X. D. M. Li and S. Wang, “Learning Ontology from Relational Database,” in In proc. of Inter. Conf. on

Machine Learning, vol. 6, pp. 3410–3415, 2005.

[2] L. Lin, Z. Xu and Y. Ding, “OWL Ontology Extraction from Relational Databases via Database Reverse

Engineering,” Journal of Software, vol. 8, no. 11, pp. 2749–2760, 2013.

[3] B. El Idrissi, S. Baina, and K. Baina, “Automatic Generation of Ontology from Data Models: A Practical

Evaluation of Existing Approaches,” in IEEE 7th Inter. Conf. on RCIS, pp. 1–12, 2013.

[4] W3C, “OWL 2 Web Ontology Language New Features and Rationale,” June 2009.

http://www.w3.org/TR/2009/WD-owl2-new-features-20090611/.

[5] S. H. Tirmizi, J. Sequeda, and D. Miranker, “Translating SQL Applications to the Semantic Web,” in

DEXA, pp. 450–464, Springer, 2008.

[6] I. Astrova, N. Korda, and A. Kalja, “Rule-Based Transformation of SQL Relational Databases to OWL

Ontologies,” in Proc. of the 2nd Inter. Conf. on Metadata & Semantics Research, 2007.

[7] L. Al Khuzayem and P. McBrien, “OWLRel: Learning Rich Ontologies from Relational Databases,”

Baltic Journal of Modern Computing, vol. 4, no. 3, p. 466, 2016.

[8] A. Poulovassilis and P. McBrien, “A General Formal Framework for Schema Transformation,” DKE,

vol. 28, no. 1, pp. 47–71, 1998.

[9] M. Boyd and P. McBrien, “Comparing and Transforming between Data Models via an Intermediate

Hypergraph Data Model,” DS, vol. IV, pp. 69–109, 2005.

[10] A. C. Smith and P. McBrien, “Inter Model Data Exchange of Type Information via a Common Type

Hierarchy,” in DISWEB, 2006.

[11] P. McBrien and A. Poulovassilis, “Data Integration by Bi-Directional Schema Transformation Rules,”

in Proc. of ICDE, pp. 227–238, IEEE, 2003.

[12] L. Lacy, OWL: Representing Information Using the Web Ontology Language. Victoria BC, Canada:

Trafford Publishing, 2005.

[13] J. Sequeda, M. Arenas, and D. Miranker, “On Directly Mapping Relational Databases to RDF and

OWL,” in Proc. of the 21st WWW, pp. 649–658, 2012.

[14] I. Astrova, “Reverse Engineering of Relational Databases to Ontologies,” in The Semantic Web: Re-

search and Applications, pp. 327–341, Springer, 2004.

[15] D.-E. Spanos, P. Stavrou, and N. Mitrou, “Bringing Relational Databases into the Semantic Web: A

Survey,” Semantic Web, vol. 3, no. 2, pp. 169–209, 2012.

[16] F. Cerbah, “Mining the Content of Relational Databases to Learn Ontologies with Deeper Taxonomies,”

in Inter. Conf. on WI-IAT., vol. 1, pp. 553–557, IEEE, 2008.

[17] E. Vysniauskas, L. Nemuraite, R. Butleris, and B. Paradauskas, “Reversible Lossless Transformation

From OWL 2 Ontologies into Relational Databases,” IJITCA, vol. 40, no. 4, pp. 293–306, 2011.

L. Al Khuzayem and P. McBrien / Extracting OWL Ontologies from Relational Databases56

