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Abstract 

In this paper, topology optimization is applied in optimizing tunnel reinforcement. 

Nonlinear behavior of geotechnical material is considered to illustrate the practical 

material behavior under working condition. The adjoint method is used to derive the 

nonlinear sensitivities. A revised bi-directional evolutionary optimization (BESO) is 

used to maximize the structural stiffness of reinforced tunnel with a prescribed 

volume of reinforcement. The developed BESO method is illustrated in a simple 

example of tunnel reinforcement design to verify the proposed approach.  

Keywords: Topology optimization, tunnel reinforcement, BESO method, nonlinear 

material. 

Introduction 

Tunnel reinforcement is used to stabilize the opening and reduce deformation at the 

tunnel face. Due to complexity of geotechnical modeling, obtaining a reasonable 

design methodology is not very easy. Currently, tunnel reinforcement design is 

mainly relied on past experience and empirical recommendations. Design of tunnel 

reinforcement could be converted to optimizing the reinforcing material layouts in the 

design domain. Topology optimization can be used to deal with this type of problems 

and result in more efficient reinforcement design.  

 

Topology optimization for continuum structures involves searching for an optimal 

layout of related members in a design domain under certain objective functions with 

defined constraints. A series of research were initially conducted to investigate 

applications of powerful topology optimization method on tunnel reinforcement 

design (Yin et al. 2000, Yin and Yang 2000a, Yin and Yang 2000b). Yin et al. (2000) 

initiated by applying the homogenization method in which every element in the 

design domain is assumed as a square cell made of original rock surrounded by 

reinforced rock. Linear elastic isotropic material behavior has been used in their 

model and the external work along the tunnel wall has been minimized under a 

prescribed reinforcement volume. Yin and Yang (2000a) conducted further research 

on optimizing tunnel support in various layered geological structure conditions. The 

Solid Isotropic Material with Penalization (SIMP) method was employed with a 

power-law interpolation to determine the optimum distribution of reinforcement 

density in the design domain. All of these layered geotechnical materials were 
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regarded as working in the elastic regime. Another severe issue in tunnel 

reinforcement design, namely tunnel and sidewall heave caused by swelling or 

squeezing rock, was addressed in their continuous research by Yin and Yang (2000b). 

Liu et al. (2008) tackled a similar problem by another approach. A Fixed-Grid 

Bidirectional Evolutionary Structural Optimization (FG BESO), which was thought to 

overcome mesh-dependent zigzag of boundary problem in intermediate and final 

results, was proposed by Liu et al. (2008). A simultaneous optimization of shape and 

distributed reinforcement of an underground excavation for elastic material was also 

explored by Ghabraie (2010) using Bidirectional Evolutionary Structural 

Optimization (BESO) method. 

 

These studies have opened a new trend in topology optimization applications on 

shape and reinforcement design of underground excavation. However, most of 

previous researches merely considered homogeneous, linear elastic material model, 

except for the nonlinear material model concerned for tunnel shape optimization by 

Ghabraie (2009). Although linear elastic material model is still commonly used in 

geomechanics, these results should be considered as the first step to move forward to 

more sophisticated nonlinear material models.  

 

In this paper, application of topology optimization is investigated in finding optimal 

tunnel reinforcement design considering nonlinear material behavior. An effective 

optimization method, BESO, is employed. Firstly, sensitivity analysis for nonlinear 

material is derived based on which switching process is performed between original 

and reinforced elements. An elastic perfectly-plastic Mohr Coulomb model is utilized 

for both original and reinforced material. In order to overcome numerical instabilities, 

filtering and averaging techniques are also considered (Huang and Xie, 2007). For 

illustration, a simple example of optimizing tunnel reinforcement distribution is 

presented. 

 

Optimization statement and sensitivity analysis 

The investigated reinforcement design is aimed at minimizing a functional of the 

tunnel displacement under a predefined volume of reinforcement material. The 

external work along the tunnel wall is chosen as a proper objective function for 

measuring tunnel deformation. With linear material models, this objective function is 

equivalent to the mean compliance which has been widely used in linear structural 

topology optimization (Chu et al. 1996).  

 

The optimization problem can be stated as: 
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subject to: 

        

 

   

 

 

         



where W is the total external work, u is the displacement vector, f is the external force 

vector, n is the number of iterations in solving the non-linear equilibrium equations, 

Ve is the volume of element e, VR is the prescribed reinforced volume, and M is the 

total number of elements in the design domain. xe is the design variable of element e. 

xe = 1 means that element e is reinforced and xe = 0 means element e is not reinforced. 

Equilibrium requires the residual force vector to be eliminated, i.e 
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where f
int

 is the internal force vector. The internal force vector can be expressed as: 
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where Ce is the matrix to transform local force vector of element to global force 

vector, and De is the matrix defining the stress-strain relationship. The sensitivity of 

the objective function due to a change in variable x is: 

 

 

  

  
    

   
 
 

 
    

      
   

   
  

 
     

  
 

 

   

 
 

 
  

   
 

  
 

     
 

  
 

 

   

           

(4) 

 

Note that the second sum vanishes because at any point either the external force is 

zero or the displacement is fixed. 

 

The adjoint method is applied by adding an adjoint term to the objective function (1): 
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Differentiating Eq. (5) and using Eq. (2) we obtain 

 

 

  

  
    

   

 

 
     

      
   

   
  

 
     

  
 

 

   

   
  

   
  

 
   

   

  
 

     

  
 

     
   

  
   

(6) 

 

In order to eliminate the unknown part 
   

  
 

     

  
,  i is selected as 
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Substitute Eq. (7) into Eq. (6), the sensitivity of objective function is: 
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In order to calculate the sensitivity of the internal force vectors, we use the material 

interpolation scheme suggested by Stolpe and Svanberg (2001) to evaluate the matrix 

De in terms of the design variables as 
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where De is the stress-strain matrix of the e-th element,   
 ,   

  are the matrices of 

reinforced elements (material 1) and unreinforced elements (material 2). xe is the 

design variable of the e-th element, De =   
  at xe = 0 and De =   

  at xe = 1. q is a 

penalty factor. A value of q = 0 results in a linear interpolation and a positive value of 

q penalizes the intermediate values of design variables. 

 

Differentiating Eq. (9), yields 
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From Eq. (3) and Eq. (10), we have: 

 

 

     

   
      

   

   
   

 

 

   

 
     

            
        

    
     

 

 

   

 
     

            
   

       
      

(11) 

 

Substitute Eq. (11) into Eq. (8), we have: 

 

  
  

   
 

     

            
   
   

 

 
    

      
     

       
         

    

 

   

     
     

 
     

            
    
   

 

 
    

      
     

         
     

 

   

    
   

 

 
    

      
     

         
     

 

   

 

 
     

            
   

    
   

(12) 

 

where   
  and   

  are the total strain energy of elements made of material 1 and 2, 

respectively. The sensitivity number ( ) is a direct measure of variation of objective 



function. It can be clearly seen that the variation of objective function due to 

switching two materials is directly related to values of elemental total strain energy 

itself and independent of size of displacement increments. 

 

The utilized optimization method requires a switching procedure of material between 

original rock and reinforced rock; hence, the element itself can be concerned as the 

design variable during optimization process. 

 

Numerical calculation of sensitivity numbers 

Elastic perfectly plastic Mohr-Coulomb model are employed for both original 

(material 2) and reinforced material (material 1). Two cases need to be considered as 

follows: 

 

Case 1: the element is made of material 1 (xe = 1), Eq. (12) becomes: 
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If      
 , with   

  being the yield strain of material 2, the element assumed to be 

made of material 2 is in its elastic region and Eq. (13) takes the form:  
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Otherwise, if      
  that element behavior is elastic perfectly plastic and Eq. (13) 

takes the form:  
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Or 
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Case 2: the element is made of material 2 (xe = 0), Eq. (12) becomes: 
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If      
 , with   

  being the yield strain of material 1, the element assumed to be 

made of material 1 is in its elastic region and thus Eq. (17) takes the form:  
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Otherwise, if      
 , that element behavior is elastic perfectly plastic and Eq.(17) 

takes the form:  
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Or 
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where:   
 ,    

 ,   
 ,   

  are the yield stresses and yield strains of material 1 and 

material 2, respectively.  

 

BESO procedure: 

Based on the derived sensitivity numbers, BESO procedure repeatedly switches 

elements between the two phases of material: original rock (weak element) and 

reinforced rock (strong element). It has been realized that the BESO optimization 

method is prone to numerical instabilities due to mesh dependency and formation of 

checkerboard patterns (Sigmund and Petersson, 1998). In order to overcome these 

deficiencies, a linear filtering technique (Huang and Xie, 2007) is utilized here. The 

filtered sensitivity number for an element can be calculated as: 
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where M is the total number of elements, and        is a weight factor given as: 
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where     is the distance from centers of elements i and j, and r is the (predefined) 

filter radius. 

 

Huang and Xie (2007) suggested averaging the sensitivity numbers in consecutive 

iterations to enhance the convergence properties of the method. The averaging 

scheme is presented as: 
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Where k is the current iteration number. Then the value of   
    would be used for 

the next iteration.  

  



Example and Discussion 

 

To verify the approach it is used to optimize 

the reinforcement design of a circular tunnel 

under hydrostatic in situ stress conditions. 

Volume of reinforced material is predefined 

as 5 percent of the design domain area. A 

plane strain circular tunnel under geostatic 

condition is considered. The design domain 

is taken as a square of side length 10h (h is 

the tunnel diameter and h = 10m) The area 

around the tunnel wall is restricted to non-

designed elements illustrated by black  

colored elements. An initial support design 

(the dark grey area) is also assumed as 

sketched in Fig. 1. Due to symmetry 

condition, only a quarter of design domain is 

modeled in finite element analysis with suitable symmetric constraints. Rock mass 

around the tunnel is assumed to be homogeneous. Other considered engineering 

properties of original rock and reinforced rock are shown in Table 1.  

 

Table 1: Material properties 

Material properties Original rock Reinforced rock 

Young modulus (GPa) 

Poisson’s ratio 

Friction angle (
0
) 

Dilation angle (
0
) 

Cohesion (MPa) 

0.1 

0.3 

27 

0 

0.1 

0.3 

0.3 

32 

0 

0.3 

 

The optimum reinforcement distribution achieved is shown in Fig. 2. As expected the 

tunnel reinforcement is distributed evenly around the tunnel wall in hydrostatic stress 

condition. The objective function variations are also shown in Fig. 2. It can be seen 

that the objective function reduces gradually with smooth changes and converges to a 

minimum after a few iterations. 

Figure 1. Initial guess design 
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Conclusion 

A newly derived sensitivity analysis for reinforcement design in BESO method with 

nonlinear materials has been presented. In this approach, elastic perfectly plastic 

Mohr-Coulomb model has been chosen to consider material behavior. The results of a 

simple example involving optimal reinforcement distribution around a circular tunnel 

have been illustrated. It is shown that application of topology optimization in tunnel 

support design considering nonlinear material behavior is achievable with relatively 

simple numerical methods. More complicated geotechnical properties and geological 

conditions should be considered in future research to obtain more realistic material 

behavior. 
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Figure 2. Reinforcement distribution and variation of objective function  
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