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Abstract

An underlying assumption of proportional hazards models is that the effect of a change
in a covariate on the hazard rate of event occurrence is constant over time. For scholars
using the Cox model, a Schoenfeld residual-based test has become the disciplinary standard
for detecting violations of this assumption. However, using this test requires researchers
to make a choice about a transformation of the time scale. In practice, this choice has
largely consisted of arbitrary decisions made without justification. Using replications and
simulations, we demonstrate that the decision about time transformations can have profound
implications for the conclusions reached. In particular, we show that researchers can make
far more informed decisions by paying closer attention to the presence of outlier survival
times and levels of censoring in their data. We suggest a new standard for best practices
in Cox diagnostics that buttresses the current standard with in-depth exploratory data
analysis.
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In event history analysis, the researcher’s interest is typically in modeling the effects of a set

of covariates on the hazard rate of event occurrence. Many of the most commonly used regression

models for event history analysis (e.g., the Cox, exponential, Weibull, and Gompertz models) carry

the built-in assumption that the effect on the hazard rate of a change in a covariate is constant

regardless of when in the process it occurs—the so-called proportional hazards assumption. If the

effect of a covariate on the hazard rate differs over the time span under study, using proportional

hazards regression techniques will lead to biased coefficient estimates and suboptimal significance

tests (Kalbfleisch and Prentice 2002). As political scientists have come to recognize the power of

proportional hazards models for examining the duration and timing of political events, they have

also become increasingly aware of the need to test and correct for violations of the proportional

hazards assumption (thanks in large part to the work of Box-Steffensmeier and colleagues; e.g.,

Box-Steffensmeier and Jones 2004; Box-Steffensmeier and Zorn 2001).1

An active area of research in statistics has developed an array of techniques for detecting

nonproportional hazards (Gill and Schumacher 1987; Grambsch and Therneau 1994; Lagakos and

Schoenfeld 1984; Ng’andu 1997; Stablein, Carter, and Novak 1981; Therneau, Grambsch, and

Fleming 1990; Winnett and Sasieni 2001). One method in particular, developed by Grambsch and

Therneau (1994) for use with the Cox proportional hazards model, focuses on plotting methods

and tests of linear association to examine trends in covariate-specific scaled Schoenfeld residuals

over time. When these tests reveal that the proportional hazards assumption is violated, one

common recommendation is to interact the offending covariate(s) with some function of time,

and move forward with estimation and interpretation (Box-Steffensmeier and Jones 2004; Box-

Steffensmeier and Zorn 2001). Political scientists have begun to take heed of this advice, resulting

in generally more sophisticated and nuanced interpretations of the duration and timing of political

events (e.g., Box-Steffensmeier, Reiter, and Zorn 2003; Chiozza and Goemans 2004; Licht 2011).

Though the increased application of diagnostic testing for the proportional hazards assumption

and the use of time interactions as a corrective technique have improved event history analyses

in political science, we argue in this paper that testing for nonproportional hazards is not yet

1To demonstrate how important proportional hazards event history analysis has become across subfields of
political science, Table SI.A.1 in the Supporting Information presents the results of a content analysis of the
American Journal of Political Science, American Political Science Review, and Journal of Politics, identifying all
articles published between 1992 and 2012 that employ a proportional hazards model.
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a solved problem. When scholars use the residual-based tests mentioned above, they are forced

to make a choice about a transformation of the time scale, or to choose no transformation at

all. Until now, however, in empirical applications these choices have largely been arbitrary,

often left to the default setting of the researcher’s chosen statistical software, and almost never

reported (but see Box-Steffensmeier and Zorn 2001). The arbitrary nature of this choice would

be relatively unimportant if it were not consequential for the conclusions reached. However, we

employ replications and simulations to demonstrate that the choices made do in fact impact the

ability of the diagnostic tests to detect violations of the proportional hazards assumption, and thus

the subsequent choices regarding corrective measures and, ultimately, substantive interpretations.

The simplest summary of our findings is that data structure matters in determining which

function of time should be employed in the Grambsch-Therneau tests of proportional hazards.

Specifically, researchers must be aware of the presence of outlier survival times (a not uncommon

feature of political science data) as well as the level of censoring in their data. Our analysis of

replication materials from over a decade of published work reveals that whether or not scholars

are aware of the need to make a choice about a transformation of the time scale when performing

these tests, untransformed time and the natural log of time have been the applications of choice

in political science research. However, our simulations indicate that these may in fact be the least

desirable choices for the types of survival distributions most common in political science research,

particularly as the level of censoring grows larger. For many common outlier and censoring

scenarios, other choices (namely the rank and left-continuous Kaplan-Meier transformations, to

be explained in greater detail below) will be superior.

The goal of this paper is to provide applied researchers with additional guidance on appropriate

diagnosis of violations of the proportional hazards assumption in applications of the Cox model.

We advocate an approach to detecting proportional hazards in which researchers employ the

diagnostic procedures developed by Grambsch and Therneau (1994) and recommended by Box-

Steffensmeier and colleagues (Box-Steffensmeier and Jones 2004; Box-Steffensmeier and Zorn

2001; Box-Steffensmeier, Reiter, and Zorn 2003), but supplement these techniques with in-depth

exploratory data analysis. In a set of simulations and replications of published research, we

demonstrate how information about outlier survival times and censoring can be used to choose
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an appropriate transformation of the time scale during diagnostic testing, without the need for

removing or correcting for outlier survival times during estimation of Cox parameters. Our

findings show that knowledge of the very basic elements of one’s data—particularly with respect

to outlier survival times and censoring—will lead to more informed decisions during diagnostic

testing, and thus more accurate substantive conclusions.

Detecting Nonproportional Hazards

The importance of the proportional hazards assumption in appropriate specification of a large class

of event history models has spawned an extensive literature on appropriate means of testing for

nonproportional hazards (see Ng’andu 1997, for a review). As Box-Steffensmeier and Zorn (2001)

point out, statistical tests of the proportional hazards assumption fall into three general classes:

(1) tests focusing on piecewise estimation of models for subsets of data defined by stratification

of time; (2) tests focusing on interactions between covariates and some function of time; and (3)

tests based on examinations of regression residuals. A variety of tests have been recommended

within each class. In this paper we focus exclusively on a popular diagnostic method falling into

the third class that examines the relationship between scaled Schoenfeld residuals and time.2

Scaled Schoenfeld Residuals and Proportional Hazards

The basic logic behind scaled Schoenfeld residual tests for proportional hazards is quite intuitive,

and can be seen as a natural extension of methods of examining residuals in the linear regression

framework.3 To begin, let Zij(t) be the jth covariate of the ith unit, where i = 1, . . . , n, j =

1, . . . , p, and the notation indicates that Zij is allowed to vary as a function of the time scale.

Then the Cox proportional hazards model assumes that the hazard rate for the ith individual

2We have chosen this particular focus due to its increasing popularity within political science. However, we
alert readers to the fact that it is not the only means of testing for proportional hazards, and that its application
is limited to the Cox model. For a recent argument showing that nonproportionality can be tested and modeled
within the Weibull framework as well, see Zuehlke (2013). We thank an anonymous reviewer for pointing us to
this reference.

3The discussion in this section draws substantially on work presented elsewhere (Box-Steffensmeier and Jones
2004; Box-Steffensmeier and Zorn 2001; Grambsch and Therneau 1994; Therneau and Grambsch 2000), but pro-
vides a highly condensed argument due to space considerations. Readers interested in more technical detail are
referred to Therneau and Grambsch (2000, esp. chs. 4 and 6).
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satisfies the following relationship:

hi(t) = h0(t) exp (Zi(t)β) , (1)

where h0 is the baseline hazard, Zi(t) is a 1× p vector of covariates for unit i, each of which can

be time-fixed or time-varying, and β is a p × 1 vector of coefficients. Therneau and Grambsch

(2000) set up the rationale for a residual test by introducing an alternative to the Cox model in

which the estimated coefficient is also allowed to vary as a function of time. That is,

hi(t) = h0(t) exp{Zi(t)β(t)}. (2)

Examining (1) and (2), when β(t) = β, proportional hazards is implied. An explicit test of this

restriction involves analysis of model residuals. Regression models for time-to-event data require

more thought about the meaning of a residual because observations may be censored. The Cox

model adds an additional complication in that the baseline hazard is not estimated (Cox 1972),

and hence the fitted model does not provide a systematic component (Hosmer, Lemeshow, and

May 2008). One can, however, derive the score process for each individual unit under study. For

each unit i, and for any given time t, the score process is essentially a row vector of differences

between the covariate values for individual i and a weighted mean of the covariate values for all

individuals at risk at time t. Schoenfeld (1980) proposed a residual derived by summing the score

processes over units experiencing the event of interest at each unique event time. The simplest

representation of the Schoenfeld residual is one in which there are no tied event times. Following

the notation of Therneau and Grambsch (2000), we define the risk score for unit i at time t as

ri(t) = exp[Zi(t)β], and we define Yi(t) as an indicator function such that Yi(t) = 1 if unit i is

under observation and at risk, and 0 otherwise. Then at the kth event time, tk, the Schoenfeld

residual is given by

sk = Z(k) −
∑

i Yi(tk)ri(tk)Zi(tk)∑
i Yi(tk)ri(tk)

sk = Z(k) − z̄(β̂, tk),

4



where Z(k) is the covariate vector of the unit experiencing the event at time k, β̂ is the estimate of

β based on maximization of the partial likelihood function,4 and z̄(β̂, tk) acts as a weighted mean

of the covariate values for all units at risk at time t.5 Additionally, we can define the weighted

variance of Z at the kth event time as V (β, tk) = {
∑

i Yi(tk)ri(tk)[Zi(tk) − z̄(β, tk)]′[Zi(tk) −

z̄(β, tk)]}/[
∑

i Yi(tk)ri(tk)]. Then, scaling the Schoenfeld residuals by the weighted variance of X

at the kth event time yields the scaled Schoenfeld residual:

s∗k = V −1(β̂, tk)sk.

Grambsch and Therneau (1994; see also Therneau and Grambsch 2000) show that E(s∗kj) + β̂j ≈

βj(tk). Therefore, the restriction for proportional hazards, β̂j = βj(tk), implies that E(s∗kj) = 0,

which occurs if the s∗kj values are a random walk across the time scale.6 This leads naturally

to a calculation of the relationship between s∗kj and tk, or some function g(tk), and to plots of

s∗kj + β̂j against tk or g(tk) as a means of diagnosing and visualizing the presence and nature of any

nonproportionality. Therneau and Grambsch (2000) suggest a linear regression of s∗k on g(tk), and

they motivate their suggested test by appealing to a heuristic approach rooted in generalized least

squares. Letting ḡ be the mean of g(tk) and d the number of event times such that k = 1, . . . , d,

the least squares slope of such a regression for the jth covariate is given by

θ̃j =

∑d
k=1 (g(tk)− ḡ)

(
s∗kj − s̄∗j

)∑d
k=1 (g(tk)− ḡ)2

=

∑d
k=1 (g(tk)− ḡ) s∗kj∑d
k=1 (g(tk)− ḡ)2

,

where the final equality holds because, by definition,
∑d

k=1 sk = 0. Denote the information

matrix of the partial likelihood estimation of β as I(β̂) ≡ I, and note that
∑d

k=1 V (β̂, tk) = I.

Because the values of V (β̂, tk) can become relatively unstable late in the observation time as the

4Knowledge of the details regarding estimation of β are useful but not necessary for the discussion that follows.
Space considerations prevent us from presenting a full derivation of β̂. Interested readers are referred to the original
paper by Cox (1972) as well as chapter 3 of Therneau and Grambsch (2000) and chapter 4 of Box-Steffensmeier
and Jones (2004).

5In the case of tied data, the Schoenfeld residual for an event time is given by sk =
∫ tk
tk−1

∑
i[Zi− z̄(β̂, s)]dNi(s),

where Ni(s) is the number of observed event times for unit i. However, most computer software for event history
analysis simply assumes no ties and returns individual residual values for each unit experiencing the event at a
particular time (Therneau and Grambsch 2000).

6It should be noted that phenomena other than random walks can also produce this relationship, including
certain nonlinear trends. See Keele (2010).
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number of units in the risk set diminishes, Therneau and Grambsch (2000) suggest substituting∑d
k=1 V (β̂, tk) with its average value, I/d. Letting Ijk = I−1jk be the (j, k)th element of I−1,

and using the result that Var(s∗k) ≈ V −1 (β, tk) (Grambsch and Therneau 1994), we have that∑d
k=1 Var(s∗kj) ≈ dIjj. Then the test statistic for the proportional hazards assumption with

respect to the jth covariate is given by

Tj =

[∑d
k=1 (g(tk)− ḡ) s∗kj

]2
dIjj

∑d
k=1 (g(tk)− ḡ)2

(3)

and is asymptotically distributed as χ2(1) under the null hypothesis that the relationship between

covariate j and the event times follows the proportional hazards assumption.7

Carrying this logic forward, Grambsch and Therneau (1994) also suggest a global test for

proportional hazards over all p covariates. If we let S be the d× p matrix of unscaled Schoenfeld

residuals, S∗ = dSI−1 the matrix of scaled Schoenfeld residuals under the assumption of constant

variance, and g∗ the d × 1 vector whose kth element is g(tk) − ḡ. Then the test statistic for the

global test is given by

T =
g∗′S∗IS∗′g∗

d
∑d

k=1 (g(tk)− ḡ)2
(4)

and is asymptotically distributed as χ2(p) under the null hypothesis that the relationship between

the combination of the p covariates and the event times follows the proportional hazards assump-

tion. In summary, the covariate-specific test is a test of the null hypothesis that the impact of

covariate j on the hazard rate violates the proportional hazards assumption. The global test, on

the other hand, is a test of the null hypothesis that the combined effect of all covariates in the

model violates the proportional hazards assumption.

Since their recommendation to political scientists by Box-Steffensmeier and colleagues (Box-

Steffensmeier and Jones 2004; Box-Steffensmeier and Zorn 2001; Box-Steffensmeier, Reiter, and

Zorn 2003), exploration of scatterplots of s∗jk versus g(tk), as well as calculations of their correla-

tions and the test statistics presented in (3) and (4) have become the standard means of evaluating

the proportional hazards assumption in applications of the Cox model to political phenomena,

7Space considerations prevent us from presenting full derivations of the estimator and test statistic. Detailed
arguments are presented by Grambsch and Therneau (1994) and Therneau and Grambsch (2000, ch. 6). In Section
B of the Supporting Information, we provide a brief sketch of these arguments.
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and their application has increased over time (Berlinski, Dewan, and Dowding 2010; Berry, Bur-

den, and Howell 2010; Chiozza and Goemans 2004; Crescenzi 2007; Debs and Goemans 2010;

Diermeier and Stevenson 1999; Gibler and Tir 2010; Koch and Sullivan 2010; Leeds and Savun

2007; Maeda 2010; Maltzman and Shipan 2008; Murillo and Mart́ınez-Gallardo 2007; Schleiter

and Morgan-Jones 2009).

Choice of Time Transformation in Scaled Schoenfeld Residual Tests

Though the general increase in awareness regarding the proportional hazards assumption is cer-

tainly encouraging, testing for proportional hazards within the general framework put forth above

is not yet a solved problem. At least one outstanding issue, which we identify in this paper, is the

specification of g(t), the function of time against which to compare the scaled Schoenfeld residu-

als. The primary purpose of using a transformed version of the time scale rather than its identity

for diagnostic testing is to avoid potential problems with outlier survival times for units that

experience the event of interest (Therneau and Grambsch 2000). After all, the scaled Schoenfeld

residual procedure for detecting nonproportionality is a test of linear association between two

variables, subject to all of the well known issues surrounding influential data points (see, e.g.,

Cook 1979; Cook and Weisberg 1982; Weisberg 2005).8

To demonstrate why a transformation of the time scale may be necessary when testing for

nonproportionality using the scaled Schoenfeld residual method, Figure 1 presents two examples

of scaled Schoenfeld residual plots of single covariates from published Cox specifications in the

political science literature. The left panel, from Cunningham (2011), and the right panel, from

Maeda (2010), illustrate a relatively common data structure in political science research, namely,

long-tailed survival distributions. Specifically, in both datasets, most units experiencing the event

have survival times in the lower third of the distribution, and a very small handful of cases have

survival times in the upper third of the distribution. If these cases with relatively long survival

times also happen to deviate substantially from the typical case with respect to E
(
s∗kj
)

+ β̂j, they

have the potential to exert unwarranted influence on the formal test of linear association used to

8For a discussion of a different set of issues stemming from the fact that the scaled Schoenfeld residual procedure
is specifically a test of linear association, see Keele (2010).
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identify the covariates that violate the proportional hazards assumption.9

[Figure 1 about here.]

One standard corrective technique that has been recommended is the use of a transformation

of the time scale to reduce the effect of outliers (Therneau and Grambsch 2000). The criterion

for an acceptable candidate transformation function is simply that it maintains the ordering

of event times in the empirical distribution. Therefore any monotonic function of time can

be used, and standard statistical packages come with a series of built-in choices (Cleves et al.

2010; Therneau 1999). Here, we focus our attention on the four choices available in the most

commonly used statistical software packages for event history analysis in political science: identity

(untransformed) t, the natural log of t, the rank of t (i.e., the observed event times placed in

integer-rank order, 1, 2, . . . , t), and the left-continuous version of the Kaplan-Meier survival curve

of t (i.e., 1 − KM(t−); see Kaplan and Meier 1958 and Therneau and Grambsch 2000).10,11 In

the following sections, we report the results of simulations and replications of published research

indicating that the choice of a transformation is consequential.

Simulations

In this section we conduct simulations to demonstrate the performance of the Grambsch-Therneau

tests of proportional hazards under the various time transformations available in the most popular

statistical software for event history analysis. We took several steps to generate simulated data

that mimic the types of data structures frequently encountered by political scientists. First, unlike

other event history simulations in political science research, we generated simulated data with

9When characterized this way, the first obvious issue that arises is the choice of criteria to determine that a unit
deviates substantially from the typical case. In Section C of the Supporting Information, we present an example
of a common formal test used to determine the presence of outliers that can be used to aid in decision making.

10A derivation of the Kaplan-Meier estimator and additional information about how it is used as a transformation
of the time scale are provided in Section D of the Supporting Information.

11After identifying all articles using proportional hazards event history models published in the American Journal
of Political Science, American Political Science Review, and Journal of Politics published between 1990 and 2012
(see Table SI.A.1), we also searched for all replication materials for those same articles by gathering publicly
available information and contacting individual authors. Among the articles for which we were able to obtain
replication materials, we found that 100% published after 2000 used either Stata or R for estimation. The estat

phtest function in Stata (Cleves et al. 2010) and the cox.zph function in the Survival package for R (Therneau
1999) each provide the same four options examined here as possible transformations of the time scale. Stata also
provides an option to incorporate a user-defined transformation.
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time-varying covariates. To our knowledge, all published event history simulations in political

science generate units with time-fixed covariates, yet the vast majority of empirical applications

examine units with time-varying covariates. Second, since most empirical applications use data

with measurements taken at fixed time intervals (e.g., days or years), we ensured that our simu-

lated survival times were a function of covariates that varied at integer-valued steps of the time

scale. Third, we used a mean shift model (e.g., Weisberg 2005) to generate outlier survival times,

which are a common feature of data used in published research. Finally, we generated survival

times as a function of both a binary and a continuous variable, as the vast majority of published

event history analyses utilize a mixture of covariate types.

To generate survival data with time-varying covariates that vary at integer-valued steps of the

time scale, we used the method presented in Hendry (2014), augmented slightly to include outlier

survival times and violations of the proportional hazards assumption. Specifically, the method

generates data that follow a Cox model with time-varying covariates by using a transformation

of a truncated piecewise exponential random variable.12 Bounds were chosen so that units would

have minimum and maximum survival times of 10 and 150, respectively. Incorporating violations

of the proportional hazards assumption, the hazard rate for the ith unit in our simulated data

can be presented as the following augmented Cox specification:

hi(t) = h0(t) exp (β1(t)Z1(t) + β2(t)Z2(t))

where h0(t) is the baseline hazard, t = 1, 2, . . . , Ti, where Ti is the survival time for unit i,

Z1(t) ∼ Uniform[−.5, .5], and Z2(t) ∼ Binomial(.5). The time-varying form of β1 and β2

indicates how violations of the proportional hazards assumption were incorporated. In all of the

12All simulations were performed using R 2.15.1 (R Development Core Team 2012) with a Mersenne-Twister
random number generator on a machine with an Intel Xeon 2.26 GHz processor using Windows 7 64-bit. Piece-
wise exponential random variables were generated using a suite of functions in the msm package (Jackson 2014),
truncated piecewise exponential random variables were generated using rejection sampling, Cox parameters were
estimated using the coxph function with the Efron method for handling tied data, and diagnostic testing of the
proportional hazards assumption was performed using the cox.zph function in the survival package (Therneau
1999). Replication code and all results for the simulations are available from the authors’ websites.
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simulations presented below, these parameters were defined as follows:

β1(t) =



.1, if t < 10;

1, if 10 ≤ t < 15;

2, if 15 ≤ t < 20;

3, if t ≥ 20;

and β2(t) =


−5, if t < 10;

−3, if 10 ≤ t < 15;

−1, if t ≥ 15.

(5)

In other words, violations of the proportional hazards assumption were incorporated by allowing

the Cox parameters to vary at step functions of the time scale, such that changes in covariates

have varying impact on the hazard rate depending on when in the process those changes occur.

After generating the simulated data according to the above specifications, we added cases with

outlier survival times to each simulated dataset by randomly selecting five units and adding a

value to those units’ survival times that was randomly chosen to fall between zero and the median

survival time. For values of this random draw that are close to the median, this addition of time

represents a non-trivial quantity. Furthermore, the choice to add random draws of time to five

cases ensures that we achieve a range of outlier patterns across our simulated datasets.13

We then chose a censoring distribution by first defining a desired proportion of censored cases

(either .5, .25, or .1), and then determining whether the probability of being censored would

be uniform across units, or whether units with relatively long or relatively short survival times

were more likely to be censored. Specifically, we defined the proportion of censored cases by first

generating a vector of censoring indicators. In the case of uniform censoring, indicators were

uniformly distributed across cases. For the situations in which relatively long (short) survival

times were more likely to be censored, cases in the upper (lower) quartile of survival times were

more likely to be censored than cases in the lower (upper) three quartiles.14 The situation in

which units with relatively long survival times are more likely to be censored might represent

a common empirical setting in which all units come under observation at the same time, and

13In Section F of the Supporting Information, we present a selection of scatterplots of the scaled Schoenfeld
residuals versus functions of time, which allows for visualization of outlier survival times. Interested readers can
consult the replication materials to produce these same scatterplots for any of the simulations.

14A detailed description of the algorithm used to generate the simulated data is presented in Section E of the
Supporting Information.
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the researcher stops collecting measurements at some defined end time. For instance, in a study

of state policy adoption from some predefined starting point to some predefined ending point,

those states that never adopt the policy in the specified time frame would both be censored

and have the longest survival times. The situation in which units with relatively short survival

times are more likely to be censored might represent another common empirical setting consisting

of staggered entry of units with a defined end time of observation. For example, in a study of

leadership survival during a specific time period, leaders who come into office toward the end of the

period would both be censored and have relatively short survival times. Uniform censoring could

represent empirical settings in which units have multiple modes of exit from the data, but the

researcher is only interested in one mode. For each of these censoring distributions, in addition to

a setting without censoring, we generated 1000 simulated datasets with 500 units each, estimated

Cox parameters,15 and performed scaled Schoenfeld residual tests using the four different time

transformations discussed previously. Table 1 presents a summary of the performance of the tests.

[Table 1 about here.]

Using a threshold p-value of .05, if the Grambsch-Therneau scaled Schoenfeld residual tests are

performing as intended, we expect them to correctly detect a violation of proportional hazards in

about 950 simulations out of 1000. Looking across the different settings summarized in Table 1,

we find that there is actually substantial variation in the desired behavior. As expected, for any

given censoring distribution and proportion of cases censored, and for both the covariate-specific

and global tests, those that employ the untransformed version of the time scale detect the lowest

number of violations among the four choices, and never detect a number of violations within the

expected range for the chosen p-value threshold. This should be the case given that we specifically

produced data with outlier survival times and the various transformations of the time scale have

been suggested as means of correcting for the presence of outliers. Additionally, within each time

transformation and censoring distribution, the tests are more likely to detect a violation of the

proportional hazards assumption in the case of Z2 than in the case of Z1. This is also expected,

given that we defined β2 to vary slightly more dramatically than β1 (see (5)). Further, for all

15Summaries of Cox parameter estimates for the simulated data are not presented due to space constraints.
Interested readers should consult the replication materials.
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three of the transformed versions of the time scale and for any censoring pattern, the number of

violations detected by the global tests always falls within the expected range, with the exception

of ln(t) and a uniform censoring proportion of .5, which is on the margin. And whether censoring

is uniform, biased toward long survival times, or biased toward short survival times, the tests

are more likely to detect violations when the level of censoring is relatively low. This too is not

surprising given that Schoenfeld residuals are defined only at event times.

Interestingly, for each censoring distribution, proportion of cases censored, and type of covari-

ate examined, the rank transformation outperforms all other tests in terms of correctly detecting

violations of proportional hazards. In cases of low censoring, the Kaplan-Meier transformation

performs just as well or almost as well as the rank transformation, but the difference between

the two becomes larger in cases of higher censoring. In fact, in the case of no censoring the

results of the tests using the Kaplan-Meier and rank transformations are virtually identical. The

divergence between the two as the censoring proportion becomes larger also makes sense, as the

left-continuous Kaplan-Meier function is the only transformation examined here that explicitly

incorporates information from censored cases (specifically, by incorporating the number of units

still in the risk set at each event time; see Section D of the Supporting Information). However,

regardless of the censoring distribution, when the proportion of censored cases reaches .5, though

the rank transformation detects the most violations, in almost no case does a test detect the

number of violations in the expected range for the p-value threshold.

The important implications for political science research come when we combine the relatively

strong performance of the tests using the rank transformation with the relatively poor performance

of the tests using the log transformation. First, for political scientists who are aware of the problem

of outlier survival times for detecting violations of proportional hazards using the Grambsch-

Therneau method, the natural log seems to have been the transformation of choice (e.g., Box-

Steffensmeier and Zorn 2001; Chiozza and Goemans 2004). The origin of the popularity of this

choice likely has to do with the ubiquitousness of the log transformation in a variety of other

applications in political science research, including its use as a correction for nonlinearity in

bivariate relationships and as a transformation of time when researchers interact covariates with

time to explicitly model nonproportionality within the Cox framework (e.g., Box-Steffensmeier
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and Jones 2004; Box-Steffensmeier and Zorn 2001; Chiozza and Goemans 2004; Debs and Goemans

2010; Licht 2011; Maeda 2010; Maltzman and Shipan 2008). The simulation results presented

here suggest that for at least some types of data structures, the log transformation may actually

be the least desirable corrective measure, particularly in the presence of moderate to heavy

censoring. Second, political scientists who are aware of the need to test for proportional hazards

in applications of the Cox model, but unaware of the need to account for outlier survival times,

find themselves at the mercy of the default settings of their chosen statistical software. For

instance, users of Stata will have identity time as their default (Cleves et al. 2010), while users

of the survival package in R will have the Kaplan-Meier transformation (Therneau 1999). As

we have noted, the use of identity time is generally inappropriate in the presence of outlier

survival times, and therefore practitioners with long-tailed survival distributions should strongly

consider the value of a time transformation. For relatively low levels of censoring, the choice

of a transformation to correct for outliers may only be consequential on the margins. However,

having 50% or more of cases censored is a not uncommon feature of political science event history

data (e.g., Maeda 2010), and it is therefore an issue of which researchers employing proportional

hazards models should be aware.

The evidence from the simulations initially suggests that the tests employing the rank trans-

formation are the most likely to detect violations of proportional hazards in the presence of a

small handful of outlier survival times and heavy censoring. However, the recommendation by

Grambsch and Therneau (1994; see also Therneau and Grambsch 2000) is that the formal tests of

statistical significance be used in conjunction with graphical displays of the relationship between

scaled Schoenfeld residuals and time. We take this a step further to argue that examination of

graphical displays of scaled Schoenfeld residuals can also be instructive in the decision about an

appropriate transformation. For these simulations, examination of plots for each of the covariates

across each of the 1000 simulated datasets for each censoring distribution would be infeasible.16

In addition, though we have taken some effort to generate simulated data that cover a wide range

of common empirical circumstances encountered by political scientists, we certainly have not cov-

16Interested readers can potentially examine all 20,000 plots (2 covariates × 10 censoring distributions × 1000
simulated datasets) using the replication materials. An example using each of the four time transformations for
the case of no censoring is presented in Section F of the Supporting Information.
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ered all situations. In the following section, we provide two illustrations from published political

science research to demonstrate that the choice of a time transformation is also consequential

in published empirical work, as well as to show how to use the graphical displays to make more

informed choices about time transformations.

Replications

Using the replication data made available by authors, we performed or reperformed the scaled

Schoenfeld residual tests for the proportional hazards models from 19 articles published between

1992 and 2012 in the American Journal of Political Science, American Political Science Review,

and Journal of Politics. These articles constituted all published analyses for which we were able

to (1) obtain replication materials, and (2) replicate the authors’ original published findings.17

In this section, we present two examples as illustrations. Analyses for the remaining replications

appear in Section G of the Supporting Information.

Illustration: Proportional Hazards and Government Agendas

In “The Government Agenda in Parliamentary Democracies,” Martin (2004) examines the effect

of a variety of factors on the organization of the policy agenda in four European democracies. In

the article, the author uses a Cox specification but does not present explicit tests of the propor-

tional hazards assumption. At the time of publication, such tests were not common in political

science research. After successfully replicating the author’s Cox specification, we performed scaled

Schoenfeld residual tests using the time transformations discussed above. Table 2 presents the

results.

[Table 2 about here.]

17All analyses were performed using the survival package (Therneau 1999) in R 2.15.1 (R Development Core
Team 2012). In a small number of cases, replication data was either publicly available or transmitted to us by
an author or authors, but the original published estimates were unable to be recovered from the information at
hand. In some of these cases, the original analysis was performed using Stata, and Stata was able to recover the
original findings, while R was unable to produce estimates. In one case, the survival package in R was used in the
original analysis and we were able to recover the original Cox estimates, but the software was unable to perform
the Grambsch-Therneau tests because of sparse matrices induced by a certain pattern of missing data. In certain
other cases, replication data was provided, but still not enough information was available to recover the original
estimates. For most of the published proportional hazards models from these journals that were not replicated,
the reason was that data and replication materials were not made available.
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Examining Table 2, it is immediately apparent that the choice of a time transformation mat-

ters for determining the set of covariates that are found to violate the proportional hazards

assumption. While 9 out of 14 covariate-specific tests reached consistent conclusions across time

transformations, discrepancies exist for the other 5 tests. For Government Issue Saliency (a

continuous variable), and Industrial Policy and Social Policy (both binary variables), only the

test that uses the natural log transformation of the time scale produces a statistically signifi-

cant test statistic. For Environmental Policy (a binary covariate), the test that uses the natural

log transformation is the only one that does not produce a statistically significant test statistic.

And for the binary variable for Luxembourg, the tests using untransformed time and the natural

log transformation are in agreement that it does not violate, while the tests using the rank and

Kaplan-Meier transformations are in agreement that it does.

Plotting the covariate-specific scaled Schoenfeld residuals against the various time transfor-

mations is instructive as to why the discrepancies arise, and offers guidance on which version of

the test should be employed. For instance, Figure 2 presents plots of Government Issue Saliency

against each of the time transformations under consideration. Unlike the presentation for Cun-

ningham (2011) and Maeda (2010) in Figure 1, the data from Martin (2004) do not seem to be

long-tailed. A series of formal outlier tests using studentized residuals (not presented) confirms

that outlier survival times are not a concern. In other words, exploratory data analysis and formal

tests seem to indicate that we should be able to proceed with diagnostic testing using identity

time. In fact, the picture in the upper right panel of Figure 2 indicates the perils of an uninformed

decision. Rather than mitigating the impact of overly influential cases, the natural log transfor-

mation seems to unnecessarily create them. Additionally, it should be noted that no units are

censored in these data. Therefore, the appropriate course, we argue, is to apply no transformation

at all. In this case, researchers who are unaware of the issue of time transformations in diagnostic

testing, and whose chosen statistical software transforms by default (e.g., the survival package

in R, but not Stata), would come to an erroneous conclusion. Likewise, researchers who are aware

of the issue of time transformations and blindly employ the log transformation would be making

the least desirable choice. And the main point is that a simple graphical examination of one’s

data, possibly supplemented with formal tests for outliers, can be very informative on this point.
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Heeding our advice, the researcher using a p < .05 confidence level would ultimately conclude that

Government Issue Divisiveness and Environmental Policy are offending covariates that require

the use of a corrective technique in Cox estimation.

[Figure 2 about here.]

The choice of identity time in this particular case brings up an additional issue, however, that

is worthy of further discussion.18 Namely, though the effects of Government Issue Divisiveness

and Environmental Policy are both found to violate the proportional hazards assumption accord-

ing to the covariate-specific tests, the global test using untransformed time is not statistically

significant using conventional p-value thresholds. Based on our analyses of replication materials,

this is a not uncommon situation with Cox specifications in published political science research,

occurring in 20% of the scaled Schoenfeld residual tests presented in the main text and Supporting

Information, including one of the tests in the Bennett (1997) illustration presented in the next

subsection. In general, when this occurs, only a small minority of covariates in the given model

exhibit statistically significant covariate-specific tests, and the global test comes relatively close

to conventional thresholds for statistical significance. In the test using identity time in Table 2,

for instance, 2 of 14 covariate-specific tests indicate violations, and the p-value for the global test

is .067.19

With respect to this discrepancy, Box-Steffensmeier, Reiter, and Zorn (2003) pointed out

that there is no clear guidance in the literature about the dominance of the global or covariate-

specific tests in making decisions about violations of the proportional hazards assumption. Over

a decade later, our reading of the literature indicates that this statement is still accurate. Like the

graphical techniques recommended by Grambsch and Therneau (1994), the global tests can and

should be used and reported in order to paint an overall picture of the degree to which a particular

specification adheres to the proportional hazards assumption. However, given the current state

of the literature, like Box-Steffensmeier, Reiter, and Zorn (2003), we argue that when researchers

18We thank an anonymous reviewer for suggesting this discussion.
19Across all of the scaled Schoenfeld residual tests presented in the main text and the Supporting Information

that exhibit at least one statistically significant covariate-specific test simultaneously with a non-significant global
test, the global tests have p < .1 in about 34% of cases, p < .2 in about 63% of cases, and p < .3 in about 72% of
cases.
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are making decisions about appropriate model specification, they should not discount indicators

of covariate-specific nonproportionality, even in the face of a null result for the global test.

Illustration: Proportional Hazards and Alliance Duration

In “Testing Alternative Models of Alliance Duration, 1816-1984” Bennett (1997) combines hy-

potheses drawn from several different theories of alliance duration into a single modeling frame-

work. The author tests this series of hypotheses using a Weibull model. Though the tests for

proportional hazards discussed here are not relevant within the Weibull framework, Weibull is

nonetheless a proportional hazards model. Following the approach taken by Box-Steffensmeier,

Reiter, and Zorn (2003), we reexamine Bennett’s analysis within the Cox framework, but revise

and extend their work by discussing the importance of the choice of a time transformation for

scaled Schoenfeld residual tests. Table 3 presents the results of these diagnostic tests using the

various time transformations discussed above.

[Table 3 about here.]

Just as in Martin’s (2004) analysis, the results in Table 3 indicate that the choice of a time

transformation is consequential for Bennett’s data as well. Specifically, all three of the tests that

use transformed versions of the time scale indicate that Symmetry and War Termination (both

binary variables) violate the proportional hazards assumption, while the test that uses identity

time does not. Further, only the test employing the Kaplan-Meier transformation of the time

scale indicates that Mutual Threat violates the proportional hazards assumption. The global test

also exhibits discrepancies. Once again, a plot of the scaled Schoenfeld residuals against time will

be instructive as to the appropriate choice. Take, for instance, Figure 3, which plots Symmetry

against time and the various transformations of time. Unlike the data examined by Martin (2004),

the graphical display of Bennett’s data suggests the presence of outlier survival times. This is

confirmed by tests of studentized residuals (not presented). Therefore, the preliminary evidence

in front of us suggests the need for a transformation of the time scale.

[Figure 3 about here.]
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For Symmetry, the tests using transformed time are all in agreement that the covariate vi-

olates the proportional hazards assumption. But examining Table 3 shows that there is not

across-the-board agreement about the offending covariates in the model. Therefore, the choice of

a specific time transformation will be consequential for the conclusions reached. Supplementing

the information from the graphical displays and formal tests with the intuition garnered from our

simulations, we examined the level of censoring in Bennett’s data and found that about 45% of

cases are censored (113 out of 207 units experience the event).20 From our simulation findings

about the performance of the tests under various censoring distributions, we would recommend

the test using the rank transformation for these particular data. Taking that advice, a researcher

would conclude that Symmetry and War Termination violate the proportional hazards assump-

tion, and that corrective measures should be taken for these two variables in Cox estimation.

This finding is particularly instructive given the previous replication of these data by Box-

Steffensmeier, Reiter, and Zorn (2003). Specifically, in that replication the authors use untrans-

formed time to perform the scaled Schoenfeld residual tests, and, as our results show, they

conclude that no specific covariate or the model as a whole violates the proportional hazards

assumption. Their replication was an extremely thoughtful exercise in which they demonstrated

to researchers how nonproportional hazards could be of substantive interest for many questions

in international relations, and how the Grambsch-Therneau method could be used to adjudicate

between competing hypotheses. Because the specific hypothesis that they used as an illustration

was with respect to Democracy, their choice of identity time does not affect their specific con-

clusion in that instance. However, our argument and our simulation findings suggest that it is

erroneous to simply use untransformed time in this particular case. The results for two covariates,

as well as the global test, suggest that nonproportionality is still a concern. And the graphical

displays and the level of censoring suggest a specific choice for a time transformation that will

lead to more accurate conclusions.

20Bennett (1997), unlike many authors, reports this figure in the original paper.
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Conclusions

As applications of event history analysis in political science research have grown in number,

scholars have become increasingly cognizant of the need to examine the underlying assumptions

of their chosen statistical models. Researchers working within the Cox framework take advantage

of the model’s flexibility in that it does not require the practitioner to specify a theoretical func-

tional form for the baseline hazard (Cox 1972), which becomes an advantage because substantive

theory is often not developed enough to make strong a priori claims about baseline levels of risk

in the absence of covariate effects (Box-Steffensmeier and Jones 2004). The Cox model does,

however, carry the assumption of proportional hazards, and if this assumption is not met, point

estimates and tests of statistical significance will be misleading. The growth in awareness among

political scientists of the need to test for proportional hazards within the Cox framework, largely

driven by the work of Box-Steffensmeier and colleagues (Box-Steffensmeier and Jones 2004; Box-

Steffensmeier and Zorn 2001; Box-Steffensmeier, Reiter, and Zorn 2003), has led to far more

thoughtful applications of the Cox model to questions of the duration and timing of political

events (Chiozza and Goemans 2004; Licht 2011).

However, we have argued in this paper that the standard statistical test for the proportional

hazards assumption in Cox applications in the political science literature requires more thought

than it has been given until now. Specifically, the Grambsch-Therneau method of examining the

relationship between scaled Schoenfeld residuals and time requires researchers to make a choice

about whether to use identity time or a transformation of the time scale. Using simulations

and replications, we have shown that this choice will often have an impact on the decisions that

researchers make in empirical analyses. We argue that researchers can make far more informed

choices about diagnostic testing for proportional hazards by using very basic knowledge about

their data that often goes overlooked.

Our suggested course of action with respect to best practices for researchers employing the Cox

proportional hazards model is as follows. First, before any modeling occurs, practitioners must

determine the levels and patterns of censoring in their data. Though one of the advantages of

the Cox model is its ability to easily incorporate censored data, the presence of heavy censoring
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has been shown to affect inference for certain quantities of interest to practitioners (e.g., the

Kaplan-Meier estimate of the survival curve; Rupert G. Miller 1983). More importantly, however,

identification of censored and uncensored cases, combined with the qualitative knowledge of a

subject-matter expert in a particular subfield, can potentially lead to reexamination of theories

and empirical strategies. For instance, an underlying assumption of the basic Cox model presented

here is that if indefinite observation was possible, all units would eventually experience the event

of interest. Identification of patterns, levels, and identities of censored cases may lead a researcher

to question this assumption, and instead conclude that an alternative empirical strategy may be

more appropriate (e.g., the use of a so-called “cure” model in which some units are allowed to be

unsusceptible to the event; Farewell 1982; Findley and Teo 2006; Svolik 2008).

Second, practitioners must determine whether cases with outlier survival times are present.

Though we do not take a stance in this paper on appropriate methods of outlier detection, at a

minimum we argue that practitioners should engage in some amount of exploratory analysis of

survival times to identify cases that could be exhibiting unwarranted influence over both diagnostic

tests and modeling choices. Pre-estimation, this can be accomplished with simple univariate

summary measures such as histograms; post-estimation, one can use the scaled Schoenfeld residual

plots discussed here. And again, identification of outlier cases carries vast potential to guide

subsequent theoretical development and empirical modeling in unanticipated ways. Importantly,

investigation of censoring patterns and outlier survival times are relatively simple steps that most

researchers already know that they should be taking, but that are likely often neglected in the

drive toward multivariate modeling.

Third, once practitioners have decided to use the Cox proportional hazards model with a

particular set of data, it is critical that they evaluate the proportional hazards assumption. To do

so, we advocate the use of the Grambsch-Therneau scaled Schoenfeld residual tests, supplemented

by knowledge about censoring and outlier survival times garnered from the previous steps, in order

to make appropriate choices regarding a transformation of the time scale. Specifically, when a

researcher finds that outliers are not a feature of her data, she should proceed with the tests

using untransformed time. If, however, outliers are a potential issue, the researcher should use a

transformation of time. And the results of our simulations indicate that the rank transformation
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will often be the best choice. With low levels of censoring, we found that the rank and Kaplan-

Meier transformations performed about equally well, and that both outperformed the natural

log. As the level of censoring increased, however, whatever the censoring pattern, the rank

transformation began to perform substantially better than either the Kaplan-Meier or natural log

transformations. Most importantly, regardless of the ultimate decision regarding a transformation

of the time scale, the researcher has the ability to explore all of the potential choices graphically,

as we have done here.

And finally, upon detection of violations, as suggested by others (e.g., Box-Steffensmeier and

Zorn 2001; Box-Steffensmeier and Jones 2004), we recommend that researchers interact the of-

fending covariate(s) with some function of time to model the nonproportionality and proceed

with estimation and interpretation (e.g., Chiozza and Goemans 2004; Maeda 2010; Licht 2011).

Furthermore, researchers should not discount covariate-specific tests that indicate nonproportion-

ality, even in the presence of a global test that fails to reject the null hypothesis of proportionality

(Box-Steffensmeier, Reiter, and Zorn 2003).

The simulations and replications that we have presented here admittedly only scratch the sur-

face of the possible set of scenarios that political scientists may encounter when analyzing event

history data. Future research will be needed to investigate issues left unaddressed by this study.

Regardless, our broader conclusion should be uncontroversial. That is, researchers employing the

Cox proportional hazards model should engage in certain basic techniques of exploratory data

analysis—namely, investigation of censoring and outliers—in order to make more informed deci-

sions about detecting and correcting for violations of the proportional hazards assumption. The

work of Box-Steffensmeier and colleagues (Box-Steffensmeier and Zorn 2001; Box-Steffensmeier,

Reiter, and Zorn 2003; Box-Steffensmeier and Jones 2004) has taken the discipline a long way

with respect to appropriate diagnostics and model specifications within the Cox framework. But

we argue that supplementing the existing standards with some basic preliminary steps can lead

to a new standard for best practices.
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Figure 1: Long-tailed Survival Distributions from Published Political Science Research
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Table 1, Model 1

Note: Cunningham (2011) models the number of years between concessions made by states to self
determination (SD) movements. Maeda (2010) models the number of months until the transition
from democracy to nondemocracy. For further information, consult the original articles. Solid
line is a smoothing spline. Dashed lines represent a ± 2-standard error confidence band.
*Statistically significant test statistic indicating covariate violates the proportional hazards as-
sumption, p < .05.
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Figure 2: Plot of Scaled Schoenfeld Residuals vs. Time for Four Time Transformations, Govern-
ment Issue Saliency, (Martin 2004, Table 1, Model 1)
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Note: Solid line is a smoothing spline. Dashed lines represent a ± 2-standard error confidence
band. Consult Martin (2004) for information about covariate.
*Statistically significant test statistic indicating covariate violates the proportional hazards as-
sumption, p < .05.
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Figure 3: Plot of Scaled Schoenfeld Residuals vs. Time for Four Time Transformations, Symmetry,
(Bennett 1997, Table 1, Complete Model; as Replicated in Box-Steffensmeier, Reiter, and Zorn
2003)
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Note: Solid line is a smoothing spline. Dashed lines represent a ± 2-standard error confidence
band. Consult Bennett (1997) for information about covariate.
*Statistically significant test statistic indicating covariate violates the proportional hazards as-
sumption, p < .05.

28



Table 1: Summary of Violations of Proportional Hazards from Scaled Schoenfeld Residual Tests
Using Four Time Transformations

Censoring Proportion Frequency p < .05
Distribution Censored Z t ln(t) 1−KM(t) Rank(t)

Z1 (Continuous) 633 949 986 987
None 0.00 Z2 (Binary) 876 993 1000 1000

Global Test 949 999 1000 1000
Z1 (Continuous) 334 710 787 857

Uniform 0.50 Z2 (Binary) 573 853 855 939
Global Test 629 943 958 991
Z1 (Continuous) 522 891 961 967

Uniform 0.25 Z2 (Binary) 751 967 982 992
Global Test 852 995 1000 1000
Z1 (Continuous) 589 939 983 985

Uniform 0.10 Z2 (Binary) 830 989 997 998
Global Test 912 1000 1000 1000
Z1 (Continuous) 356 730 789 864

Long Biased 0.50 Z2 (Binary) 565 872 874 943
Global Test 670 963 979 993
Z1 (Continuous) 518 887 949 959

Long Biased 0.25 Z2 (Binary) 734 967 987 996
Global Test 836 996 999 999
Z1 (Continuous) 594 956 989 990

Long Biased 0.10 Z2 (Binary) 843 987 997 1000
Global Test 926 999 1000 1000
Z1 (Continuous) 369 710 776 851

Short Biased 0.50 Z2 (Binary) 547 856 870 953
Global Test 644 959 975 992
Z1 (Continuous) 500 896 963 968

Short Biased 0.25 Z2 (Binary) 755 971 982 994
Global Test 834 994 1000 1000
Z1 (Continuous) 590 941 987 988

Short Biased 0.10 Z2 (Binary) 840 985 997 997
Global Test 919 999 1000 1000

Note: Cell entries are the number of times out of 1000 that a scaled Schoenfeld residual test
indicated that the data violates the proportional hazards assumption using a threshold of p < .05.
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Table 2: Grambsch-Therneau Tests of Proportional Hazards Assumption Using Four Time Trans-
formations (Martin 2004, Table 1, Model 1)

Time Transformation
t ln(t) 1 - KM(t) Rank(t)
ρ ρ ρ ρ

Government Issue Saliency 0.043 0.064* 0.051 0.051
Government Issue Divisiveness -0.101* -0.102* -0.106* -0.106*
Opposition Issue Saliency -0.019 -0.028 -0.023 -0.023
Opposition Issue Divisiveness 0.018 -0.001 0.015 0.015
Foreign Policy 0.026 0.018 0.033 0.033
Industrial Policy 0.044 0.064* 0.054 0.054
Social Policy 0.049 0.095* 0.055 0.054
Clerical Policy 0.032 0.048 0.032 0.032
Agricultural Policy 0.008 0.031 0.017 0.017
Regional Policy 0.027 0.033 0.030 0.030
Environmental Policy 0.066* 0.058 0.070* 0.070*
Germany -0.014 -0.028 -0.015 -0.015
Belgium -0.023 -0.009 -0.028 -0.029
Luxembourg -0.060 -0.012 -0.065* -0.065*

χ2 χ2 χ2 χ2

Global Test 22.625 20.420 25.688* 25.705*

Note: Cell entries for the upper panel are Pearson product-moment correlation coefficients with
tests of statistical significance based on comparison of the covariate-specific test statistic given
in (3) to a χ2(1) distribution. Cell entries for the lower panel are the global test statistics given
in (4) with tests of statistical significance based on comparison to a χ2(14) distribution (Grambsch
and Therneau 1994). Covariates whose tests are inconsistent are presented in bold and italics.
For more information, consult Martin (2004).
*p < .05
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Table 3: Grambsch-Therneau Tests of Proportional Hazards Assumption Using Four Time Trans-
formations (Bennett 1997, Table 1, Complete Model; as Replicated in Box-Steffensmeier, Reiter,
and Zorn 2003)

Time Transformation
t ln(t) 1 - KM(t) Rank(t)
ρ ρ ρ ρ

Change in Security -0.025 -0.026 -0.045 -0.049
Alliance Security Improvement 0.115 0.097 0.109 0.098
Mutual Threat 0.093 0.099 0.124* 0.113
Capability Change -0.077 -0.132 -0.122 -0.137
Symmetry -0.144 -0.254* -0.243* -0.267*
Capability Concentration -0.105 -0.129 -0.129 -0.133
Democracy (Liberal) 0.063 0.028 0.063 0.045
Polity Change 0.062 -0.003 0.028 0.017
Number of States -0.064 -0.089 -0.100 -0.106
Wartime -0.067 -0.031 -0.069 -0.049
War Termination 0.076 0.233* 0.175* 0.217*

χ2 χ2 χ2 χ2

Global Test 7.935 20.074* 18.180 21.214*

Note: Cell entries for the upper panel are Pearson product-moment correlation coefficients with
tests of statistical significance based on comparison of the covariate-specific test statistic given
in (3) to a χ2(1) distribution. Cell entries for the lower panel are the global test statistics
given in (4) with tests of statistical significance based on comparison to a χ2(11) distribution
(Grambsch and Therneau 1994). Covariates whose tests are inconsistent are presented in bold
and italics. For more information, consult Bennett (1997).
*p < .05
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