UNIVERSITY OF SOUTHERN QUEENSLAND

Impacts of Climate Change on Rice Production and Farmers' Adaptation in Bangladesh

Md. Abdur Rashid Sarker

BBS Honours and MSS (Economics, University of Rajshahi, Bangladesh) MSc (Urban Environmental Management, AIT, Thailand)

A dissertation submitted in fulfilment of the requirements for the degree of Doctor of Philosophy School of Accounting, Economics and Finance Faculty of Business and Law University of Southern Queensland Toowoomba, Queensland, Australia October 2012

Abstract

Bangladesh is frequently cited as one of the countries most vulnerable to climate change, despite the country's insignificant contribution to climate change. Crop production, especially rice, the main food staple, is the most susceptible to climate change and variability. Any changes in climate will, thus, increase uncertainty regarding rice production as climate is major cause of year-to-year variability in rice productivity. This thesis is motivated partly by the susceptibility of rice farming to climate change and partly by the limited studies of Bangladesh on this topic. The overall aim of this thesis is, thus, to analyse the impact of climate change on rice production at three levels (aggregate-national, disaggregated-climate zone and micro-farm level), and to evaluate the adaptation strategies practised by farmers in a severely drought-prone area.

At the aggregate level, this thesis first investigated national data from secondary sources to examine changes in maximum temperature, minimum temperature and rainfall over the past 60 years. Results from a linear trend model reveal that the time trend is statistically significant for all three major climate variables. This implies climate has changed over the whole period. However, the findings from quantile regression indicate that the explanatory power of the time trend is higher in the higher quantiles than the lower quantiles for all three climate variables. This latter method thus offers a more complete picture of the changing climate at different points of time. Given these changes in climate and using production function theory, an evaluation of the impacts of changing climate on the yields for three rice crops in Bangladesh: Aus, Aman and Boro, was made. The findings confirm that the changes to both maximum and minimum temperatures are statistically significant for Aus and Boro rice. However, changes to the average minimum temperature are found to affect Aus rice production adversely and the average maximum temperature is also negatively related to Boro rice yield. On the contrary, the impacts of maximum temperature and rainfall are more pronounced for Aman rice compared to minimum temperature whose effects are adverse. Given these adverse effects of temperature on rice crops, policy makers should design strategies for the development and use of temperature tolerant rice varieties. However, this analysis of national level data is unable to reveal regional level differences in climate and their differential impacts on rice yield which warrants disaggregated level analysis.

Under the theoretical framework of Just-Pope stochastic production function, the objective of the disaggregated level analysis was to assess the effects of climate change on the yield and variability of Aus, Aman and Boro rice using cross-sectional time series (panel) data. The results reveal that maximum temperature is risk increasing for Aus and Aman rice while it is risk decreasing for Boro rice yield. Minimum temperature is risk increasing for Boro rice and risk decreasing for the Aus and Aman varieties. Finally, rainfall is risk increasing for Aman rice whilst risk decreasing for Aus and Boro rice. Moreover, future climate change is expected to increase the variability of rice yield for all three rice crops. Disaggregated level analysis, thus, provided more information than aggregate level analysis. However, the disaggregated level data is unable to show how individual farmers are affected by climate change which necessities a farm level analysis of impact and adaptation.

The farm level analyses employed data from a survey of 550 farm households in a severely drought-prone area of Bangladesh. Descriptive statistics reveal that net revenue and production loss from Aman rice vary between different subsamples of farmers. For example, mean profit was significantly higher for large and medium farmers compared to small and landless farmers while the latter group of farmers faced higher mean production losses. Integrated farms have higher net revenue compared to rice only farms. Moreover, production losses for highly irrigated farms are lower than for less irrigated farms. Further, results from both mean and median regression on the determinants of profit and production loss. These include age, years of schooling of household head, household yearly total income, household assets, land tenure, access to agricultural extension services, weather information, electricity and subsidy, percentage of land under irrigation, crop selling at local market, and distance to local or nearby urban market. Government policy initiatives should include support for integrated farming, increasing the provision of education, providing regular weather forecasts, giving subsidies to very

small and landless farmers, distributing government owned fallow lands to small farmers, and adopting water saving irrigation technologies.

Farmers have taken some adaptation strategies to reduce these adverse effects on rice production. The major adaptation strategies include higher levels of irrigation, cultivation of short-duration rice varieties, changing planting dates, agro forestry, use of different crop varieties and cultivation of non rice crops. Estimates from a multinomial logit model specify that age, gender and education level of household head, household annual total income, household assets, farm size, tenure status, farming experience, access to agricultural credit, availability of subsidies, electricity at home, and farmer-to-farmer extension services all affect adaptation choices. Therefore, policy makers should target these determinants to boost farmers' adaptation and thereby diminish the adverse effects of climate change.

The analytical framework used in this study has produced robust results. It should be replicated in other developing countries experiencing adverse climate change and having similar characteristics to Bangladesh.

Certification of dissertation

I hereby certify that the work embodied in this dissertation is the result of my own research. I also declare that it has not been submitted for a higher degree to any other institution or university.

Md Abdur Rashid Sarker

Name and Signature of Candidate

Date

Endorsement

Dr Khorshed Alam

Name and Signature of Principal Supervisor

Date

Professor Jeff Gow

Name and Signature of Associate Supervisor

Date

Publications from this research

Journal Papers

- Sarker, MAR, Alam, K, Gow, J (2012), 'Exploring the relationship between climate change and rice yield in Bangladesh: An analysis of time series data', *Agricultural Systems*, vol. 112, pp. 11-16.
- Sarker, MAR, Alam, K, Gow, J (2012), 'How does the variability of Aus rice yield respond to climate change in Bangladesh?', *Journal of Agronomy and Crop Science* (Accepted).
- Sarker, MAR, Alam, K, Gow, J (2012), 'Assessing the determinants of rice farmers' adaptation strategies in Bangladesh', *International Journal of Climate Change Strategies and Management*, (Accepted).
- Sarker, MAR, Alam, K, Gow, J (2012), 'Performance of rain-fed Aman rice yield in Bangladesh in the presence of climate change', *Crop and Pasture Science* (Under review).

Conference Paper

 Sarker, MAR, Alam, K, Gow, J (2012), 'A comparison of the effects of climate change on Aus, Aman and Boro rice yields in Bangladesh: Evidence from panel data', Proceedings of the 41st Australian Conference of Economists, July 8-11, 2012, Melbourne.

Acknowledgements

Let me take this opportunity to thank Dr Khorshed Alam for being a fantastic principal supervisor throughout my study at the University of Southern Queensland (USQ). He has provided me with thought-provoking comments on each draft of this thesis. Without his encouragement, timely suggestions and proper guidance, it was impossible for me to complete this thesis. I express my sincere gratitude for everything I have learnt from him, and for everything he has done for me.

I express my heartfelt gratitude to my associate supervisor, Professor Jeff Gow, for his productive criticism, thought-penetrating comments and innovative ideas on each draft which were really crucial to the completion of this thesis. I have learnt many things from him. Without his punctuality in looking at my documents, it would have been difficult for me to submit this thesis.

Discussions with Mohammad Alauddin, Associate Professor of Economics at the University of Queensland, provided me with clear guidelines on how I should proceed with the collected data. I thank him for his intellectual instructions and mental support as well. Professor Kevin Parton of Charles Stuart University also deserves sincere thanks for his useful comments on the early draft of my PhD proposal. His comments enriched my way of thinking. Sincere thanks also go to Mann Kim, Assistant Professor of Applied Economics at Utah State University, for his guidelines on the mean and variance functions estimation and some other issues. Advice from Dr Ariful Hoque of Murdoch University has been a great source of inspiration for me in finishing this thesis.

Thanks are due to the Department of Economics, Rajshahi University and the authority of Rajshahi University for granting me study leave. Special thanks go to Professor Mohsin Ali who provided me an office and other support facilities during fieldwork which was truly helpful for data collection and entry. Special thanks are due to Professor Dilip Kumar Nath for his comments on my survey questionnaire and for his support during my study. I appreciate his regular phone calls to discuss my progress. I am forever grateful to him for his humane behaviour towards me and my family in Bangladesh. I am also thankful to Professors Abdur Rahman, Tariq Saiful Islam and Abdul Quiyum for their invaluable advice. I express my gratitude to Professor ANK Noman and Dr Elias Hossain

for their ideas on my questionnaire and estimation techniques. I am also thankful to all other teachers and colleagues at the Department of Economics, Rajshahi University.

My wholehearted thanks go to Professors Sanat Kumer Saha and ATM Nurul Amin. They played a pioneering role in facilitating my higher study. Professor Saha helped in organising some issues for this research. It is impossible for me to repay their contribution in my academic career.

Other people whom I wish to thank include Dr Jahanur Rahman, Dr Mallik Akram Hossain, Md. Abdul Khaleque, Bijoy Krishna Banik, Rezaul Karim Bakshi, Kaji Julfikar Ali, Md Shahiduzzaman, Nur Azrin, and Zhen Lu. I am also grateful to the academic and administrative staff, especially Dr Mafiz Rahman, Dr. Shane Zhen, Dr Rasheda Khanam, Liz Whatson and Jean Charlish, of the University of Southern Queensland. Bernard O'Neil deserves special thanks for his proofreading.

Last but not least, sincere thanks to my mother, brothers, sisters, wife and son. The person who would be happiest with the completion of my thesis is my eldest brother who died just prior to the commencement of my PhD study. It will be my regret forever that I cannot see his proud face on my achievement. My beloved wife, Shapla, has sacrificed a lot for me to complete this thesis. She has really been a source of tremendous trust, confidence and encouragement for me. At the end, I beg pardon to my son, Tahmid, for my inability to provide him all of the time he might have wanted from me. I am indebted to you forever.

Dedication

In fond memory of my father, the late Abdul Mazid Sarker and my eldest brother, the late Abdul Khaleque Sarker.

Abstr	act		ii
Certification of dissertationv			
Publi	Publications from this researchvi		
Ackn	owle	dgements	. vii
List o	of app	pendices	.xiv
List o	of tab	les	.xiv
List o	of fig	ures	.xvi
List o	of abb	previations and acronyms	xvii
Chap	oter 1	Introduction, Research Issues and Chapter Outlines	1
1.1	В	Background and motivation of this study	1
1.2	C	Crop agriculture and rice production in Bangladesh	2
1.3	C	Climate change vulnerability and the Bangladesh economy	3
1.4	S	tatement of the research problem	4
1.5	R	Research questions and approach	7
1.6	C	Climate change and rice crop production: a conceptual framework	8
1.7	C	Organisation of the thesis	11
Chap	oter 2	Review of the Literature	13
2.1	Iı	ntroduction	13
2.2	E	Evidence of global climate change	13
2.3	Iı	nterplay of climate change, crop production and food security	17
2.4	E	Different methods for estimating climate change impacts on crop agriculture	18
2	2.4.1	General equilibrium model	18
2	2.4.2	Partial equilibrium models	19
2.5	E	Empirical studies on climate change effects on crop agriculture	23
2	2.5.1	Evidence from world agriculture	23
2	2.5.2	Evidence from developed countries' agriculture	25
2	2.5.3	Evidence from middle income and lower income countries	26
2.6	A	Adaptation to climate change by agriculture	28
2	2.6.1	Nature of adaptation and its importance	28
2	2.6.2	Common adaptation strategies and barriers to adaptation	29

Contents

2.0	6.3	Explanation of the determinants of adaptation choices	.30
2.0	5.4	Choice models for analysing the determinants of adaptation strategies	.32
2.7	In	npact and adaptation studies for Bangladesh	.33
2.7	7.1	Simulation or modelling type studies	.33
2.7	7.2	Descriptive or policy type studies	.35
2.8	Ga	aps or weaknesses in the existing literature	.38
Chapt	er 3	Methodology	.40
3.1	In	troduction	.40
3.2	Μ	ethodology for analysing climate change at the aggregate level	.40
3.2	2.1	Time series data and its sources	.40
3.2	2.2	Unit roots and stationarity	.42
3.2	2.3	Ordinary least squares (OLS) regression	.43
3.2	2.4	Quantile (median) regression (QR) method	.44
3.2	2.5	Descriptive statistics	.47
3.2	2.6	Linear trend model	.48
3.3	Μ	ethodology for analysing climate change impact at the disaggregated level	.49
3.3	3.1	Panel data and their sources	.49
3.3	3.2	Panel unit root test	.51
3.3	3.3	Theoretical model and its specification	.52
3.3	3.4	The feasible generalized least squares method	.54
3.4	Μ	ethodology for analysing climate change impact at the micro (farm) level	.55
3.4	4.1	The broad study area	.55
3.4	4.2	Description of specific study area	.57
3.4	4.3	Study population and sampling strategy	.60
3.4	4.4	Questionnaire survey	.62
3.4	4.5	Data analysing methods	.67
3.5	Re	esearch design: an overview	.70
3.6	Co	onclusion	.72
Chapt	er 4	An Overview of Climate Change in Bangladesh and Rice Yield	
Respo	nses	: An Analysis of Aggregate Level Data	.73
4.1	In	troduction	.73

4.2	De	fining climate change and variability	73
4.3	.3 Present climate of Bangladesh		74
4.4	Me	thods for discovering variability in climate	77
4.5	En	pirical results of climate change and variability	78
4.5	5.1	Evidence from the simple statistical methods	78
4.5	5.2	Evidence from trend model	
4.5	5.3	Evidence from quantile regression analysis	
4.6	Fu	ture climate change projections	
4.7	De	tecting variability in rice yields	
4.8	Ric	e yield responses to climate variables	90
4.8	8.1	A brief overview of literature	90
4.8	8.2	Production of different rice varieties in Bangladesh	
4.8	8.3	Data, its sources and properties	
4.8	8.4	Empirical model selection	94
4.8	8.5	Empirical results and discussion	
4.9	Co	ncluding comments	
Chapte Disage	er 5 vrega	Climate Change Impacts on Rice Yield and Variability: An Anter Level Data	nalysis of 103
5.1	Int	roduction	
5.2	Al	orief overview of the literature	
5.3	Th	e methodology for estimation purposes	
5.3	3.1	Data its sources and basic properties	107
5.3	3.2	Descriptive statistics for district level climate variability	108
5.3	3.3	Panel unit roots and stationarity	
5.3	3.4	Empirical model specification and estimation method	109
5.4	Re	sults	113
5.1	4 1	Descriptive statistics for climate variability at district level	113
5. 5.4	4.2	The panel unit root test	115
5 5.4	<u>-</u> 1 3	The empirical model	116
5			
5 4	44	Climate elasticities of rice vields	123
5.4 5.4	4.4 1 5	Climate elasticities of rice yields	

5.5	Cor	ncluding comments	127
Chapt	er 6	Climate Change Impacts on Rice Production: An Analysis of I	Farm
Level	Data .		130
6.1	Intr	oduction	130
6.2	A b	rief overview of the literature	131
6.3	The	oretical framework	133
6.4	Met	thodology	134
6.4	4.1	Selection of study location	134
6.4	4.2	Sampling procedure	135
6.4	4.3	Data analysis	135
6.5	Res	ults	136
6.	5.1	General characteristics	136
6.	5.2	Determinants of net revenue: chi-square test	139
6.	5.3	Comparing the means of net revenue: independent sample t-test	140
6.:	5.4	Mean procedure for variables with multiple categories	142
6.	5.5	Production losses due to climate change	145
6.	5.6	Profit and its determinants: multiple regression analysis	155
6.	5.7 De	terminants of production losses: multiple regression analysis	163
6.6	Cor	cluding comments	166
Chapt	er 7	Rice Farmers' Adaptation Strategies to Climate Change: Evid	ence from
Farm 1	Level	Data	169
7.1	Intr	oduction	169
7.2	Ada	aptation and agriculture: a brief overview of the literature	170
7.3	The	oretical framework	172
7.4	Met	thodology	174
7.4	4.1	Study area	174
7.4	4.2	Data sources	174
7.4	4.3	Theory of random utility and a micro-econometric model	175
7.5	Res	earch results and discussion	178
7.5	5.1	Overview of climate change in Rajshahi and comparison to Bang	ladesh.178
7.	5.2	Farmer's perception of climate change	180

7.5.	5.3 Farm-level adaptation strategies	
7.5.4 Adapt to the adaptation		
7.5.	5 Barriers to adaptation	
7.5.	6 Determinants of adaptations: evidence from the MNL model	
7.6	Concluding comments	196
Chapte	r 8 Summary of Findings, Policy Implications and Directions for Fu	ırther
Researc	h	
8.1	Introduction	
8.2	Summary of findings	
8.3	Policy implications and recommendations	
8.4	3.4 Contribution of this research	
8.5	8.5 Future research focus	
Referen	ICes	

List of appendices

Appendix I	District level time series data on rice yields and climate variables	242
Appendix II	The questionnaire of farm households	259
Appendix III	Descriptive statistics for all variables for farm-level analysis	267

List of tables

Table 1.1	Intensity of the impact of climate change on different sectors	4
Table 3.1	Climate and rice data at the aggregate level	. 41
Table 3.2	Climate zones in Bangladesh	. 50
Table 3.3	Growing seasons for three rice varieties in Bangladesh	. 50
Table 3.4	Population and sample size for the survey	. 61
Table 3.5	Statistical techniques, their use and the statistical package used	. 68
Table 3.6	Statistical techniques for analysing rice farmers' adaptation to climate change	. 69
Table 3.7	The coordination matrix	. 71
Table 4.1	Climate variability in Bangladesh over the 1948–2009 period	. 78
Table 4.2	Mean values, standard deviation and coefficient of variation	. 80
Table 4.3	Trends in the variability of three major climate variables, 1952–2009	. 86
Table 4.4	Comparing results between OLS and QR estimates at different quantiles	. 87

Table 4.5 Future climate scenarios for Bangladesh	89
Table 4.6 Variability in rice yields for the 1972–2009 period	90
Table 4.7 Basic features of climate during three rice growing seasons in Bangladesh	92
Table 4.8 Descriptive statistics of data for the 1972–2009 period	93
Table 4.9 Augmented Dickey Fuller test for checking stationarity of the data series	94
Table 4.10 Results from the Aus model	98
Table 4.11 Results from the Aman model	99
Table 4.12 Results from the Boro model	99
Table 5.1 Summary statistics on yields and climate variables	. 108
Table 5.2 Inter-district climate variability for the 1972–2009 period	. 113
Table 5.3 Inter-climate zones variability in climate variables for the 1972-2009 period	. 114
Table 5.4 Panel unit root tests	. 116
Table 5.5 Estimation results for Aus rice	. 118
Table 5.6 Estimation results for Aman rice	. 120
Table 5.7 Estimation results for Boro rice	. 122
Table 5.8 Elasticities of climate variables	. 123
Table 5.9 Change in mean Aus yield and yield variability (percentage)	. 126
Table 5.10 Change in mean Aman yield and yield variability (percentage)	. 126
Table 5.11 Change in mean Boro yield and yield variability (percentage)	. 127
Table 6.1 Farmers' perception of the availability of major agricultural inputs	. 138
Table 6.2 Bi-variate analysis of association of net revenue and its determinants	. 139
Table 6.3 Comparing the means of profit between groups	. 141
Table 6.4 Mean profit for different groups	. 142
Table 6.5 ANOVA for mean profit and types of farmers	. 143
Table 6.6 Mean profit vs. irrigation coverage	. 144
Table 6.7 ANOVA for profit and irrigation coverage	. 144
Table 6.8 Descriptive statistics of production loss for Aman	. 147
Table 6.9 Association between production losses and its factors	. 148
Table 6.10 Comparing the means of production losses between groups	. 149
Table 6.11 Production losses for different types of farmers	. 151
Table 6.12 ANOVA for the means of production losses for the different groups	. 151
Table 6.13 Production losses at various level of percentage of total land under irrigation	. 152
Table 6.14 ANOVA for the means of production loss vs. irrigation coverage	. 152
Table 6.15 Explanatory variables and their expected sign	. 156
Table 6.16 Regression results for the determinants of net revenue	. 158
Table 6.17 Regression results for the determinants of production loss	. 164
Table 7.1 Farmers perceptions of other climate parameters over last 20 years	. 183
Table 7.2 Explanatory variables hypothesised to affect adaptation strategies	. 189
Table 7.3 Hausman test of IIA assumption for the MNL model	. 190
Table 7.4 Relative risk ratios of the MNL model for rice farmers' adaptation	. 192

List of figures

Figure 1.1 Conceptual framework of climate change impacts on rice production	10
Figure 2.1 CO ₂ (ppm) trend over time	14
Figure 2.2 Arctic sea ice level change, 1980–2010.	15
Figure 2.3 CO ₂ concentration level over the millennia	15
Figure 2.4 Global temperature variations, 1880–2010	16
Figure 2.5 Sea level rise, 1870–2010	16
Figure 3.1 Map of the Rajshahi district	57
Figure 3.2 Map of the Godagari Upazila	58
Figure 3.3 Map of the Tanore Upazila	59
Figure 4.1 Climate zones in Bangladesh	76
Figure 4.2 Moving average of mean annual maximum temperature	81
Figure 4.3 Standard deviation of mean maximum temperature	81
Figure 4.4 Coefficient of variation in mean maximum temperature	82
Figure 4.5 Moving average of mean annual minimum temperature	82
Figure 4.6 Standard deviation of mean minimum temperature	83
Figure 4.7 Coefficient of variation in minimum temperature	83
Figure 4.8 Moving average of mean annual rainfall	84
Figure 4.9 Standard deviation of mean annual rainfall	84
Figure 4.10 Coefficient of variation of annual rainfall	85
Figure 6.1 Biplot of net revenue and different farms type 1	45
Figure 6.2 Farmers perception about crop damage 1	46
Figure 6.3 Production loss of Aman rice 1	47
Figure 6.4 Symmetrical normalisation for production losses vs. types of farms 1	53
Figure 6.5 Biplot showing relationship between production losses and irrigation levels 1	54
Figure 7.1 Trends in maximum temperature 1	78
Figure 7.2 Trend in minimum temperature	79
Figure 7.3 Difference of maximum and minimum temperature 1	79
Figure 7.4 Trend in annual average total rainfall 1	80
Figure 7.5 Farmers' perceptions of yearly temperature changes over the last 20 years 1	81
Figure 7.6 Farmers' perceptions of yearly rainfall changes over the last 20 years 1	82
Figure 7.7 Farmers' main adaption strategies 1	84
Figure 7.8 Farmers' secondary adaptation measures 1	85
Figure 7.9 Measures for adapt to adaptation 1	86
Figure 7.10 Barriers to adaptation	87
Figure 7.11 Farmers' main adaptation choices 1	88

List of abbreviations and acronyms

ADF	Augmented Dickey Fuller
AEO	Agriculture Extension Officer
AEZ	Agro-ecological Zone
AIC	Akaike Information Criterion
ANOVA	Analysis of Variance
AWD	Alternate Wet and Drying
BADC	Bangladesh Agricultural Development Corporation
BBS	Bangladesh Bureau of Statistics
BCCSAP	Bangladesh Climate Change Strategy and Action Plan
BIC	Bayesian Information Criterion
BMD	Bangladesh Meteorological Department
BMDA	Barind Multipurpose Development Authority
BRRI	Bangladesh Rice Research Institute
CGE	Computable General Equilibrium
cm	centimetre
CO_2	Carbon Dioxide
CV	Coefficient of Variation
DAE	Department of Agricultural Extension
DOE	Department of Environment
DTW	Deep Tube Well
FAO	Food and Agriculture Organisation
FGLS	Feasible Generalised Least Squares
GCM	General Circular Model
GDP	Gross Domestic Product
GOB	Government of Bangladesh
HBT	High Barind Tract

HYVs	High yielding varieties
IFPRI	International Food Policy Research Institute
IIA	Independent of Irrelevant Alternatives
IPCC	Intergovernmental Panel on Climate Change
Kg	Kilogram
MLE	Maximum likelihood estimates
mm	millimetre
MNL	Multinomial logit
MNP	Multinomial probit
MOEF	Ministry of Environment and Forest
NAPA	National Adaptation Programmes of Actions
NGOs	Non-Government Organisations
OLS	Ordinary least squares
PP	Philips and Perron
ppm	parts per million
PVC	Polyvinyl Chloride
QR	Quantile regression
RRR	Relative risk ratio
SAAOs	Sub-Assistant Agricultural Officers
T. Aman	Transplanted Aman
UNDP	United Nations Development Programme
VIF	Variance Inflation Factor
WB	World Bank