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Abstract 

 
A real correct and mistake basically have the same point. Mistake done by student during doing 

mathematics problem can have the positive values and worth to develop the new mathematics concept. In 
mathematics teaching, process to understand a concept sometimes will be easier if besides gave a lead 
real correct and also accompanied by the counter of example from looking the aspect of mathematics 
mistake good for student and to learn in developing values pedagogic such thinking critical, logical, 
analytical in exploring to born the new mathematics. We often dismiss a mistake as something to be 
avoided and at best to be corrected as soon as possible. Many types of algebraic mistakes and purely 
arithmetic ones and discusses how they can be channeled into positive, useful learning, and growing 
experience. Mathematical Mistake can be used as a springboard for developing new mathematics and can 
be use to turn negative experiences into positive ones.  
Key Words: Mathematical Mistake, Pedagogical Values 
 
 
I. INTRODUCTION 

1. Background 

We often glide through a lesson with satisfaction as long as our students are 

feeding back what we want them to learn. When they make a mistake we simply correct 

it and go ahead. It’s rarely do we capitalize on a mistake as an incident of high potential. 

When an obviously incorrect procedure yields a correct result, we may feel puzzled and 

curious to know how and why this could have happened. Trying to answer these 

questions can involve us not only problem solving but in problem-posing activities as 

well. Many teachers would automatically categorize a mistake as an evaluative 

experience for both the teacher and the student, but this not always a necessary avenue 

to follow. This experience can provide the opportunity for creativity even in 

mathematics basic level. 
 

Mathematical Mistakes from the Classroom 
 

Crouse and Sloyer (1978) reveal that, after several years of teaching a method 

course for college student preparing for secondary mathematics teaching, they found 

that these student teachers had great difficulty answering mathematical questions raised 

by their students. The majority of questions come from actual classroom experience. 
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Some example of mathematical mistake during instruction in class found by Crouse and 

Sloyer can be showed as follows. 

1. You put the problem 
3
2

5
1  on the board and ask one of your students to come 

to the board and demonstrate how to compute the answer. He writes the 

following: 
8
3

3
2

5
1  . You tell him that is wrong, but he gives the explanation, 

“if a baseball players are up at bat 5 times on the first day and gets one hit, and 

in the second day he gets 2 hits out of 3 times at bat, then altogether he has 3 hits 

out of 8 times at bat. “How do we reply? 

2. A student hands in the following solution when asked to reduce 
64
16

to Lowes 

terms. .
4
1

4
1

4.1
1.1

64
16

   Is the student correct? 

3. A student hands in the following work. 

3
2
6

2
6  xxx .  When the student asks us why he can’t the 2 into 6, how 

would you answer him? 
4. A ten grade student hands in the following work. 

yx
yx
yx 22





.  The student wants to know why the method is wrong. How 

would you answer? 
 

5. You ask the students to simplify .
3x
9x 2




  One student does the following: 

3x
3

9x
3

9x
3x
9x

3x
9x 322
















 

Is the student correct? Will his method work all the time? 
 

6. You ask the students to simplify .
x
1

x
1      A student writes  2

x
1

x
1  . What is 

the student’s problem? 
 
7. A student says that 3a – 2a = 1. How would you help him? 

8. A student is evaluating the expression 2

22

10
58

73










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and the student does the following:  
58

100

10
58
10

10
58

73
2

22





















. Which is the 

correct answer? How would you help this students? 
   

9. A student hands in the following work for the following problem. 

Solve:   

x2 – 14x + 24 = 3 
(x – 12)(x – 2) = 3 
(x – 12)(x – 2) = 3 . 1 
x – 12 = 3  or  x - 2 = 1 
x = 15 ,  x = 3 
x  ( 3, 15).    Is the student correct? 

10. A Student hands in the following solution:  (a + b)2 = a2 + b2  because, except for 

the operation being different, this problem is just like (a . b)2, which is equal to 

a2 . b2. Therefore, it follows that (a + b)2 = a2 + b2.  How would you help this 

student? 
 

II. DISSCUSSION AND ANALYSIS  

The following is a possible treatment of a classical mathematical mistake. The 

student square (a + b) to get a2 + b2, leaving out the 2ab term. 

1. The teacher may ask the student to substitute a numerical example; comparing 

that result with normal multiplication will hopefully confine the student that 

(a + b)2   a2 + b2 

2. The student may show correct method of squaring (a + b), algebraically or 

geometrically, thus introducing the “middle term” as something demonstrated by 

proof. The first option uses falsifiability to persuade the student; the second 

provides “positive” proof. 

This system is showing the student that his belief is wrong and then countering 

with the correct method make two basic assumptions: 

(i) the student’s belief in his original ‘mistake’ was not strong; 

(ii) the error was roughly speaking ‘random’; that is, the pupil did not base his 

conclusion on any mathematical or psychological idea previously explored by 

the teacher or the student. 

There are cases where these assumption do hold, but is substituting numerical 
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examples enough to dispel a very strong belief that (a + b)2 = a2 + b2, and more 

importantly, what mathematical or psychological reasons did the student have for 

arriving at his conclusion? The belief as symptom of what may be a serious disease or 

even more than one disease by substituting numerical examples, or by providing proof, 

the teacher has deal with the symptom only and left the disease to reach epidemic 

proportion. 

The following assignment was given to student in a method of teaching 

mathematics’ course by Professor S.I Brown at State University of NY. At buffalo. 

(i) Justify each of the following classical mathematics mistake in as many ways as 

possible, given that you belief each correct. 

A. (a + b)2 = a2 + b2 

B. a/b + c/d = (a + c)/(b + d) 

C.  =    

(ii) Re-examine the justifications in part one and discuss what you believe to be the 

reason (mathematical or psychological) behind the mistakes. 

(iii)Make those mathematical mistakes a positive experience for the students. 

Some of the following justifications are a direct result of the work done on this 

assignment. 

Part A.  (a + b)2 = a2 + b2 

(i) The distributive law of squaring over addition. 

(ii) Induction: (a + b)1 = (a1 + b1) => (a + b)2 = a2 + b2. 

(iii) Consider the Pythagorean theorem, a2 + b2 = c2. If c = a + b, then a2 + b2 = (a + b)2. 

(iv) Say the following sentence fast. The sum of the squares equals the square of the 

sum. The attraction this has is that is sounds correct. 

(v) Since (ab)2 = a2b2 and since multiplication is just a quick form of addition, then… 

(vi) How many times have we as teachers told our pupils, “Whatever we do to the left 

side of an equation we must also do to the right side?” Start with the following: 

(a + b)(a – b) = a2 – b2. 

Now, apply the principle above by changing the negative sign in the left side of the 

equation to a plus, and changing the negative sign on the right side to a plus. Then 

(a + b)(a + b) = a2 + b2. 

All six of these explanations have two things in common. One is that each has 
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used some principle learned previously and the other is each has the compelling notion 

that “in mathematics, the future must look like the past”. (Special acknowledgement for 

this observation goes to Prof. S. I. Brown.) 
 

Part B.  (a/b) + (c/d) = (a + c)/(b + d) 

(i) This looks like multiplication: 

(a/b)(c/d) = (ac)/(bd). 

and since multiplication is really a fast way of doing addition… 

(ii) The “baseball analogy” was first proposed by Dorothy Buerk (Brown & Walter, 

1993) who assisted, along with others, in the teaching of the methods course. 

Anyone who follows baseball knows that if a batter has 3 hits out of 5 attempts on 

Monday and has 2 hits out of 3 attempts on Tuesday, his combined record is 5 hits 

out of 8 attempts. Therefore it follows that (3/5) + (2/3) = 5/8, or in general terms. 
 

Part C.    = {} 

(i) The null set is nothing and the set of nothing is nothing, therefore 0 = {0}. 

(ii) Notation argument: All other sets use brackets therefore we must use brackets in 

this case. 

(iii) One student claimed that 0 = {0} = { }, but {0} is best because it leaves “no doubt” 

that we are talking about the empty set. Redundancy stresses the point. 

Again, in examples B and C there is a strong needed to make the future looks 

like the past. The multiple reasons given for each mistake suggest that a simple 

correction by the teacher is insufficient. For example, if a student give induction as his 

reason that    (a + b)2 = a2 + b2. Justification (vi) offers yet another disease, the pupils’ 

tendency to generalize rules that are used rather loosely in the classroom. As you can 

see in this example the rule was applied rather than ingeniously. 

Examples B and C offer rich ground for determining and perhaps beginning to 

diagnose mathematical diseases. Perhaps a list of questions will help us begin to re-

examine what may be at the root of the mistakes by Mayerson (Brown & Walter, 1993: 

153). 

1. Where are these justifications in the notion of variable misunderstood? 

2. The baseball analogy demands that we take a closer look at so-called everyday 

occurrences and attempt to see what they may imply mathematically. 
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3. How confusing is notation? 

4. How much do we as teachers underestimate the ability of our students to derive new 

mathematical principles, e.g. the ‘no doubt’ principle? 

5. Some of the justifications of 0 = {0} imply that there is a confusion between the 

meanings of ‘is an element of’ and ‘is a subset of’. How does this misconception 

relate to other misconceptions students have in beginning set theory? 
 

Other Mathematics mistake  by Borasi (Brown & Walter, 1993: 159) “Algebraic 

Explorations of the Error 
4
1

64
16  ”  

Why does such an absurd simplification produce the correct result? Is this example the 

only case for which this kind of simplification work? We can attempt to answer both 

questions at one time, by starting the more general problem: For what values of the 

digits a, b, and c, is  

c
a

cb10
ba10





?    Or, equivalently, what are the integral solution between 1 and 9 of the 

following equation?  

(1)   (10a + b)c – a(10b + c) = 0  

The values (a, b, c) = (1, 6, 4) satisfy this equation, which explains why the result of the 

simplification turned out to be correct in the specific case presented. Do other solutions 

exist? How can we search for them? We do not have a straight-forward algorithm that 

can be applied to solve equations of this kind, but we can try several approaches.  

For example, we can try to rewrite equation (1) in different ways to see if anything 

may be revealed. For example:  

(2)   10a(b – c) = c(b – a)  

(3)   10ab = c(9a + b)  

(4)   9ac = b(10a – c)  

Equation (2) may presents some advantages, as all a, b - c, c, and b - a must be 

less than 10. We can then observe that since 5 divides the first side and 5 is a prime 

number, either c = 5 or  b - a = 5. In the example, we had, in fact, b – a = 6 – 1 = 5. 

We can now see if c = 5 in some solutions. With this extra condition, equation (2) 

becomes  
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      10a(b – 5) = 5(b – a)  or  

      (5) 
1a2

a9b


  

Computing from (5) the values of b corresponding to a = 1, 2, …, 9, we do find two new 

solutions besides trivial one:  

      (a, b, c) = (1, 9, 5)        
5
1

95
19         

      (a, b, c) = (2, 6, 5)        
5
2

65
26           

                                   
We have found all the possible solutions with c = 5. If other solutions exist, they must 

derive from b - a= 5, that is, when either b = a + 5 or a = b + 5. At first sight 

checking this case may seem more complicated than checking c = 5, but it is actually 

less so. For b = a + 5, equation (2) becomes  

      10a(a + 5 – c) = 5c,  or  

      (6)   
a21

a10a2c
2




  

And this time we have only to check for a = 1, 2, 3, 4 in (6), as it must be that b = a + 5 

< 10. We thus find two nontrivial solutions, one of which is our original one:  

      (a, b, c) = (1, 6, 4)        
4
1

64
16         

      (a, b, c) = (4, 8, 9)        
8
4

98
49            

In the case of a = b + 5, equation (2) becomes  

     10(b + 5)(b – c) = -5c,  or  

     (7)  
b29

b10b2c
2




  

Checking for b = 1, 2, 3, 4 (again it must be that a = b + 5 < 10) in (7), we find no other 

solution. This situation may become a rich source of new problems once and we 

challenge the way that we have stated the problem previously (equation 1) or modify 

some of its elements. For example, we assumed that the numbers were written in the 

usual decimal notation. What if the base of numeration was not ten but another natural 

number k? The problem would then be to find the integral solutions between 1 and (k – 

1) of the equation: c(ka + b) – a(kb + c) = 0.  
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It may be interesting to discuss the values of k to which we can still apply the argument 

used in this paper.  

In this article, we have also limited our consideration to two and one digit numbers. Can 

we come up with analogous “simplifications” using more digits? For example, what 

about 
27
54

297
594  ? Finding all “three-digit fractions” that can correctly be simplified in 

this way will now involve a lot more cases. Even if we use a computer, we will face the 

real challenge in writing an efficient program and eliminating a priori as many trivial 

solutions as possible (you can expect hundreds of solutions in this case!). What are 

other possible simplifications that can occur with “three-digit fractions”? What is the 

percentage of “correct “versus “wrong” result of each simplification? Does any pattern 

occur in the solutions?  

         This problem can provide concrete material and the stimulus for a discussion 

about the difference between necessary and sufficient conditions for solutions and about 

the values and limitations of heuristic procedures versus algorithms in solving 

equations. It can also provide further reflection on the use of computers in mathematics, 

in comparison to more “classical” mathematical activities.  

          There are many questions and strategies to be explored; these were just a few. We 

could do well to re-examine our pupils’ mistakes and initiate investigations that will no 

doubt lead to new pedagogical experiences for ourselves and positive learning 

experiences for both teachers and pupils. 

Pedagogical Values Expanding   

Mathematical mistake has the education values and can be used; 

1. To develop new mathematics and to turn a negative experience (making an 

error) into a positive experience. 

2.  Instead of showing pupils that their mistake is wrong, ask them when it is right; 

that is, what questions can we ask to make the solution correct? Another 

example of this type of activity can be seen by exploring mistake B where the 

pupils add the numerators and the denominators instead of finding a common 

denominator. Consider the solution (a + c) / (b + d). In addition to reviewing 

addition of fractions one can ask, when can we add the numerators and 
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denominators together in such a fashion? Pupils can now explore questions such 

as:  

(i)    How many ways are there to find a fraction between two other fractions on 

a number line?  

(ii)    Is (a + c)/(b + d) always between a/b and c/d?  

(iii)  Can we talk about between’s in two or higher dimensions?  

3. If the solution is correct, how does this affect the rest of mathematics? And 

similarly what changes have to be made in our system to accommodate our 

solution?  For example, let us consider again the error, (a + b)2 = a2 + b2. How 

can we change the system to accommodate this or similar expressions? One 

consequence is that when two different numbers are multiplied together their 

product is zero. This eliminates the 2ab term in (a + b)2. How does this change 

affect the rest of our system? What happens to (a + b)3, (a + b)4, etc.?    

4. Are there other existing mathematical systems in which our solution holds?       

A classic example can be found in the field of geometry. There are many 

constructions that cannot be done by Euclidean methods and can be done by 

non-Euclidean methods.  

Pursuant to finding and analyze to mathematical mistake, as we have been 

studied above, hence values which can be developed shall be as follows: 

1. Having knowledge. Through new knowledge mathematical mistake in outside will 

give a new information too. Skills of gathering the information involve such ability 

such as: reading, counting/calculating, and doing observation in where the student 

learn to calculate non merely learning mechanistic to apply the number calculation 

but interpreting what information obtained from that calculation. Contextualization 

Mathematics become of vital importance for student to understand the meaning 

from what they have learned in their daily life as information. 

2. Using scientific skills and scientific thinking. Think by scientific skills and scientific 

thinking are core from new knowledge invention, but the process of invention is not 

walking smoothly, but a lot of met the failure and mistake. Therefore mathematical 

mistake can becomes to access potential to find the new very amazing mathematics. 
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3. Thinking strategically. To follow up the mistake, we should try the investigation of 

important features from the mistake needs to think strategically. In this case, values 

which can be taken away from a mathematics mistake is try to make a mapping of 

the cognitive or metacognitive and apply it in problem solving of mathematical 

mistake. 

4. Long life learning skills. Learn through mistake is one of principle from long life 

learning. With this view learn the mathematics will be wider because study do not 

only through example just real correct case but also can be developed from 

mathematics mistake. Mathematics mistake represent the starting points to learn to 

investigate further. 

5. Communication skill, Skill of research and exploration, and able to use technology 

to further developing their scientific. Mathematics’ mistake done by a student need 

the explanation or communication. The Mistake possibility resulted from by a 

perception mistake to problem which is all student face. In this case, possible they 

see the other side at the opposite of mathematics problem which we have given to 

them. Try the understanding way of thinking; the students are given the opportunity 

to find the new mathematics which is unforeseen possible previously. This 

invention, sometimes require to be made more common, so that we require the 

technological skill like computer program application where use computer 

application will quicken the invention process with the more gratifying result. 

6. Critical, creative and independent thinking. Resolving to mathematical mistake 

needs the ability to think critically, creative and independent thinking. Only one who 

own the opinion of like this which can see the positive values from mathematical 

mistake and also able to think that people can find something from the outside of the 

mistake. Therefore the way of thinking requires to be developed at school and then 

apply it in the form of problem base instruction. 

7. Decision making. If knowledge has been processed to become a conclusion, hence 

people can take the decision pursuant to the conclusion. This fact indicates that the 

people oftentimes fear to take the decision for fear of facing the mistake which 

emerge. But, if mistake is the basic to make decision hence somebody will be 

getting self confidence in his/her life. 
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8. Problem solving and Problem Posing. Problem Solving is the heart of mathematics, 

basically there no mathematics without problem solving. In this case, mathematics’ 

mistake is potential source of problem to make somebody becomes the problem 

solver. Problem solving needs the creativity and wisdom such creativity to find the 

efficient and effective to find solving, while wisdom is needed  because resolving 

have to always pay attention to the relevancy environmentally. Therefore early on 

student require learning to solve problem as according to level thinking of it (Brown 

& Walter, 2005). 

 
III.  CONCLUSION AND SUGGESTIONS 

1. Conclusion 

Mathematical mistakes that either students or teachers faced are not cases to be 

avoided, but how we learn more from it to consider further then can perform a new 

mathematics. And to realize it, let’s consider some smart steps to change making an 

error to be a good experience in mathematics learning and teaching process. Based on 

analyzing that mathematical mistake, can be developed new mathematics and to turn a 

negative experience (making an error) back into a positive experience.  

2.  Suggestions 

Some pedagogical values which can be developed is life skills value as 

following: 

a. Having knowledge. Some steps can be used in gathering information from the outside   

of the life to get new information such reading, counting, and observation in where 

the student learn to calculate non merely learning mechanistic to apply the number 

calculation, but interpreting what information obtained from that calculation 

b. Using scientific skills and scientific thinking. Think by scientific skills and scientific 

thinking is core from new knowledge invention, but the process of invention is not 

walking smoothly, but a lot of met the failure and mistake. Therefore mathematical 

mistake may as access potential to find the new very amazing mathematics. 

c. Thinking strategically. In this case, values which can be taken away from a 

mathematics mistake is try to make a mapping of the cognitive or metacognitive and 

apply it in problem solving of mathematical mistake. 
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d. Long life learning skills. Learn through mistake is one of the principle of long life 

learning. With this view learn mathematics will be wider because study does not only 

through example, but also can be developed from mathematics mistake. Mathematics 

mistake is a representation of starting points to learn and to investigate further more. 

e. Communication skill, Skill of research and exploration, from the mathematics 

mistake, the students must be able to explore the case they faced, communicate it and 

looking it back is possible for them to see the other side at the opposite of 

mathematics problem which the teacher has given to them. 

f. Critical, creative and independent thinking. Resolving to mathematical mistake need 

the ability to think critically, creative and independent thinking. and also able to 

think that people can find something from the outside of the mistake. 

g. Decision making. The students can take the decision pursuant to the conclusion. This 

case indicates that the people are often feared to take decision in facing the mistake 

which is emerging. Further more, the mistake in making decision hence somebody in 

getting self confidence in his/her life. 

h. Problem solving and Problem Posing. Everyone is potentially may becomes a 

problem solver. Therefore early on student require learning to solve problem is 

according to the level of thinking it. Problem solving needs more creativity to find 

the efficient and effective to find solving and always pay attention to the relevancy 

environmentally.  
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