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Abstract—This paper presents a novel method for improving
the performance of template matching in neural spike sorting for
similar shaped spikes, without increasing computational complex-
ity. Mean templates for similar shaped spikes are enhanced to
emphasise distinguishing features. Template optimisation is based
on the separation and variance of sample distributions. Improved
spike sorting performance is demonstrated on simulated neural
recordings with two and three neuron spike shapes. The method
is designed for implementation on a Next Generation Neural
Interface (NGNI) device at Imperial College London.

I. INTRODUCTION

Neural recording is a fundamental technology for many
emerging applications in neuroscience. Action potentials (or
“spikes”) recorded invasively via intracortical electrodes can
potentially enable the control of external devices (such as ad-
vanced limb prostheses) by direct neuronal signalling. Spikes
from a single electrode can be separated into multiple distinct
groups, corresponding to individual local neurons, so that the
behaviour of individual neurons can be linked to larger scale
neural network activity.

Fully implantable recording units, using wireless data trans-
mission through the skull, will make long-term real-world
recording applications possible. However, as electrode arrays
with hundreds or thousands of channels become available [1],
each channel recording digital samples at a minimal rate of
15kHz, the rate of data acquisition will exceed the capacity
of wireless data transmission (due to bandwidth and power
restrictions). One solution to this problem is online on-chip
spike sorting, which would reduce the system output to a series
of binary spike events (at most a few hundred Hz per channel).

The NGNI (next generation neural interface) device in
development at Imperial College London is capable of record-
ing from up to 1,024 channels based on off-the-shelf low
power FPGA electronics [2]. The system implements a two
stage spike sorting solution, proposed in [3] (see Fig. 1).
In stage 1, clustering is performed off-chip on pre-recorded
training data using any state-of-the-art algorithm to extract
the mean template shape of each spike cluster. In stage 2,
the cluster templates are used to perform simple and fast on-
chip template matching on incoming spikes in real-time. This
approach avoids the need to perform computationally intensive
clustering on limited FPGA resources.

The system’s current template matching algorithm is sum of
absolute difference (SAD) with mean templates (see Fig. 2(a)).
This algorithm can achieve good online classification perfor-
mance in many, but not all, cases. Summation of sample-
wise differences between templates and recorded spike yields
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Fig. 1: Two stage spike sorting. Neural spike recordings are processed and
clustered offline. Cluster templates are then used to perform real-time online
template matching. Adapted from [2].

a set of distance scores, where the smallest score indicates the
best template match. Due to noise and spike shape variations,
each spike cluster will produce a distribution of scores, as
seen in Fig. 2(b). The proximity of score distributions reflects
template similarity. For similarly shaped spike templates, the
corresponding distributions will be overlapping and difficult
to distinguish, causing poor classification performance. An
alternative algorithm is desirable for these difficult cases.

More complex online algorithms exist and could provide
better performance, but their computational demands make
them incompatible with the NGNI hardware. The aim here
is to improve NGNI performance with minimal impact on
hardware. Improving performance will involve more efficiently
using the information provided by the spike samples.

Several attempts have been made to implement spike sorting
based of concepts of information content and statistical proba-
bilities. [4] develops a Bayesian approach based on electronic
hardware filters, but is not compatible with the NGNI system
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Fig. 2: Sum of absolute distance (SAD) template matching. (a) Individual
samples distances are summed into a single distance score for each template.
(b) The smallest distance score for a given spike reflects the most likely
classification cluster. Distribution colours in (b) correspond to template spike
groups in (a). Adapted from [2].
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Fig. 3: Separation of cluster distributions. (a) shows overlap in general space,
(b) shows overlap after computing absolute distance from the centre of cluster
#1, and (c) shows the effect of template enhancement. The numbers above the
curves are the cluster centre distances. The numbers inside the shaded zones
are the areas of overlap.

design. [5] implements template matching with samples scaled
according to noise content, but is intended specifically for
cases where two spike groups have different variances (which
is not necessarily the case). [6] uses estimation of Gaussian
noise in the data to actively increase the functional information
of each spike sample, but is focused on spike clustering and
isn’t directly applicable to template matching.

This paper presents a novel method for optimisation of
template matching performance: enhanced templates. Mean
template shapes are distorted according to the relationship
between noise distributions of adjacent spike clusters, so
that the distinguishing features of similar spike groups are
emphasised. For SAD, this method optimises performance
without affecting computational complexity. The efficacy of
this method is demonstrated here for simulated spike data.

This paper is structured as follows: Section II describes
the concept of template enhancement; Section III details
procedures for performance testing and template optimisation;
Section IV presents simulated performance; and finally Sec-
tion V summarises our findings.

II. TEMPLATE DISTORTION

For SAD template matching, the distribution of absolute
distance between a spike cluster and a template is calculated
by folding the original distribution around the template value.
However, folding may produce increased overlap between
distributions of different clusters. Measuring absolute distance
can make two adjacent distributions appear more similar than
they truly are, in particular when they are close together.

Fig. 3 illustrates this concept. In Fig. 3(a), two spike
clusters are close together, so that significant overlap occurs.
In Fig. 3(b), the clusters are folded around the mean point of
cluster #1, which increases the overlap and decreases separa-
tion of the cluster centres. This is the effect of SAD template
matching using mean cluster templates. When calculating the
absolute distance of multiple clusters from one mean template
value, information is wasted because the clusters will appear
less distinct than they are in reality. Using a template distance
measure that avoids this problem would be likely to improve
spike sorting performance.

The concept of ‘template enhancement’ is proposed in order
to reverse the observed increase in distribution overlap. Instead
of using cluster mean templates, the templates are exaggerated
to be more different from each other (as illustrated by Fig. 4).
Fig. 3(c) shows spike clusters folded around an ‘enhanced
template’ point, where the template position of cluster #1
has been shifted one standard deviation farther away from
cluster #2. This is a relatively small change, the template
value remains within the central part of cluster #1, but the
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Fig. 4: Illustration of template enhancement concept. Distinguishing features
of similar mean templates are exaggerated in the enhanced version.

overlap and separation of the clusters have been restored
to near optimal values. Template modification can produce
more favourable sample distribution spacing such that clusters
can be more easily distinguished. Cumulatively, better sample
score spacing will improve overall SAD distribution spacing,
producing better classification performance.

This concept can also be stated in terms of classification
probabilities. Calculating the distances between a spike and set
of templates is equivalent to determining which template has
the highest probability of having produced the spike. When
sample distributions are folded and the separation between
distributions is reduced, the relative classification probabilities
are transformed. For example, a spike which based on unfolded
distributions has 90% probability of originating from template
A might appear, based on folded distributions, to have only
70% probability. Loss of information allows noise to produce
more classification errors. Template enhancement ensures that
the relative classification probabilities are close to ideal.

III. METHODS AND MODELS

This section is divided as follows: Subsection III-A de-
scribes the performance testing program for spike sorting of
simulated datasets; Subsection III-B outlines the sample dis-
tribution model; and Subsection III-C discusses the procedure
for calculating optimised template values.

A. Performance Testing

Performance testing of template matching focused on simu-
lated datasets because of known ground-truth. Spike data was
generated using open-source NeuroCube software [7], which
produces realistic extracellular spike recordings by modelling
individual neurons in three-dimensional space relative to a
virtual electrode. Datasets were created featuring two and
three different single-unit neurons, against increasing levels
of Gaussian noise and background spiking. Simulated datasets
were 3 minutes long, with approximate firing frequencies of 5
Hz per neuron. Nine two-spike datasets were tested, with each
dataset having a different level of spike shape similarity and
with the most similar shaped datasets being the most challeng-
ing and relevant. Data processing and spike properties were
determined by NGNI system parameters: bandpass filtering
between 300 Hz and 3 kHz, 15kHz sampling, 16 samples per
spike for template matching.

Initial clustering was performed on each dataset using
WaveClus [8], a wavelet-based superparamagnetic clustering
algorithm. The cluster mean templates from each dataset were
then used for template matching and for calculating enhanced
templates. This procedure mimics the two stage spike sorting
solution of the NGNI system.

The spike sorting functionality of the NGNI FPGA device
was translated into Matlab for testing. Initial baseline testing
was carried out on the device’s current SAD algorithm. Results



from the enhanced algorithm are compared to the baseline
performance to determine improvement.

For a given dataset and given noise level, performance is de-
scribed here in terms of specificity and sensitivity. Specificity
is calculated as: true spikes / (true spikes + false positives).
Sensitivity is calculated as: true spikes / (true spikes + false
negatives). True spikes are those which are correctly classified.

These performance metrics reflect type I and type II errors
(false positives and false negatives, respectively), relative to
the known identity and timing of all spikes in the simulated
datasets. Results are provided for each individual spike cluster.
To facilitate comparison of results between mean and enhanced
template matching, curves were produced which reflect the
robustness of performance as noise increases.

B. Sample Distribution Analysis

Optimisation of sample-specific template distance scores
requires knowledge of the distribution for each spike cluster
at each template sample. It has been shown that spike sample
distributions can be approximately modelled as Gaussian [6].
In theory, channel noise is expected to be stationary, so
template samples should have equal variance. However, spike
occurrence and data sampling may not be synchronous. The
peak of the sampled spike may not be the true peak of the
waveform. This is problematic because template matching
requires alignment of spikes by peak location. Most template
matching algorithms use interpolation to improve accuracy of
peak identification, but the NGNI system does not (due to
computational cost). As a result, spike values are distorted
by ‘sampling jitter’, in addition to noise. On both simulated
and recorded neural data, observed spike sample distributions
were found to be modelled acceptably well by approximation
as Gaussian with variance dependent on both channel noise
and the derivative of template shape.

C. Template Design

Template optimisation was investigated in Matlab by mea-
suring the change in centre distance (separation) between two
folded Gaussian distributions as the folding point (template
position) shifts. The effect of template shifting depends on the
true distance between distributions and on the ratio of standard
deviation. In the general case, separation has an approximately
logarithmic relationship with template shift, such that a modest
shift (up to one standard deviation) produces the majority
of separation improvement. Beyond this range, incremental
gains are small. The potential benefits are greatest when the
distributions are relatively close together and have similar
variance. When variance is mismatched, the more diffuse
cluster will benefit more from shifting but will require a larger
shift to maximize separation.

In the final enhancement algorithm, templates were opti-
mised on a sample-by-sample basis. For each template sample
distribution (see Fig. 3) in the test datasets, the separation from
adjacent distributions (quantified in terms of mean distance)
was calculated over a range of 42 standard deviations. The
point of maximal separation over this interval is the ideal
distortion. However, because the majority of improvement
is produced by the initial shift, enhanced template positions
were selected as the minimum shift producing a separation
at least 90% of the maximum. This approach ensures near
maximal improvement with optimally efficient distortion. A
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Fig. 5: Spike sorting performance for simulated dataset with two single-units.
The red curve shows the sensitivity results for SAD with mean templates and
an imposed specificity of 95%. The green curve shows the sensitivity results
under the same conditions, but using enhanced templates. The black lines
show cluster-specific performance and standard deviation, while the coloured
curves are averages for both clusters.

lower threshold (80%) would decrease improvement without
greatly affecting distortion. A higher threshold (95%) would
significantly increase distortion for a minimal performance
gain. For expected recording noise conditions (4-6 nV), the
largest distortion in the test datasets was 15 uV (approxi-
mately equal to the maximum sample variance, since sample
variance is a function of both noise and template slope).

Of course, very large template shifts would produce ideal
separation between distributions, but might cause misclassifi-
cation problems in the presence of a third distribution (either
another single-unit or a general multi-unit cluster). This is why
template enhancement should be kept to a minimum. Datasets
with three single-units were tested to verify that enhancement
is effective when more than two spike distributions are present.
Cluster separation between all three distributions was taken
into account when determining optimal template enhance-
ment for these datasets. Optimized distortions were therefore
generally smaller for three-spike datasets than for two-spike
datasets, but the enhancement effects were still significant.

IV. RESULTS

This section presents template enhancement performance
results for simulated data with two single-unit spikes (Sub-
section IV-A) and three single-unit spikes (Subsection IV-B).

A. Two Spikes

Two-spike datasets were tested using mean templates and
enhanced templates. In order for the results to be directly
comparable, classification thresholds for all cases were set
to impose a minimum specificity level of 95%. Fig. 5 above
shows the comparison of results for the most difficult of nine
simulated datasets. The mean spike shapes are differentiated
only by small differences at a few samples. Using mean
templates, sensitivity is poor such that at 6 uV noise only
about 40% of spikes are classified correctly. Using enhanced
templates, the gain in sensitivity is large and sustained across
all noise levels. At 6 4V noise over 90% of spikes are clas-
sified correctly. The enhanced algorithm continues to perform
well even at noise levels where the original algorithm failed
completely. Only the sensitivity plots are shown here because
the specificity levels are the same. Comparable results were
achieved for all challenging datasets tested.

The results of Fig. 5 offer strong support for template
enhancement as a useful technique. For the targeted case of
difficult datasets, where two spike shapes are very similar and



Before Enhancement After Enhancement

N
a
(=]
N
[$2]
o

I Single-Unit #1

& 200 2001 | [N Single-Unit #2
© @ "
§150 S 150 I Background Spikes
e g
= 100 ‘S 100
§ <]
B 50 B 50

0 0

0 100 200 300 400 500 0 100 200 300 400 500

SAD Score

SAD Score

Fig. 6: Effect of template enhancement on overall SAD histograms. Increased
cluster spacing produces improved spike sorting performance.

the probability of classification error is high, this method has
significant performance benefits.

Another way to observe SAD performance improvement
is by looking at the score histograms. Datasets with poor
performance will have spike histograms which overlap, leading
to the possibility of misclassification. Fig. 6 shows how
template enhancement affects the SAD histograms for one
illustrative noise level (4 ©V). The SAD score histograms for
the two different spike groups have much better separation
in the enhanced template case than in the mean template
case. In fact, the enhanced case has no histogram overlap at
all. Decreasing distribution overlap at each sample results in
a cumulative effect on the summed score, such that overall
cluster separation is much improved.

Notably, the position of the background spike histogram
does not change significantly. This suggests template enhance-
ment can safely be used when other spikes are present, without
increasing the number of falsely detected background spikes.
In theory, classification errors for strong multi-unit activity
can be worsened by template enhancement (if an enhanced
template becomes too similar in shape to the background
spikes). In simulated data, this has only been observed when
single-unit spike magnitudes are made unrealistically small.

B. Three Spikes

Fig. 7 demonstrates that template enhancement is also
beneficial for datasets with more than two single-units. The
simulated dataset shown here contains two very similar single-
unit shapes and a third with the same amplitude but a different
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Fig. 7: Spike sorting performance for simulated dataset with three single-
units. Each colour represents the templates and performance curves for one
single-unit.

shape. With mean templates, sensitivity is poor for the two
similar spikes. After template enhancement, the blue and green
performance curves have improved significantly and the red
curve continues to exhibit good performance.

Testing on datasets with three single-units supports that the
technique can be generalised, but there are limits. Enhancing
the performance of two similar spikes in the presence of other
non-similar spikes is very feasible. Enhancing the performance
of three or more very similar spikes may be problematic.
However, given that this is an unlikely case where most other
spike sorting algorithms would also perform poorly, this is a
reasonable limitation.

V. CONCLUSION

This paper presented the novel method of template enhance-
ment for improving SAD template matching performance
without affecting computational complexity. The aim of this
work was specifically to improve spike sorting performance of
the NGNI device. Template enhancement will be incorporated
into future versions of the system. Key concepts were:

o SAD with mean templates decreases separation between
adjacent spike clusters.

« Template enhancement optimises cluster separation.

o Template enhancement consistently improves classifica-
tion performance for datasets with two similar shaped
spike templates.

o Template enhancement is also effective for datasets with
more than two spike shapes.
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