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Abstract

Biochemical reaction networks involve many chemical species and are inherently stochas-

tic and complex in nature. Reliable and organised functioning of such systems in var-

ied environments requires that their behaviour is robust with respect to certain parameters

while sensitive to other variations, and that they exhibit specific responses to various stim-

uli. There is a continuous need for improved models and methodologies to unravel the

complex behaviour of the dynamics of such systems. In this thesis, we apply ideas from

information theory to develop novel methods to study properties of biochemical networks.

In the first part of the thesis, a framework for the study of parametric sensitivity in

stochastic models of biochemical networks using entropies and mutual information is de-

veloped. The concept of noise entropy is introduced and its interplay with parametric sen-

sitivity is studied as the system becomes more stochastic. Using the methodology for gene

expression models, it is shown that noise can change the sensitivities of the system at var-

ious orders of parameter interaction. An approximate and computationally more efficient

way of calculating the sensitivities is also developed using unscented transform. Finally,

the methodology is applied to a circadian clock model, illustrating the applicability of the

approach to more complex systems.

In the second part of the thesis, a novel method for specificity quantification in a

receptor-ligand binding system is proposed in terms of mutual information estimates be-

tween appropriate stimulus and system response. The maximum specificity of 2×2 affinity

matrices in a parametric setup is theoretically studied. Parameter optimisation methodology

and specificity upper bounds are presented for maximum specificity estimates of a given

affinity matrix. The quantification framework is then applied to experimental data from

T-Cell signalling. Finally, generalisation of the scheme for stochastic systems is discussed.



6

Acknowledgements

My first and foremost thanks are due to my PhD supervisor Dr Vahid Shahrezaei who

has been very kind and supportive throughout the duration of my PhD study. It would

not have been possible for me to complete this work without his continuous guidance and

valuable supervision. He has been very compassionate through all the ups and downs of

my PhD journey. His understanding and support for me especially as a new parent has been

invaluable. Words cannot do justice to the appreciation and gratitude I hold for him as a

supervisor, a mentor and a great human being.

I am grateful to my sponsor, COMSATS Institute of information Technology, Pakistan, for

funding my PhD study. Mathematics Department at Imperial College has been very helpful

in providing the right kind of environment for research, and I am very thankful for that.

I am also thankful to Professor Greg Pavliotis for his guidance in steering my PhD towards

the right direction. I would also like to thank Dr Omer Dushek and Dr Enas Abu Shah from

Oxford University for sharing their experimental data with me and for their many helpful

discussions and comments on my work.

My sincere thanks are due to my beloved parents, Muhammad Azim and Nasreen Akhtar

for their unconditional love, continuous support and constant encouragement. They have

been especially helpful during my thesis write-up. I can never thank them enough for

supporting me and my son during this crucial period of my PhD and of my life. Their

confidence in me is what has brought me to eventually submitting my thesis. Their in-

comparable love for my son has been immensely helpful in making up for the lack of my

attention for him due to my studies, and to keep me going without much worry.



7

I would also like to thank Daria, Yuko, Ludi and Kasia; my son’s preschool carers. Their

childcare and supervision for a very important year of my son’s life gave me confidence

and reassurance, and enabled me to study peacefully.

The love, support and care from my precious friends Sara Tariq, Usman Adeel, Nazia

Shareef and Abid Rafique has been pivotal for keeping me sane during the various phases

of my PhD. I am grateful to to them for always being there for me, and for helping me a

lot especially during my pregnancy and new mother phase. My friend and office mate Din-

Houn Lau has been very helpful whenever I have needed him, particularly for taking care

of the problems with my computer which I accessed remotely while working from home.

I would also like to thank my uncle Abdul Majid, aunt Nighat Majid, and their kids Shaiza

Majid and Israar Majid. The family is like my own family, and their home is like a home

away from home. The comfort that I felt having them nearby kept me from being homesick.

If there is one thing that has never changed in any way during my PhD, is the precious

love and valuable support I have been receiving from my amazing husband, Muhammad

Usman. He has been a great source of motivation and happiness for me, and an awesome

father to my son. He has never let me give up, always picked me up at all the difficult times

and got me going again.

Last but not least, I am thankful to my precious little son, Muhammad Usayd Bin Usman,

for making my life beautiful and worthwhile with his presence. Although my PhD would

have been far quicker without him, the challenges I faced with him around have only made

me stronger as a person. He has been a source of motivation for me because I hope that

some day he can be proud of me and learn from me that I did not give up.



8

Table of contents

Abstract 5

1 Motivation and Outline 11
1.1 Stochasticity in Biochemical Networks . . . . . . . . . . . . . . . . . . . . 11
1.2 Intrinsic and Extrinsic Stochasticity . . . . . . . . . . . . . . . . . . . . . 12
1.3 Sensitivity Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
1.4 Specificity Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
1.5 Information Theory in Systems Biology . . . . . . . . . . . . . . . . . . . 17
1.6 Thesis Layout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2 Mathematical Tools and Preliminaries 19
2.1 A Simple Gene Expression Model . . . . . . . . . . . . . . . . . . . . . . 19

2.1.1 Steady-State Characteristics in a Deterministic Setting . . . . . . . 20
2.1.2 Steady-State Characteristics in a Stochastic Setting . . . . . . . . . 20

2.2 The Master Equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.2.1 Chemical Master Equation for Gene Expression Model . . . . . . . 23

2.3 Gillespie’s Stochastic Simulation Algorithm . . . . . . . . . . . . . . . . . 24
2.3.1 The Main Idea . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
2.3.2 Selecting Next Reaction and Reaction Time . . . . . . . . . . . . . 24
2.3.3 The Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.4 Linear Noise Approximation . . . . . . . . . . . . . . . . . . . . . . . . . 26
2.4.1 Linear Noise Approximation for Gene Expression Model . . . . . . 27

2.5 Main Concepts and Ideas in Information Theory . . . . . . . . . . . . . . . 28
2.6 Bias Correction of Entropy and Information Estimates . . . . . . . . . . . 30

2.6.1 Panzeri-Treves Method . . . . . . . . . . . . . . . . . . . . . . . 30
2.6.2 Quadratic Extrapolation Method . . . . . . . . . . . . . . . . . . . 31
2.6.3 Nemenman-Shafee-Bialek Method . . . . . . . . . . . . . . . . . 32
2.6.4 Shuffled Information Estimator Method . . . . . . . . . . . . . . . 32
2.6.5 Shrinkage Estimator Method . . . . . . . . . . . . . . . . . . . . . 33

2.7 The Unscented Transform . . . . . . . . . . . . . . . . . . . . . . . . . . 33
2.7.1 Main Idea and Motivation . . . . . . . . . . . . . . . . . . . . . . 33
2.7.2 The Unscented Transform Setup . . . . . . . . . . . . . . . . . . . 35



9

2.7.3 Scaled Unscented Transform . . . . . . . . . . . . . . . . . . . . . 37
2.8 Simulated Annealing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
2.9 Markov Chain Monte Carlo Methods . . . . . . . . . . . . . . . . . . . . . 40
2.10 Computational Tools and Software . . . . . . . . . . . . . . . . . . . . . . 41

3 Sensitivity Analysis of Biochemical Networks: A Review 42
3.1 Introduction to Sensitivity Analysis . . . . . . . . . . . . . . . . . . . . . 42

3.1.1 Local Sensitivity Analysis . . . . . . . . . . . . . . . . . . . . . . 43
3.1.2 Global Sensitivity Analysis . . . . . . . . . . . . . . . . . . . . . . 44

3.2 Control Theoretic Approaches to Sensitivity Analysis . . . . . . . . . . . . 47
3.2.1 MCA Theorems . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
3.2.2 Frequency Domain Approach to Sensitivity Analysis . . . . . . . . 50

3.3 Stochastic Sensitivity Analysis . . . . . . . . . . . . . . . . . . . . . . . . 52
3.3.1 Stochastic Sensitivity Analysis Using SSA Realisations . . . . . . . 53
3.3.2 Stochastic Sensitivity Analysis Using Linear Noise Approximation 54
3.3.3 Summation Theorems for Stochastic Sensitivity Analysis . . . . . . 55

3.4 Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4 An Efficient Information Theoretic Framework for Global Stochastic Sensitiv-
ity Analysis 57
4.1 The Main Idea . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
4.2 The Concept of Noise Entropy and Summation of Sensitivities . . . . . . . 59

4.2.1 Discretisation Entropy . . . . . . . . . . . . . . . . . . . . . . . . 59
4.2.2 Intrinsic Noise Entropy . . . . . . . . . . . . . . . . . . . . . . . . 59
4.2.3 Higher Order Sensitivities . . . . . . . . . . . . . . . . . . . . . . 61
4.2.4 Summation of Sensitivities . . . . . . . . . . . . . . . . . . . . . . 67
4.2.5 Total Sensitivity Indices . . . . . . . . . . . . . . . . . . . . . . . 68
4.2.6 High Dimensional Parameter Space . . . . . . . . . . . . . . . . . 68

4.3 The Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
4.3.1 Estimation of Sensitivities . . . . . . . . . . . . . . . . . . . . . . 69
4.3.2 Estimation of Noise Entropy . . . . . . . . . . . . . . . . . . . . . 71

4.4 Analysis of Gene Expression Model . . . . . . . . . . . . . . . . . . . . . 71
4.4.1 Reproducibility of Results . . . . . . . . . . . . . . . . . . . . . . 72
4.4.2 Mutual Information, Entropy and Sensitivity Estimation . . . . . . 73
4.4.3 Uniform vs Lognormal Input Samples . . . . . . . . . . . . . . . . 84
4.4.4 Gene Expression Model with Negative Feedback . . . . . . . . . . 84

4.5 Possible Modifications of the Methodology . . . . . . . . . . . . . . . . . 89
4.6 Application of Unscented Transform for Sensitivity Analysis . . . . . . . . 90

4.6.1 Sensitivity Analysis of the Gene Expression Models with Unscented
Transform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

4.7 Stochastic Sensitivity Analysis of Circadian Clock Model . . . . . . . . . . 97
4.7.1 The Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99



10

4.7.2 Sensitivity Analysis Results and Discussion . . . . . . . . . . . . . 101
4.8 Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

5 Information Theoretic Method for Specificity Quantification in a Receptor
Ligand Binding System 109
5.1 The Receptor Ligand Binding Model . . . . . . . . . . . . . . . . . . . . . 110
5.2 Quantification of Specificity . . . . . . . . . . . . . . . . . . . . . . . . . 111
5.3 Mutual Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
5.4 Analysis of the Model and Estimation of Mutual Information . . . . . . . . 113

5.4.1 Variation of Stimulus - Logarithmic vs Lognormal . . . . . . . . . 115
5.4.2 Binary Binning - Absolute vs Constant Threshold . . . . . . . . . . 115
5.4.3 Changes in Stimulus Parameters . . . . . . . . . . . . . . . . . . . 117

5.5 Optimising Mutual Information over Parameter Space . . . . . . . . . . . . 117
5.6 Use of Unscented Transform for Speed . . . . . . . . . . . . . . . . . . . . 122

5.6.1 Comparison between Monte Carlo and Unscented Transform Results122
5.6.2 Unscented Transform for Non-Bisymmetric Matrices . . . . . . . . 123

5.7 Simulated Annealing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
5.8 Markov Chain Monte Carlo Methods . . . . . . . . . . . . . . . . . . . . . 126

5.8.1 MCMC Results for Bisymmetric Matrices . . . . . . . . . . . . . . 126
5.8.2 MCMC Results for Non-Bisymmetric Cases . . . . . . . . . . . . 126
5.8.3 Theoretical Limits on Specificity for Non-Bisymmetric Matrices . . 130
5.8.4 Some More Affinity Matrices and Their Scatter Plots . . . . . . . . 131

5.9 Overall Summary of Results for Maximum Specificity of 2 × 2 Affinity
Matrix Case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

5.10 Specificity Comparison when One of the Ligands is Absent . . . . . . . . . 136
5.11 Generalising the Specificity Estimation Setup Further - Binning Thresholds

as Optimisation Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . 137
5.12 Specificity Estimates for the CD28-CTLA4 System . . . . . . . . . . . . . 139

5.12.1 Data Calibration and Specificity Estimation Setup . . . . . . . . . . 140
5.12.2 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . 141

5.13 Specificity in a Stochastic Setting . . . . . . . . . . . . . . . . . . . . . . . 147
5.14 Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

6 Conclusions and Future Work 150

References 170



11

Chapter 1

Motivation and Outline

1.1 Stochasticity in Biochemical Networks

A system is said to be stochastic if its dynamics are partly random. This may be caused

by a random force acting at different times or a force acting at random times. In this case,

the state of the system cannot be completely determined given the state at a particular time.

The best we can do is use the probability that the system is in a certain state and predict

the evolution of the probability at later times. This calculation is often very difficult or

expensive. Therefore, we usually need to use approximations or computations.

Cellular behaviour that mainly originates from the dynamics of the biochemical reac-

tions is stochastic in nature [107, 113]. Stochasticity arises at the level of intermolecular

collisions, which are driven by diffusion. These collisions vary the propensities of the

molecules to react, thereby causing the individual reaction events to occur randomly. Many

reviews on stochasticity and its modeling in biochemical networks have been presented in

literature [41, 107, 131].

Different biochemical networks have different levels of stochasticity. The systems with

low copy numbers are generally more stochastic in nature as the random timing of individ-

ual reactions is not averaged out. Low copy numbers occur frequently in single cells. For

example gene copy number is usually one or two, and transcription factors are often tens in

number.

Cells are known to control and exploit stochasticity. Cellular network designs evolve to
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reduce fluctuations, which may corrupt the information received by cells and affect required

robustness and reliability in cellular behaviour. On the other hand, cellular stochasticity

and phenotypic variability can be advantageous in fluctuating environments. Bacteria that

have the ability to switch stochastically between states have been known to outperform

bacteria that pay the metabolic costs of sensing the environment and then matching the

environmental state, thus having an evolutionary advantage [72].

Quantifying stochasticity is not easy and requires measurements at the level of single

cells. Usually ’noise’ is referred to as the empirical measure of stochasticity. For exam-

ple, protein noise can be measured by introducing a fluorescent protein downstream of the

promoter under consideration and then measuring the coefficient of variation of fluores-

cence across a population of cells, or over time assuming the system is ergodic. Noise is a

measure of the magnitude of a typical fluctuation as a fraction of the mean and is a dimen-

sionless quantity. If N represents a random variable, then noise η can mathematically be

defined as

η =

√〈N2〉 − 〈N〉2
〈N〉

1.2 Intrinsic and Extrinsic Stochasticity

Biological noise is commonly divided into two parts, intrinsic noise and extrinsic noise

[115]. The square of total noise in a system can be calculated by taking the sum of squares

of intrinsic and extrinsic noise. The part of stochasticity generated by the dynamics of the

system under study is called intrinsic stochasticity. Variations in the timings of individual

reactions give rise to intrinsic noise. Intrinsic noise is enhanced if the number of molecules

in the system are low. On the other hand, if the system of interest interacts with other

stochastic systems in the environment, the resulting stochasticity is referred to as extrinsic

stochasticity. If two copies of the system of interest can be created in the same cellular

environment as the original system and lodged with different reporters, as pioneered by

Elowitz et al. [22] to measure noise in gene expression, then both forms of stochasticity

can be quantified.

Intrinsic and extrinsic stochasticity are generated by fluctuations in intrinsic and extrin-
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sic variables respectively. The intrinsic variables of a system are generally used to describe

the copy numbers of the molecular components of the system. On the other hand, extrinsic

variables are related to the processes that control parameters of the system. For exam-

ple in gene expression, the number of mRNAs, number of proteins, and the number of

transcribing RNA polymerases are all intrinsic variables. The number of cytosolic RNA

polymerases, however, is an extrinsic variable since increase in their number increases the

level of gene expression in each copy of the system. Intrinsic noise is a measure of intrinsic

stochasticity. It can be quantified by the difference in the values of an intrinsic variable in

two copies of the system. Extrinsic noise, on the other hand, is given by the correlation

coefficient between intrinsic variables of the two copies of the system. The quantification

of intrinsic and extrinsic noise then yields a measure of total noise in the system.

Another source of motivation behind studying biochemical networks from a stochastic

perspective is the fact that noise has the ability to change the dynamics of a system. In

a oscillatory model like the one studied in [1], noise can destroy a global attractor and

at the same point can also stabilise an unstable fixed point. It has also been pointed out

that tuning the noise frequencies can diminish or enhance intermittency and mutiscaling.

Similarly, in [75], it is shown that for a mixed feedback loop motif, extrinsic noise can

make the system switch between steady states when the system is in the bistable region and

can also enhance protein production. There have also been studies like [57, 101] that point

out that extrinsic noise, in particular, has the potential to diversify as well as offer control

over system dynamics.

1.3 Sensitivity Analysis

A biochemical system can undergo different kinds of changes and perturbations [64]. These

include environmental changes like temperature, changes in noise [30,31,84,115], changes

in molecular concentrations etc. A biochemical model is said to be robust with respect to a

particular class of perturbations if it maintains its function under that class of perturbations.

Therefore, robustness itself can be used to discriminate between models with behaviours

of particular interest [86, 111]. In a robust model, some parameters can be varied over a

wide range without affecting the system behaviour significantly. The model is then termed
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as being insensitive to those parameters.

In complex biological systems, robustness and adaptive evolution go hand in hand with

fragility, the antithesis of robustness. In fact, in many cases, the very sources and biolog-

ical mechanisms that give rise to robustness against a set of perturbations may introduce

fragility with respect to others. This gives rise to trade-offs between robustness and fragility

of a system [8, 12, 64, 65]. For example, the effectiveness of a drug in producing some de-

sired results and its side effects may be dependent on each other; our efficient metabolisms

that evolved for us to survive in conditions of limited food may become a source of obe-

sity and diabetes in a modern lifestyle setup [65]. Thus, the phenomena of robustness and

fragility must be studied and analysed together. In particular, the exact parameters that

with respect to which robustness is measured should be explicitly specified with each such

analysis.

Methods that allow systematic study of dependence of system behaviour on its parame-

ters are called parametric sensitivity analyses. Sensitivity analysis has been a popular area

of research [51] for the last few decades because of its significance in parameter estimation,

model design and model simplification, and engineering in general [4,98], in addition to its

aid in robustness studies. For robustness analysis, sensitivity analysis provides valuable in-

sight into how sensitive the system is to the changes in particular parameters. On the other

hand, it helps quantify the dependence of model outputs on model inputs, thus enabling us

to determine if the model behaviour corresponds to the predicted behaviour of the exper-

imental system. Experimental and modelling analysis further progresses with sensitivity

analysis due to help with decision making in the sense that some insensitive parameters

can be fixed as constants and the sensitive ones guide further experiments.

Sensitivity analysis has been applied in many areas of study including economic mod-

elling and decision making [90], biological modelling and analysis [135,137], chemical ki-

netics [94,103], and environmental modelling study [43]. There are two types of sensitivity

analysis: local sensitivity analysis and global sensitivity analysis. The former methodol-

ogy addresses the change in the behaviour (gradient) of model outputs with respect to the

inputs over a nominal range of parameters. In global sensitivity analysis, on the other hand,

these changes are studied over a large range of model parameters, and all the parameters

are varied simultaneously to assess the sensitivity. More details on the two methodologies
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will be discussed in chapter 3.

As discussed in the previous section, most biological systems exhibit stochasticity. Ow-

ing to stochasticity, a deterministic sensitivity analysis setup is usually insufficient for the

study of such systems. Although computationally quite expensive as compared to its de-

terministic version, there has been much emphasis on the need for stochastic sensitivity

analysis [18, 33, 54] in recent years.

Robustness and sensitivity trade-offs between different parameters have been mathe-

matically realised as sensitivity summation laws [79]. These summation laws allow us to

write the sum of different parameter sensitivities as a constant. This facilitates us to look

at the sensitivities and their redistribution among different parameters of the system. It

has also been found that complex biological systems are sloppy, i.e, sensitive to only a

few parameters and insensitive to a large set of parameters [15, 35, 122]. This sensitivity

distribution provides motivation for simpler and more efficient models [122].

1.4 Specificity Problem

Biological systems have a lot of different molecules and species chemically reacting with

each other. For organised functioning of a system, there needs to be a setup according

to which a certain kind of reactants react with another specific set of reactants. Without

this ability of reactants to identify their targets, there can be disorder in the system. For

example, a drug needs to be able to be specific in its target cells to be able to generate

appropriate responses.

The specificity of a ligand for a receptor (or vice versa) in a ligand-recepetor binding

system describes how favourable the binding of that ligand is to the receptor as compared to

other receptors that may be present in the system. In other words, specificity is the degree of

affinity of a ligand for a specific receptor. Real biological systems rarely exhibit complete

specificity. This means that there is always cross-talk between different molecules, which

is why drugs have side effects. Nonetheless, specificity is essential to organised functioning

of biological systems and is termed as one of the pillars of life [70].

Different biochemical reactions take place in the same space like cytosol or a particu-

lar organelle like nucleus or mitochondrea. For these reactions to take place in a specific
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way, they need to exhibit a certain level of specificity [123]. For example binding reactions

or enzymatic reactions have a lot of specificity, which means that the functional partners

have much higher affinity than non-functionally related biomolecules. At the same time,

certain level of cross-talk between different biological pathways is inevitable, and even

useful in certain situations. For example, in yeast signalling, low specificity can be useful

as the mating pathway has cross-talk with starvation pathway, which can potentially medi-

ate a physiologically useful interaction between these biological functions. The degree of

specificity (or conversely, cross-talk) is dependent on the affinity between the interacting

partners. In some particular models, the phenomena and mechanisms contributing towards

specificity have been studied in detail [45, 67, 117]. It has also been suggested that speci-

ficity is dependent on the topology of a reaction network [82].

Currently, there is no general framework for quantification of specificity, although a

statistical mechanics approach has previously been adopted to quantify specificity [55,128,

134]. These approaches are based on energies of the binding states, and it is argued that the

receptor ligand binding with least energy is preferred. On the other hand, a specificity mea-

sure based on information transformation in and across different signalling pathways has

also been described in literature [2, 68]. However, there is a need for a general framework

to quantify specificity. Moreover, quantification of specificity is important for a biologist’s

point of view. In [56], a two receptor two ligand system is studied. It this work, it has

been shown that the because both the ligands bind both the receptors, the overall effect of

one of the ligands seems redundant. The method of quantification of specificity can offer a

technique to experimental biologists for measuring redundancy in the system by estimating

the specificities with and without the second ligand. If, against popular view, the second

ligand brings in new information to the system by making it more or less specific, then the

usefulness of the second ligand can be established. In chapter 5, we provide a concrete

definition of specificity in terms of mutual information and we show how it is useful to

obtain insight into some specific biochemical systems.
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1.5 Information Theory in Systems Biology

Information theory is the mathematical framework that provides necessary tools and method-

ologies for analysis of information processing and information transfer. Concepts from

information theory have been used in the study of various biochemical networks [127].

For example, in [118, 119], it has been established that in the presence of noise, which

affects the reliability of information transmission, a genetic network has an information

capacity and that information flow can be optimised in simple and small genetic networks

to maximise information transmission. The use of information theory in neuroscience has

also been widely known [6] especially in the comparison of information content of ex-

perimentally measured neural responses with predictions from the model. The maximum

information transfer is also an area of interest in many biological setups [16, 17, 121].

From a systems biology perspective, tools from information theory can be more useful

than they first seem to be. Information theoretic analysis can prove to be versatile and offers

detailed insight at the level of information processing. Moreover, the ideas of entropy and

information can be very intuitive and easy to implement in a wide variety of analytical

scenarios. The measure of mutual information, for example, has an added advantage over

conventional correlation measures in the sense that it deals with nonlinear relationships

between two variables more effectively. Such advantages allow for network inference and

reconstruction as well as help in experimental design and decision making [83].

Only a few studies in literature have exploited the advantages of information theory

to study sensitivity analysis in biochemical networks. Our main interest lies in the work

presented by Ludtke et al. [79]. These provide the basics for the information theory based

tools developed in the following chapters to study sensitivity analysis. Moreover, we also

make use of the concept of mutual information in a novel approach to quantify specificity

in chapter 5.

1.6 Thesis Layout

This thesis is planned as follows. Chapter 2 discusses the Mathematical tools, concepts

and methodologies used in the analyses in the thesis. This chapter includes a basic gene
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expression model and its treatment with some of the mathematical tools introduced. It also

contains a primer on the main concepts and ideas in information theory. Chapter 3 is a

review of sensitivity analysis methodologies, and includes discussion of various sensitiv-

ity analysis methods used in literature. Chapter 4 introduces the extension of information

theoretic global sensitivity analysis [79] to a stochastic setup. We present the results of

the application of this methodology to different models for different noise levels and ob-

serve the effect of stochasticity on parametric sensitivities. We then introduce an efficient

and computationally less expensive version of the method and apply it to a circadian clock

model. Lastly, chapter 5 introduces an information theoretic method of specificity quan-

tification, and discusses the development of complete methodology. We also present the

results of specificity estimates for experimental data related to signalling in T-cells. Chap-

ter 6 is the concluding chapter of the thesis which summarises what has been done in the

thesis and points at some directions for related future work.



19

Chapter 2

Mathematical Tools and Preliminaries

In this thesis, we have made use of several mathematical tools and frameworks that allow

for efficient analysis of the problems that we deal with in later chapters. In order to use these

methods in the upcoming results chapters, we elaborate on them in this chapter. We start

by introducing a simple gene expression model, and as we discuss various mathematical

setups, we use this model to elaborate the techniques discussed.

2.1 A Simple Gene Expression Model

Figure 2.1: The gene expression model with reaction rates

In this section we will consider and briefly state the main analytical results for the

simple gene expression model in figure 2.1. This model has been studied extensively in

literature [34,69,105]. The model includes transcription and translation along with degra-

dation of mRNAs and proteins. We consider both transcription and translation as first order
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processes. According to this model, transcription is initiated and mRNAs are synthesized

every 1/km seconds. Each mRNA is then translated into protein every 1/kp seconds. Both

mRNAs and proteins undergo first order degradation at the rates of dm and dp per second

respectively. We denote respectively the number of mRNAs and proteins present at time t

as M(t) and P (t).

2.1.1 Steady-State Characteristics in a Deterministic Setting

The reaction rate equations for the model in figure 2.1 are

dM

dt
= km − dmM (2.1a)

dP

dt
= kpM − dpP (2.1b)

These are first order linear differential equations and can be solved easily. We are usually

interested in steady-state solutions. It is clear that in the absence of noise, the steady-state

values for mRNA and protein numbers are given by the model parameters as

Ms =
km
dm

, Ps =
kmkp
dmdp

. (2.2)

2.1.2 Steady-State Characteristics in a Stochastic Setting

It can be easily shown that the average behaviour of mRNAs and proteins is similar to their

deterministic behaviour. That is, if we denote the mean of mRNA numbers as 〈M〉 and

mean protein numbers as 〈P 〉, then

〈M〉 = Ms =
km
dm

, 〈P 〉 = Ps =
kmkp
dmdp

. (2.3)

We can also obtain expressions for noise in mRNA and protein numbers as

η2M =
1

〈M〉 (2.4)

η2P =
1

〈P 〉 +
dp
dm

1

〈M〉 (2.5)
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The system is linear so it can be easily solved for average values. Linear noise approxi-

mation as well as master equation can be used to derive the above results. Although the

coupled differential equations can be solved directly, the difference in the time-scales of

mRNA life-time and protein life-time is usually exploited to simplify calculations. For ex-

ample in bacteria, the mRNA life-time is of the order of minutes while protein life-time is

of the order of hours. This means that mRNA numbers achieve their steady-state long be-

fore protein numbers do. Therefore, we often make use of a quasi steady-state assumption

by putting dM/dt = 0 while studying the dynamics of proteins.

2.2 The Master Equation

In biological problems, we often need to study how different states, compositions and re-

actions of a system evolve with time. This evolution can very well be probabilistic in

nature. The master equation is a set of first order differential equations that describe the

time evolution of probabilities of a discrete set of states that can be occupied by a system

at any given time. Let us suppose that a system can transition randomly between m pos-

sible states defined by set S . Let Ps(t) be the probability of the system being in state s.

Let the system be in state s at time t and jump to state r in time dt, then the transition

rate wsr is defined as such that the probability of this jump happening is wsrdt. Here, we

focus on the processes that can be described as a discrete state continuous time Markov

processes, such as biochemical reactions. We now restrict our discussion to homogeneous

Markov processes where the transition rates are independent of time and history of the sys-

tem. With this in mind, let us look at the probability that the system is in state s at time

t + dt. This comprises of the probabilities of these different cases: if the system was al-

ready in state s at time t (Ps(t)); and the system does not jump to another state r in time dt

(
∑

r �=s wsrPs(t)dt); or if the system jumps form another state, say r, at time t to the state s

in time dt (
∑

r �=s wrsPr(t)dt). Therefore, the probability of the system being in state s at

t+ dt is given by

Ps(t+ dt) = Ps(t) +
∑
r �=s

wrsPr(t)dt−
∑
r �=s

wsrPs(t)dt. (2.6)
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This can be rearranged into the form

Ps(t+ dt)− Ps(t)

dt
=
∑
r �=s

wrsPr(t)−
∑
r �=s

wsrPs(t), (2.7)

which, in the limit dt → 0, yields

dPs

dt
=
∑
r �=s

wrsPr −
∑
r �=s

wsrPs. (2.8)

This equation is called the master equation for state s of the system. For the complete

system, the master equations are a set of m linear differential equations in Pis. Technically,

the master equation is always solvable for a finite number of states, but in practice, the

number of states is usually too large.

Let us now look at the master equation in the context of system composition at a given

time. Rather than chasing a state of a system, we now consider the probabilities of the

system jumping among different compositions. Suppose that the system is well-mixed.

Then the probability of a molecule present in a subvolume ΔV of system volume V is

ΔV/V . Let N(t) = {N1(t), N2(t), . . . , Nn(t)} be the composition vector of an n species

system at time t, where Ni(t) represents the number of molecules of type i. Let P (N, t)

be the probability distribution of the system having composition N(t) at time t. Rather

than the system jumping from one state to the other, we are now considering the scenario

when the system transitions between different compositions via chemical reactions. The

transition rates now take the form of reaction propensities and depend upon the nature of

reaction. Let ar(N) be the reaction propensity for a reaction r in the set R of all reactions,

then the master equation assumes the form

dP (N, t)

dt
=
∑
r∈R

ar(N− νr)P (N− νr, t)−
∑
r∈R

ar(N)P (N, t), (2.9)

where νr is the stoichiometric vector for reaction r representing the change in the number

of each species due to that reaction. The above form of the master equation utilising the

chemical composition of the system is referred to as the chemical master equation [29]. In

this context, it is straightforward to find the reaction propensities. There are three basic
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types of chemical reactions that occur. Suppose that κ represents the probability that a

given molecule Xi undergoes the reaction, then the reaction propensities are given by:

• ar = κNi for reactions of the type Xi →

• ar = κNiNj for reactions of the type Xi +Xj →

• ar = κNi(Ni − 1)/2 for reactions of the type Xi +Xi →

2.2.1 Chemical Master Equation for Gene Expression Model

We now consider the chemical master equation for simple gene expression model from the

previous section. Let M and P denote the number of mRNA and protein molecules, and

Pm,n simply denote the probability of having m and n molecules of mRNA and proteins

respectively at time t. Then equation (2.9) assumes the form

dPm,n

dt
= [kmPm−1,n + kpmPm,n−1 + dm(m+ 1)Pm+1,n + dp(n+ 1)Pm,n+1]

− [kmPm,n + kpmPm,n + dmmPm,n + dpnPm,n] . (2.10)

This can be rearranged to give

dPm,n

dt
= km(Pm−1,n − Pm,n) + kpm(Pm,n−1 − Pm,n)

+ dm[(m+ 1)Pm+1,n −mPm,n] + dp[(n+ 1)Pm,n+1 − nPm,n]. (2.11)

The last equation can then be solved analytically using the moment generating functions

[106] to obtain steady state results consistent with (2.3). Also in the limit dm � dp,

Shahrezaei and Swain [106] provide analytical expressions for Pm,n.

However, full analytical solution of the chemical master equations is practically impos-

sible for most realistic systems where the number of possible compositions can be very

large or infinite. Therefore, in practice, different mathematical approaches are used to ap-

proximate the master equations or individual reactions are rather simulated to obtain the

results. Gillespie’s stochastic simulation algorithm discussed in the next section is a possi-

ble way for producing exact numerical solution.
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2.3 Gillespie’s Stochastic Simulation Algorithm

2.3.1 The Main Idea

Gillespie’s stochastic simulation algorithm [26, 27] enables us to generate an exact realisa-

tion of a reaction trajectory whose probabilities follow the master equation. It is easier to

understand individual reactions rather than probabilities. The idea behind Gillespie’s algo-

rithm is that the next reaction to occur, and the time to next reaction are random variables,

the latter being exponentially distributed. In one simulation or realisation of the algorithm,

a set of reactions is followed and the corresponding changes in molecular species recorded.

Next, we explain how to choose the random reaction time and random reaction.

2.3.2 Selecting Next Reaction and Reaction Time

Random reaction time: At any given time with a particular composition, the reaction

propensities serve as reaction probabilities. So the probability of a reaction occurring is

the sum of propensities. Let us call this as a0 given by a0 =
∑

r ar. The main idea to

apply then is to think of the probability of a reaction per unit time as remaining constant

until the reaction has occurred. This means that the probability per unit time of no reaction

occurring decreases exponentially with time. With this argument, it can be shown that the

reaction probability distribution is given by

p(t) = a0e
−a0(t−tref ) (2.12)

where tref is some reference time. This implies that the reaction times to be randomly

generated should follow exponential distribution. The idea is to generate a uniform random

number r1 in the interval [0, 1) and then convert it into an exponentially distributed random

reaction time using the formula

treact =
1

a0
ln

(
1

r1

)
. (2.13)

Random next reaction: Next we need to see which reaction should be fired. This is

done by generating another uniform random number r2 in the interval [0, 1]. The proba-
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bility of reaction r to fire next is ar
a0

. All the reactions are then labeled and assembled, the

assembly remains the same throughout a simulation. Now the number r2 serves as a pointer

to the next reaction that occurs, in a way that r2 must be less than or equal to ar
a0

but greater

than ar−1

a0
. In other words the reaction labeled as N should fire next where N satisfies

N−1∑
r=1

ar < r2a0 ≤
N∑
r=1

ar. (2.14)

2.3.3 The Algorithm

To summarise, the steps of Gillespie’s algorithm are given as follows:

1. Initialise time t and store populations and rate constants

2. Calculate reaction propensities for each reaction

3. Generate two uniform random numbers, r1 and r2

4. Calculate time to next reaction treact using r1 in (2.13)

5. Determine next reaction N satisfying (2.14) using r2

6. Update simulation time to t+ treact

7. Update populations according to the reaction fired

8. Repeat from steps 2 to 7 until a stopping criterion is achieved

It is worth noting that if the results from the statistics satisfying chemical master equa-

tion are needed then a lot of simulations need to be repeated and the results are then aver-

aged across the simulations. If the stationary distribution is desired then a long simulation is

required to obtain a time average. However, both approaches are the same if the stochastic

processes being simulated are ergodic. Whatever the approach, the computations via Gille-

spie algorithm are computationally expensive. Several modifications and adaptations exist

in literature including next reaction method [24], tau leaping [28]. Several relatively new

adaptations based on partial propensity function also exist [50, 95]. These modifications

reduce the computational cost effectively, but compromise on the exactness of solution to

the master equation.
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2.4 Linear Noise Approximation

In stochastic systems, the master equation with nonlinear transition rates can sometimes

be approximated by a Fokker Planck equation, representing linear noise approximation,

with linear coefficients that are determined by the stoichiometry and transition rates of the

stochastic system. The linear noise approximation [21, 32, 69, 89, 125] is a leading order

term in a more general technique termed as system size expansion or Ω-expansion, where Ω

represents the system volume. The system size expansion, and hence linear noise approx-

imation, works on the assumption that the system volume is large, and that the variance of

the steady state population numbers scales like the system volume.

Assuming that Ω is large and tge fluctualtion scale like the square root of the number

of molecules, we write the state Xi representing the number of molecules of species i as

Xi = Ωxi + Ω1/2φi, (2.15)

where xi is the steady state deterministic solution to the reaction rate equations and φi

represents a zero-mean random variable that makes the state noisy. If P (X, t) represents

the probability distribution of state X at time t, then

P (X, t) = P (Ωx+ Ω1/2φ) = Π(φ, t). (2.16)

Now let f be the vector of reaction rates and plugging the result in the master equation

yields a complicated expression. In the large Ω limit, we can neglect the terms of O(Ω1/2).

If S denotes the stoichiometric matrix of the system, then collecting the coefficients of Ω0,

we find that
∂Π(φ, t)

∂t
=
∑
i,k

Aik
∂(φkΠ)

∂φi

+
1

2

∑
i,k

[BBT ]ik
∂2Π

∂φi∂φk

, (2.17)

where

Aik =
∂(Si · f)
∂xk

, (2.18)

BBT = Sdiag(f(x))ST , (2.19)

and diag(f(x)) represents a square matrix with f(x) as diagonal elements and zeros as off-
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diagonal elements. The Fokker Planck equation (2.17) now represents the time evolution

of Π, and can be solved to obtain an approximation of the solution of master equation.

It can be observed that the equation (2.17) is linear, and has Gaussian solution that can

be defined by its first two moments. We already know that φ is a zero mean random

variable. Therefore, we only need the covariance Ξ of φ. This is given by the Lyapunov

equation [125]

AΞ + ΞAT +B = 0, (2.20)

which can equivalently be written for the covariance C of X as

AC+CAT + ΩB = 0. (2.21)

2.4.1 Linear Noise Approximation for Gene Expression Model

Now for the gene expression model from section 2.1, we have,

x =

[
M

P

]
=

⎡⎣ km
dm

kmkp
dmdp

⎤⎦ , S =

[
1 0 −1 0

0 1 0 −1

]
, f(x) =

⎡⎢⎢⎢⎢⎢⎣
km

kpM

dmM

dpP

⎤⎥⎥⎥⎥⎥⎦ (2.22)

which implies that

A =

[
−dm 0

kp −dp

]
, BBT =

[
km + dmM 0

0 kpM + dpP

]
. (2.23)

Using these values in (2.20), we find that

Ξ =

⎡⎣ km
dm

kmkp
dm(dm+dp)

kmkp
dm(dm+dp)

kmkp
dmdp

(
1 + kp

dm+dp

)⎤⎦ . (2.24)

These results obtained are consistent with known results, for example in [47].
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2.5 Main Concepts and Ideas in Information Theory

We first introduce the basic concept of entropy. The easiest way to look at it is to think of

it as a measure of uncertainty associated with a random variable. It measures, disorder or

unpredictability in a random variable. In this manuscript, we will always refer to Shannon’s

entropy which is a measure of the expected value of the information contained in a message,

signal or a random variable. The mathematical definition of entropy now follows.

Definition 2.5.1 For a discrete random variable X with outcomes xi, the Shannon en-

tropy H(X) is defined as

H(X) = −
∑
x

p(x) log2 p(x)

where p(x) is the probability mass function of outcome x.

The base of the logarithm can be changed. It is set to be 2 here since this entropy is

measured in bits. We also use the convention that anything with zero probability does not

contribute to entropy since x log x → 0 as x → 0. It may also be noted that entropy of X

can also be interpreted as the expected value of log 1
p(X)

. Entropy is non-negative and is

zero when the outcome is certain.

Definition 2.5.2 The joint entropy H(X, Y ) of two discrete random variables (X, Y ) with

a joint distribution p(X, Y ) is given by

H(X, Y ) = −
∑
x

∑
y

p(x, y) log2 p(x, y).

Definition 2.5.3 The conditional entropy H(X | Y ) of two discrete random variables

(X, Y ) with a joint distribution p(X, Y ) is given by

H(X | Y ) =
∑
y

p(y)H(X | Y = y).

We note that H(X | Y ) is the average uncertainty in X over all possible discrete values y
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that the random variable Y can assume. This quantity may also be represented as

H(X | Y ) = −
∑
x

∑
y

p(x, y) log2 p(x | y).

Remark 2.5.4 It is interesting to note that

H(X, Y ) = H(X) +H(Y | X),

H(X)−H(Y | X) = H(Y )−H(X | Y ).

Definition 2.5.5 Mutual information I(X, Y ) is defined as the difference in uncertainty

of X with and without knowledge of Y and characterises the influence Y exerts on X . That

is

I(X, Y ) = H(X)−H(X | Y ).

Likewise, as shown above,

I(X, Y ) = H(Y )−H(Y | X).

It can easily be shown that

I(X, Y ) = −
∑
x

∑
y

p(x, y) log2
p(x, y)

p(x)p(y)

Remark 2.5.6 The following identities can easily be deduced from the definitions above:

I(X,X) = H(X)

I(X, Y ) = I(Y,X)

I(X, Y ) = H(X) +H(Y )−H(X, Y )
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2.6 Bias Correction of Entropy and Information Estimates

Entropy and mutual information can be estimated accurately when we have a lot of samples

of the relevant random variables and events. However, with limited computational effort

and high dimensional variables, we can practically carry out entropy and information es-

timation with only a limited subset of the huge number of events involved. The problem

becomes more severe in case of stochastic setups. This is because we have to deal with

the output distributions for each of the input parameter combinations rather than an output

value in the deterministic case. This dimensional explosion results in inability to compute

the entropies and information efficiently, and we are often left with the situation with lim-

ited sampling. Limited sampling introduces bias in the entropy and information estimates.

We cannot get rid of the bias by simply averaging over many information estimates since

the magnitude of bias in this case is often of the same order as the information values to be

calculated.

Both H(Y ) and H(Y | Xi) are biased downwards. That is, in case of limited sampling

the values calculated are less than the true values for both H(Y ) and H(Y | Xi) and

increase as the number of samples used is increased. The downward bias is due to the

fact that limited sampling limits taking into account all the possible uncertainties due to

parameter variation. The bias in H(Y | Xi) is more than the bias in H(Y ) because of

further limitation on sampling of values Xi = xi, This results in an upward bias in the

estimate of I(Xi, Y ).

Bias correction techniques in information estimation have been a hot topic of research

recently. Many techniques have been developed to tackle this problem. [91] and [49]

present a review of the techniques. Using appropriate techniques, this problem can be tack-

led efficiently. Below we briefly describe some of the bias correction methods in practice,

their advantages, and shortcomings.

2.6.1 Panzeri-Treves Method

Panzeri-Treves method [92] is based on expanding the bias in entropies in powers of 1/N ,

where N is the total number of trials. The leading order terms in the analytical expansion
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are given by

Bias[H(Y )] =
−1

2N ln 2
[Ȳ − 1], (2.25)

Bias[H(Y | X)] =
−1

2N ln 2

∑
x

[Ȳx − 1], (2.26)

Bias[I(X, Y )] =
−1

2N ln 2

(∑
x

[Ȳx − 1]− [Ȳ − 1]

)
. (2.27)

These quantities can be added to the plug-in estimates to obtain the true estimates for

entropies and information. In the above formulas, Ȳ represents the number of relevant

responses, and is equal to the number of elements in the response space. But Ȳx may be

different from Ȳ as it is the number of relevant responses for the particular stimulus x. The

estimate of Ȳx can be obtained by counting the number of responses observed at least once.

This is called the naive count.

The bias correction by the Panzeri-Treves method is relatively straight forward and easy

to implement. But the biggest disadvantage associated with this method is that this method

works only in the asymptotic sampling regime. This means that the number of trials is not

too small, and in fact large enough so that every possible response is observed many times.

2.6.2 Quadratic Extrapolation Method

Like the Panzeri-Treves method, the quadratic extrapolation method [112] also works only

in the asymptotic sampling regime. The method relies on expanding the bias of entropies

in a second order expansion in 1/N . The information is calculated as

Iplug-in(X, Y ) = Itrue(X, Y ) +
a

N
+

b

N2
. (2.28)

Unlike the Panzeri-Treves method where analytical expressions for the coefficients are

present, the coefficients a and b need to be estimated from the data in this method. For

this purpose computing the information using fraction of the data of size N/2 and N/4 and

fitting the resulting values to the quadratic expression of (2.28). This provides an estimate

for a and b. It takes a full data calculation along with two calculations of size N/2 and four
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of N/4 to average and obtain the values for extrapolation.

2.6.3 Nemenman-Shafee-Bialek Method

The bias correction technique suggested in [88] relies on a Bayesian inference approach.

The biggest advantage of the method is that it does not depend on the asymptotic sampling

regime and provides considerably accurate results even without a large number of trials.

The method is based on the principle that the bias will be minimum when a priori uniform

distribution is assumed while estimating a quantity. The entropy estimates are updated

step by step after the trials. This involves a number of numerical integrations and function

inversions. The method is therefore more demanding to implement than the Panzeri-Treves

method or the quadratic extrapolation method.

2.6.4 Shuffled Information Estimator Method

The shuffled information estimation method [85] provides corrected estimates for informa-

tion only and not for entropies. This method attempts to reduce the bias in the entropy

estimates by shuffling the responses and attempting to remove the response correlations.

If all the data were independent, the bias will be minimum. Two entropy estimates can be

defined in this case: Hind(Y | X), the conditional entropy if all the individual responses

for each of the trials were independent of each other for a fixed stimulus, and Hsh(Y | X),

the conditional entropy obtained when the response correlations are removed by shuffling

the data. Both the quantities are estimates for the entropy of the system if there are no cor-

relations and become equal for infinite number of trials. However, in the finite trials case,

the bias in Hsh(Y | X) much higher than the bias in Hind(Y | X), and of the same order as

H(Y | X). Using these estimates the shuffled mutual information can be calculated as

Ish(X, Y ) = H(Y )−Hind(Y | X) +Hsh(Y | X)−H(Y | X). (2.29)

For large number of trials, Hsh(Y | X) = Hind(Y | X), therefore, Ish(X, Y ) = I(X, Y ).

But in case of a small number of trials, Hsh(Y | X) = H(Y | X), which means that the

quantity H(Y ) − Hind(Y | X) dominates in Ish(X, Y ). Hence Ish(X, Y ) is smaller than
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I(X, Y ) implying a lesser biased estimate of mutual information.

The shuffled estimator method is straightforward and gives efficient results when com-

bined with one of the above-mentioned techniques for entropy bias correction.

2.6.5 Shrinkage Estimator Method

The James-Stein shrinkage estimator approach [39] is based on improving the underlying

probability estimates rather than entropy estimates. Once the probability estimates have

been corrected the plug-in method should yield correct entropy estimates. The method

works by averaging two models, a high dimensional one with large variance and low bias,

and another lower dimensional one with small variance and high bias. The probabilities for

each response y are calculated by the formula

pshrinky = λty + (1− λ)pML
y , (2.30)

where λ ∈ [0, 1] is the shrinkage intensity, ty is the shrinkage target, and pML
y is the normal

maximum likelihood estimate from frequency counts. It is suggested that the maximum

entropy uniform distribution can be considered the target. The expression for λ can be

found in [39]. The probabilities are calculated for all response distributions conditioned on

each of the stimulus and the entropies can then be obtained.

2.7 The Unscented Transform

2.7.1 Main Idea and Motivation

Unscented transform is a method that enables us to calculate the statistics of an output

distribution after the random variable has undergone a nonlinear transformation using only

the mean and covariance of the input. The main idea stems from the inadequacies in the

approach of extended Kalman filter. In the context of nonlinear estimation via extended

Kalman filter, a known nonlinear function is linearised and posterior statistics are calculated

while making use of the mean and covariance of a prior distribution. The extended Kalman

filter uses only the first order terms in the Taylor series expansion of the nonlinear system.
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This introduces significant errors in the estimates of posterior statistics especially when the

function is highly nonlinear.

Unlike the extended Kalman filter, the Unscented transform is based on the principle

that given only the mean and covariance of the input distribution, it is better to approx-

imate the distribution itself than to approximate the nonlinear function. A set of points,

called sigma points, is carefully chosen using the input mean and covariance. This set

captures information about the input distribution very well. All the points in the set are

then transformed through the nonlinear function and the mean and covariance of the output

distribution are then calculated using the transformed sigma points.

To understand the main idea of unscented transform, let us look at the Taylor series ex-

pansion of the nonlinear function. Let us suppose that x is an n−dimensional random vari-

able with mean x and covariance matrix Px. Let x be related to another m−dimensional

variable y by a nonlinear function g as

y = g(x). (2.31)

We want to know what the distribution of y looks like. We can write (2.31) as

y = g(x+ δx), (2.32)

where δx is a zero-mean random variable with the same covariance matrix Px as x. The

Taylor series expansion of (2.32) can be written as

y = g(x) +∇gδx+
1

2
∇2gδx2 +

1

3!
∇3gδx3 +

1

4!
∇4gδx4 + · · · (2.33)

where all the derivatives are evaluated at x = x and ∇ represents gradient of a function.

With a bit of algebra and taking expectations [124], we can show that the nth order terms

in the series expansions of mean y and covariance matrix Py of y involve products of only

nth order derivatives of g and nth order moments of x. That is

y = E[y] = g(x) +
1

2
∇2gPx +

1

2
∇4gE[δx4] + · · · (2.34)
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Py = E[(y − y)(y − y)T ] = ∇gPx(∇g)T

+
1

2× 4!
∇2g

(
E[δx4]− E[δx2Py]− E[Pyδx

2] +P2
y

)
(∇2g)T

+
1

3!
∇3g + E[δx4](∇g)T + · · · (2.35)

This means that if the second order moments and function derivatives at x = x are known

exactly then the mean and covariance estimates are correct up to second order. The un-

scented transform enables us to capture the first two moments of y accurately.

2.7.2 The Unscented Transform Setup

In the scenario presented in the previous section, we want to determine the first two mo-

ments of the output distribution of y. To capture the true mean and covariance of the input

distribution x, a set of 2N + 1 sigma points is deterministically chosen. Although the very

first simplex set of points suggested was of N + 1 points [59], it had issues due to asym-

metry and could not capture the higher order effects efficiently. The set of 2N + 1 sigma

points, however, does not suffer from symmetry issues [60]. The derivation of those set of

points is based on the idea that each sigma point be given a weight so that the output means

and covariances are captured accurately upto second order in the form of weighted combi-

nations of function evaluations of the sigma points given that the sigma points accurately

describe the input mean and covariance. Let us call the sigma point as Xi with weight wi.

An example of a set that accurately encodes information about the mean and covariance of

input distribution of x is

X0 = x w0 =
κ

N + κ

Xi = x+
(√

(N + κ)Px

)
i

wi =
1

2(N + κ)
i = 1, . . . , N

Xi = x−
(√

(N + κ)Px

)
i

wi =
1

2(N + κ)
i = N + 1, . . . , 2N.

We note here that the 2N+1 weights wi sum up to 1. Also the notation
(√

(N + κ)Px

)
i
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refers to the ith column of the matrix square root of the weighted covariance matrix (N +

κ)Px. For the selection of these sigma points, the matrix square root can be calculated using

different decomposition methods like Cholesky factorisation scheme. Moreover, since the

decomposition i.e. the matrix square root of a positive-semidefinite matrix is not unique,

any square root decomposition will suffice. κ is a scaling parameter and we will discuss

the effect of κ later in this section.

After the selection of sigma points, the nonlinear function is applied to each of the

2N + 1 points to obtain 2N + 1 output points capturing the output distribution

Yi = g(Xi), i = 0, . . . , 2N. (2.36)

The statistics for the output distribution are then approximated as

y ≈
2N∑
i=0

wiYi,

Py ≈
2N∑
i=0

wi(Yi − y)(Yi − y)T ,

Pxy ≈
2N∑
i=0

wi(Xi − x)(Yi − y)T ,

where Pxy represents the cross covariance between the input and the output distributions.

These estimates for the mean and covariance of y are accurate upto second order in the

Taylor series expansions for (2.34) and (2.35). The accuracy increases to third order if the

input distribution is Gaussian.

The construction of sigma points ensures that they are bound by a sphere whose radius

depends on κ. The radius can be scaled up or down by making an appropriate choice of

κ. This is desirable in some cases because as the dimension of x increases, the radius

of the sphere increases automatically which can then cause non-local effects to become

dominant. The issue can then be fixed with scaling down the radius of the sphere, which in

effect brings the sigma points closer to the mean.
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2.7.3 Scaled Unscented Transform

The problem with the unscented transform setup is that for some choices of κ, the weights

of the sigma points can become negative. Since the covariance matrix Py is a weighted

product of transformed sigma points, negative weights can result in a non-positive semidefi-

nite matrix. This problem was addressed with the introduction of a transformation of sigma

points [58] using a scaling parameter α as follows

X ′
i = X0 + α(Xi −X0). (2.37)

The scaling parameter α lies in the interval (0, 1) and can be chosen as small as desired.

Smaller α ensures that higher order effects are minimised. The unscaled version of un-

scented transform is a special case of (2.37) when α = 1. The choice of α in the interval

(0, 1) ensures that the resulting covariance matrix is semi-positive definite while preserving

the accuracy of estimates upto second order. The next step after the scaling of sigma points

is to select a function h and another random variable, termed as auxiliary random variable

in [58], so that

z = h(x) =
g(x+ α(x− x))− g(x)

α2
+ g(x). (2.38)

The second order accuracy of the statistics of the new auxiliary variable is ensured by

the fact that the Taylor series expansions of z and Pz are the same as those for y and

Py respectively upto second order. In practice, the auxiliary random variable introduction

can be equivalent to scaling the original sigma points as in (2.37) along with the modified

weights

w′
i =

⎧⎨⎩
w0

α2 +
(
1− 1

α2

)
, i = 0

wi

α2 , i = 1, . . . , 2N
(2.39)

An additional parameter is also introduced to direct influence on the weight of the zeroth

sigma point. The whole idea of scaled unscented transform can be efficiently combined



2.7 The Unscented Transform 38

and summarised into finding the sigma points according to the following algorithm

X0 = x

Xi = x+
(√

(N + λ)Px

)
i

i = 1, . . . , N

Xi = x−
(√

(N + λ)Px

)
i

i = N + 1, . . . , 2N.

with weights

w
(m)
0 =

λ

N + λ

w
(c)
0 =

λ

N + λ
+ (1 + β − α2)

w
(m)
i = w

(c)
i =

1

2(N + λ)
, i = 1, . . . , 2N.

where

λ = α2(N + κ)−N

and the superscripts (m) and (c) are representative of mean and covariance respectively. β

is another parameter that controls the zeroth order weight of the covariance, and encodes

any higher order information that one might have for the input distribution. Before the

sigma points are sampled using the above scaled method, one needs to have an idea of the

values of the parameters, κ, α, and β. The choice should be made keeping in mind that

κ ≥ 0 ensures positive semidefiniteness of the covariance matrix, α in the interval (0, 1)

is equivalent to choosing appropriate radius of the bounding sphere, and β ≥ 0 provides

any extra weight to zeroth order sigma point if need be. Once the setting is complete and

sigma points calculated, the original nonlinear function g is applied to the sigma points in

the same way as in (2.36) to obtain their corresponding points in output distribution. The
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mean, covariance, and cross covariance of the output can then be obtained as

y ≈
2N∑
i=0

w
(m)
i Yi, (2.40)

Py ≈
2N∑
i=0

w
(c)
i (Yi − y)(Yi − y)T , (2.41)

Pxy ≈
2N∑
i=0

w
(c)
i (Xi − x)(Yi − y)T . (2.42)

The above estimates for the statistics of the output distribution are accurate upto second

order. The accuracy increases to third order if the input distribution is Gaussian.

The unscented transform provides a useful tool to replace Monte Carlo sampling by a

deterministic sampling scheme where the number of samples is greatly reduced. We shall

show the usefulness of scaled unscented transform in chapters 4 and 5.

2.8 Simulated Annealing

Simulated annealing is a global optimization technique for unconstrained or bound opti-

mization problems [9,63]. The method iterates by generating a new point every time based

on a certain probability. The method is based on the physical process of heating a mate-

rial and cooling it down slowly to minimize the energy of the system. The probability of

selecting subsequent points accordingly scales with temperature. The goal of a new point

selection is to lower the objective. However, with a certain probability, the points that raise

the objective are also selected so that the algorithm does not get trapped in local minima.

The probability of accepting worse solution decreases as the iterations progress, thus in-

terpreted as slow cooling of the system. Whenever, a new point is randomly generated,

the algorithm probabilistically decides between moving to the new state or staying in the

current state. The step is repeated until the probabilities eventually lead the system to the

global optimum. The simulated annealing algorithm works as follows

1. Initialise the current state x of the system to x0

2. Calculate current temperature T



2.9 Markov Chain Monte Carlo Methods 40

3. Choose a random neighbouring state y

4. Generate a uniform random number r in the interval (0, 1)

5. Calculate the state energies E(x) and E(y)

6. If P (E(x), E(y), T ) ≥ r, then update the current state to y

7. Repeat steps 2 to 6 until stopping criteria is achieved

The above algorithm is not straightforward since the choice of current temperature,

neighbouring state and acceptance probability function P needs to be specified. Unfortu-

nately, there is no general choice that fits all problems and it has to be modified depending

on the problem at hand. The guidelines on these choices are not something we would go

into detail in this work but can be found in [130].

2.9 Markov Chain Monte Carlo Methods

Markov chain Monte Carlo methods (in short MCMC) are sampling methods from a prob-

ability distribution based on constructing a Markov chain whose equilibrium distribution

is the target sampling distribution [25, 100]. The sequence of states, the chosen states dur-

ing the iterative process, possess the Markov property. This means that the system state

only depends upon the previous state and not on the states preceding it. MCMC meth-

ods have wide application in Bayesian statistics. MCMC methods are also sometimes

used as optimization techniques. There is wide collection of sampling, and acceptance

rejection techniques while sampling using MCMC methodology, including Gibb’s sam-

pling and Metropolis-Hastings. The theory behind MCMC methods is complex in general,

and is beyond the scope of this text. In particular, we shall use Metropolis-Hastings algo-

rithm [36,37] in chapter 5 to optimise mutual information in a problem related to specificity

in a receptor ligand binding system. In short, the Metropolis-Hastings algorithm uses the

acceptance probabilities similar to those in simulated annealing, but the temperature is not

reduced.
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2.10 Computational Tools and Software

For the analysis presented in chapter 4, the analysis and unscented transform application are

implemented in MATLAB. We perform bias correction using pyentropy library in Python

[49] with Panzeri Treves method, and Gillespie simulations are performed with Facile and

Easystoch [108].

In chapter 5, we perform all the analysis in MATLAB with fsolve command for

fixed points of the deterministic receptor ligand binding system. A MATLAB toolbox [73]

is used for MCMC methods. The stochastic simulations are implemented with Facile and

Easystoch [108].
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Chapter 3

Sensitivity Analysis of Biochemical

Networks: A Review

3.1 Introduction to Sensitivity Analysis

In order to introduce the concept of sensitivity analysis, we first attempt to give a brief ac-

count of robustness. Robustness is defined as the ability of a biological process to maintain

its function against internal and external perturbations in the environment. In most cases,

biochemical processes are mathematically described in the form of a model that involves

parameters. Robustness is the stability of its behaviour under simultaneous changes in the

model parameters. An account of the theory of robustness can be found in [64]. In order

to quantify robustness in a model, we must be able to associate the uncertainty or variation

in an output to the different sources of variation in the model input. Such an analysis is

called sensitivity analysis. Some sensitivity analysis reviews can be found in [94], [18],

and [136]. In the following sections, we present some methodologies for performing sen-

sitivity analysis.

In a deterministic setting, a biochemical system with temporal variations can be written

as
dX

dt
= f(X,p, t), X(0) = Xo, (3.1)

where X is an N -vector of species concentrations and p is the M -vector of system param-

eters. Below, we discuss some classical techniques for deterministic sensitivity analysis.
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3.1.1 Local Sensitivity Analysis

Local Sensitivity analysis methods calculate partial derivatives of the form ∂X/∂p, ∂2X/∂p2

etc about the nominal value of the parameter p in (3.1). These sensitivity measures are

essentially gradients around the nominal values of the solution. In large biochemical net-

works, numerical sensitivity analysis techniques are usually employed. Below are some of

the very basic numerical local sensitivity analysis methods from [94].

• The method of Finite Differences uses various sets of parameter values, and then

the sensitivity coefficient for the j-th parameter is calculated by holding all other

parameters fixed and using the formula

∂X(t)

∂pj
=

X(t, pj +Δpj)−X(t, pj)

Δpj
.

This technique requires M solutions of (3.1).

• Equations (3.1) can be differentiated with respect to parameters pj to obtain

d

dt

∂X

∂pj
= J(t)

∂X

∂pj
+

∂f(t)

∂pj
, (3.2)

where J(t) = (∂f/∂X)p. Equations (3.1) and (3.2) can be coupled together and then

solved to obtain the required sensitivity measures. This method is called the Direct

Differential Method [19].

• The Green’s Function Method [20,46] exploits the fact that equation (3.2) is a linear,

inhomogeneous equation with time varying coefficients. The corresponding homo-

geneous problem can be written as

d

dt
K(t, t′) = J(t)K(t, t′), (3.3)

where K(t, t′) = 1 for t > t′. K is an N ×N matrix called the kernel or the Green’s

function matrix and its columns are N linearly independent solutions of (3.3). The
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full solution of (3.2) can be written as

∂X(t)

∂pj
= K(t, t′)

∂X(t′)
∂pj

+

∫ t

t′
K(t, s)

∂f(s)

∂pj
ds (3.4)

Usually, an adjoint strategy is employed to solve the above integral efficiently.

• The methods described above have different efficiencies for different problems. There

are many other methods [94] as well as modifications of the above methods in prac-

tice.

• The metabolic control analysis techniques are also used in systems biology for sen-

sitivity analysis. There has been a lot of work on such techniques. We shall dedicate

a complete section to the discussion of these methodologies later in this chapter.

3.1.2 Global Sensitivity Analysis

Global sensitivity analysis techniques involve taking into account the statistical properties

of the parameter uncertainty and calculating averaged sensitivities like 〈∂X/∂p〉 over the

region of parameter uncertainty. Local sensitivity analysis methods are used only when the

variations about the reference values of the parameters are small and a low order Taylor

expansion of X(t) is valid. However, if the variations are large, then global sensitivity

analysis techniques are to be used. Some of the most common global sensitivity analysis

methods [94] are discussed below.

• The spread in parameter values about their true values can be represented in the

form of a probability distribution. In this case, the problem of sensitivity analysis

reduces to finding the probability distribution of concentrations X induced by the

distribution of parameters. If we assume that Y and F(Y, t) are M +N vectors with

Yi = Xi, Fi(Y, t) = fi(X,p, t) for i = 1, . . . , N and Yi+N = pi, Fi+N(Y, t) = 0

for i = 1, . . . ,M , then the system (3.1) can be written as

dY

dt
= F(Y, t), Y(0) = Yo. (3.5)

The fact that Fi+N(Y, t) = 0 for i = 1, . . . ,M , implies that Yi+N = Y o
i+N for



Chapter 3. Sensitivity Analysis of Biochemical Networks: A Review 45

i = 1, . . . ,M . This means that the initial condition Yo are random variables with

probability distribution, say, P0(Y
0). If P (Y, t) is the probability distribution of the

random variable Y, then the moments of the functions of Y can be computed as

〈h(y(t))〉 =
∫

P (Y, t)h(Y)dY. (3.6)

Using the fact that
∫
P (Y, t)dY = 1, it can be shown that P (Y, t) satisfies the

partial differential equation

∂P (Y, t)

∂t
= −∇Y · (F(Y, t)P (Y, t)), P (Y, 0) = P0(Y

o). (3.7)

The sensitivity information can now be obtained by studying the surface defined by

P (Y, t) in Y space.

• The FAST (Fourier Amplitude Sensitivity Test) method was developed by Schuler

et al. in [13], [104], and [14]. The method is based on the assumption that each

parameter is statistically independent and their values are distributed according to

given probability distributions. The sensitivity indices are computed by exploring

the M -dimensional parameter space with a search curve given by the parametric

equations

qi = Gi sin(ωis); i = 1, . . . ,M, (3.8)

where parameters are written in the form pi = p0i exp(qi), s is a scalar in (−∞,∞),

ωi are a set of incommensurate frequencies that ensure that the curve (3.8) is space

filling, and Gi are properly selected transformation functions that depend on the pa-

rameter distributions. Thus, the averaging over an ensemble of qs can be reduced

to averaging over the variable s. The use of incommensurate frequencies raises a

question of computational feasibility. Therefore, integer frequencies are often used

which ensures that the concentrations X are periodic functions of s with period 2π.

These integer frequencies are chosen as precisely as possible to mimic a space fill-

ing curve. p0i provide a response curve for average concentrations and now that the
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concentrations are periodic in s, the following Fourier coefficients can be defined

Aj
kωi

(t) =
1

π

∫ 2π

0

Xj(t,q(s)) cos(kωis)ds, k = 0, 1, . . . , (3.9)

Bj
kωi

(t) =
1

π

∫ 2π

0

Xj(t,q(s)) sin(kωis)ds, k = 1, 2, . . . . (3.10)

These coefficients provide sensitivity measures. For example, the concentration Xi

is insensitive to pi at the kth harmonic ωi if Aj
kωi

and Bj
kωi

are zero for all i. FAST

method is usually very expensive computationally. Several modifications have been

proposed to the method. FAST is a variance based approach. Several other variance

based approaches are also available in literature. Examples of such methods include

Sobol sensitivity analysis method [109] and High dimensional Model representation

method [77], [76]. These variance based approaches are computationally very ex-

pensive, especially when the input space is high-dimensional.

• Some of the most modern techniques for Global sensitivity analysis of biochemical

networks can be found in [96] and [38]. In [96], a global sensitivity analysis tech-

niques is developed based on heat maps and parameter sensitivity spectrum. The

method studies the variation of parameters in the whole of solution space rather than

focusing on one output variable at a time. A generalised sensitivity summation theo-

rems also presented in the paper. In [38], global as well as local sensitivity analysis

techniques are combined to efficiently study the sensitivity of parameters throughout

the range of parameter uncertainty.

• There is a global sensitivity analysis approach presented in [79] that uses concepts of

entropy and mutual information to determine parametric sensitivities of the system

at all orders of interaction. Sensitivity summation laws are also presented in the

paper in terms of multivariate mutual informations. This approach is only present for

deterministic systems in literature [79]. In chapter 4, we focus on this approach and

generalise the methodology for analysis of stochastic systems.

• Several other techniques like Morris screening method [87], weighted average of lo-

cal sensitivities [5], multiparametric sensitivity analysis [44], and partial rank coef-
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ficient analysis [81] have also been applied for global sensitivity analysis in systems

biology. An account of the suitability of these methods for different scenarios can be

found in [136].

3.2 Control Theoretic Approaches to Sensitivity Analysis

The concept of trade-off is very important in the study of robustness. It has been known for

quite some time that biological systems have a trade-off between robustness and fragility

[74]. If a model becomes stable to perturbations in a set of parameters, it becomes fragile

and vulnerable to perturbations in others. There is always a need to optimise the robustness

and fragility in models. This is the reason why control theory has been used to study

these systems. Optimal control and tuning of parameters has been studied using control

theoretic approaches [7,23,40,47,61,66,99,129]. Nevertheless, there have been questions

on applying control theory directly to biological systems. Control theoretic approaches are

designed to study the performance of monostable systems and for systems that have been

designed to meet certain criteria. Biological systems, on the other hand, are not necessarily

monostable. They also evolve with time, which means that their desired state may change

from time to time. For a class of biological problems, though, metabolic control analysis

(MCA) presents an elegant treatment of the sensitivity analysis of biochemical networks.

Some applications can be found in [11, 48, 116]. The basic MCA tools are applied to

biochemical networks in [23] to study the sensitivities of the systems at steady-state. These

results have been extended to study the behaviour of time-varying systems in [53]. Since

the results in [23] can be deduced from those in [53], we present the time-varying results

here. To deal with the analysis effectively, we write the equation (3.1) in the form

dX(t)

dt
= Qv(X(t),p, t), X(0) = Xo, (3.11)

where Q is called the stoichiometric matrix of the system, p is the vector of parameters,

and v is the rate vector. In order to ease the computation, we split the matrix Q as

Q = LQR, (3.12)
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where QR is obtained by truncating Q and retaining only its linearly independent rows. In

this way, we get rid of the linear dependencies among the state variables that occur due to

conservation laws. Moreover, we define

q := [p,Xo]T (3.13)

to study the sensitivities with respect to p and Xo. As usual, there are N species, M

parameters and, say, K types of reactions. We now present the following definitions of

some quantities of interest in MCA.

Definition 3.2.1 For a given initial condition X(0) and a set of parameter values p0 that

together form a vector q0, the concentration response coefficients (or the concentration

sensitivity coefficients) are defined as the elements of the N × (N +M) matrix

RX
q (t) =

∂X(q, t)

∂q
|q=q0 = lim

q→q0

X(q0 +Δq, t)−X(q0, t)

Δq
. (3.14)

Definition 3.2.2 For a given initial condition X(0) and a set of parameter values p0 that

together form a vector q0, the rate response coefficients (or the rate sensitivity coefficients)

are defined as the elements of the K ×M matrix

Rv
q(t) =

∂v(X(q, t),p, t)

∂q
|q=q0 =

∂v(X,p, t)

∂X
RX

q +
∂v(X,p, t)

∂q
, (3.15)

where the derivatives are evaluated at q = q0 and X = X(q0, t).

(3.11) can now be differentiated with respect to q to obtain

d

dt

∂X(q, t)

∂q
= LQR

(
∂v(t)

∂X

∂X(t)

∂q
+

∂v(t)

∂q

)
. (3.16)

The equations (3.11) and (3.16) can now be solved as a coupled system to obtain RX
q .

Rv
q can also be obtained using its definition and the RX

q just obtained using (3.15). These

computations are usually very difficult to carry out analytically. The numerical solution

amounts to the same computational effort as the direct differential method described in the

previous section.
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3.2.1 MCA Theorems

The MCA treatment of systems is governed by MCA theorems. These theorems describe

the so-called trade-offs between sensitivities with respect to various components of the

system. The two main theorems (for steady-state) are the summation theorem and the

connectivity theorem. From now on, we shall use p rather than q for clarity.

Theorem 3.2.3 Summation Theorem If each column of the matrix ∂v
∂p
(t) lies in the nullspace

of QR for each t ≥ 0, then

RX
p (t) = 0, and Rv

p =
∂v

∂p
(t). (3.17)

Theorem 3.2.4 Connectivity Theorem If ∂v
∂p
(t) = ∂v

∂X
(t)L for each t ≥ 0, then

RX
p (t) = −L, and Rv

p = 0. (3.18)

For ease of understanding, we define the concentration control coefficients and the rate

control coefficients as follows.

CX = −L

(
QR

∂v

∂X
L

)−1

QR, (3.19)

Cv = − ∂v

∂X
L

(
QR

∂v

∂X
L

)−1

QR + I. (3.20)

From (3.16), it is clear that at steady-state,

LQR

(
∂v

∂X

∂X

∂p
+

∂v

∂p

)
= 0,

implying that

RX = −L

(
QR

∂v

∂X
L

)−1

QR
∂v

∂p
.

Therefore, we have

RX = CX∂v

∂p
.
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Similarly, we can also obtain

Rv = Cv ∂v

∂p
.

So in terms of the control coefficients, the above summation theorems reduce to the form

M∑
j=1

CXi
j = 0 and

M∑
j=1

Cvk
j = 1, (3.21)

for each i = 1, . . . , N and k = 1, . . . , K. (3.21) shows that the controls for each reac-

tion are shared among different reaction rates. Similarly, the connectivity theorem can be

written as the statement

CX ∂v

∂X
L = −L and Cv ∂v

∂X
L = 0. (3.22)

3.2.2 Frequency Domain Approach to Sensitivity Analysis

A frequency domain approach to metabolic control analysis has been taken in [52] and

[78]. This enables us to study the response of a system under arbitrary perturbations in

parameters at steady state as opposed to step perturbations. This helps study the dynamic

response of the systems where the nominal behaviour is time-varying. We again consider

the system in (3.11) and assume that the steady state of interest is (xo,po). Linearising the

system (3.11) about this steady state, we obtain

ẋ(t) =

[
QR

∂v

∂x
L

]
x(t) +

[
QR

∂v

∂p

]
u(t), (3.23)

where x = X(t) − xo and u(t) = p(t) − po so that the linearised system (3.23) has the

steady state (x,u) = (0,0). Moreover, linearising v(·, ·) about the nominal value, we

obtain
∂v

∂X
Lx(t) +

∂v

∂p
u(t). (3.24)
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The theory developed in [52] is valid for linear systems at steady states. We define a linear

time-invariant input-output system in the form

ẋ(t) = Ax(t) +Bu(t) (3.25)

ẏ(t) = Cx(t) +Du(t), (3.26)

where u(t) and y(t) are input and output of the system respectively. For our system, we

know from (3.23) that

A = QR
∂v

∂X
L|X=xo,p=po and B = QR

∂v

∂p
|X=xo,p=po . (3.27)

Now if we choose our output to be x(t) then from (3.25) and (3.26), we have

C = I and D = 0,

but if we are interested in the study of reaction rate vector, then from expression (3.24), we

have

C =
∂v

∂X
L and D =

∂v

∂p
.

In [52], it is argued that the frequency response of the input-output system (3.25) and (3.26)

is given by

H(iω) = C(iωI−A)−1B+D, (3.28)

for all real ω. Therefore, we obtain the frequency dependent concentration response coef-

ficients and the rate response coefficients as

RX(ω) := HX(iω) =

(
iωI−QR

∂v

∂X
L

)−1

QR
∂v

∂p
(3.29)

and

Rv(ω) := Hv(iω) =
∂v

∂X

(
iωI−QR

∂v

∂X
L

)−1

QR
∂v

∂p
+

∂v

∂p
. (3.30)
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The corresponding control coefficients can be defined as the response coefficients when
∂v
∂p

= I. In general,

RX(ω) = CX(ω)
∂v

∂p
and Rv(ω) = Cv(ω)

∂v

∂p
. (3.31)

The summation and connectivity theorems assume the following form in the frequency

domain.

Theorem 3.2.5 Summation Theorem If a vector k lies in the nullspace of QR, then

CX(ω)k = 0 and Cv(ω)k = k

for all ω ≥ 0.

Theorem 3.2.6 Connectivity Theorem For the control coefficients as described before

CX(ω)
∂v

∂X
L = −I+ iω

(
iωI−QR

∂v

∂X
L

)−1

and

Cv(ω)
∂v

∂X
L = iω

∂v

∂X
L

(
iωI−QR

∂v

∂X
L

)−1

for all ω ≥ 0.

3.3 Stochastic Sensitivity Analysis

If a biochemical system is stochastic, a deterministic sensitivity analysis is effectively the

same as analysing the sensitivities of the mean or other lumped variables of the underlying

distributions. In [33], this fact is elaborated. It is argued that deterministic treatment of

a system often misses out on the important changes in the underlying distributions that

a stochastic treatment might well be able to capture effectively. For example, in case a

deterministic analysis tries to address the changes in mean of a distribution as a result of

parameter perturbations, the conclusion will be that the system is insensitive to variations

in the parameter if the mean remains unchanged. However, there might be potentially very
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different distributions exhibiting the same mean. Therefore, a stochastic treatment will be

appropriate as this will capture the changes in all the aspects, rather than just the mean, of

the underlying distribution. Another very important aspect that backs the use of stochastic

sensitivity analysis is that multistable systems have more than one attractors implying that

their distributions are bimodal. As before, deterministic sensitivity analysis will only be

able to capture shifts in modes of the distribution, it might fail to capture the shift in the

weights between the two modalities.

Below, we present three different ideas from literature that deal with the problem of

stochastic sensitivity analysis.

3.3.1 Stochastic Sensitivity Analysis Using SSA Realisations

Analogous to the classical sensitivity, the sensitivity of a parameter pj in a discrete stochas-

tic system can be given as

Sj(X, t) =
∂f(X(p), t)

∂pj
, (3.32)

where f(X, t) is the probability density function of X. It is obvious that this sensitivity

measure is closely related to the score function given by

S̃j(X, t) =
∂ log f(X(p), t)

∂pj
, (3.33)

which is the gradient of the log-likelihood function. The Fisher Information Matrix (FIM)

J given by

J = E[(∇p log f)(∇p log f)
T ] (3.34)

describes the variance of the score function. In [33], the authors present different measures

of stochastic sensitivity based on computing the Fisher information matrix. The method

in [33] asks for computing Gillespie simulations for the system. These realizations are

computed for both perturbed and unperturbed parameters. This results in the computation
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of a centered approximation to ∂f
∂pj

for some j as

∂f

∂pj
=

f(X, pj +Δpj)− f(X, pj −Δpj)

2Δpj
. (3.35)

Using these centered differences in (3.34), one can obtain the corresponding Fisher infor-

mation matrix. According to [33], there are three different measures of sensitivity which

may have different values but should have same sensitivity orderings of the parameters for

the same initial conditions. The same idea is applied in many other subsequent stochastic

sensitivity analysis studies. The above idea uses Gillespie algorithm to produce perturbed

and unperturbed probability densities and then calculates FIM. This independent sampling

approach has been replaced by more efficient sampling methods like common reaction

number [97] in literature to obtain more efficient and less biased results. This technique is

also used in more efficient methods for sensitivity analysis based on finite differences. The

methodology is further improved in [34] using unbiased techniques for finite difference

based sensitivity estimation of stochastic systems. The methodology in [133] takes the fi-

nite difference approaches and uses them to calculate second order stochastic sensitivities.

3.3.2 Stochastic Sensitivity Analysis Using Linear Noise Approximation

Another recent method for stochastic sensitivity analysis has been proposed in [69]. The

method uses linear noise approximation to the system and spares us of computing reali-

sations of Gillespie’s algorithm. In this approach, linear noise approximation helps derive

model equations that lead to efficient numerical computation of the Fisher information ma-

trix. The work then focuses on the differences between deterministic and stochastic models

for sensitivity analysis and the differences between time series and time point data in the

case of a stochastic study. According to [69], the Fisher information matrix can be written

in the form

J(p)k,l =
∂μT

∂pk
Σ
∂μ

∂pl
+

1

2
trace

(
Σ−1 ∂Σ

∂pk
Σ−1 ∂Σ

∂pl

)
. (3.36)

This means that in order to calculate the Fisher information matrix, we only need to calcu-

late parameter derivatives of the mean μ and the variance Σ. LNA approximation ensures

that we only need to solve systems of ordinary differential equations to obtain the mean and
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variance. The mean is given as a solution of an ODE, the associated reaction rate equation.

The variance is the product of solutions of ODEs in case we are modelling time series data.

In case of time point data, variance can be obtained directly as a solution of an ODE while

in the deterministic case, it is a constant.

3.3.3 Summation Theorems for Stochastic Sensitivity Analysis

MCA-like theorems have been developed in [62, 101]. The works present an extension

of deterministic metabolic control analysis to the stochastic regime. Summation theorems

for control coefficients related to sensitivities of species concentrations and reaction fluxes

have been described. In [101], it has been argued that the summation and connectivity the-

orems are valid in the presence of extrinsic noise but in this case, and the MCA coefficients

accommodate the effect of noise. It is also suggested that because the summation and con-

nectivity theorems hold true in deterministic as well as stochastic cases, the control of the

system is shared among all the reaction rates. This enables us to exploit noise dependency

to exert control on the system, which means that noise can be regarded as a mechanism that

allows us to steer the system in a desired direction. Thus noise can become an effective

source of regulatory mechanism for the system. In addition to this, in [62], the summation

theorem for reaction fluxes is shown to depend on measurement time window ε. If the

control parameter for the species Xi relative to the parameter pj is defined as

CXi
pj

=
d logXi

d log pj
,

then the summation theorem for the mean 〈Xi〉 of species Xi is given by

M∑
j=1

C〈Xi〉
pj

= 0.

A similar theorem has been derived for the concentration coefficient of covariation V X
ij and

is given as
M∑
j=1

C
V X
ij

pj = 0.
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Furthermore, if the reaction flux J for ith reaction is defined as

Ji =

(
1

ε

)
Number of reaction events that occur during ε,

then the summation theorems for reaction fluxes are given as

M∑
j=1

C〈Ji〉
pj

= 1, (3.37)

M∑
j=1

C
V J
ik

pj =
∂ log V J

ik

∂ log ε
. (3.38)

3.4 Concluding Remarks

In this chapter, we presented a brief review of some sensitivity analysis methodologies in

practice. There are local and global sensitivity analysis methods. The suitability of these

methods is dependent on the problem at hand. In addition to this, some sensitivity analysis

approaches take into account the effects of stochasticity of the system. In the next chapter,

we shall introduce a novel stochastic sensitivity analysis methodology that possesses global

properties, and makes use of concepts from information theory.
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Chapter 4

An Efficient Information Theoretic

Framework for Global Stochastic

Sensitivity Analysis

Sensitivity analysis has been an active field of research due to its applications in robust-

ness analysis, model design and simplification, and decision making [4, 94, 98, 103]. We

also know that biochemical networks are stochastic in nature [107,113]. In this chapter, we

deal with the problem of stochastic sensitivity analysis of biochemical networks using tools

and ideas from Information theory. Chapter 3 presented a review of the tools and method-

ologies in practice to perform parametric sensitivity analysis. Since we know that most

biochemical systems are stochastic in nature, we would like to perform sensitivity analysis

in a stochastic setup. The methodology devised in the next few sections is based on the

technique used in [79]. The use of information theory allows for efficient generalisation

from the deterministic setting in this case.

4.1 The Main Idea

The sensitivity analysis technique in [79] is based on defining a sensitivity measure for

each of the model parameters as the mutual information between the parameter and the

output variable. We know that mutual information between an input and output variable
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is basically the difference between uncertainties in the output variable with and without

the knowledge of input variable. This results in quantifying the effect exerted by the input

parameter on the output variable. Mathematically, we define sensitivity as:

si =
I(Xi, Y )

H(Y )
, (4.1)

where si is the sensitivity measure corresponding to the parameter Xi of the network, H(Y )

represents the entropy of output variable Y , and I(Xi, Y ) is the mutual information be-

tween Xi and Y with respect to changes in all model parameters. The method of comput-

ing this sensitivity is straightforward entropy and information calculation using probability

distributions. All the parameters of the model are varied simultaneously about their nom-

inal values and the output is calculated for each of the combinations of these parameters.

Since only deterministic settings are dealt with in [79], this output computation is done by

solving the coupled reaction rate equations corresponding to the system. As we are dealing

with a stochastic setting, we obtain the outputs by using Gillespie’s stochastic simulation

algorithm. We then obtain the probability distribution for the variable Y which yields p(y),

the probability of Y having the value y. We also compute p(xi, y), the joint probability

distribution of Xi and Y assumes the value (xi, y). This can be done using the joint proba-

bility histogram obtained from the values of Xi and Y . These values can simply be plugged

into the following formulas to obtain the desired quantities

H(Y ) = −
∑
y

p(y) log2 p(y), (4.2)

I(Xi, Y ) =
∑
xi

∑
y

p(xi, y) log2
p(xi, y)

p(xi)p(y)
. (4.3)

Alternatively, I(Xi, Y ) can also be computed by the formula

I(Xi, Y ) = H(Y )−H(Y | Xi), (4.4)

where

H(Y | Xi) =
∑
xi

p(xi)H(Y | Xi = xi).
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4.2 The Concept of Noise Entropy and Summation of Sensitivities

4.2.1 Discretisation Entropy

In order to estimate entropies and mutual informations in a discrete manner given in (4.2)

and (4.4), we need to discretise both the input and output variables. In a deterministic

setting, the knowledge of input completely determines the output. Therefore, H(Y | Xi) =

0 in that case. But when we discretise a system, there is only a finite number of bins that

we can discretise the input into. The result is some uncertainty in the system. This leads to

the idea of discretisation entropy. Let us consider the deterministic setting again. Suppose

our inputs are x and y that are both in the interval [0, 9). We also suppose that our output

is of the form z = x2 + y. We bin the inputs as [0, 3) ∪ [3, 6) ∪ [6, 9) and the output as

[0, 45) ∪ [45, 90). In an ideal world with a continuous setting, we will have the output

estimating formula at hand. In this case, the conditional entropy H(Y | Xi) will not be

zero. But in the discrete case we might only know the output bin number for a certain

combination of bin numbers for inputs. There is a certain level of uncertainty associated

here. For example for x = 6, y = 6, both in bin 3, the output is 42 which is in bin 1 for the

output. But at the same time, for the bin 3 inputs, x = 8, y = 8, the output 72 lies in output

bin 2. Therefore, the knowledge of input bins does not completely identify the output bin

number. The uncertainty arising here is termed as discretisation entropy, and we denote it

as HΔ.

4.2.2 Intrinsic Noise Entropy

In a stochastic setting the idea of discretisation entropy generalises to that of noise entropy.

There is no longer only the discretisation scheme that introduces uncertainty in the output

given input, there is another source for the entropy - the intrinsic noise, or simply the

stochasticity of the system. In a stochastic setting, an estimate of H(Y | Xi) is that of

the noise entropy, denoted as HN , of the system. The noise entropy has two contributing

factors, the discretisation entropy HΔ and the intrinsic noise entropy Hint.

Just as in the deterministic case, the input bin numbers cannot fully identify the output

bin numbers in stochastic framework. The noise might just push the outputs across the
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boundaries of the binning scheme, hence making the output bin number uncertain. The

contributing factors of HΔ and Hint lead us to think that the noise entropy in a stochastic

setting is greater than the corresponding entropy in a deterministic case. In fact, one is

tempted to write that HN = HΔ + Hint could be the case. This means that the stochastic

noise entropy has two components, due to the contributions from discretisation scheme and

intrinsic noise in the system. Although the idea makes sense intuitively, this is not generally

true.

Figure 4.1: Examples of deterministic versus stochastic outputs for inputs in a particular bin. In
deterministic case, the output entropy conditioned on the particular input bin is 1.58 with equal
number of outputs in each of he three output bins. The outputs in stochastic case are time series with
some of the output values crossing the boundaries of the bins. The number of outputs in each bin are
therefore different resulting in smaller conditional output entropy as compared to the deterministic
case. This shows that stochastic noise entropy can be less than deterministic discretisation entropy

Let us consider a completely deterministic system. Only the discretisation scheme ap-

plied for entropy estimations introduces uncertainty. Now, let us add stochasticity into the

system. The intrinsic noise will make the response more haphazard and the response might

jump across the boundaries of the binning scheme. It seems possible that this will make the

response more uncertain and the entropy will be greater. But, at the same time, the discreti-

sation scheme and stochasticity might work in opposite or competing ways. This will be
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the case when the stochastic noise entropy will turn out to be less than the discretisation en-

tropy. To illustrate this concept properly, let us look at figure 4.1, an example of how noise

can work counter intuitively. The outputs are binned into three bins. Let us assume the case

where three inputs are sampled from the same bin to be able to relate to noise entropy. This

setting effectively works as conditioning on the input coming from a particular bin. In the

deterministic setting, the green input maps to bin1, the blue input to bin 2, and the red one

to bin 3. The noise entropy in this deterministic case is log2(3) = 1.585. This entropy is

based on the equal probability of the output lying in each bin being 1
3
. Now let us add noise

to the system. Each output, that was previously a point in output bins now corresponds to

time point data. The figure shows that the data corresponding to input can jump across the

bin boundaries. Now the probability of an output lying in each bin is not equal anymore.

The figure shows that there are far more time point data in bin 2 as compared to bins 1

and 3. This results in a higher probability of output lying in bin 2. The resulting stochastic

noise entropy is less than 1.585, thus proving the fact that stochastic noise entropy can be

less than deterministic noise entropy.

4.2.3 Higher Order Sensitivities

In order to understand the higher order sensitivities, we need to define multivariate mutual

information. Until now we have looked at bivariate mutual information. Reminding our-

selves of the definition of mutual information between two variables, we define I(X, Y )

as

I(X, Y ) = H(Y )−H(Y | X)

which can also be written as

I(X, Y ) = H(X) +H(Y )−H(X, Y ), (4.5)

where p(x, y) is the joint probability distribution of X and Y and

H(X, Y ) = −
∑
x

∑
y

p(x, y) log2 p(x, y).
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Extending this to three variables X, Y, Z, we write the mutual information as

I(X, Y, Z) = H(X) +H(Y ) +H(Z)−H(X, Y )−H(Y, Z)−H(Z,X) +H(X, Y, Z).

In analogy to this, we define multivariate mutual information among parameters X1, X2, . . . , Xn

with joint probability distribution p(x1, x2, . . . , xn), denoted by In(X1;X2; . . . ;Xn) as

In(X1;X2; . . . ;Xn) =
∑

x1,...,xn

p(x1, x2, . . . , xn) log2
p(x1, x2, . . . , xn)

p(x1)p(x2) · · · p(xn)
(4.6)

which can also be expressed as [110]:

In(X1;X2; . . . ;Xn) =
n∑

k=1

(−1)k−1
∑

X⊂{X1,X2,...,Xn},|X|=k

H(X) (4.7)

where

H(X1, X2, . . . , Xn) = −
n∑

i=1

∑
xi

p(x1, x2, . . . , xn) log2 p(x1, x2, . . . , xn).

For this section and the following, where higher order interactions with multivariate in-

formations are implied, we shall denote the separation of variables by a semicolon rather

than a comma. That is, a comma will separate different components of a variable argu-

ment, while a semicolon will be used to separate individual arguments. We shall also use

a subscript for I to denote the number of variables whose mutual information is implied.

With this notation, figure 4.2 provides an illustration that helps understand the concept of

multivariate mutual information.

After defining the concept of multivariate mutual information, we look at the quantity

I2(X1, X2, . . . , Xn;Y ) in our context of sensitivity analysis. This is bivariate mutual in-

formation, as the index shows, with n−dimensional input parameter space. The quantity

encompasses up to nth order multivariable interactions, due to different input variables

interacting with each other, as well as in their combined influence on the output Y . In addi-

tion to individual parameter contributions, the quantity also includes the joint effect of, for

example, the pair (X1, X2) on the output Y . Even if the inputs themselves are uncorrelated,
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Figure 4.2: Illustration of multivariate mutual information and individual entropies. Mutual in-
formation between two variables X1 and X2 is the information shared by H(X1) and H(X2). In
the same way, the three variable mutual information I3(X1;X2;X3) is the amount of information
shared among H(X1), H(X2), and H(X3)

their joint influence on the output can result in an influence on the information estimates.

We now have a close look at different orders of interaction among inputs. Let us split

the term I2(X1, X2;Y ) into different orders of interaction (proof to follow later):

I(X1, X2;Y ) = (influence of X1 on Y + influence of X2 on Y )+(influence of (X1, X2) on Y ) .

Similarly,

I(X1, X2, X3;Y ) = (influence of X1 on Y + influence of X2 on Y + influence of X3 on Y )

+(influence of (X1, X2) on Y + influence of (X2, X3) on Y + influence of (X3, X1) on Y )

+ (influence of (X1, X2, X3) on Y ) . (4.8)

These influences are termed higher order sensitivities. Since parameter pairs, and triplets

and, n−tuples can influence an output, there will be correlations among these parameter

combinations when conditioned on an output value. That is, if the output is y ∈ Y , this

output will induce correlations between input pairs and n−tuples. These output induced

influences are then averaged for each possible output value, to yield the influence of input

pair on the output. Therefore, in their effect, these influences from equation (4.8) are
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actually multivariate conditional mutual informations for n � 2, defined as

In(X1;X2; . . . ;Xn | Y )

=
∑
y

p(y)
∑

x1,...,xn

p(x1, x2, . . . , xn | y) log2
p(x1, x2, . . . , xn | y)

p(x1 | y)p(x2 | y) · · · p(xn | y) (4.9)

Higher order sensitivities and parameter interactions are important for analysis of a

model, and can even guide model development and model simplification. This is because

complex systems are known to be sloppy, i.e., sensitive to only some parameters, while

insensitive to a large number of other parameters [15, 35, 122]. The function of sloppy or

insensitive parameters, or even parameter combinations, can then be replaced by constants

or a smaller combination of new, less sloppy parameters. Moreover, in some cases, first

order sensitivity estimates may not provide any insight into the analysis. For example, in

case of boolean biocatalytic XOR gate [93], the first order sensitivities are zero, and all the

information of the system is carried by second order parameter interactions between the

inputs. This is because for an XOR gate, the output is true when only one of the inputs is

true, and false otherwise. This means that none of the inputs, only by themselves, can give

an idea of the output. Therefore, output entropy conditioned on one of the input variables is

the same as the output entropy itself, resulting in zero first order sensitivities. In this case,

all the information is contained in the second order sensitivities.

We shall now show how the term I2(X1, . . . , Xn;Y ) can be decomposed into several

terms representing different orders of interaction among the input parameters while influ-

encing an output. We first derive the relations for second order sensitivity estimates. Third

and higher sensitivities will follow from there. If we condition (4.5) on a third parameter,

we obtain

I2(X;Y | Z) = H(X | Z) +H(Y | Z)−H(X, Y | Z). (4.10)

It is also a well known fact that

H(X, Y ) = H(X) +H(Y | X). (4.11)
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Now, let us rewrite (4.5) with two dimensional input (X1, X2) :

I2(X1, X2;Y ) = H(X1, X2) +H(Y )−H(X1, X2, Y ). (4.12)

Using (4.11) in (4.12) implies that

I2(X1, X2;Y ) = H(X1) +H(X2 | X1) +H(Y )−H(X1, X2, Y ).

Writing the second term and the combination of third and fourth terms on the right with the

help of equations (4.4) and (4.11) respectively, we get

I2(X1, X2;Y ) = H(X1) +H(X2)− I2(X1;X2)−H(X1, X2 | Y ).

We then split the first two terms on the right using (4.4) to obtain

I2(X1, X2;Y ) = I2(X1;Y )+H(X1 | Y )+I2(X2;Y )+H(X2 | Y )−I2(X1;X2)−H(X1, X2 | Y ).

Now combining the second, fourth and sixth terms on the right and using (4.10) on the

combination yields

I2(X1, X2;Y ) = I2(X1;Y ) + I2(X2;Y ) + I2(X1;X2 | Y )− I2(X1;X2). (4.13)

The equation (4.13) the general form of all the interactions that I2(X1, X2;Y ) involves.

The first two terms on the right hand side provide the first order sensitivities, the fourth

term is the input correlation, while the third term is purely second order sensitivity. The

simple form of (4.13) allows a huge advantage over variance based approaches to sensitivity

analysis because it can easily accommodate for correlated inputs, which is not straightfor-

ward to do in the variance based methods. However, in what follows next, we shall restrict

ourselves to cases where inputs are uncorrelated, and can therefore write (4.13) as

I2(X1, X2;Y ) = I2(X1;Y ) + I2(X2;Y ) + I2(X1;X2 | Y ). (4.14)

It is important to note though that we cannot put the last term in (4.13) to zero when
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the equation itself is conditioned on another variable. The whole concept of higher order

interaction lies in the fact that even though parameters themselves may be uncorrelated,

they can still interact in their effect on the output. One can expect in this case that the last

term in (4.13) when conditioned on another variable, say Z. In that case (4.13) becomes

I2(X1, X2;Y | Z) = I2(X1;Y | Z)+I2(X2;Y | Z)+I2(X1;X2 | Y, Z)−I2(X1;X2 | Z).
(4.15)

The formula (4.14) provides a basis for deriving expressions for higher order sensitivi-

ties. As an illustration, we next derive the third order sensitivity terms in what follows. Let

us consider the term I2(X1, X2, X3;Y ) as before, which includes upto third order sensitiv-

ities. Then

I2(X1, X2, X3;Y ) = I2(X1;Y ) + I2(X2, X3;Y ) + I2(X1;X2, X3 | Y )

Now using (4.14) and (4.15) on the second and third terms on the right, we obtain

I2(X1, X2, X3;Y ) = I2(X1;Y ) + [I2(X2;Y ) + I2(X3;Y ) + I2(X2;X3 | Y )]

+ [I2(X1;X2 | Y ) + I2(X1;X3 | Y ) + I2(X2;X3 | X1, Y )

− I2(X2;X3 | X1)].

Rearranging the terms according to the order of sensitivities, we obtain

I2(X1, X2, X3;Y ) = [I2(X1;Y ) + I2(X2;Y ) + I2(X3;Y )]

+ [I2(X1;X2 | Y ) + I2(X1;X3 | Y ) + +I2(X2;X3 | Y )]

+ I2(X2;X3 | X1, Y )− I2(X2;X3 | X1).

Due to the fact that when all the first and second order sensitivities are subtracted out from

I2(X1, X2, X3;Y ), what remains is purely third order sensitivity denoted by I3(Xi;Xj;Xk |
Y ), we can deduce from the last equation that

I3(Xi;Xj;Xk | Y ) = I2(Xj;Xk | Xi, Y )− I2(Xj;Xk | Xi). (4.16)
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Since multivariate mutual information is symmetric, the third order sensitivity is also sym-

metric with respect to its arguments. Following the above procedure and repeated applica-

tion of (4.14) and (4.15), we can also derive the expressions for higher order sensitivities.

4.2.4 Summation of Sensitivities

In the discussion from previous section, we have shown that for an input output system with

n inputs X1, . . . , Xn and an output Y , the mutual information can be split into different

orders of sensitivities of the output. That is, we can write

I2(X1, . . . , Xn;Y ) =
∑
i1

I2(Xi1 ;Y )+
∑
i1<i2

I2(Xi1 ;Xi2 | Y )+· · ·+
∑

X⊂{X1,...,Xn},|X|=n

In(X | Y )

(4.17)

Now we go back to the basic definition of mutual information from (4.4). Treating the

n−tuple (X1, X2, . . . , Xn) as an input, we can write that

I2(X1, . . . , Xn;Y ) = H(Y )−H(Y | X1, . . . , Xn). (4.18)

The second term on the right, for a discretised version of the system, becomes noise entropy

HN as discussed earlier. From (4.17) and (4.18), what follows is sometimes referred to as

sensitivity summation theorem which states that

H(Y ) = HN +
∑
i1

I2(Xi1 ;Y )+
∑
i1<i2

I2(Xi1 ;Xi2 | Y )+ · · ·+
∑

i1,...,in

In(Xi1 ; . . . ;Xin | Y ).

(4.19)

This becomes easier to understand when we normalise all the sensitivities and the noise

entropy by output entropy. The sensitivity summation law then takes the form

H∗
N +

∑
i1

I∗2 (Xi1 ;Y ) +
∑
i1<i2

I∗2 (Xi1 ;Xi2 | Y ) + · · ·+
∑

i1,...,in

I∗n(Xi1 ; . . . ;Xin | Y ) = 1,

(4.20)

where asterisks represent normalised quantities. In what follows, we shall drop the as-

terisks for convenience and explicitly mention if the estimates are not normalised. In the

examples section later in this chapter, this summation law proves to be very helpful in order
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to compare different cases with varying levels of stochasticity. For ease of comparison and

consistency with (4.1),we shall be normalising all sensitivities and HN with H(Y ).

4.2.5 Total Sensitivity Indices

For the purpose of sensitivity analysis, it is usually more useful to have a sensitivity mea-

sure for every parameter, rather than sensitivities at all orders of interaction. Just like in

variance based approaches, we need to define some quantity for each parameter that com-

bines the effect of that parameter at all orders. An obvious choice is essentially the sum

of all sensitivities that involve that parameter. This is the amount of information that the

particular parameter adds to the system. In mathematical terms, the total sensitivity index

for parameter Xi, denoted here by stotal
i , can be defined as

stotal
i = I2(X1, X2, . . . , Xn;Y )− I2(X1, . . . , Xi−1, Xi+1, . . . , Xn;Y ), (4.21)

Because we can split each of the above terms on the right into varying orders of interactions,

the resulting difference is only the terms with sensitivities involving the parameter Xi. We

shall also be normalising the total sensitivity indices for each parameter with H(Y ). It is

worth pointing out here, that although the sums of all normalised sensitivities is 1, the sum

of all normalised total sensitivity indices is not equal to 1 since in that case some sensitivity

terms are repeated.

4.2.6 High Dimensional Parameter Space

With high dimensional parameter space, the terms H(Y | X1, . . . , Xn) and I2(X1, . . . , Xn;Y )

are not easily computable. We need more and more parameter samples to estimate this

quantity accurately. The same is true for higher order sensitivity estimates. As the dimen-

sionality of the arguments in the information measure increases, we get more and more

limited by the computational expense of sampling. This makes it difficult to compute all

the quantities in (4.19). First and second order sensitivities can be reasonably estimated

with a reasonable number of samples. But the main problem that arises in this case is that

the present setup is only sufficient for sensitivity analysis, and without the knowledge of
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all orders of sensitivities, the noise entropy from (4.19) will remain unknown. We would

also like to have an idea of how much of the output uncertainty is due to stochasticity in

the system.

The solution to this problem, as suggested in [79], is to perform a Monte Carlo estimate

of the noise entropy, which, in their case is the discretisation entropy. We extend the same

idea for stochastic systems. The idea is that if we look closely at the definition of noise

entropy HN , we find that it is the averaged output entropy conditioned on all the input

parameters. With our discretised system where the parameters are conditioned to be in

certain bins rather than having a particular value, this means that the average is taken over

all possible parameter bin combinations. For system with n parameters, all discretised into

bi number of bins, this implies that the average has to be taken over bni possible occurrences.

This number is above 50000 for as little as 4 parameters, each discretised into 15 bins. To

overcome this problem, only a few bin combinations are randomly selected. For each of

these bin combinations, input samples are produced in such a way that all those samples

correspond to the same bin combination. The outputs for each of the samples for a bin

combination are calculated and the entropy of the outputs estimated. For each particular bin

combination, the output entropy is estimated using the sample outputs in order to quantify

the effect of discretisation and noise on the output. This output entropy conditioned on the

particular bin combination is averaged over all the bin combinations to give an estimate

of noise entropy. It is shown in [79] that very few of these bin combinations suffice for a

reasonable estimate of noise entropy. For our case of a stochastic system, the only change

we make is that the output distribution for each sample is considered rather than an output

value. This makes sure that the noise entropy includes the effect of discretisation as well

as stochasticity in the system.

4.3 The Algorithm

4.3.1 Estimation of Sensitivities

Suppose that our input variable X is Min−dimensional and the dimension of output vari-

able Y is Mout. The sensitivity analysis methodology is based on the following main steps:
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1. Generating samples for input parameters: This is done by generating N samples

for each of the input parameters. Depending on the shape of the input distribution we

want to look at, we can do one of the following two:

• Generate uniformly distributed random numbers in the interval [(1−θ)Ki, (1+

θ)Ki] for each input variable Xi, where K is the vector of nominal values of

X . Here θ and K are user input, and θ specifies the range of parameters. The

choice of θ determines the global characteristics of the analysis and is made

depending upon the range of parameter space to be covered.

• Generate independent lognormally distributed random numbers with means Ki

and σ2
i for each of the parameters Xi. Here μ and σ2 are user input. σ2 incor-

porates the effect of θ by setting the variance scaled by θ

2. Performing stochastic simulations: Using the Gillespie algorithm, a stochastic sim-

ulation is performed for each of the N parameter samples. We then obtain a probabil-

ity distribution in each case and for each of the output variables using M independent

steady state output values corresponding to each of the N parameter sets.

3. Binning the inputs and outputs: All the input parameters are binned into bi number

of bins and all outputs into bo number of bins. The interval over which binning for a

parameter Xi is done is set to be [max(0, X̄i − 3σXi
), X̄i + 3σXi

], where X̄i and σXi

are respectively the mean and standard deviation of the N sampled values for Xi. The

outputs are binned similarly, except in this case, the mean and standard deviation are

taken over NM normalised output values. The output normalisation is done in order

to compare results with different stochasticity levels. The outputs are normalised

either with corresponding deterministic values or with averaged stochastic outputs.

4. Bias correction: The binned inputs and outputs are then used to obtain bias corrected

estimates for mutual information I2(X1, . . . , XMin
;Yj), noise entropies HN ,j and

output entropies H(Yj) for each j = 1, . . . ,Mout. The first order sensitivities can

be estimated directly using mutual information, the second order entropies can be

estimated using the formula (4.14) and for a sufficiently large N and small Min, the
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subsequent higher order sensitivities can be estimated using the formula

Ik(Xi1 ; . . . ;Xik | Y ) = I2(Xi1 , . . . , Xik ;Yj)−
∑

X⊂{Xi1
,...,Xik},|X|=1

I2(X;Yj)

−
∑

X⊂{Xi1
,...,Xik},|X|=2

I2(X | Yj)− . . .−
∑

X⊂{Xi1
,...,Xik},|X|=k−1

Ik−1(X | Yj)

(4.22)

4.3.2 Estimation of Noise Entropy

In case of large Min, the quantities HN and I2(X1, . . . , XMin
;Yj) are difficult to estimate.

Only the first few orders of sensitivities are calculated in this case and the following proce-

dure is followed to approximate noise entropy HN .

1. Generating input data for noise entropy estimation: We generate N1 number of

parameter samples as before and then bin them. The next step is to sample another

N2 uniformly distributed parameter samples from each of the N1 bin combinations.

This is done to assess the effect that the discretisation scheme might have on the

entropy of the system.

2. Performing stochastic simulations: Using the Gillespie algorithm, a stochastic sim-

ulation is performed for each of the N1N2 samples. We then obtain a probability

distribution in each case and for each of the output variables using M independent

steady state output values corresponding to each of the N1N2 samples.

3. Estimation of noise entropy: We bin the outputs using a significantly higher value

of M in this case. Bias corrected estimates for a conditional output entropy from

N2M binned outputs is estimated for each of th N1 unique bin combination samples.

The entropies are then averaged over N1 bin combinations to yield HN

4.4 Analysis of Gene Expression Model

In this section, we perform the sensitivity analysis and discuss our findings for the four pa-

rameter gene expression model from chapter2 in a stochastic setting. We use the method-
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ology outlined in section 4.3 to investigate the influence of different parameters on the

outputs. Our output in this case is proteins in number of molecules. We perform 10000

simulations for our analysis and vary each parameter, sampling from a uniform distribu-

tion, between 0.5 and 1.5 times the nominal value. All the inputs are discretised into 15

bins and the output is discretised into 20 bins.

The stochastic analysis is different from deterministic one in the sense that we have to

deal with output distributions rather than an output value for each input parameter com-

bination. While in deterministic case, the output entropy or information is taken over the

distribution of fixed output values coming from inputs, we take the entropies over the su-

perimposed distribution of individual distributions coming from each sample input. In a

stochastic setting this can become a tedious and computationally expensive task for even

simple models like the one under consideration. Even if we take as little as 50 outputs to

account for the distribution coming from one input sample, the overall task becomes 50

times more complicated as compared to the deterministic one. But there is one advantage,

the estimates for entropies and mutual informations start approaching the actual unbiased

values quicker, i.e. with relatively less number of samples in the stochastic case.

4.4.1 Reproducibility of Results

For the sensitivity analysis to follow, we use 104 input samples i.e. 104 Gillespie simula-

tions to perform the analysis, and use 50 stochastic repetitions i.e., 50 independent time-

points from the Gillespie simulation to generate the output distribution per sample from

the stationary state. But first, we need to justify that these numbers are sufficient for the

analysis. Let us first consider the reproducibility of results using 104 input samples. In

figure 4.3, the blue bars have the errorbars on the mean of output entropy, mutual infor-

mation, and noise entropy estimates from 9 individual analyses. The errors are small with

standard deviations of 0.008, 0.0068, and 0.012 respectively, and therefore hard to see on

the graph. On the other hand, the deep red bars show the same analysis with 9× 104 input

samples. The results match very well between the original sample and a sample that is 9

times bigger than that. The mutual information estimate is always biased upward while

entropy estimate is always biased downward. So as we increase the number of samples,
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the mutual information should go down and the entropies should go up. As our input space

is multidimensional, it takes a large number of input samples to get rid of the bias. The

results in figure 4.3 are bias corrected and show that the results for the two sets of 104 and

9× 104 inputs samples are reasonably close for us to stick to only 104 samples.

Figure 4.3: Output entropy H(P ), mutual information I2(km, kp, dm, dp;P ), and noise entropy
HN for different sizes of input sample space. The blue bar shows the mean of 9 independent
analyses with N = 104. The errorbars show the standard deviation over the runs. M = 49.
Nominal parameter values are km = 0.1, kp = 0.1, dm = 0.01 and dp = 0.001

Another parameter to set for our experiments is the stochastic repetitions, M . For our

experiments, very few output bins are non-empty. As we bin our outputs in 20 bins, only a

few stochastic repetitions should in principle be enough to crowd them. Figure 4.4 shows

the results for M = 10, M = 50, and M = 90. The results are strikingly similar, and even

M = 10 gives good results. We set M to be 50 for our experiments to err on the side of

caution.

4.4.2 Mutual Information, Entropy and Sensitivity Estimation

Now that we have justified the use of N = 104 and M = 50, we proceed with estimating

mutual informations, sensitivities at different orders and noise entropies. We do the analysis

in a stochastic setting as well as in a deterministic setting for different noise levels. We vary

the noise levels by changing the number of mRNA and protein molecules. We fix the ratio
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Figure 4.4: Output entropy H(P ), mutual information I2(km, kp, dm, dp;P ), and noise entropy
HN for different number of stochastic repetitions with N = 104. Nominal parameter values are
km = 0.1, kp = 0.1, dm = 0.01 and dp = 0.001

(kp
dp

in the deterministic setting) of proteins to mRNAs to be 20 and change the parameter km
in order to get different levels of protein and mRNA molecules. Also, for the deterministic

case we set N = 105 as the results exhibit a variation in case of lesser number of samples.

Further to make the comparison meaningful, we make sure the binning scheme that we use

for the deterministic case is the same as that applied during the binning of stochastic inputs

and outputs.

Figure 4.5 shows the estimates of output (protein) entropy with different levels of noise.

We notice that the output entropy does not change significantly as the number of molecules

or stochasticity varies across a range. There is only a slight increase in output entropy for

large noise. We emphasise here that this is purely the entropy of the output without any

conditioning on the inputs.

The next set of results shown in figure 4.6 highlight the differences between determinis-

tic and stochastic analyses. The blue bars represent the mutual information I2(km, kp, dm, dp;P )

and noise entropy HN for deterministic cases. As expected, the levels of both these quanti-

ties remain unaffected for the deterministic case. The reason lies in the behaviour of noise

entropy as the mutual information is just output entropy minus the noise entropy. This is

because the noise entropy in this case is only the discretisation entropy and since there is
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Figure 4.5: Output entropies H(P ) for deterministic and stochastic systems at different noise lev-
els. For deterministic analysis, N = 105 and for stochastic analysis N = 104 and M = 50.
Nominal parameter values are kp = 0.1, dm = 0.01 and dp = 0.001

no intrinsic noise, the dicretisation entropy does not change with the number of molecules

present in the system. However, for stochastic estimation of noise entropy, the intrinsic

noise of the system comes into play in addition to the uncertainty due to binning. That is

why as the number of protein molecules increase, or as the stochasticity goes down, the

stochastic noise entropy goes down. At some point it even gets less than the corresponding

deterministic noise entropy. This is the case km = 0.3 where the discretisation and noise

start counteracting each others influence on the output. There can be many interesting

phenomena that can be happening at this critical point, but this might need further math-

ematical analyses to verify. Although we have established in section 4.2.2 that stochastic

noise entropy can be less than its deterministic counterpart, we are unsure when the sys-

tem from figure 4.6 approaches the deterministic results. The verification of the system

converging to its deterministic version requires that another noise entropy estimate with

very high number of mRNAs and proteins be carried out. Our understanding is that at

high levels of noise the outputs haphazardly cross binning boundaries to ultimately provide

similarly populated output bins. This yields high levels of noise entropy. At lower enough

noise levels, however, as in the case similar to that of figure 4.1, the stochastic noise en-

tropy goes down. And for even lower noise levels, we believe that the stochastic time series
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will almost be a straight line to give the same stochastic noise entropy as the discretisation

entropy. The results in figure 4.6 may seem simple they can have a variety of implications.

Reminding ourselves of equation 4.17, the most interesting finding is that stochasticity has

the ability to decrease the sensitivity of the system. We shall elaborate this point in the

discussion of the results that follow.

2 4 6 8 10 20 30 50 100
0

0.2

0.4

0.6

0.8

Average protein molecules (×102)

I 2(k
m

,k
p,d

m
,d

p;P
)

2 4 6 8 10 20 30 50 100
0

0.2

0.4

0.6

0.8

Average protein molecules (×102)

N
oi

se
 E

nt
ro

py

Deterministic
Stochastic

Figure 4.6: Normalised mutual information I2(km, kp, dm, dp;P ) and noise entropy HN for de-
terministic and stochastic systems at different noise levels. The stochastic noise entropy is much
higher than deterministic noise entropy at high noise levels, and it keeps going down as the noise
goes down. For deterministic analysis, N = 105 and for stochastic analysis N = 104 and M = 50.
Nominal parameter values are kp = 0.1, dm = 0.01 and dp = 0.001

Figure 4.7 shows the effect of changing noise levels on the first order sensitivities of

the system. Both the deterministic and stochastic analyses show that the system is almost

equally sensitive to all the four parameters as far as the first order sensitivities are con-

cerned. However, it is worth noting that the stochastic sensitivity level increases gradually,
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albeit equally for all parameters, as the noise in the system decreases. At one point during

the process of decreasing noise, this sensitivity even increases beyond the deterministic

level of first order sensitivities.

Figure 4.7: Normalised first order sensitivities for deterministic and stochastic systems at different
noise levels.A change in the sensitivities is observed in the stochastic case as the level of stochastic-
ity changes. For deterministic analysis, N = 105 and for stochastic analysis N = 104 and M = 50.
Nominal parameter values are kp = 0.1, dm = 0.01 and dp = 0.001

The effect of increase in sensitivity with decrease in stochasticity is more pronounced

in the case of second order sensitivities. This is shown in figure 4.8, although we see that

no two parameter pair dominates others while influencing the output. We observe similar

trends in third order sensitivities and fourth order sensitivity of parameters as shown in
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figures 4.9 and 4.10. There is a slight decrease in fourth order stochastic sensitivity for the

least noise case but the actual value of the sensitivity index is too small when compared

with other quantities to imply anything significant. However, it is worth noting that the

parameter interactions at the first order do not cover the system functionality in its entirety,

and that there are significant parameter interactions at higher orders.
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Figure 4.8: Normalised second order sensitivities for deterministic and stochastic systems at dif-
ferent noise levels. For deterministic analysis, N = 105 and for stochastic analysis N = 104 and
M = 50. Nominal parameter values are kp = 0.1, dm = 0.01 and dp = 0.001. The indices 1,2,3,
and 4 on the legend represent the parameters km, kp, dm, and dp respectively

Figure 4.11 shows the comparison of the contributions of parameters at different orders

of interaction. In the deterministic setting, the first order and third order sensitivities are

slightly higher than second and fourth order sensitivities. But the trend remains consistent

as expected throughout the varying number of protein molecules. In the stochastic setting,

on the other hand, the first order sensitivities dominate at high levels of noise while at
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Figure 4.9: Normalised third order sensitivities for deterministic and stochastic systems at different
noise levels. Like the first and second order sensitivities, third order parameter sensitivities also
increase with decreasing noise. For deterministic analysis, N = 105 and for stochastic analysis
N = 104 and M = 50. Nominal parameter values are kp = 0.1, dm = 0.01 and dp = 0.001. The
indices 1,2,3, and 4 on the legend represent the parameters km, kp, dm, and dp respectively
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Figure 4.10: Normalised fourth order sensitivity for deterministic and stochastic systems at differ-
ent noise levels. Deterministic fourth order sensitivities do not change while we observe a small
change in the level of fourth order sensitivities as noise levels change. For deterministic analy-
sis, N = 105 and for stochastic analysis N = 104 and M = 50. Nominal parameter values are
kp = 0.1, dm = 0.01 and dp = 0.001
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lower stochasticity levels, the third order contributions come into a dominant position. Also

the first and second order interactions become equally important. As compared to the

deterministic case, the fourth order interaction remains the least throughout the different

levels of stochasticity.
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Figure 4.11: Normalised sum of all orders of sensitivities for deterministic and stochastic systems
at different noise levels. For all levels of average protein molecules, the deterministic results remain
the same. In the stochastic case, parameter sensitivities increase as noise levels go down. For
deterministic analysis, N = 105 and for stochastic analysis N = 104 and M = 50. Nominal
parameter values are kp = 0.1, dm = 0.01 and dp = 0.001

Next we look at the total sensitivity indices of the four parameters. This is essentially

the total effect a parameter can exert, independently as well as in combinations with other

parameters, on the output. Figure 4.12 shows that the output is equally sensitive to all the
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input parameters, and the sensitivity for all parameters decreases with increasing levels of

noise.
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Figure 4.12: Changes in normalised total sensitivity indices for deterministic and stochastic systems
at different noise levels. For deterministic analysis, N = 105 and for stochastic analysis N = 104

and M = 50. Nominal parameter values are kp = 0.1, dm = 0.01 and dp = 0.001

In figure 4.13, we summarise all the results from the deterministic and stochastic sen-

sitivity analyses as presented in the summation law 4.19 of sensitivities. The difference

between stochastic and deterministic points of view are highlighted and the dominance of

intrinsic noise effects over parametric sensitivities is shown.
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Figure 4.13: Noise can change sensitivities of parameters. This is demonstrated in sensitivity
summation law for deterministic and stochastic systems at different noise levels. For deterministic
analysis, N = 105 and for stochastic analysis N = 104 and M = 50. Nominal parameter values
are kp = 0.1, dm = 0.01 and dp = 0.001. The subscripts in the legend denote different orders of
sensitivity
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4.4.3 Uniform vs Lognormal Input Samples

We have looked at the sensitivity analysis in detail in the previous section. But the sen-

sitivity analysis performed so far was based on uniform input samples. We want to see

what happens when the input parameters are not uniformly distributed. The difference is

mainly based on how local we want the sensitivity analysis to be. Further, in case of, say

lognormally distributed input samples, more samples are drawn around the mean or nomi-

nal parameter values as compared to uniformly distributed input. But infact, in the current

scenario of information theoretic sensitivity analysis, the shape of the parameter distribu-

tions is not as important as the entropy of those distributions. Two different distributions

with similar entropies will yield similar results for the sensitivity analysis. We observed

the same phenomenon when we tried to compare the previously studied case of uniformly

distributed parameters with the case where the parameter distributions are lognormal. We

chose the case where the nominal values yield deterministic nominal values of outputs as

mRNA = 10 and P = 1000. We also let the variance of the underlying normal distribution

be 10 percent of the nominal values.

Figure 4.14 shows the similarity between the results from both the analyses. The values

of sensitivities for the lognormal input are slightly higher than those for the uniform input.

This is because the parameter entropy has slightly higher values for the lognormal case.

The remaining trend is very similar to the previous case. However, we get negative fourth

order sensitivity value for the lognormal input case, which is why in figure 4.14, the sum

of sensitivities and noise entropy seem to be more than 1. In reality, the sum is 1 with a

minus sign for the fourth order sensitivity. The value is very small although we are not

sure why this could be the case. We cannot be sure but studies like [132] point out the fact

that Shannon entropies and mutual informations can sometimes accommodate redundant

terms. Although we have not tested their suggestions, they provide a potential solution to

the problem of negative mutual informations.

4.4.4 Gene Expression Model with Negative Feedback

In this section, we apply the methodology to a gene expression model with negative feed-

back [114]. The model is shown in figure 4.15. In this model of gene expression, the DNA,
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Figure 4.14: Comparison between sensitivity analyses with uniformly versus lognormally dis-
tributed input parameters. Deterministic analysis is also performed for reference. For deterministic
analysis, N = 105 and for stochastic analysis N = 104 and M = 50. Nominal parameter values
are km = 0.1, kp = 0.1, dm = 0.01 and dp = 0.001. (A) Stochastic analysis of output entropy,
mutual information and noise entropy. (B) stochastic total sensitivity indices. (C) Summation theo-
rem demonstration for stochastic setting with uniformly and lognormally distributed input samples.
(D) Summation theorem demonstration for stochastic and deterministic setting with lognormally
distributed input samples
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denoted as D is suppressed by the protein P . In other words, the protein binds to the DNA

turning it to an off state, Doff which cannot take part in transcription anymore. The model

therefore involves a reversible reaction of proteins binding to DNA, and two additional re-

action rates v1 and v2. Working with this model, we will assume that the average number

of DNA molecules present is 1, implying that Doff = 1 − D. We shall also restrict our

analysis to a region of parameter space in which the overall system dynamics do not change

and no bifurcations take place. The deterministic ODE system is as follows:

dD

dt
= v2(1−D)− v1PD

dM

dt
= kmD − dmM

dP

dt
= kpM − dpP + v2(1−D)− v1PD

(4.23)

Figure 4.15: Gene expression model with negative feedback. The model involves transcription,
translation, and a negative feedback loop.

Figure 4.16 shows results of application of sensitivity analysis methodology to the six

parameter gene expression model from figure 4.15. We choose protein levels as our output

variable. The analysis is performed twice for two different levels of stochasticity. As for the
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four parameter model, the variation in the levels of stochasticity is achieved by changing

the nominal value of the transcription rate km, where lower transcription rate means lower

number of steady state protein and mRNA levels which further implies higher level of

noise. The parameters used to obtain the results are shown in the caption of the figure. The

analysis with negative feedback model further illustrates our claim that stochasticity has

the ability to increase or decrease parameter sensitivity.

Panel A of the figure 4.16 shows that even though the output entropy is same, the

total mutual information and noise entropy differ significantly for the two levels of noise

used. The high noise/stochasticity levels correspond to high levels of noise entropy, thereby

pushing the total mutual information to a lower level as compared to the case when the

noise is lower. The total mutual information, as discussed before, encompasses the different

orders of sensitivity, so a lower mutual information implies that the sensitivity of the system

has been suppressed by noise at some or all orders. It should be noted here that for the six

parameter case with limited computational ability, the total mutual information is obtained

as the difference between output entropy and noise entropy. Individual sensitivity estimates

have been made only upto second order.

Panel B of the figure 4.16 shows the first order sensitivities of all parameters in the

negative feedback model. It is clear that for our choice of nominal parameters, the system

is more sensitive to km, kp, dm, and dp as compared to v1 and v2. This is expected since

for our purposes, our choices of nominal values for v1 and v2 are not entirely free. The

choices are made dependent on other parameters so that the values of Don and Doff are

both maintained at a steady state rate of 1
2
. Further, it can be noted that at individual

parameter levels (first order) the protein levels are more sensitive to all the six parameters

in case of low stochasticity. The most interesting observation here is that at high noise,

the parameters v1 and v2 become more sensitive. This is as expected since they control

the strength of the negative feedback which is relevant at high noise. Similar observation

is made for total sensitivity indices of parameters, as shown in panel C. Panel D is an

illustration of the sensitivity summation theorem. The comparison between different levels

of sensitivities are also shown.
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Figure 4.16: Sensitivity analysis of the six parameter gene expression model from figure 4.15 for
different levels of stochasticity. For the analysis, we use N = 15000 and M = 50. Nominal
parameter values are km = 0.1 for high stochasticity and km = 10 for low stochasticity, kp = 0.2,
dm = 0.01, dp = 0.01, v1 = 0.1 and v2 =

kmkp
2dmdp

v1. (A) Stochastic analysis of output entropy,
mutual information and noise entropy. (B) Normalised first sensitivity indices. (C) Normalised
total sensitivity indices. (D) Summation theorem demonstration for low and high stochasticity with
lognormally distributed input samples
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4.5 Possible Modifications of the Methodology

The methodology developed and presented in the previous sections is in the form that yields

the most accurate results. However, this analysis is computationally very expensive. Per-

forming tens and hundreds of stochastic simulations can prove very difficult. And although

we use bias correction, most of the bias correction techniques require that the number of

samples be in asymptotic sampling regime. We have only performed the analysis for a

six parameter system. However, the complexity can grow very rapidly as the number of

input parameters increases. The first thing that is affected is the accuracy of the estimates

of noise entropy and mutual information. These two can be very inaccurate if the analysis

is performed with a number of samples that is not enough. Then the accuracy of higher

orders of sensitivities becomes doubtful. The methodology under discussion then needs to

be modified with different tools.

The first option one could try is to replace the Gillespie simulation with something like

linear noise approximation that is less time consuming and less taxing on the processor.

We have tried using this modification, and it yields results in very good agreement with the

ones presented in the previous section. Although faster than the stochastic simulations, the

idea fails for systems with high levels of noise and nonlinearity in the model, and especially

for oscillatory systems.

We have also used Unscented transform successfully to improve the computational ef-

fort required for the method under discussion. We present more details on this later in this

chapter. In short, the application of Unscented transform enables us to capture the essence

of the output distribution without having to run Gillespie simulations for all the samples.

The Gillespie simulations are only performed for a carefully chosen set of input parameter

values, and these simulations are only 2Min + 1 in number. The results obtained are quite

accurate, and there is a huge computational relief in switching from tens of thousands of

Gillespie simulations to only a few.
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4.6 Application of Unscented Transform for Sensitivity Analysis

As discussed in the previous section, one of the most effective ways to improve the compu-

tational efficiency of our sensitivity analysis methodology is to use the unscented transform

to capture output distribution effectively. The section 2.7 details the application and com-

putational details of the methodology. For our purposes, in this section we describe how we

incorporate the methodology effectively at the step of performing stochastic simulations.

Our methodology discussed earlier in this chapter adopts a Monte Carlo based approach

to analyse different samples of parameter inputs through Gillespie’s simulations. The sim-

ulations are expensive and take up most of the time for sensitivity analysis. Instead of

adopting a Monte Carlo based approach, we use unscented transform, a weighted set of

sigma points that capture the input space effectively and only pass those selected points

through stochastic simulations. We then approximate the output distribution using the out-

puts corresponding to the sigma points. From the output distribution that the unscented

transform yields, we generate samples for sensitivity estimates. Below we describe the

procedure in detail.

• We choose sigma points using (2.37) for scaled unscented transform. We assume that

the input parameters are lognormally distributed. But we know that the unscented

transform has best accuracy when the input distribution is Gaussian. To still be able

to get best results through unscented transform, we choose our Gaussian prior to be

Ξ = ln(X) for parameters X . That is, we actually find the sigma points, denoted by

Φk, of the underlying Gaussian distribution Ξ.

• The next step is to choose an appropriate nonlinear function or the form of the output

we desire from the results of stochastic simulations. This choice varies with problem

at hand. Our main goal is to be able to reproduce samples of the output distribution.

In general, nonlinear function will do the following to each of the sigma points:

(i) Take exponential of each coordinate of the sigma point (because sigma should

follow Gaussian distribution for best accuracy, and we are assuming that our

inputs are lognormal)

(ii) Apply Gillespie simulation to the resulting points
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(iii) From the output time series for each input, calculate means and variances for

the logarithms of each output variable, covariances between logarithms of each

output variable

If the outputs of the original problem of sensitivity analysis are different species, like

protein numbers in the gene expression model, it is best to assume a lognormal output

distribution from the unscented transform. Another important factor that affects our

choice of the function is the fact that we need to sample various stochastic outputs

corresponding to each input. Therefore, we need to incorporate the covariance among

the stochastic outputs into the nonlinear function. We shall describe the exact choice

of this nonlinear function with every example we apply unscented transform to.

• With the outputs corresponding to all the sigma points, the output distribution Γ with

mean μΓ, covariance PΓ, and cross covariance PΞ,Γ is reconstructed using the scheme

(2.40). We note that the dimension of Γ is Mout(Mout + 3)/2, with Mout elements

for means of (logarithms of) output variables and Mout(Mout + 1)/2 elements for

covariance of (logarithms of) output variables.

• We now need to be able to perform sensitivity analysis as with the full scale method-

ology. For this purpose, we construct a vector of means, say Z that is a combination

of means from input distribution and the means of the outputs from the previous

step. That is Z = [μΞ, μΓ]. Similarly, another concatenated covariance matrix is

constructed using the input covariance, input-output cross covariance and output co-

variance in the form PZ =

[
PΞ PΞ,Γ

P T
Ξ,Γ PΓ

]
. N Gaussian samples from these means

and covariances are then generated.

• The samples are split into input and output parts. We then take exponential of the

input samples to get the final N lognormal input samples.

• Since the outputs parts of the samples also include the covariance among output

samples, another M Gaussian outputs are sampled using this information for each of

the N original samples. Exponential function is then applied to each of them yielding

NM positive lognormal output samples.
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• The usual sensitivity analysis apparatus is now complete. We then proceed as usual to

bin the inputs and outputs and obtain bias corrected estimates for sensitivity analysis.

Figure 4.17: Schematic diagram for incorporating unscented transform in the sensitivity analysis
methodology; i = 1, . . . , 2Min + 1, and j = 1, . . . , N . Starting, just as in the method with Monte
Carlo sampling, with a lognormal input distribution the unscented transform provides the first two
moments of the output distribution without the need for MN Gillespie simulations. Samples from
the input and output distributions are generated to eventually yield N input and MN output samples
for sensitivity analysis

Figure 4.17 presents a detailed illustration of the above methodology. It is worth noting

that the above method is only useful in the situations when only sensitivity analysis and

output entropies are required. The above modification is not meant for estimating noise en-

tropy. Estimating noise entropy is different from output entropy in the sense that it requires

averaging over thousands of entropy estimates, each for a particular input bin combination.

So even though unscented transform can be used to replace the averaging step, this does not
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have a significant computational advantage as hundreds or thousand of samples still need

to be generated and for each bin combination. All these require a stochastic simulation run.

The other way around using unscented transform is to apply unscented transform twice,

once taking care of the averaging step, and next when computing entropies is required. So

for a system with m input parameters, this arrangement will require (2m + 1)2 stochastic

simulations. The repeated approximation here will affect the accuracy of the estimates, as

we are approximating twice. In addition to this, we already know that unscented trans-

form yields most accurate results when the prior or input distribution is Gaussian. But if

we go ahead with using unscented transform twice as mentioned, the second application

requires us to sample from particular bin combinations, thus restricting sampling from uni-

form distribution with fixed boundaries dictated by the binning scheme. This additionally

affects the accuracy of the results obtained. Due to these shortcomings of the application

of unscented transform in our particular scenario, we restrict ourself to only performing

sensitivity analysis with this approximation.

4.6.1 Sensitivity Analysis of the Gene Expression Models with Unscented

Transform

Figures 4.18, 4.19, and 4.20 show the comparison between results of sensitivity analysis

when unscented transform and Monte Carlo approaches are used on the four parameter

gene expression model without feedback. For these analyses, the difference between com-

putational expenses is huge. The steps of random sampling of 104 parameter combinations

and stochastic simulations for all these samples in the usual Monte Carlo based approach

are replaced by calculating only 9 sigma points in parameter space, performing stochastic

simulations for them to get the output distribution and then sampling from that distribution

in the unscented transform based approximation. The output binning and bias corrected

estimates of information and entropy are made in a similar way in both methods. Thus the

stochastic simulations are reduced a thousand times with unscented transform for this par-

ticular example. This computational advantage is huge considering the results from both

approaches match very well.

From the perspective of applying unscented transform to obtain the results in this case,
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the first step is the choice of nonlinear function, the estimates of which are to be made for

all the sigma points. We have assumed that the parameters are lognormally distributed

therefore the sigma points are calculated in the associated normal distribution and the

nonlinear function then applied to the exponential function of the sigma points. Similar

approach has been used in [120]. We then choose the output of the nonlinear function

to generate a vector of the form
[
lnm lnP Varlnm VarlnP Covlnm,lnP

]
. The reason

for this choice is that when we generate Gaussian samples from the output distribution,

the exponential of those samples will be lognormally distributed, which is a more correct

choice for the distributions of mRNAs and protein. Even if we were to choose the vector[
m P Varm VarP Covm,P

]
and generate lognormal samples for outputs, we would

have to go through the route of associated normal distribution for sampling purposes. An-

other reason for our choice of such an output over the choice
[
lnm lnP

]
is that we are

dealing with a stochastic setting, in which case we need a complete output distribution for

each parameter sample rather than a single output value. While this choice would have

been the correct one in a deterministic setting, our whole point in choosing the five element

output vector is that when we combine inputs and outputs and then sample together as de-

scribed in the previous section, we sample distributions for each input sample. If we look

closely, the vector
[
lnm lnP Varlnm VarlnP Covlnm,lnP

]
accommodates a complete

distribution with mean and covariances of lnm and lnP . This solves the problem when we

eventually split the input and output parts and generate multiple outputs per input. The only

other technicality that remains is that sometimes negative Gaussian values are sampled for

the variances in the output as well. We ignore these rare samples and also use the nearest

semi positive definite matrix [42] whenever numerical errors render the covariance matrix

as non positive semidefinite.

Figure 4.18 shows the comparison between informations, protein entropies and noise

entropies for the two methods. The results are very close to each other. Similarly, the total

sensitivity indices obtained by the two methods also match very well as shown in figure

4.19. Figure 4.20 is an illustration of the summation law detailing the comparison among

all orders of sensitivities for the Monte Carlo results and the unscented transform estimates.

It is interesting to note that the negative fourth order interactions in the Monte Carlo case

resulting from limited sampling are not encountered in case of unscented transform.
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Figure 4.18: Comparisons of output entropy, mutual information, and noise entropy estimates for
four parameter gene expression model. The results compared are for the full sensitivity analysis
method and the corresponding approximation by unscented transform. For full Monte Carlo type
analysis N = 104 and M = 50. Nominal parameter values are km = 0.1, kp = 0.1, dm = 0.01
and dp = 0.001. For unscented transform version, 900 stochastic outputs were used to evaluate the
nonlinear function for each of the sigma points. Also, N = 20000, and M = 100. The unscented
transform parameters used are α = 0.9, κ = 0, and β = 2
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Figure 4.19: Estimates for total sensitivity indices for four parameter gene expression model. The
results compared are for the full sensitivity analysis method and the corresponding approximation by
unscented transform. The sensitivity indices calculated incorporate upto second order sensitivities.
For full Monte Carlo type analysis N = 104 and M = 50. Nominal parameter values are km = 0.1,
kp = 0.1, dm = 0.01 and dp = 0.001. For unscented transform version, 900 stochastic outputs
were used to evaluate the nonlinear function for each of the sigma points. Also, N = 20000, and
M = 100. The unscented transform parameters used are α = 0.9, κ = 0, and β = 2
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Figure 4.20: Summation theorem demonstration for four parameter gene expression model. The
results compared are for the full sensitivity analysis method and the corresponding approximation by
unscented transform. The sensitivity indices calculated incorporate upto second order sensitivities.
For full Monte Carlo type analysis N = 104 and M = 50. Nominal parameter values are km = 0.1,
kp = 0.1, dm = 0.01 and dp = 0.001. For unscented transform version, 900 stochastic outputs
were used to evaluate the nonlinear function for each of the sigma points. Also, N = 20000, and
M = 100. The unscented transform parameters used are α = 0.9, κ = 0, and β = 2

The setup for unscented transform application discussed in [120] is very useful when

applying unscented transform for sensitivity analysis in our case. In [120], stochastic sys-

tems are analysed that are subject to both intrinsic and extrinsic variability. For the purpose,

the authors design a framework where they apply linear noise approximation to analyse the

stochasticity of the system. That is, the stochastic outputs corresponding to the sigma

points are obtained by applying linear noise approximation. That, in effect, means two

levels of approximation - replacement of Monte Carlo sampling by unscented transform

and approximating exact stochastic simulations by linear noise approximation. It is note-

worthy here that while we speed up our sensitivity analysis methodology by approximating

with unscented transform, we do not compromise on the accuracy of the stochastic outputs.

Since the simulations with unscented transform are so few in number, it is worthwhile to

employ the exact stochastic simulation algorithm rather than adding another degree of ap-

proximation. This is particularly useful in nonlinear models with high stochasticity where

linear noise approximation results deviate from the exact results.

To illustrate the above point, we perform sensitivity analysis for the six parameter
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nonlinear gene expression model for three cases: Monte Carlo sampling combined with

stochastic simulation, Monte Carlo sampling with linear noise approximation, and un-

scented transform approximation combined with stochastic simulations. The first case is

the most computationally expensive and accurate, the second case has only one level of

approximation at the level of stochastic output generation, and the third method also has

one level of approximation at the sampling level. The results in figure 4.21 show that it is

better to use approximation (unscented transform) at sampling level rather than trying to

achieve computational efficiency by compromising on stochastic simulations. The results

for linear noise approximation differ significantly from the exact results even with Monte

Carlo sampling. One can only expect that further approximation by unscented transform

can only worsen the accuracy of the results.

For the unscented transform results in figure 4.21, same nonlinear function output is

used as for the four parameter model. The results for the unscented transform match well

with the exact results, even though only 13 stochastic simulations are performed instead

of the the original 15000. All the results show that the unscented transform methodology

works very well and is more accurate while being efficient than the linear noise approxi-

mation approach.

4.7 Stochastic Sensitivity Analysis of Circadian Clock Model

From cyanobacteria to mammals, organisms and their biological systems use circadian

rhythms to regulate their behaviour [80]. Cycles of days, months, and years appear in the

normal functioning in their lives. For example, our sleep patterns are regulated everyday,

and there is a typical sleep cycle we follow. Climates and temperature cycles take place

repeatedly over years. This behaviour is essential to normal working of many biological

systems. It is therefore desired that this periodic behaviour be as robust as possible with

respect to environmental changes [3]. In this section, we shall apply the stochastic sensitiv-

ity analysis technique developed in the previous sections to a model of circadian rhythms

from [126].
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Figure 4.21: Sensitivity analysis for six parameter gene expression model with negative feedback.
The results compared are for the full Monte Carlo sensitivity analysis method with SSA and the
corresponding approximations by unscented transform combined with SSA and linear noise approx-
imation combined with Monte Carlo sampling. The Unscented transform approximation combined
with Gillespie simulations provides better approximation as compared to LNA with Monte Carlo
sampling. For full Monte Carlo type analysis with SSA and LNA, N = 15000 and M = 50. Nomi-
nal parameter values are km = 0.1, kp = 0.1, dm = 0.01 and dp = 0.001. For unscented transform
version, 900 stochastic outputs were used to evaluate the nonlinear function for each of the sigma
points. Also, N = 20000, and M = 100. The unscented transform parameters used are α = 0.9,
κ = 0, and β = 2 (A) Output entropy estimates. (B) Normalised sums of first and second order sen-
sitivities. (C) Normalised total sensitivity indices upto second order sensitivities. (D) Summation
theorem demonstration for with lognormally distributed input samples. The noise entropy obtained
from SSA-MC method is used for all three illustrations The sensitivities for LNA-MC method at
orders higher than 2 are negative
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4.7.1 The Model

The model of circadian rhythms that we use as an application of our stochastic sensitivity

analysis is discussed in [126] in detail. Figure 4.22 shows the detailed diagram of the

model. The model incorporates the essential elements of gene expression that allow the

organism to regulate physiological changes in order to adapt itself to different times of

a day, month or other similar cycle. The model does not capture details for particular

organisms, but rather provides a general setup necessary to produce circadian rhythms.

Figure 4.22: Adapted from [126], The circadian clock model that represents a general setup that
produces circadian rhythms in organisms - binding and unbinding of activator and repressor genes;
transcription, translation and degradation; as well as complex formation

The model consists of an activator protein A, a repressor protein R, and an inactivated

complex formed by them denoted by C. At the transcription level, MA and MR are mRNAs

of A and R respectively. Also, there are promoter states for activator genes, D′
A and DA,

denoting the states when the activator protein A is bound and not bound to its promoter

respectively. Similarly, DR and D′
R represent the repressor genes. Moreover, the complex

C degrades to yield R, and A is degraded as this happens. There are 15 reaction rates

involved in the whole process, where γ’s and θ’s represent the rates of A binding and
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unbinding from others respectively, β’s are translation rates, α’s are transcription rates, and

δ’s denote spontaneous degradation. The deterministic ODE system [126] can be written

as follows:

dDA

dt
= θAD

′
A − γADAA

dDR

dt
= θRD

′
R − γRDRA

dD′
A

dt
= γADAA− θAD

′
A

dD′
R

dt
= γRDRA− θRD

′
R

dMA

dt
= α′

AD
′
A + αADA − δMA

MA

dA

dt
= βAMA + θAD

′
A + θRDR

− A(γADA + γRDR + γCR + δA)

dMR

dt
= α′

RD
′
R + αRDR − δMR

MR

dR

dt
= βRMR − γCAR + δAC − δRR

dC

dt
= γCAR− δAC

(4.24)

Figure 4.23 represents a Gillespie realisation of the model dynamics. The parameters

used are given in the caption of the figure. As discussed analytically in [126], the model

can be reduced to two slow variables R and C, and A is also a function of R. Therefore,

these three variables capture the dynamics of the system. The Gillespie realisation of the

stochastic version of the system also reveals that the numbers of the rest of the variables

are very small when compared to A, R, and C. It can be easily seen that the all three of

them have peaks in thousands of molecules. The other variables not shown in the figure,

are at most in their tens in comparison. We shall restrict out attention to these three output

variables in our analysis that follows.

In the next section we discuss the results of stochastic sensitivity analysis of the period

of the circadian cycle using the unscented transform approach. We shall restrict our analysis
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Figure 4.23: Circadian rhythms observed in A, R, and C. It can be easily seen that the periods of
these three variables are the same. The model parameters used are γA = 50M−1h−1, θA = 50h−1,
γR = 1M−1h−1, θR = 100h−1, δMA

= 10h−1, δMR
= 0.5h−1, α′

A = 500h−1, αA = 50h−1,
βA = 50h−1, βR = 5h−1, δA = 1h−1, δR = 0.2h−1, γC = 2M−1h−1, αR = 0.01h−1, α′

R =
50h−1, System volume V = 10−17L.

to one particular dynamical system behaviour where oscillations do not break down. The

stability anaysis of the corresponding deterministic model can be found in [126].

4.7.2 Sensitivity Analysis Results and Discussion

For the circadian clock model under consideration, Gillespie simulations are quite time con-

suming. With 15 model parameters, the number of samples needed to accurately estimate

entropies and mutual informations can be very large. Therefore, the stochastic sensitivity

analysis with Monte Carlo type sampling can be computationally very expensive. We use

the modified version of the methodology that makes use of unscented transform to capture

the output distribution without the need for thousands of Gillespie simulations.

In the stochastic version of the circadian model, the proteins A, R, and the complex

C are the only three slow variables. The rest of the species are produced and degraded

with only a small number of molecules. So, for sensitivity analysis, we only observe and

estimate the sensitivities based on the numbers of molecules of these three species. We

proceed by first generating sigma points for the unscented transform methodology. To cap-
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ture the input parameter distribution effectively, we assume that it is lognormal, and the

sigma points then come form the associated Gaussian distribution. This ensures that we

can achieve the best possible accuracy of our results with 31 sigma points for the 15 di-

mensional input distribution. We then feed these sigma points for Gillespie simulations.

The stochastic simulations yield time series for A, R and C corresponding to each of the

sigma points. For every sigma point, we calculate time periods of the cycles, and using the

means and covariances of these periods as the output variables of the unscented transform,

we obtain first two moments of output distributions. Assuming the responses are lognor-

mally distributed, we sample trials from the output distribution, cross-correlated with the

input distribution. We then sample further from the output distributions so as to obtain 50

stochastic realisations per input sample. The sensitivity analysis setup is now ready for

entropy and mutual information estimation using bias correction.

The first question with the sensitivity analysis of this model that arises is: how many

input samples should be enough to capture the first order sensitivities well? how many for

the second order sensitivities? Until now, we have only looked into the 4 and 6 parameter

models. But for a 15 parameter model, we can safely assume that the number of samples

needed for a decent estimate will be more than that for the earlier models. To answer

this question, we systematically look into the estimates of first order mutual informations

between parameters and outputs, and observe the point where they begin to asymptote

along the actual value. Figure 4.24 demonstrates one such exercise. We look at three

different input-output combinations and then observe the behaviour of mutual information

as the number of samples for the estimates is increased. For this figure, we consider the

combinations of parameter γA with period of A, βA with period of A, and γC with period

of C. We also set our test estimates with 2000, 8000, 10000, 25000, 75000 and 100000

samples and observe that for 25000 samples we start obtaining reliable estimates for mutual

information. We also repeat each of the estimates 10 times for the 10000 sample case, and

observe that the estimates have reasonably low errorbars. However, for accuracy up to

second order, we shall use 75000 or 100000 samples for our estimates. In what follows

next, we shall be denoting the input parameters as Xi and output parameters as Yj , with the

indices i = 1, . . . , 15 respectively representing the parameters as in the caption of figure

4.23 and output parameters Y1, Y2, and Y3 respectively representing the circadian cycle
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lengths of A, R, and C.
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Figure 4.24: Estimates for mutual informations between input and outputs as the number of samples
increase. The combinations studied are as on the y-axes. The estimates in all cases start to asymptote
towards the true value for a reasonably large number of samples. Errorbars represent means and
standard deviations for 10000 samples in each case. System volume used is V = 10−17L. Unless
otherwise stated, all the unscented transform analysis uses the parameter values of α = 0.9, β = 2,
and κ = 0. The sigma points are generated with variances of 10 percent of the nominal parameter
values

Figure 4.25 shows the different sensitivities of circadian rhythms with respect to the

parameters of the model. The sensitivities estimated are normalised first order sensitivities,

where all the response entropies are 3.37 bits. From panel A, we can observe that there is

a range of sensitivities exhibited for the model parameters. The orders of these normalised

sensitivity estimates range from 10−4 to 10−2. Another observation is that the sensitivity

estimates for all the response variables are the same. This is expected, because all the

response variables follow the same cycle. The outputs are the most sensitive to changes in

parameter X6 i.e., δMR
, the degradation rate of mRNA of the repressor protein. The least

sensitivity is of the variable αR′ .

Panels B and C provide a comparison of estimates of the same quantities for different

levels of stochasticity. These levels are varied with the help of system volume, and as the

system volume decreases, we get more and more stochasticity as we move from panels A

to C. As observed in the results for gene expression model, we observe that stochasticity

has the ability to change the sensitivity of the system, both in terms of sensitivity orderings

and total level of sensitivity. This can also be observed in figure 4.26. As stochasticity lev-

els change, the sensitivity orderings and distributions among various parameters change.
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Figure 4.25: Normalised first order sensitivities of the circadian cycles of A, R, and C for different
levels of stochasticity. It is observed that stochasticity can change the level of sensitivity as well
as sensitivity orderings among parameters. Number of input samples used to generate these results
are 105. The volumes used to set the different levels of stochasticity are: A) V = 10−15L, B)
V = 10−16L, and C) V = 10−17L
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Thus, we conclude that not only can noise suppress the sensitivity of a system, at a certain

level, the sensitivity can also be enhanced. Another interesting point to note is that the

sensitivities for all the responses is same when the system is less noisy. But this obser-

vation changes as the system becomes more and more stochastic. This is understandable

because the peaks in the circadian cycles are more noisy and the time series of one variable

can potentially be more sensitive than the other as the system departs from deterministic

behaviour.
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Figure 4.26: Normalised sum of first order sensitivities of the circadian cycles of A, R, and C
for different levels of stochasticity. The sensitivities of all the three output variables are same for
a particular level of noise, however these sensitivities change a lot with variation in noise levels.
Number of input samples used are 105

Figure 4.27 shows the normalised second order sensitivities of the period of A with

respect to the all possible two parameter combinations. Since all the response variables

follow the same trend for sensitivity orderings, we only analyse one output variable in this

case. All the 105 parameter combinations are shown in the figure. The most important and

least important combinations are mentioned in the caption of the figure.
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Figure 4.27: Normalised second order sensitivities of the circadian cycle of A. Number of input
samples used are 75000, V = 10−17L. The most sensitive parameter combinations are (X3, X13),
(X6, X7), and (X1, X6) while the parameter combinations with least sensitivities are (X6, X10),
(X8, X15), and (X8, X11)

We note that X6 exerts its influence at both orders of sensitivity, while at second order

parameter pairs combined with X10, X11, and X15 are the least influential. We also note

that these were the least sensitive parameters at the first order. However, we do not notice a

single parameter pair that is noticeably more significant than others. This could potentially

mean that no two parameter combinations are causing significantly more sensitivity than

others. But at higher orders, there may be more significant parameter combinations. Ac-

curate higher order sensitivity analysis will, however, require significantly more samples

for information estimates. The summation law can also be illustrated with an estimate of

noise entropy, but that analysis will require Monte Carlo parameter sampling as unscented

transform methodology, as discussed before, may not yield accurate results in that case.
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4.8 Concluding Remarks

In this chapter, we have developed a global stochastic sensitivity analysis methodology

with the help of concepts from information theory similar to that proposed in [79] for de-

terministic systems. We have also discussed the different orders of parametric sensitivity

in detail. We have discussed how the noise entropy evolves from deterministic discretisa-

tion entropy for stochastic systems in order to accommodate the effects of intrinsic noise.

We also find that noise entropy for stochastic systems is not the sum of discretisation en-

tropy and intrinsic noise entropy, and may even be less than the discretisation entropy for

a deterministic system. We presented the results for sensitivity analysis of gene expression

model with and without negative feedback for various noise levels and compared them to

the corresponding deterministic results. The most interesting phenomena that we observed

was that noise levels have the ability to alter the parametric sensitivity of the system, and

in the cases studied for gene expression models, high noise levels implied that the protein

distributions were less sensitive to parameter perturbations.

We pointed out that the methodology developed can be computationally very expensive

for complex models with a high number of parameters. This means that for accurate esti-

mation of entropies and mutual information, a lot of samples for input parameters as well

as corresponding stochastic outputs are required. We proposed that this difficulty can be

overcome by the use of unscented transform, wherein we use only a few number of sigma

points and their corresponding outputs to capture the input and output distributions effec-

tively. We compared the results of analysis with Monte Carlo type sampling with those

from modification with unscented transform and found that they agreed well with each

other.

The important advantage of using unscented transform with Gillespie for our analysis

over linear noise approximation [120] is that the latter cannot deal with models with oscil-

lations while our results are valid for systems with nonlinear effects such as systems with

oscillatory dynamics. We illustrated this advantage of unscented transform by applying

the sensitivity analysis methodology to a model of circadian rhythms for various noise lev-

els. In that case, we also found that stochasticity may affect the sensitivity orderings and

sensitivity levels for the parameters of the system.
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The sensitivity analysis methodology proposed in this chapter can be improved further

for efficiency and accuracy. In chapter 6, we discuss possible modifications and future

work related to the analysis presented in this chapter.
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Chapter 5

Information Theoretic Method for

Specificity Quantification in a Receptor

Ligand Binding System

In a receptor ligand binding system, specificity is referred to as the degree of favourability

of a particular ligand to bind to a specific receptor in the presence of other available re-

ceptors and vice versa. In biological systems, a certain degree of specificity is necessary

for their proper functioning [70, 123]. Real systems do not exhibit 100 percent specificity

and there is always some level of cross-talk between various signaling pathways. Several

studies have been done to look at specificity exhibited by certain models [45, 67, 117].

While specificity, or conversely cross-talk, can both be functionally advantageous, it is

often desirable to know how specific a system is. The idea of specificity has been discussed

well in literature, but there is no general way of quantifying specificity in a mathematical

way. In literature, there exist some statistical mechanics approaches [55, 128, 134] as well

as methodologies based on information transmission across different signaling pathways

[2, 68]. In the following study, our goal is to understand and be able to quantify specificity

in biological systems. In this chapter, using the ideas from information theory, we propose

that specificity can be defined in terms of mutual information between a particular stimulus

and output activity. We develop a setup according to which specificity is quantified, and

then we discuss some of the methods for estimating specificity. We provide a general way
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of estimating maximum possible specificity that can be exhibited by a system using our

proposed setup. We conclude with some results for T-cell signalling experimental data

from our collaborators. Also, we propose how the setup can be extended for stochastic

systems.

5.1 The Receptor Ligand Binding Model

We want to determine how specific a receptor ligand system is by quantifying the mutual

information in the system. The mathematical model we consider contains N receptors (Ai,

where i = 1, 2, . . . , N ) and M ligands (Bj , where j = 1, 2, . . . ,M ) that react according to

the following scheme,

Ai +Bj

Ki,j
D� Ci,j, (5.1)

where Ci,j is the complex formed by the ith receptor and the jth ligand. The interaction is

governed by the experimentally measured dissociation constant (Ki,j
D ). At equilibrium, we

have

AiBj = Ki,j
D Ci,j, (5.2)

where Ai and Bj are concentrations of the free receptor and ligand, respectively. In addi-

tion, we assume that the total concentration of both the receptors and ligands are conserved,

i.e.,

AT
i = Ai +

M∑
j=1

Ci,j, (5.3)

BT
j = Bj +

N∑
i=1

Ci,j, (5.4)

where AT
i is the total concentration of receptor i and BT

j is the total concentration of ligand

j. Collectively, we have a set of N×M equations and the N×M unknowns (the unknowns

are all the Ci,j). We assume that the system input is a stimulus vector S, whose components
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are the M ligand concentrations,

S =
{
BT

1 , B
T
2 , B

T
3 , . . . , B

T
M

}
(5.5)

and the system output is a response vector, R, whose components are the total concentration

of bound receptor of each type,

R =

{
M∑
j=1

C1,j,
M∑
j=1

C2,j,
M∑
j=1

C3,j, . . . ,
M∑
j=1

CN,j

}
. (5.6)

In what follows from here, we shall denote
∑M

j=1 Ci,j as Ci, and use the term affinity

matrix for matrix of dissociation constants, thereby implying high affinity corresponding

to low numbers in the matrix. In summary, given the receptor concentrations (AT
i ) and

the dissociation constant matrix (Ki,j
D ), the system input is the stimulus vector (S) which

determines the system output, a response vector (R),

R = f(S) (5.7)

where f is a nonlinear function determined by equations (5.1) - (5.3) and equation (5.6). We

mostly focus on systems with two ligands and two receptors, but the formalism presented

is quite general.

5.2 Quantification of Specificity

It can sometimes be easy to qualitatively see how specific a system is by looking at the

affinity matrix. For example in a 2 receptors 2 ligands model, let us consider the matrices:

A =

[
1 10

10 1

]
, and B =

[
1 1

1 1

]
.

It is easy to see that A is more specific than B. This is because for the matrix A, receptor 1

has more affinity for ligand 1 and receptor 2 has more affinity for ligand 2. So ligands 1 and

2 will specifically bind to receptors 1 and 2 respectively. In case of the second matrix B

with all equal dissociation constants, the ligands will have equal affinity for both receptors
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and their binding will not be specific in this case.

This analysis is somewhat simple in case of the matrices A and B, but in more compli-

cated systems, one cannot determine the specificity just by looking at the affinity matrix.

We need a quantification method in order to quantify specificity of a system, and be able to

compare the specificity of systems relative to each other.

We propose to use concepts from information theory and use mutual information as a

measure of specificity.

5.3 Mutual Information

We wish to determine how much information about S is retained in R. This can be done by

looking at the level of certainty that a particular stimulus S brings to the response R that is

observed. In other words, the decrease in the uncertainty in R with the knowledge of Scan

be used to determine how specific the receptor ligand binding is. Therefore, we propose

that specificity of the system under consideration can be defined as the mutual information

between stimulus S and response Rand is given by

I(R,S) = H(R)−H(R | S), (5.8)

where H(R) is the response entropy, and is given by

H(R) = −
∑
r

p(r) log2 p(r), (5.9)

where p(r) is the probability of observing a given response r across many trials of every

possible stimulus. H(R | S) is the conditional entropy of R when S is fixed and is related

to the noise entropy discussed in the previous chapter 4 for stochastic systems.

H(R | S) =
∑
s

p(s)H(R | S = s). (5.10)

Given that the mathematical model is deterministic, knowing the stimulus vector S com-

pletely determines the response vector R and therefore H(R | S) = 0. Therefore in a
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deterministic setting, evaluation of I(R,S) requires only the evaluation of the response

entropy H(R). Figure 5.1 provides a visualisation of response entropies with the same

stimulus for different affinity matrices.

Figure 5.1: Effect of specificity on response in a two ligand two receptor system with KD =
[1, X;X, 1], when larger values of X represent greater specificities. A particular stimulus is given to
three different systems with different levels of specificity. The binding responses for the systems are
shown to be different for different specificity levels. The response becomes more and more scattered
when the specificity increases, thus motivating us to measure specificity of a system by mutual
information. A) Affinity between receptors and ligands is shown on grey scale. B) Lognormal
ligand distribution with μ1 = μ2 = 0.65 and σ2

1 = σ2
2 = 0.68. C) X = 1. D) X = 2. E) X = 10.

5.4 Analysis of the Model and Estimation of Mutual Information

Given an affinity matrix, we want to quantify how much maximum information can be

recorded between the response R and stimulus S. There is a range of questions that need to

be addressed here. Some of these include, how do we generate stimulus samples to estimate

mutual information, how must we bin the response, what should be the parameter(s) we

maximise the mutual information against etc. In the following sections, we discuss how

these various factors affect and modify our analysis.

To start with, we analyse the variation of mutual information against total concentration
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of receptors. We only consider two states of the receptor, on and off. This implies that for

information estimation purposes, we only bin our responses into two bins, i.e., we assume

that the response is binary. The off states constitute one bin, while the on states go to

the second. Off responses are those where the bound receptor concentrations are below a

specific threshold. The receptor is in the on state if the bound receptor concentrations make

it beyond that threshold concentration. It is interesting to note that in our case of binary

response binning, the maximum response entropy that can be exhibited is 2 bits. Referring

again to figure 5.1, we note that a non-specific case cannot have a response entropy greater

than 1 bit.

We know that as the discretisation for information estimation becomes finer and finer,

the value of I(R,S) converges to that of H(R) because of the noise entropy. We know

that in a deterministic setting, the conditional entropy H(R | S), is always zero. But for

estimation purposes, we need to discretise the input space into a number of bins. Higher

number of bins implies more accuracy. So as we accommodate finer binning of stimulus,

the estimate of mutual information becomes more and more accurate. As it is easier to

calculate H(R), we shall use this value for I(R | S) in all the deterministic analysis

to follow. In the case where the system is not purely deterministic or if the response is

not binary, we need to accommodate bias correction for entropy and mutual information

estimates.

An important assumption that we make for our analysis is that we are maximising mu-

tual information given that the stimulus follows one particular distribution. In other words,

we are fixing a particular type of stimulus distribution and then we want to optimise the

parameters of that distribution to obtain maximum mutual information. The problem, in its

generality, would be to maximise mutual information over all possible stimulus distribu-

tions, i.e., finding the channel capacity C of the system which is defined as:

C = sup
pS(s)

I(S,R).

This problem, however, is difficult to tackle and we therefore limit our analysis to one kind

of distribution. The shape of the distributions is motivated by experimentally observed

distribution of ligands as illustrated in section 5.12. This choice of distribution is studied
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in the section that follows.

5.4.1 Variation of Stimulus - Logarithmic vs Lognormal

To estimate mutual information, we need to generate samples for the stimulus. Here we

consider the simple 2 × 2 case of high specificity with matrix

[
1 10

10 1

]
as an example.

We need to be able to cover a reasonably large range of sample ligand concentrations. We

analyse the effects of different modes of stimulus variation for sampling. The obvious

choices are to either sample logarithmically scaled stimulus over a range or draw sample

stimuli from a lognormal distribution. Figure 5.2 shows the effects of these choices. The

one with lognormal stimulus variation seems to be a better choice given that it clearly shows

that the mutual concentration peaks for a certain value of AT , and this peak is what we are

interested in. Moreover, the information peak in the logarithmic case is lower than that in

the lognormal case, indicating that we are prone to missing out on the maximum possible

mutual information in the logarithmic case. It is worth noting that to produce this figure, we

set the binary binning threshold to be absolute, at half the total receptor concentration, and

we vary both AT
1 and AT

2 simultaneously. Moreover, we generate Latin hypercube samples

for BT
1 and BT

2 separately but from the same values of μ and σ, μ and σ being the mean

and standard deviation of the underlying normal distribution.

5.4.2 Binary Binning - Absolute vs Constant Threshold

We want to analyse how mutual information varies with the total receptor concentration.

This is analysed in two different scenarios. Absolute response binning, and binning with

a constant threshold. In the absolute binning case, the receptor is marked as on when the

concentration of bound receptor exceeds half the total concentration. On the other hand,

for the constant threshold case, a certain constant value for receptor concentration is fixed

beyond which the receptor is considered on.

Figure 5.3 shows that the information gained in constant threshold case is always zero

until the total receptor concentration reaches this constant threshold as expected, but re-

mains considerably high beyond the threshold. In case of CT = 10, the the maximum
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Figure 5.2: Logarithmic vs lognormal BT variation. Number of samples = 1000 Logarithmic curve:
BT = [10−1, ..., 103], Lognormal curve: μ = 2.25, σ2 = 2.5 , KD = [1, 10; 10, 1]
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Figure 5.3: Absolute (AT /2) vs constant threshold. Number of samples = 1000, μ = 2.25, σ2 =
2.5, KD = [1, 10; 10, 1]
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information is even greater than the maximum information in absolute binning case. Al-

though the constant threshold case may be biologically more relevant, the downside is that

we do not know how to fix it for optimal results. The only idea we can obtain about fix-

ing a reasonable by looking at the behaviour of I(R,S) in the absolute binning case. It is

evident from the cases CT = 1 and CT = 100 that maximum information is significantly

lower than what we obtain with absolute binning. Therefore, in our analysis that follows,

we will only apply absolute response binning.

5.4.3 Changes in Stimulus Parameters

While performing analysis with lognormal BT variation, there are two parameters involved:

μ and σ, the mean and standard deviation of the underlying normal distribution. The figures

5.4 and 5.5 represent how changes in these parameters affect the value of maximum infor-

mation as well as the values of AT corresponding to which the maximum is observed. The

effect of changing μ is more pronounced as shown in the figure. Both the maximum infor-

mation and the corresponding AT value change significantly as μ changes. The change in σ

does not have a substantial effect on the position of optimal AT . This means that searching

for maximum information corresponding to different values of AT does not suffice. To deal

with this problem, we detail our methodology for finding the maximum information in the

next section.

5.5 Optimising Mutual Information over Parameter Space

In the previous section, we observed that there are several factors involved in determining

the mutual information between the stimulus and response of the receptor-ligand binding

system. These parameters include the distributions of the ligand concentrations, the total

concentration of receptors and also the thresholds down-stream of receptors that use the

information. This can be challenging as it is not straightforward to guess or experimentally

measure all of these parameters. Moreover, the effect of changing these parameters on

the information is not monotone. Therefore, we use grid search for this optimal set of

parameters that maximises the mutual information. This involves assigning a reasonable
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Figure 5.4: Effect of μ on maximum information. Number of samples = 1000, σ2 = 2.5, KD =
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search space for each parameter involved, and then evaluating the maximum entropy for

each set in the parameter space.

To illustrate the grid search method, we start with bisymmetric affinity matrix for its

ease in understanding. Since the matrix is bisymmetric, it is safe to assume that the optimal

μ’s and σ’s for both ligands are the same. We also assume that the optimal total receptor

concentration values for both the receptors are also equal. These assumptions conveniently

reduce our parameter space from six to three dimensions. We vary each of these now three

parameters logarithmically to be able to incorporate larger orders of magnitudes into the

grid search.

μ

σ2
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Figure 5.6: Heatmap showing maximum information obtained from each μ and σ. KD =
[1, 10; 10, 1]. The maxima over AT are reported. μ = [10−2, . . . , 101], σ2 = 0.6 ∗ [10−2, . . . , 101],
AT = [10−1, . . . , 102]. Number of elements in each parameter direction = 15. Maximum informa-
tion obtained is 1.9914 bits corresponding to μ = 0.044, σ2 = 0.026 when AT = 0.268

Figure 5.6 shows the results of our grid search for the very specific case. In this figure,

the maximum information cannot be seen against AT values. Only the maximum value

of information among all AT values is shown in the figure. The maximum information

obtained with this affinity matrix is 1.99 bits, which is very high, as the maximum infor-

mation obtainable in a 2 ligands and 2 receptors case is 2 bits. This shows that the matrix[
1 10

10 1

]
is very specific.

Another factor that we are interested in is the optimality of parameter sets. Changes
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in the total receptor as well as ligand concentrations can alter the information obtained.

But from figure 5.7, we observe that there is no optimal set of parameter values that max-

imises the mutual information. There is rather a region, shown in red in the heatmaps, that

corresponds to maximum mutual information.

Figure 5.7: Effect of different parameters on mutual information. KD = [1, 10; 10, 1]. All param-
eters on the axes range from 10−2 to 103. All the results reported are from grid search with Monte
Carlo stimulus sampling

Figure 5.8 illustrates how the maximum mutual information obtained for a matrix

KD = [1, X;X, 1] changes as X takes on different values. As expected, the mutual infor-

mation increases as the X values become increasingly dominant. All the results reported

in this figure are obtained from grid search methodology. Interestingly, we find that the

specificity rises very quickly with X; only a factor of 2 difference in the affinities produces
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Figure 5.8: X vs maximum mutual information obtained from grid search, KD = [1, X;X, 1]

a significant specificity.

The optimisation of information allows us to allocate a unique specificity measure to a

KD matrices. As we have discussed before, we already know that the matrices

[
1 10

10 1

]
,

[
1 5

5 1

]
,

[
1 1

1 1

]

are in decreasing order of their specificities. In such cases, the relative specificities are

easy to judge. However, the absolute level of specificity is not clear. Also, in case of

affinity matrices where all the elements are different or where the affinity matrices are

high-dimensional, it is not easy to discriminate the specificities of matrices relative to each

other without specificity estimation, and the above described method can be computation-

ally very expensive. For example in the case of figure 5.6, even with symmetry and the

simplifications following it, the parameter space is 153 dimensional, and for each of the

values in the parameter space, 1000 samples from BT distribution are obtained and a de-

terministic system has to be solved for each of these samples. In summary, the heatmap in

figure 5.6 required 3375000 solutions of the receptor ligand binding system. This obviously

complicates further if the KD matrix is not symmetric.
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5.6 Use of Unscented Transform for Speed

As mentioned in the last section, the algorithm used for grid search can be very slow. For a

larger system with multiple receptors and ligands, the performance of the algorithm can be

poor. In order to overcome this problem, we use unscented transform to significantly reduce

the number of calls to the function that solves the deterministic system. Since solving the

biochemical system is the most time consuming step of the algorithm, the improvement

due to Unscented transform can be expected to be considerable.

In our methodology, we are drawing thousands of lognormally distributed Monte Carlo

samples of ligand concentrations, which are then used to determine the corresponding

steady state outputs of the receptor ligand system, or the response. So in turn, we ob-

tain thousands of response samples that enable us to estimate the discrete entropy of the

response, which for a deterministic system is the mutual information. The idea of us-

ing unscented transform stems from the fact that we already have lognormally distributed

stimulus. With the response also following lognormal distribution for each element in the

parameter space, we only need 2M + 1 solutions of the deterministic system. This has a

huge impact on the computational time of the algorithm, as thousands of system evaluations

have now been reduced to only 5 for a two receptor and two ligand system.

5.6.1 Comparison between Monte Carlo and Unscented Transform Re-

sults

Figure 5.9 shows that the Unscented transform performs quite well for both specific and

non-specific cases. Both the maximal mutual information value and location obtained from

the unscented transform match with the results from Monte Carlo solutions. The perfor-

mance of the Unscented Transform in terms of speed is significantly better.
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Figure 5.9: Comparison between results from Monte Carlo sampling and Unscented Transform.
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Figure 5.10: X versus maximum mutual information when KD = [1, X;X, 1]. All results reported
are from grid search

Figure 5.10, is an illustration of how both the methods compare in terms of the maxi-

mum mutual information values. The results from both the methods compare well against

each other with the Unscented Transform almost always slightly underestimating the mu-

tual information value.

5.6.2 Unscented Transform for Non-Bisymmetric Matrices

As discussed earlier, the grid search approach with Monte Carlo sampling is computation-

ally very expensive even for a 2-by-2 matrix that is non bisymmetric. The bisymmetry
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of KD matrices allows us to simplify the computational efforts by assuming that the pa-

rameters for both the receptors and ligand distributions behave similarly, thus reducing the

dimension of the problem by half. In case of non-bisymmetric matrices, on the other hand,

we lose all these advantages and every parameter needs to be working independently of the

other.

The Unscented Transform is a natural choice accompanied by grid search for non-

bisymmetric matrices. But when compared for several sets of parameters, the Unscented

Transform results differ significantly from those from a Monte Carlo approach. Although

the Unscented Transform worked very well for matrices of type [1, X;X, 1], it seems to

yield incorrect mutual information values. The parameter region of high mutual informa-

tion values also differed greatly from that obtained from the Monte Carlo approach.
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Figure 5.11: Distribution for C2. μ1 = 1, μ2 = 2, σ2
1 = 5, σ2

2 = 5, AT
1 = 10, AT

2 = 100

The working of Unscented Transform ensures that we obtain the first two moments

of response distribution. In our case, we generate lognormal response samples as this is

more realistic. The setup of the problem stipulates that the stimulus is lognormal, but

the assumption that the response is always lognormal is incorrect. Figure 5.11 shows the

response distribution for second bound receptor, C2, when KD = [100, 10; 10, 1]. The

distribution is bimodal which clearly shows that our assumption of lognormal response is

flawed, hence unsatisfactory results.
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5.7 Simulated Annealing

Studying non-bisymmetric KD matrices with grid search approach has proved to be un-

successful. The Unscented Transform approximation can be helpful in computationally

expensive cases, but that too fails for non-bisymmetric matrices because of the response

being bimodal. This problem leads us to thinking of an optimisation approach that could

help in obtaining maximum mutual information.

We use simulated annealing to obtain optimal solutions for mutual information that

various KD matrices can exhibit. Table 5.1 shows simulated annealing results for some of

the KD matrices that are generally considered to be non-specific.

KD Matrix μ1 μ2 σ2
1 σ2

2 AT
1 AT

2 Maximum I(R, S)[
10 10

1 1

]
0.06 0.90 38.36 1.64 31.93 0.01 1.58[

100 10

10 1

]
0.56 2.48 0.06 5.52 43.37 0.19 1.58[

10 1

10 1

]
0.30 0.02 0.03 0.25 0.06 0.30 1.00

Table 5.1: Optimal parameter and specificity values for some non-bisymmetric matrices using sim-
ulated annealing

The simulated annealing methodology yields similar results as the above table when

used with different initial guesses. This methodology is faster than grid search. We note that

according to these results, some matrices that are generally thought to be non-specific are

exhibiting a considerably high level of mutual information. For a non-specific matrix, we

expect that the maximal mutual information, will not exceed the value 1 bit. To understand

why this is so, we need to analyse what parameter regions, rather than parameter values,

will yield high levels of mutual information. We therefore, need a faster approach to finding

the maximal information as well as finding the regions in parameter space that correspond

to that level of mutual information.
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5.8 Markov Chain Monte Carlo Methods

Until now, we have tried different methodologies for finding the maximum mutual infor-

mation between stimulus and response of our receptor ligand binding system. However,

we still need to work on improving computational speed while trying to understand the

relationship between optimal parameter ranges.

5.8.1 MCMC Results for Bisymmetric Matrices

Markov Chain Monte Carlo approach is applied to the problem at hand, and the computa-

tional performance is better than grid search and simulated annealing. Figure 5.12 shows

the results for bisymmetric cases from MCMC approach. The results shown in the figures

are based on the values of parameters corresponding to maximum 5 percent of the informa-

tion values that the algorithm yields. And that also after the burning off period. The panel

A in figure 5.12 confirms our earlier results from gid search. From the next panels, what

we understand is that as X increases, the value of μ (note that in bisymmetric case, we take

μ1 = μ2) somewhat decreases, while the optimal values of AT certainly follow a decreas-

ing trend. The role of σ2 is even more difficult to comprehend. Figures 5.13, 5.14, and

5.15 illustrate the relationships between different parameters in the regions of high mutual

information.

5.8.2 MCMC Results for Non-Bisymmetric Cases

The MCMC results for the matrices in table 5.1 referring to simulated annealing results,

match exactly with those of simulated annealing. Both the simulated annealing and MCMC

approaches show that the KD matrices

[
10 10

1 1

]
and

[
100 10

10 1

]
are specific, contrary to

the popular understanding. However, the matrix

[
10 1

10 1

]
does not exhibit any specificity.

In case of

[
10 1

10 1

]
, we note that both receptors have 10 times more affinity for ligand

2 as compared to ligand 1, but both the receptors have exactly the same characteristics.
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Figure 5.12: MCMC results for MI estimation for KD = [1, X : X, 1]. Number of MCMC runs
= 1200. The medians and standard deviations of those results are reported that are within the top
5 percent of the maximum values obtained from MCMC simulations. Bisymmetric KD allows
μ1 = μ2, σ2

1 = sigma22, and AT
1 = AT

2 . A) X versus the maximum MI obtained. B) X versus
μ. C) X versus σ2. D) X versus AT . E) Relationship between μ and σ2 when X = 6. Pearson
correlation coefficient is also reported. F) Relationship between σ2 and AT when X = 6. G)
Relationship between AT and μ when X = 6.

On the other hand, for

[
10 10

1 1

]
, the two receptors behave differently; receptor 2 likes



5.8 Markov Chain Monte Carlo Methods 128

0 2 4
0

200

400

600

0 1 2
0

0.5

1

0 0.2 0.4
0

0.5

1

0 0.2 0.4
0

0.2

0.4

0 0.2 0.4
0

0.2

0.4

0 0.1 0.2
0

0.5

1

0 0.2 0.4
0

0.5

1

0 0.5
0

0.5

1

0 0.2 0.4
0

1

2

0 0.2 0.4
0

2

4

Figure 5.13: Scatterplots of μ (on x-axis) against σ2 (on y-axis) for X =
[1, 1.2, 1.4, 1.6, 1.8, 2, 3, 4, 6, 10] in regions of high mutual information. Results reported are
from MCMC approach
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Figure 5.14: Scatterplots of σ2 (on x-axis) against AT (on y-axis) for X =
[1, 1.2, 1.4, 1.6, 1.8, 2, 3, 4, 6, 10] in regions of high mutual information. Results reported are from
MCMC approach
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Figure 5.15: Scatterplots of AT (on x-axis) against μ (on y-axis) for X =
[1, 1.2, 1.4, 1.6, 1.8, 2, 3, 4, 6, 10] in regions of high mutual information. Results reported are
from MCMC approach

both the ligands 10 times more than receptor 1 does. We also note that the maximum

mutual information for both the specific KD matrices is the same, 1.58. This is somewhat

unexpected as the first two matrices are seemingly very different. Furthermore, the matrices

of the form

[
X X

1 1

]
also tend to exhibit specificity between 1.5 and 1.6, as shown in the

MCMC results in figure 5.16. Also when X is close to 1, the specificity remains close to to

1.5. Figure 5.16 suggests that a matrix of the form

[
X X

1 1

]
exhibits maximum specificity

of 1.58 bits, independent of the value of X . In order to gain insight into what phenomena

are responsible for such estimates, we observe what is happening at the binding level. We

look at questions like: Is there a specific binding pattern in the systems with these KD

matrices? How does the ratio of affinities of receptor 1 and receptor 2 affect the system?

Just like bisymmetric matrices with a bound on mutual information, is the specificity of

non-symmetric matrices limited?
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Figure 5.16: MCMC results for X versus the maximum MI obtained for KD = [X,X : 1, 1].
Number of MCMC runs = 1000. The medians and standard deviations of those results are reported
that are within the top 5 percent of the maximum values obtained from MCMC simulations

5.8.3 Theoretical Limits on Specificity for Non-Bisymmetric Matrices

Figure 5.16 illustrates the stimulus-response relationship for non-bisymmetric affinity ma-

trices. We introduce three different ligand distributions to various non-bisymmetric matri-

ces. We have divided the response area into four regions: I - both C1 and C2 are less than
AT

1

2
and AT

2

2
respectively, II - C1 is less than AT

1

2
, and C2 is equal to or more than AT

2

2
, III

- C1 is equal to or more than AT
1

2
while C2 is less than AT

2

2
, and IV - both C1 and C2 are

greater than AT
1

2
and AT

2

2
respectively. The figure shows that unlike the bisymmetric matri-

ces studied before, these matrices have a different course of action for ligands binding of

the receptors. If we look at the scatter plots, it becomes evident that rather than having

a certain region in the C1 − C2 space within which binding could occur for bisymmetric

matrices, some of the non-bisymmetric ones have a defined path that the binding process

follows as the ligands saturate. Moreover, in the case of

[
10 1

10 1

]
, both the receptors like

ligand 2 more than ligand 1, and to the same extent. So really, the two receptors in this case
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behave like one and their bound concentrations remain the same as each other as the ligand

saturates. In this case, the bound receptor concentrations can lie in only two of the four

regions in the C1 − C2 plane. On the other hand, receptor 2 has significantly more affinity

for both ligands when compared to receptor 1 in case of

[
10 10

1 1

]
. So the two receptors

behave differently with receptor 2 binding more of the two ligands as compared to receptor

1. We therefore see incidents where receptor 2 is more than half bound while receptor 1

is not. This enables the binding path to fall into a third region, region II, as the ligands

continue increasing in number.

In case of

[
10 10

1 1

]
, where the binding scheme can lie in three regions, the maximum

mutual information, which is the maximum output entropy for deterministic setting, is 1.58.

This can be connected to the fact that if a response has a 1
3

probability of lying in any of the

three regions and a zero probability in the fourth, then the entropy becomes log2 3 which

equals 1.58. Therefore, just as the bisymmetric matrices have an upper bound of 2 for

mutual information, non-bisymmetric matrices can exhibit a maximum mutual information

of 1.58 bits.

5.8.4 Some More Affinity Matrices and Their Scatter Plots

Although we have been able to successfully optimise the parameters using MCMC meth-

ods: ligand means and standard deviations, and total receptor concentrations to obtain the

maximum possible specificity of the system, we are unsure of the numbers this analysis

gives for specificity. For example in case of bisymmetric matrices, the magic number is 2

- no bisymmetric matrix can exhibit a maximum specificity of more than 2 bits. We also

studied the special case of bisymmetric matrices of the form

[
1 X

X 1

]
and found that the

specificity increases quite rapidly as soon as X starts taking values greater than 1. On the

other hand, the number 1.58 comes up repeatedly for non-bisymmetric cases. Moreover,

some matrices like

[
10 1

10 1

]
, which may not look non-specific, turned out to be so with

maximum possible specificity of 1 bit. To understand the stimulus to response mapping in

more detail, we study the scatterplots for some more affinity matrices.
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Figure 5.17: Responses for non-bisymmetric KD matrices. Three different stimuli and receptor
concentrations are given to systems with three different non-bisymmetric KD matrices. The analysis
shows that the comparative affinities from the KD matrices for different ligands determine the shape
of the region which the response covers. The rows represent different stimuli and AT values. The
values of parameters used are μ1 = {0.06, 0.3, 0.56}, μ2 = {1, 0.02, 2.5}, σ2

1 = {38, 0.03, 0.06},
σ2
2 = {1.6, 0.25, 5.52}, AT

1 = {32, 0.06, 43.4}, and AT
2 = {0.01, 0.3, 0.19} in respective order.

The columns are for different KD matrices. The matrices used are [10, 1; 10, 1], [10, 10; 1, 1], and
[30, 10; 10, 1]
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We fix a stimulus, that is, ligand means and variances, as in the caption of figure 5.18.

We then look at the scatter plots for both the bound receptors corresponding to the given

stimulus samples. We observe that the KD matrix in panel A effectively behaves as a

bisymmetric matrix

[
1 X

X 1

]
, with some value of X . This is because the scattering region

from this matrix is similar in shape to that in 5.1. The region is also symmetric as C1 and

C2 increase. We observe similar behaviour in panel D, though the symmetry is lost here.

There are outputs in all four regions as in panel A but the shape of the boundary is different

for the scattering region. We can attribute this to the fact that for the matrix in panel A,

both the ligands had affinity for corresponding receptor to an equal extent, which is not the

case in the matrix of panel D. If we use ∼ to denote the equivalence of two matrices in the

way that the maximum specificity exhibited by both is equal, then we conclude from this

comparison that [
A B

B A

]
∼
[
1 X

X 1

]

for some X , and [
A B

C A

]
∼
[
1 X

Y 1

]

for some X and Y .

For the matrix in panel B, we see that there is no region where scattering takes place,

the region is rather just reduces to a line, whereas in panel E, although one would think it is

a similar case, there is region formed by the outputs. For the matrix in panel A, the second

receptor is 10 times more likely to bind than receptor one, to both the ligands. That is, the

level of preference for receptor 2 over 1 is equal for both ligands. In the matrix of panel E,

the ligand 2 favours receptor 2 10 times more than receptor 1, but ligand 1 favours receptor

2 only twice as much as 1. Therefore, this level of likeliness shows in the scatter plots. The

more a ligand favours one receptor over another, the sharper the curve of the boundary, and

if both ligands have different preference levels for receptors, this shows as the area between

the two curves. This conclusion is confirmed by the results in panel C and F.

Now that we know the response scatterplots have these diverse behaviours, we would

like to point out that for the present setup with binary binning and the threshold at half
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the receptor concentration level, the scatter plots determine the maximum specificity a

matrix can exhibit. A matrix with response in all the four binning regions can exhibit

more specificity than that with response in three regions. For example, the matrices in

panel A and D can exhibit a maximum specificity (response entropy) of 2 bits, whereas

for matrices similar to the matrix in panel F, this maximum cannot be achieved because

one of the binning regions never has a response in it. The maximum that such a matrix

can achieve is therefore 1.58, when all the responses are equally distributed among three

regions. Similarly a matrix with straight response line without any curve can only exhibit

1 bit of maximum specificity.

Figure 5.18: Responses for non-bisymmetric KD matrices. The ratios between the column ele-
ments of the KD matrices determine the shape and scattering of the response, which in turn de-
termines the bound on the maximum possible specificity that can be exhibited by that matrix.The
stimulus used here is μ1 = 0.06, μ2 = 1, σ2

1 = 38, σ2
2 = 1.6, AT

1 = 5, AT
2 = 5
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5.9 Overall Summary of Results for Maximum Specificity of 2 × 2

Affinity Matrix Case

The observations in the previous section give us an idea of the specificity limit of an affinity

matrix. We already know that for each affinity matrix, there is an optimal region of param-

eters consisting of ligand distributions and total receptor concentrations. We have shown

that MCMC methods are the most efficient way of finding such an optimal parameter com-

bination. We also know now that by looking at an affinity matrix, we can tell the upper limit

of the specificity that it can exhibit. It is worth noting again that although the specificity is

dependent in ligand distributions and receptor concentrations, the maximum specificity we

are referring to is the optimal specificity corresponding to the parameters from the optimal

region. A matrix that can exhibit a maximum specificity of two bits may not always ex-

hibit that much specificity, depending upon the particular stimulus used and total receptor

concentrations. We also assert that these maxima are only valid for our current specificity

estimation setup, i.e., a 2× 2 case with binary binning of bound receptors at thresholds of

AT/2.

We now summarise the findings for maximum specificity values for a specificity matrix.

Let us assume that the KD matrix is of the form[
a11 a12

a21 a22

]
.

We denote the ratios of the dissociation constants for the two receptors as:

r1 =
a11
a21

, r2 =
a12
a22

.

Then we have the following findings:

(i) r1 < 1 and r2 < 1: Maximum specificity = 1.58 bits

(ii) r1 > 1 and r2 > 1: Maximum specificity = 1.58 bits

(iii) r1 > 1 and r2 < 1: Maximum specificity = 2 bits
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(iv) r1 < 1 and r2 > 1: Maximum specificity = 2 bits

(v) r1 = 1 or r2 = 1, r1 �= r2: Maximum specificity = 1.58 bits

(vi) r1 = r2 = 1: Maximum specificity = 1 bit

5.10 Specificity Comparison when One of the Ligands is Absent

As discussed before in chapter 1, it is commonly believed that in some signaling systems

where both the receptors bind both the ligands, the role of one of the ligands becomes

redundant because the two are performing the same task [56]. The analysis of this unex-

plained redundancy is particularly important for the ligands CD80 and CD86 in the CD28-

CTLA4 signaling system because they both bind to receptors CD28 and CTLA4 with a

similar fold difference in affinity. Their absolute affinities are different so the redundancy

is not entirely obvious. With our specificity estimation setup, we can show that the two

ligands in such a case are completely redundant. The functionality of both is important to

the system because the specificity when both the ligands are expressed is more than that of

the system when only one ligand is expressed.

Figure 5.19 shows the comparison among mutual information estimates when one of

the two ligands is absent and when both the ligands are present. The comparison shows that

the presence of second ligand brings in more information to the system and the resulting

system is more specific. We can therefore conclude, contrary to common understanding,

that the second ligand is not necessarily redundant in such signaling systems. This is a a

redundancy estimating setup that can then be used by biologists and experimentalists by

measuring ligand and receptor concentrations in real systems.
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Figure 5.19: The difference in specificity and mutual informations is analysed when when one
of the ligands in absent and then compared to the case when both the ligands are present. The
specificity in case of both ligands being present is more than the cases where one of the ligands is
absent. This shows that there is additional information that the presence of a second ligand brings
into the system. For all stimuli, μ1 = 0.06, μ2 = 1, σ1 = 38, σ2 = 1.6, AT

1 = 32, AT
2 = 0.01,

KD = [0.2, 0.04; 0.026, 0.002]

5.11 Generalising the Specificity Estimation Setup Further - Binning

Thresholds as Optimisation Parameters

With our current specificity estimation and optimisation setup, we have kept the binary

binning thresholds fixed at half the total concentration of receptors. But from the scatter
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plots is figure 5.18, we can see that the specificity limits mentioned in the last section can

change with different placements of binning thresholds. For example the matrix in panel

E from figure 5.18 has a specificity upper limit of 1.58. However, if the thresholds are

placed such that the response is in all the four regions for bound receptor concentrations,

the specificity might exceed our current limit of 1.58 bits. This gives us another insight into

ways of enhancing specificity. If we treat the binning thresholds as optimisation parameters,

we can optimise the specificity more effectively.

Figure 5.20: Mutual information estimates vary with different threshold settings for KD =
[1, 1; 1, 1]. The same stimulus is presented in each case and only the threshold settings are var-
ied. The parameters used are μ1 = 0.5, μ2 = 1, σ2

1 = 1, σ2
2 = 1.5, AT

1 = 5, AT
2 = 10

Figure 5.20 is the case of non-specific matrix, a matrix of all ones. This figure shows

that different placements of thresholds result in different response entropies, and therefore,

different specificities. We conclude that the previously thought of as a non-specific matrix

can still be specific, based on the binning setup. Unfortunately, it is not always clear how
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to place these thresholds, and sometimes the best we can do is to treat them as optimisa-

tion parameters, for example, in the MCMC optimisation. This approach is used in the

following section that deals with a specific biological example.

5.12 Specificity Estimates for the CD28-CTLA4 System

Figure 5.21: A cartoon for CD28-CTLA4 signaling system. The two ligands CD80 and CD86
are present on antigen presenting dendritic cells. The receptors CD28 and CTLA4 are proteins
expressed on the surface of T-cells

T-cells are white blood cells, that are important for proper functioning of immune responses

against antigens, which carry disease and infection. T-cells circulate in blood looking for

antigen presenting cells, and get activated upon encounter. The appropriate activation is im-

portant for correct immune responses and for encountering the threats due to antigens. An

inappropriate activation may result in allergic reactions and autoimmune disorders.While
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the primary signalling route in application is through the T-cell receptors, there is also an

important role through signaling by the CD28 and CTLA4 receptors in the T-cell receptors.

The ligands for these receptors that are found on dendritic cells (DCs) are CD80 and CD86.

CD80 and CD86 are proteins expressed on antigen presenting DC cells, while the receptor

proteins CD28 and CTLA4 are expressed on the surface of T-cells. Their binding mecha-

nism determines immune responses. The 2 × 2 affinity matrix for this system is obtained

previously in [10]. Our collaborators Enas Abu Shah and Omer Dushek at Oxford have

also measured the distributions of the ligands and receptors in single T-cells and dendritic

cells by FACS. In this section we describe the use of our specificity estimation setup for

this system. It is often desirable that the receptor ligand binding takes place is a specific

way, thus exhibiting maximum specificity.

5.12.1 Data Calibration and Specificity Estimation Setup

The data we use are obtained from experiments using FACS technique. Fluorescent pro-

teins are used to measure the level of expression of the proteins. The experiments show that

the ligands concentrations are lognormally distributed. From the experimental measure-

ments of raw intensities, we have means and variances from lognormal distributions for

autofluorescence (unstained background) and total fluorescence (total fluorescence mean-

ing the signal fluorescence in addition to the autofluorescence) for both ligands and recep-

tors for two different types of T-cells: CD4 and CD8. With the experimental observations

that all the raw fluorescence intensities follow lognormal distributions, we use the means

and standard deviations from the data to obtain raw intensity distribution for the signal i.e,

fluorescence purely due to the ligand and receptor proteins. We use the following convolu-

tion here

p(FT ) = g(FAF )*h(FS) (5.11)

where FT ,FAF , and FS denote total fluorescence, autofluorescence, and signal fluorescence

respectively, and p, g, and h their respective probability distributions. With means and

variances for FT and FAF , given that they follow lognormal distributions, we sample form

the distributions and bin the samples to obtain p and g. We then apply deconvolution using

inverse Fourier transform to h. With h and binning scheme in hand, we generate samples
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for FS . These raw intensity samples for FS are then transformed into calibrated data, and

the required statistics calculated.

To be able to apply our specificity estimation setup to the experimental setup, we need to

be able to produce calibrated data for ligand distribution statistics, i.e., means and variances

of the underlying normal distribution, as well as total receptor concentration. Although we

have a distribution for receptors, here we use the mean of the receptor concentration as the

total available receptor. We scale the experimental affinity matrix, and all the calibrated

data for comparable units and then apply our specificity estimation setup to calculate speci-

ficities. From the experimental data we have, we calculate how much specificity the system

actually exhibits in our case for variable binning thresholds. Note that as here ligand dis-

tributions and receptor levels are measured and we only do the MCMC optimisation over

thresholds.

5.12.2 Results and Discussion

The measurements we have of the raw intensities of the receptors and ligands are in two

states: resting (immature) and activated (mature). Therefore, we look at all the various

combinations of states for ligands and receptors to analyse and compare the specificities in

these cases.

Figure 5.22 shows how the stimulus from our experiments is mapped onto the response.

The figure shows the results for two cases: when both the DCs and CD4s are resting, and

when the DCs are resting while CD4 cells are in the activated state. The figure shows a

sample case when both the thresholds are set at half the total receptor concentration. The

specificities in these cases are 1.39 and 1.32 bits which is quite high, although this can be

improved with better placements of binning thresholds.

Figure 5.23 is the case where we use the stimulus statistics of the experimental data,

and then vary the threshold placements. The maximum specificities that we obtain are 1.47

and 1.58 bits for resting and activated CD4 cells respectively. It is worth noting that the

thresholds are bound by total receptor concentrations that we set to be the mean receptor

concentration values from the data.

We perform similar analyses of other combinations for the states of dendritic as well
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as CD4 and CD8 cells. For examples, Figures 5.24 and 5.25 provide the same analysis as

before in case of activated or mature DCs. These cases exhibit zero specificity, regardless

of the state of the CD4 cells. From the scatterplots in figure 5.24, it is clear that for the

stimulus presented by the distribution of dendritic cells, both CD28 and CTLA4 are in on

state.

Figures 5.26 and 5.27 provide scatter plots for stimulus and response and threshold

variation as before for the case where DCs are resting and the receptors CD28 and CTLA4

are on the CD8 cells. The results are similar to the case of CD T-cells, and exhibit some

specificity, more so in the activated CD4 case.

Figures 5.28 and 5.29 again show that when the DCs are in the mature state, the system

is non-specific for the CD8 cells as well. As in the case of CD4 cells, both the receptors

are almost completely bound when the DCs are in activated state.
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Figure 5.22: Stimulus and response for the experimental data when the DCs and CD4 cells are
resting (Panels A and B), and when DCs are resting and CD4 cells are activated (Panels C and D).
The response mutual informations in the two cases are 1.39 and 1.32 bits respectively
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Figure 5.23: Heatmaps for response specificities as the response thresholds are varied for the cases
when DCs and CD4 cells are resting (Panel A), and when DCs are resting and CD4 cells are activated
(Panel B). The maximum specificities observed in the two cases are 1.47 and 1.58 bits respectively
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Figure 5.24: Stimulus and response for the experimental data when the DCs are activated and CD4
cells are resting (Panels A and B), and when both DCs and CD4 cells are activated (Panels C and
D). The response mutual informations in the two cases are 0 bits
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Figure 5.25: Heatmaps for response specificities as the response thresholds are varied for the cases
when DCs are activated and CD4 cells are resting (Panel A), and when both DCs and CD4 cells
are activated (Panel B). The maximum specificities observed in the two cases are 0 and 0.07 bits
respectively
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Figure 5.26: Stimulus and response for the experimental data when the DCs and CD8 cells are
resting (Panels A and B), and when DCs are resting and CD8 cells are activated (Panels C and D).
The response mutual informations in the two cases are 0.71 and 1.24 bits respectively
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Figure 5.27: Heatmaps for response specificities as the response thresholds are varied for the cases
when DCs and CD8 cells are resting (Panel A), and when DCs are resting and CD8 cells are activated
(Panel B). The maximum specificities observed in the two cases are 1.04 and 1.57 bits respectively
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Figure 5.28: Stimulus and response for the experimental data when the DCs are activated and CD8
cells are resting (Panels A and B), and when both DCs and CD8 cells are activated (Panels C and
D). The response mutual informations in the two cases are 0 bits
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Figure 5.29: Heatmaps for response specificities as the response thresholds are varied for the cases
when DCs are activated and CD8 cells are resting (Panel A), and when both DCs and CD8 cells
are activated (Panel B). The maximum specificities observed in the two cases are 0 and 0.07 bits
respectively
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5.13 Specificity in a Stochastic Setting

In the previous sections, we have looked at specificity of a purely deterministic system.

But we know that biochemical systems are noisy and it is more realistic to study them

from a stochastic point of view. In a stochastic system the receptor ligand binding will be

noisy. But our definition of specificity in terms of mutual information remains the same

in a stochastic setup. Mutual information is versatile in the sense that it easily accommo-

dates for stochasticity. When switching from a purely deterministic system to a stochastic

one, we are replacing a single response value to a distribution. Therefore, accommodating

several values of response per stimulus value is the key to mutual information estimation.

The idea of extension of specificity quantification for stochastic systems is, however,

not completely straightforward. There are a few technicalities that need to be dealt with.

The first difficulty that arises is that Gillespie simulations are required for each solution

to a stochastic system. This means that, if previously we were generating 1000 samples

to capture a stimulus distribution and solving a deterministic system for fixed points for

each of these samples for responses, we now need to run Gillespie simulations 1000 times

to generate this many response distributions, which then yield the response entropies and

mutual informations.

The second complication comes from the fact that we cannot use response entropy

as mutual information. In a deterministic system, there is no noise entropy and for fine

enough stimulus binning scheme, the value of mutual information converges to that of

response entropy. However, finer binning does not help for stochastic case as there is

additional uncertainty due to intrinsic noise of the system. For binary responses, the output

entropy estimation directly does not produce much bias, so bias correction is not required.

However, while computing mutual information, the stimulus need to be discretised, and

there can only be a finite number of stimulus bins. Also, the entropy of one variable for

N samples is always less biased than mutual information between two variables with N

realisations each. Therefore, the estimate of mutual information needs to be bias corrected

as well.
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Figure 5.30: Change in mutual information as X varies in the KD matrix [1, X;X, 1] and the
system is stochastic. All the levels of stochasticity are set using different system volumes where V =
10−15. The same stimulus is used for all Gillespie simulations, except when volumes are used for
binary reaction rates. All the parameters are set at the same values that provide optimal specificities
in the corresponding deterministic case. The estimates of mutual information and entropies are bias
corrected

Figure 5.30 provides a glimpse of what stochastic specificity looks like in the receptor

ligand binding system. We have limited our analysis to bisymmetric KD matrix of the form[
1 X

X 1

]
, and estimated specificities using the same parameters that provide the results of

figure 5.8. The parameters for binary reactions were changed to accommodate for the

different levels of stochasticity of the system. The results show that the specificity of the

system decreases as noise is increased. This is expected because when the system gets

more and more stochastic, it is difficult for ligands to bind to specific receptors as noise

increases fidelity and cross-talk.

Ideally, with the accommodation of a few extra steps of Gillespie simulations and bias

correction, the MCMC methodology provides best solution for finding the optimal param-

eter region that maximises the stochastic specificity.
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5.14 Concluding Remarks

In this chapter, we have proposed a novel method for quantification of biological specificity

in a receptor ligand binding system using entropy and mutual information estimates. We

developed a specificity estimation setup in terms of mutual information estimates between

stimulus and response, where the stimuli and responses are based on the concentrations

of ligands and receptors in the system. We worked within a deterministic setting with a

2 × 2 affinity matrix and solved for response distribution corresponding to a particular

stimulus distribution. The response was binned into two bins, representing only on and

off states of the receptors, while the stimulus followed a lognormal distribution. Primarily

working with bisymmetric affinity matrices, we showed how parameters of the specificity

estimation setup influence the specificity exhibited by a system. We also observed that there

were optimal ranges corresponding to maximum specificity that a system can exhibit. The

optimal parameter solution were sought by grid search, simulated annealing and MCMC

methods. MCMC methods proved to be most efficient for finding regions of parameters

where specificity is maximal.

We extended our analysis of specificity quantification to non-bisymmetric cases also,

and showed that there were bounds on maximum specificities for different kinds of affin-

ity matrices. Next, we discussed different types of affinity matrices and reported their

specificity upper bounds with our quantification methods. We then introduced the idea of

considering the response binning thresholds as optimisation parameters and proposed that

the specificity bounds could be pushed upwards with variable binning thresholds. Finally,

we applied our specificity quantification methodology to experimental data for T-cells and

showed that, against common understanding, the specificity estimates of more than 1 bit

ensure that the on-off and off-on states for receptors are also identifiable in addition to the

on-on and off-off states, and this contributes towards the specificity of the system. At the

end of this chapter, we proposed how this setup can be extended for a stochastic setting and

illustrated that specificity in a stochastic setting will be less than that of the corresponding

deterministic system.
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Chapter 6

Conclusions and Future Work

In this thesis, we have studied two main problems in mathematical biology: stochastic sen-

sitivity analysis and specificity quantification for biochemical networks. We have detailed

the motivation behind the study of these problems in chapter 1, wherein we discussed that

biological systems are stochastic in nature, and this stochasticity becomes very important

at low copy numbers of the species involved. We have also elaborated that stochasticity

has the capability to change system dynamics, and because of this, there is a need to study

biological systems in a stochastic setup. Biological systems are complex as they are, but

the added element of stochasticity makes their study even more complicated and highly

nontrivial.

We have explained in chapter 1 that the general phenomena of robustness of stochastic

systems is closely related to sensitivity analysis. There are many tools and methodologies

in literature to deal with analysis of sensitivity of a system. We have presented a review of

these methods in chapter 3. In chapter 4, we developed a global stochastic sensitivity anal-

ysis methodology using tools from information theory. The methodology developed here

is a generalisation of the information theoretic sensitivity analysis setup [79] for stochastic

systems. Information theory setup is a useful approach for such a study in the sense that it

accommodates for stochasticity relatively easily, and it is straightforward to estimate quan-

tities like entropies and mutual informations. We described how we define sensitivities of

outputs with respect to input parameters, and how second and higher order parameter sen-

sitivities are defined and estimated. We also introduced the idea of intrinsic noise entropy
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and how discretisation entropy [79] evolves as noise entropy for stochastic systems. We

also showed that the presence of both intrinsic noise entropy and discretisation entropy can

alter the distribution of sensitivities dictated by sensitivity summation laws.

The implementation of the method, as in chapter 4, is not straightforward for stochastic

systems. However, the method itself is versatile in the sense that it takes care of both

stochasticity and global characteristics of sensitivities at the same time. So one can expect

that these advantages come at the cost of computational efficiency. Monte Carlo sampling

needs to be performed to capture the input parameter space. Gillespie simulations are

then performed for each of these parameter samples, which is the most computationally

expensive step of this sensitivity analysis setup. Although bias correction is applied to the

entropy and mutual information estimates but most of the bias correction techniques already

require a lot of samples, which further require performing that many Gillespie simulations.

The Gillespie outputs are used for bias corrected entropy and mutual information estimates

that define the sensitivity estimates corresponding to various parameters of the system.

We studied a simple four parameter gene expression model with the help of stochastic

sensitivity analysis setup that we developed in chapter 4. We repeated the analysis for

different levels of stochasticity of the system and observed the interesting phenomena that

as noise level of the system changes, the parametric sensitivity changes. For this model,

in particular, the sensitivities decreased as the system became more and more noisy. We

applied the same methodology to a six parameter gene expression model with negative

feedback and observed the same trend.

Although the sensitivity analysis methodology provides some very useful and interest-

ing insights into the systems studied, the methodology can prove to be computationally

expensive in its complete generality for complex systems. This motivated us to use the

concept of unscented transform to replace Monte Carlo sampling. The idea of unscented

transform is to capture the essence of input distribution with a carefully calculated set of

sigma points and obtain the output distribution by applying an appropriate nonlinear func-

tion to only that set of sigma points. The size of the sigma point set is only 2L + 1 for an

L parameter system. This provides a huge advantage for the sensitivity analysis method-

ology as thousands of Gillespie simulations are replaced by only 2L + 1. In the later part

of chapter 4, we applied this modified and efficient sensitivity analysis methodology to
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the gene expression models and observed a good comparison between the results from full

method with Monte Carlo sampling and the modified version with unscented transform.

The new version with unscented transform is suitable for use in more complex systems,

and we demonstrated this advantage with the application on stochastic model of circadian

rhythms. It is worth noting that oscillatory behaviour cannot be analysed with linear noise

approximation, and Gillespie simulations are expensive for such analysis. Therefore, for

oscillatory systems like the circadian clock example, the unscented transform aided sensi-

tivity analysis is an efficient way of analysis. Other approaches that use linear noise ap-

proximation [69, 120] will not be suitable for the study of highly nonlinear and oscillatory

systems.

In the sensitivity analysis applications presented in chapter 4, we have focused on re-

gions of parameter space within which system dynamics do not change. Although the gene

expression model has the ability to exhibit bimodality in a stochastic setup, but that only

happens when the strength of the negative feedback is extremely low. Our studies have

been limited to systems (self-repressor gene expression model as well as circadian clock

model) that did not exhibit bifurcations for the parameters ranges analysed. We would

like to point out here that it will be interesting to study a system like the self-activator

gene expression model that can potentially exhibit bistability with this sensitivity analysis

technique, and this can be a future area of research. We can expect in such systems, the

sensitivity orderings for parameters will change dramatically when the critical values at

which bifurcations take place are crossed. Although the unscented transform application

does not provide good results for bimodal output variable cases, the sensitivity analysis

technique remains applicable in its generality. A detailed study of sensitivity orderings and

related parameter values could potentially signify bifurcations. Furthermore, sensitivity

analysis of parameters that undergo extrinsic fluctuations can also be helpful in detecting

bifurcations in system dynamics induced by extrinsic noise.

The setup developed in chapter 4 provides the necessary equipment for sensitivity anal-

ysis. But there are many avenues and several modifications regarding this methodology

that need to be explored. One such modification can be how we define sensitivities. In the

present setup, we define first order sensitivity to be mutual information between an input

parameter and an output variable, which is then normalised by output entropy. If we look
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at the definition of mutual information, we observe that this mutual information is the dif-

ference in the uncertainties of output with and without the knowledge of input. Another

similar way of approaching the idea is to measure some kind of distance between the dis-

tributions of output itself and the distribution of output conditioned on the input variable.

Kullback Leibler divergence [71] can be one such measure.

The framework for sensitivity analysis presented in chapter 4 has many computational

components. One of the component is bias correction of entropy and mutual informa-

tion estimates. The examples and applications we have looked at use the Panzeri-Treves

(PT) method [92]. There are many other bias correction techniques that can be applied

for the purpose and may result in more accurate results for less samples. The most inter-

esting methods can include Panzeri-Treves method coupled with shuffled estimators and

Nemenman-Shafee-Bialek (NSB) method. We expect that for NSB method, the number

of samples required for accurate bias corrected estimates will be considerably less as com-

pared to PT method. However, it is known [49] that NSB method is computationally ex-

pensive and time consuming. It will therefore be interesting to study how the efficiency

compares for the two methods. Another potentially interesting idea would be to analyse

what effects, if any, does Latin hypercube sampling yield on the bias of estimates.

Another modification of the methodology, which is perhaps less intuitive and difficult

to interpret, is the use of continuous differential entropies and mutual informations. This is

especially useful when the inputs and outputs follow a particular distribution. For example,

there are analytical formulas that provide continuous mutual information and entropy val-

ues for Gaussian variables. The problem here is that these values for differential entropies

can be negative, which hinders the complete understanding of the consequences. If this dif-

ficulty can be overcome, it potentially spares us all the discretisation and subsequent bias

corrections, and can therefore be of huge advantage.

A drawback of the sensitivity analysis technique studied is that sometimes sensitivities

can be negative, especially at higher order. While this again poses the question of how

we actually interpret these, the actual inefficiency while calculating multivariate mutual

informations lies in the way we decompose them. It is well established that sometimes

redundant terms are taken into account [132]. To deal with this problem, we need to modify

the mutual information decomposition and ensure that all components are non-negative.



Chapter 6. Conclusions and Future Work 154

The ideas presented in [102, 132], for example of further decomposing Shannon entropy,

can be helpful while exploring this avenue towards a more efficient sensitivity analysis

method.

Chapter 5 attempts to answer the problem of specificity quantification in a receptor

ligand binding system. Specificity is a well recognised and well developed area of research

[45, 67, 117]. The importance of specificity for an organised functioning of biological

systems is also well known. Unfortunately, little has been done to develop mathematical

methods for quantification of specificity. There are some statistical mechanics approaches

[128,134] that try to address this need. Information theory, however, provides a strong tool

to quantify specificity of a system. In chapter 5, we developed a setup in which application

of the concepts of entropy and mutual information becomes more effective and provides

meaningful results.

Our specificity quantification methodology relies on a stimulus response system, where

we set the stimulus to be ligand concentrations, and the responses to be the concentrations

of bound receptors. This enables us to quantify specificity in the form of mutual infor-

mation between stimulus and response. Therefore, we can easily quantify the specificity

of a ligand-receptor binding system given the ligand distribution and total receptor con-

centration. In chapter 5, we also discussed in detail, how we can estimate the maximum

possible specificity exhibited by a system with a given affinity matrix. For this reason, we

further detailed our setup and described how to actually estimate the entropies and mutual

informations using binary response binning i.e., for on and off states of the receptors. We

also showed how different parameters of the system affect the maximal specificity of the

system. We observed that there is a parameter region, rather than a specific parameter value

that optimises specificity. We tried different methodologies ranging from grid search, sim-

ulated annealing, to MCMC methods to search for this optimal parameter region and found

that MCMC methods were most helpful and least expensive way to do this. This analysis

provided us with the ranges of parameters to set in order for a system with a certain affinity

matrix to exhibit maximum specificity.

In the later half of chapter 5, we discussed the bounds on specificity of the system given

the affinity matrix. We found that for our specificity estimation setup, just the affinity ma-

trix could lead us to guessing the maximum possible specificity of the system. This can
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be interesting, as one can identify a real system based on how much specificity the system

actually exhibits. We also pointed out that these limits are specific to the estimation setup.

With another free variable like the on-off switching threshold, these systems can poten-

tially exhibit even more specificity. In addition to this we also showed that our specificty

estimation setup is useful from a biological point of view in that it helps us quantify the

so-called redundancy of ligands in signaling systems. We predicted that the presence of a

second ligand, as in the case of CD28-CTLA4 systems, is not necessarily unimportant as

this can effect the overall specificity of the system.

We applied our specificity estimation methodology to the experimental data provided

to us by our collaborators at Oxford university. The data are for antigen presenting den-

dritic cells with ligands CD80 and CD86, and for two types of T-cells, CD4 and CD8 both

with receptor proteins CD28 and CTLA4. With the help of these data, we estimated the

specificities of the system, and found that these systems are more specific for resting DCs.

The results also showed the interesting fact that more than 1 bit of specificity implies that

the cells do not only identify the states when both the receptors are simultaneously on and

simultaneously off, rather the states where one receptor is on and the other off, are also

identifiable and contribute towards specificity of the system. This suggests that the lig-

ands CD80 and CD86 are not completely redundant and they potentially encode different

biological information.

We concluded chapter 5 with the idea of how the analysis can be extended for stochastic

systems. It is pointed out that the stochastic specificity analysis becomes computationally

expensive with the need to use Gillespie simulations, and bias correction methods for mu-

tual information estimation. We showed some basic results for stochastic system to com-

pare with the deterministic results and found that, as expected, noise suppresses specificity

of a system.

The study in chapter 5 is a basic setup for specificity quantification. Moreover, the

analysis we have presented here is focused at a two ligands and two receptors system.

Future extensions of this methodology can be aimed in different directions. Even in a

2 × 2 system, there is plenty of room for further exploration. For example, in our setup

we are assuming that the stimulus is lognormally distributed, mainly because this brings

us closer to the specificity peak we are targeting. In a more general setup, this assumption
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can be relaxed and we can look for the distribution that maximises mutual information. In

other words, we can aim our study at channel capacity of the system, wherein the stimulus

distribution is not limited to lognormal. Another possible extension of our study in a 2 ×
2 system can focus on non-binary binning of response. Rather than assuming that each

response component is either in on or off state, we can consider a finite number of response

states. The challenge in that case arises from the fact that the response entropy will not be

limited to 2 bits, which makes interpretation of the results more difficult.

The obvious generalisation of our specificity quantification setup is for more than two

receptors and ligands. In general for N receptors with binary outputs, maximum specificity

can be N bits. For example, we can say that the affinity matrix of the form

⎡⎢⎢⎣
X 1 1

1 X 1

1 1 X

⎤⎥⎥⎦
for a large enough X should technically exhibit this maximum specificity of 3 bits, but

unlike in the 2 × 2 case, finding the specificity bound for a general affinity matrix is com-

putationally highly demanding.

The most interesting future direction for this specificity quantification setup is for stochas-

tic systems. We already know that no real system exhibits complete specificity. Intrinsic

noise present in these systems is one of the reasons why this could be so. Our specificity

estimation setup lends itself well to generalisation for stochastic systems as we have dis-

cussed in the last section of chapter 5. We have presented that with the help of Gillespie

simulations, the analysis can be done for stochastic systems. However, it still needs to be

researched whether the optimal parameter regions for maximum stochasticity in determin-

istic systems and stochastic systems are the same. We expect that MCMC methods work

equally well for stochastic systems in search for the optimal parameter regions. Our pre-

liminary results for comparison showed that in all cases studied for particular parameter

values, the specificity of the stochastic system is less than that for the corresponding deter-

ministic system. We expect that this observation is true in general. A detailed analysis of

specificity quantification in stochastic systems is a direction for our future study.
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[55] Joël Janin. Quantifying biological specificity: the statistical mechanics of molecu-

lar recognition. Proteins: Structure, Function, and Bioinformatics, 25(4):438–445,

1996.

[56] Andreas Jansson, Eleanor Barnes, Paul Klenerman, Mikael Harln, Poul Srensen,

Simon J. Davis, and Patric Nilsson. A theoretical framework for quantitative analysis

of the molecular basis of costimulation. The journal of Immunology, 175(3):1575–

1585, 2005.

[57] Jaewook Joo, Steven J Plimpton, and Jean-Loup Faulon. Noise-induced oscillatory

shuttling of nf-{\ kappa} b in a two compartment ikk-nf-{\ kappa} bi {\ kappa}
b-a20 signaling model. arXiv preprint arXiv:1010.0888, 2010.

[58] Simon J Julier. The scaled unscented transformation. In American Control Confer-

ence, 2002. Proceedings of the 2002, volume 6, pages 4555–4559. IEEE, 2002.



REFERENCES 163

[59] Simon J Julier and Jeffrey K Uhlmann. Consistent debiased method for converting

between polar and cartesian coordinate systems. In AeroSense’97, pages 110–121.

International Society for Optics and Photonics, 1997.

[60] Simon J Julier and Jeffrey K Uhlmann. New extension of the kalman filter to nonlin-

ear systems. In AeroSense’97, pages 182–193. International Society for Optics and

Photonics, 1997.

[61] H Kacser, , and JA34 Burns. The control of flux. In Symp. Soc. Exp. Biol., volume 27,

pages 65–104, 1973.

[62] Kyung Hyuk Kim and Herbert M Sauro. Sensitivity summation theorems for

stochastic biochemical reaction systems. Mathematical Biosciences, 226(2):109–

119, 2010.

[63] Scott Kirkpatrick. Optimization by simulated annealing: quantitative studies. Jour-

nal of Statistical Physics, 34(5-6):975–986, 1984.

[64] Hiroaki Kitano. Towards a theory of biological robustness. Molecular Systems

Biology, 3(1):137, 2007.

[65] Hiroaki Kitano, Kanae Oda, Tomomi Kimura, Yukiko Matsuoka, Marie Csete, John

Doyle, and Masaaki Muramatsu. Metabolic syndrome and robustness tradeoffs. Di-

abetes, 53(suppl 3):S6–S15, 2004.

[66] Edda Klipp, Wolfram Liebermeister, Christoph Wierling, Axel Kowald, Hans

Lehrach, and Ralf Herwig. ” systems biology: A textbook, 2009.

[67] Heather Knight and Marc R Knight. Abiotic stress signalling pathways: specificity

and cross-talk. Trends in Plant Science, 6(6):262–267, 2001.

[68] Natalia L Komarova, Xiufen Zou, Qing Nie, and Lee Bardwell. A theoretical frame-

work for specificity in cell signaling. Molecular Systems Biology, 1(1), 2005.

[69] Michał Komorowski, Maria J Costa, David A Rand, and Michael PH Stumpf. Sen-

sitivity, robustness, and identifiability in stochastic chemical kinetics models. Pro-

ceedings of the National Academy of Sciences, 108(21):8645–8650, 2011.



REFERENCES 164

[70] Daniel E Koshland. The seven pillars of life. Science, 295(5563):2215–2216, 2002.

[71] Solomon Kullback and Richard A Leibler. On information and sufficiency. The

annals of mathematical statistics, 22(1):79–86, 1951.

[72] Edo Kussell and Stanislas Leibler. Phenotypic diversity, population growth, and

information in fluctuating environments. Science, 309(5743):2075–2078, 2005.

[73] Marko Laine. MCMC toolbox for MATLAB. http://helios.fmi.fi/

˜lainema/mcmc/, 2013. [Online; accessed 6-October-2015].

[74] Ioannis Lestas, Glenn Vinnicombe, and Johan Paulsson. Fundamental limits on the

suppression of molecular fluctuations. Nature, 467(7312):174–178, 2010.

[75] Difei Li and Chunguang Li. Noise-induced dynamics in the mixed-feedback-loop

network motif. Physical Review E, 77(1):011903, 2008.

[76] Genyuan Li, Jishan Hu, Sheng-Wei Wang, Panos G Georgopoulos, Jacqueline

Schoendorf, and Herschel Rabitz. Random sampling-high dimensional model rep-

resentation (rs-hdmr) and orthogonality of its different order component functions.

The Journal of Physical Chemistry A, 110(7):2474–2485, 2006.

[77] Genyuan Li, Sheng-Wei Wang, Herschel Rabitz, Sookyun Wang, and Peter Jaffé.
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