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Abstract. Most of the electricity generation and energy for transport is still generated by the 

conversion of chemical to mechanical energy by burning the fuels in the combustion chamber. 

Regulation for pollution and the demand for more fuel economy had driven worldwide 

researcher to focus on combustion efficiency. In order to reduce experimental cost, accurate 

modelling and simulation is very critical step. Taylor series expansion was utilised to reduce 

the error term for the discretization. FORTRAN code was used to execute the discretized 

partial differential equation. Hydrogen combustion was simulated using Conditional Moment 

Closure (CMC) model. Combustion of hydrogen with oxygen was successfully simulated and 

reported in this paper. 
 

 

 

 

1.   Introduction 

Energy is a human basic need. Currently, combustion remains the main source of energy for 

transportation, industrial, electricity generation and other human activities. World energy demand for 

2030 is estimated at about 18 billion tons of oil equivalent and about 80 percent will be fulfilled by oil, 

gas and coal [1,2]. Worldwide concern on fuel prices, environmental pollution and energy 

sustainability has led to an increased interest in energy efficiency improvement with lower emissions. 

This issue has driven the combustion community to focus on the research for experimental and 

modelling. Turbulent combustion is divided into two classes depending on when the fuel is mixed with 

the oxidizer: premixed and non-premixed. Premixed combustion is usually modelled using eddy 

break-up model, coherent flame, flamelet based on G-equation or linear eddy model. However, 

premixed combustion is not of interest of this paper. For non-premixed combustion, there are a few 

types of modelling methods for the mixing process: probability density function (PDF) based model 

[3-5], flamelet model [6-9], fast chemistry limit model [10], and mapping closure model [11,12]. 

Besides those models, there are a few other developments such as conditional moment closure (CMC) 

by Klimenko and Bilger [13-15] and multiple mapping conditioning (MMC) by Klimenko and Pope 

[16], with further developments [17-20] for the mixing process. The CMC model for non-premixed 

combustion will be investigated in this paper. 
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The concept of turbulent combustion modelling describes the transport of reactive scalars in 

conserved scalar spaces. The novelty of CMC model was the capability of the model to take into 

account the conditional averages in the combustion modelling. This is due to the chemical source term 

is not a function of unconditional averages, which are used in conventional modelling. Ternat et al 

[21] computed stable solutions using two finite difference methods, namely the Euler method and the 

Crank–Nicolson method, to advance the solution of the heat equation in time. Noor et al [22] use 

Taylor expansion to discretize the CMC model and finite difference method to solve the equation 

through explicit and implicit method. Clarke et al [23] used direct numerical simulation (DNS) results 

to model the parameters of CMC for combustion systems with droplets. This is a complicated process 

because of the interaction of the evaporating liquid with the gaseous phase; the usage of a spark to 

evaporate the fuel and ignite the mixture exacerbates this complexity in comparison with auto ignition. 

A mixing model is required to close the molecular diffusion term in the PDF transport 

equation [3], which is the last term in equation (1) and contains the molecular diffusion flux vector 

(Jik): 
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Mixing plays a crucial role in the non-premixed combustion process; a number of mixing models 

have been developed. The Coalescence and Dispersion process was modelled by Curl in 1963 [24] and 

Levenspiel and Spielman in 1965 [25] and is often called “Curl's model”.  The governing equation for 

Curl's model is shown in equation (2). The left part of the equation is the particle composition before 

mixing. This particle then Coalescences with another particle and mixing occurs. The mixing process 

can be referred to at the middle part of equation (2) and then this mixed particle will be dispersed as 

shown in the last part of equation (2). 
 

 
 𝜙𝐴1 ,𝜙𝐵1 1
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                               (2) 

 

Here 𝜙𝐴1 is the composition of species A for particle 1, 𝜙𝐴
∗  is the new composition of species 

A and  𝜙𝐴 , 𝜙𝐵  is a particle which consists of species A and B. The Curl's model was modified by 

Janicka et. al [26] and Dopazo [27] in 1979. This model was called modified Curl's (MC) model 

(equations (3) and (4)) where β can take any value from 0 to 1 and can be a random variable. If β = 0, 

then no mixing occurs, whilst β = 1 reproduces Curl's model. 
 

𝜙𝑖
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𝜙𝑗
𝑀𝐶 𝑡 + 𝛿𝑡 =  1 − 𝛽𝑡 𝜙𝑗

𝑀𝐶 𝑡 +
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2
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Here 𝜙𝑖  and 𝜙𝑗  is the composition of particles i and j, t is time and δt is the time interval. 

The weakness of the MC model is that this mixing process does not enforce the requirement 

that only particles that are close to each other are allowed to mix and interact with each other. This 

issue was solved by the Euclidean Minimum Spanning Tree (EMST) model [28] whereby particles 

that mix are close together in composition space as shown in equations (5) and (6). In these equations, 

there are two new constants introduced where d is determined so that the desired amount of mixing is 

obtained and Pb is the position of particle in the EMST branch. Particles near to the centre will have 

higher Pb values. 
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Another mixing model is the interaction by exchange with the mean (IEM) model [29] where the 

composition of all particles in a cell are moved a small distance toward the mean composition using a 

characteristic mixing timescale. The IEM equation is shown in equation (7) where 𝜙  is the Favre 

mean-composition vector at the particle‟s location and 𝜏𝑡  is the turbulence time scale. The scalar 

mixing time scale 𝜏𝜙  in equation (7) is often modelled as proportional to 𝜏𝑡  as in equation (8). 

 
𝜕𝜙
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                                                               (7) 

 

𝜏𝜙 ≡
𝜏𝑡

𝑐𝜙
                                                                      (8) 

 

The mixing models just described are either non-local [24-27] or over-local [28], thereby producing 

imperfect combustion modelling processes. Recently Wandel [30] has proposed a new mixing model 

which randomizes the particle interaction in a local manner. The proposed model is the Stochastic 

Particle Diffusion Length (SPDL) [30] model, which is based upon the practical localness of the 

random inter-particle distance [31]. 

Combustion processes are very complex especially because the chemical reactions between 

chemical species involved in burning fuel (gas, liquid or solid) are highly non-linear functions of 

temperature and species concentration. Significant errors are produced when a computational fluid 

dynamics (CFD) code only solves the Reynolds Averaged Navier-Stokes (RANS) model as written in 

equation (9), which involves averaging the source terms. All terms are averaged and the models work 

reasonably well when solving 𝜙  for velocity but not for chemical species. 

 
𝜕𝜌 𝜙 
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These models are inaccurate and produce errors by ignoring the correlation between the source 

term variables, which are generally significant, compared to the corresponding averages. These errors 

were overcome by the CMC model using the conditional averages method. It takes the average of the 

variables for a specified value of the mixture fraction and effectively averages over a smaller region of 

space. Compare to the IEM and EMST model, CMC is more accurate at the cost of more complex 

simulations that require more computational time. The chemical source term  𝑊 𝑍  can be calculated 

using equation (10) and the reaction rate is obtained by using equation (11). The Arrhenius equation 

[18] in equation (12) is used to determine the reaction rate constant. The chemical source term, 

reaction rate and reaction rate constant can be written as: 
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𝜌
 𝑣𝐼𝑗 𝜔𝑗𝑗                                                                         (10) 
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𝑘 = 𝐴𝑇𝛽𝑒𝑥𝑝  −
𝐸𝑎

𝑅𝑇
                                                                  (12) 

 

with the rate of progress variable 𝜔𝑗  the net strength of reaction j in the forward direction, 𝑤𝐼 is the 

mean molecular weight, 𝜌 is density, 𝐸𝑎  is the activation energy, A and 𝛽 are Arrhenius constants, R is 
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the ideal gas constant, and T is temperature. The CMC equation for two-phase homogenous systems is 

shown in equation (13): 

 
𝜕 𝑌 𝑍 

𝜕𝑡
=  𝑁 𝑍 

𝜕2 𝑌 𝑍 

𝜕𝑍2 +  𝑊 𝑍 +  𝑆 𝑍                                         (13) 

 

The combustion of hydrogen produces the most clean and very low emission in combustion. 

Hydrogen's low density giving a challenging medium for the storage (requires very high pressure 

tank). Table 1 shows the properties of natural gas, hydrogen and diesel.  

 
 

Table 1   Diesel properties compared to hydrogen and natural gas [32-35]  

Properties Diesel Hydrogen Natural Gas 

Main component C and H H Only Methane (CH4) 

Auto-ignition Temperature (K) 553 858 923 

Lower heating value (MJ/kg) 42.5 119.93 50 

Density (kg/m
3
) 833-881 0.08 692 

Molecular weight (g/mol) 170 2.016 16.043 

Flammability limits in air (vol %) 0.7-5 4-75 5-15 

Flame velocity (m/s) 0.3 2.65-3.25 0.45 

Specific gravity 0.83 0.091 0.55 

Boiling point (K) 453-653 20.2 111.5 

Cetane number 40-60 - - 

Octane number 30 130 120 

CO2 emissions (%) 13.4 0 9.5 

Mass diffusivity in air (cm
2
/s) - 0.61 0.16 

Min ignition energy (mJ) - 0.02 0.28 

 
Fuel blend with hydrogen additive will increase the molecular diffusion with the increase of 

hydrogen [36]. Recently Mardani et al. [36,37] and Wang et al. [38] investigated the effects of 

hydrogen addition and found that flameless combustion occurred more easily. Yu et al. [39] found that 

pure hydrogen could not reduce thermal NOx emission in the flameless combustion regime. Hydrogen 

properties show a lot of advantage over fossil fuels. Hydrogen is produced mainly from fossil fuel 

resources and only 4% generated by electrolysis. In the future, when fossil fuel depleted, the raw 

material will be changed to water and biomass [40]. The important properties that serve best for 

combustion are: high auto-ignition temperature. The higher auto-ignition temperature allows higher 

compression ratio and produce higher engine thermal efficiencies; high diffusivity. More homogenous 

combustion due to more uniform air-fuel mixture and will disperse quickly if leaking; wide range of 

flammability. Fuel air mixing ratios from 4% to 74% and can be burned on a lean mixture with fuel 

economy and produce less NOx. The disadvantage is the power produced will be significantly lower 

than fossil fuel; low ignition energy. To ignite, hydrogen only needs 10% of what gasoline needs. The 

disadvantage is possible early ignition causing knocking problems; low density leads to low energy 

density and larger storage; high flame velocity requires tighter ignition timing and burns at about 

2.83 m/s compare to 0.34 m/s for gasoline (at stoichiometric and atmospheric pressure).  

In this paper, Taylor series expansion method was utilised to discretise the CMC equation and 

FORTRAN code was used to run a simulation and produce results. The purpose of the study is to 

simulate the reaction of hydrogen and oxygen using CMC mixing model. Explicit and implicit method 

was used and the outcome from both methods will be discussed. 
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2. Taylor Expansion 

Numerical method is very important to reduce the experimental cost. After simulation results are 

obtained and ready to be validated, then experimentation is used to confirm the findings and results 

from the simulation. There are many numerical methods can be utilized to solve partial differential 

equation (PDE). Implicit and explicit methods are the common methods. Implicit finite difference 

relations have been derived by many mathematicians and physicists with various methods [41-53]. 

Most of them claim that all the implicit formulas can be derived from a Taylor series expansion. The 

Taylor series expansion is a good basis for studying numerical methods since it provides a means to 

predict a function‟s value at one point in terms of the function‟s value and derivatives at another point. 

In particular, the theorem states that any smooth function can be approximated as a polynomial [53]. 

There are many different types of numerical differentiation formulations, depending on the number of 

points, direction of the formula and the required derivative order [54]. The Taylor expansion is a 

useful method to discretise partial differential equations to minimise and accurately predict the value 

of the error term. The expansions for 𝑦1 and 𝑦−1 which are to the right and to the left of 𝑦0  

respectively are shown below up to the 7
th
-order derivatives as equations (14) and (15). 
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We assume ∆𝑖   is constant, then 𝑦1 and 𝑦0 become 
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Rearrangement of equations (16) and (17) becomes the first order derivatives at 𝑥0 as below 

(equations (18), (19) and (20)). Equation (16) is used to obtain the forward difference method (which 

calculates   
𝑑𝑦
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 based on forward movement from 𝑦0  to 𝑦1): 

 
𝑑𝑦

𝑑𝑥
=

 𝑦1−𝑦0 

∆𝑥
−

 ∆𝑥 

2!

𝑑2𝑦

𝑑𝑥2 −
 ∆𝑥 2

3!

𝑑3𝑦

𝑑𝑥3 −
 ∆𝑥 3

4!

𝑑4𝑦

𝑑𝑥4 −
 ∆𝑥 4

5!

𝑑5𝑦

𝑑𝑥5 −
 ∆𝑥 5

6!

𝑑6𝑦

𝑑𝑥6 −
 ∆𝑥 6

7!

𝑑7𝑦

𝑑𝑥7                          (18) 

 

Equation (17) is used to obtain the backward difference method, which calculates  
dy
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backward movement from y0  to y−1. 
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By taking the difference between equations (16) and (17), the central difference method is derived 

which calculates   
dy

dx
 

x0

 based on the domain between y1 and y−1 
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with leading error term of 
 ∆𝑥 2
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𝑑𝑥3. This equation (20) is a second-order accurate method: O(∆𝑥2). 

Since the differences actually evaluate the derivative at the midpoint of the finite difference, equation 

(20) estimates the derivative at 𝑥0, while equation (18) and (19) estimate the derivative either side of 

𝑥0. Using central difference derivative, we can obtain 
𝑑2𝑦

𝑑𝑥2 from equations (16) and (17), as shown in 

equation (21). The first term in equation (21) can be re-arranged as equation (22) to show that this is 

simply a central difference of the first derivative. 

 
𝑑2𝑦

𝑑𝑥2 =
 𝑦1−2𝑦0+𝑦−1 

 ∆𝑥 2 −
2! ∆𝑥 2

4!

𝑑4𝑦

𝑑𝑥4 −
2! ∆𝑥 4

6!

𝑑6𝑦

𝑑𝑥6                                      (21) 

 

=
1

∆𝑥
 

𝑦1−𝑦0

∆𝑥
−

𝑦0−𝑦−1

∆𝑥
                                                                    (22) 

 

The leading error term is 
 ∆𝑥 2

12!

𝑑4𝑦

𝑑𝑥4, so this is a second-order accurate method: O ∆𝑥2 . The first-order 

derivative using the fourth-order Taylor expansion scheme is below, for the difference between 𝑦2 and 

𝑦−2: 
𝑑𝑦

𝑑𝑥
=

 𝑦−2−8𝑦−1+8𝑦1−𝑦2 

12∆𝑥
+

4 ∆𝑥 4

5!

𝑑5𝑦

𝑑𝑥5                                                  (23) 

 

with leading error term of 
 ∆𝑥 4

30

𝑑5𝑦

𝑑𝑥5. This is a fourth-order accurate method: O ∆𝑥4  and can be 

summarized as equation (24) to show that it is a weighted average of the “near” and “far” central 

differences: 
𝑑𝑦

𝑑𝑥
=  

4

3
 

 𝑦1−𝑦−1 

 2∆𝑥 
−  

1

3
 

 𝑦2−𝑦−2 

 4∆𝑥 
                                                        (24) 

 

The second-order derivative for the fourth-order Taylor expansion scheme is equation (25): 

 
𝑑2𝑦

𝑑𝑥2 =
 −𝑦−2+16𝑦−1−30𝑦0 +16𝑦1−𝑦2 

12 ∆𝑥 2 +
8 ∆𝑥4 

6!

𝑑6𝑦

𝑑𝑥6                                   (25) 

 

with leading error term of 
 ∆𝑥4 

90

𝑑6𝑦

𝑑𝑥6, so this is a fourth-order accurate method: O ∆𝑥4 .  This can be 

summarized as equation (26): 

 
𝑑2𝑦

𝑑𝑥2 =  
4

3
 

 𝑦−1−2𝑦0+𝑦1 

 ∆𝑥 2 −  
1

3
 

 𝑦−2−2𝑦0+𝑦2 

 2∆𝑥 2                                          (26) 

 

Interestingly, the weightings of the terms in equation (26) for the second-order derivative are identical 

to those in equation (24) for the first-order derivative. The third-order derivative for the second-order 

Taylor expansion scheme is shown as equation (27): 

 
𝑑3𝑦

𝑑𝑥3 =
 −𝑦−2−2𝑦−1−2𝑦1+𝑦2 

2 ∆𝑥 3 −
 ∆𝑥 2

4

𝑑5𝑦

𝑑𝑥5                                                (27) 
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with leading error term of  
 ∆x 2

4

d5y

dx5, so this is a second-order accurate method: O ∆x2 . 

Assuming that there is a uniform spacing of ∆𝑥, using notation that 𝑦(𝑘) =
𝑑𝑘𝑦

𝑑𝑥𝑘 , for the Taylor 

series expansion, central difference derivatives can be summarised as equation (28): 

 

𝑦(𝑘) = 𝐶  𝑧𝑖𝑦𝑖 + 𝐸𝑇
 𝑛−1 

2

𝑖=
 𝑛−1 

2

                                                      (28) 

 

Forward difference derivatives can be written as equation (29): 

 

𝑦(𝑘) = 𝐶  𝑧𝑖𝑦𝑖 + 𝐸𝑇
 𝑛−1 
𝑖=0                                                         (29) 

 

Backward difference derivatives can be written as equation (30): 

 

𝑦(𝑘) = 𝐶  𝑧𝑖𝑦𝑖 + 𝐸𝑇0
𝑖=−(𝑛−1)                                                    (30) 

 

where n is the number of points (y-2,y-1,y0,y1,y2 is equal to five points), ET is the leading error term and 

zi is the coefficient of y for each point i. 

 

 

3. Numerical Method 

The finite difference schemes, as agreed by most of the scientific community, were first used by Euler 

(1707-1783) [55] to find an approximate solution of a differential equation. It was invented prior to 

boundary element methods (BEM), finite element methods (FEM), spectral methods, and 

discontinuous spectral element methods [56]. FDM is still relevant and remain competitive as a 

discretisation method for use in many applications and can be used to solve problems with simple and 

complex geometry, such as fluid flows and gas reaction [57,58]. The Finite difference method (FDM) 

is a numerical method for approximating the solutions to partial differential equations by using finite 

difference equations to approximate derivatives based on the properties of Taylor expansions and on 

the straightforward application of the definition of derivatives [59]. The objectives are to transform the 

calculus problem to algebra as from a continuous equation to a discrete equation. The discretisation 

process is a mathematical process that divides the continuous physical domain into a discrete finite 

difference grid and then approximates each individual partial derivative in the partial differential 

equation.  Using the Taylor expansion method, a partial differential equation was discretised in order 

to transform it to FORTRAN code. FORTRAN is a high level of programming language developed by 

team of IBM programmers led by John Backus in 1954. The name of FORTRAN was derived from 

the words “Formula Translation”, started from 1957 when the first FORTRAN compiler was used. It 

has evolved through FORTRAN II, FORTRAN 66, until now FORTRAN 2008. FORTRAN 90 was 

used in this study. From the CMC equation, to study the discretisation and code it in FORTRAN, 

simplifications of the CMC equation were used: the conditional chemical source term   𝑊 𝑍   and 

conditional generation due to droplet evaporation term   𝑆 𝑍   were not considered. So the 

homogeneous and passive CMC is equation (31): 

 
𝜕 𝑌 𝑍 

𝜕𝑡
=  𝑁 𝑍 

𝜕2 𝑌 𝑍 

𝜕𝑧2                                                        (31) 

 

In this equation, the conditional mass fraction quantity  𝑌 𝑍  can be considered as “Y is a function 

of Z” (written as y(Z)) and conditional scalar dissipation  𝑁 𝑍  is expressed as “N is a function of Z” 

(written as N(Z)). After summarizing all the assumption, the CMC equation becomes equation (32): 
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𝑑𝑦

𝑑𝑡
= 𝑁

𝑑2𝑦

𝑑𝑧 2                                                                   (32) 

 

The Taylor expansion equations (18) and (21) can be expressed in this nomenclature as: 

 
𝑑𝑦

𝜕𝑡
=

𝑦 𝑧,𝑡+∆𝑡 −𝑦 𝑧,𝑡 

 ∆𝑡 
                                                             (33) 

 
𝑑2𝑦

𝜕𝑧2
=

𝑦 𝑧+∆𝑧,𝑡 −2𝑦 𝑧,𝑡 +𝑦 𝑧−∆𝑧,𝑡 

 ∆𝑧 2
                                          (34) 

 

The final form of the CMC equation after discretization is represented by equation (35) for the explicit 

method and equation (36) for implicit. 

 

𝑌𝐻 𝑖, 𝑗 + 1 =   1 −  2𝐵  ∗ 𝑌𝐻 𝑖, 𝑗  +  𝐵 ∗ 𝑌𝐻 𝑖 + 1, 𝑗  +  𝐵 ∗ 𝑌𝐻 𝑖 − 1, 𝑗        (35) 

 

 1 + 2𝐵 ∗ 𝑌𝐻 𝑖, 𝑗 + 1 −  𝐵 ∗ 𝑌𝐻 𝑖 + 1, 𝑗 + 1  −  𝐵 ∗ 𝑌𝐻 𝑖 − 1, 𝑗 + 1  = 𝑌𝐻 𝑖, 𝑗      (36) 

 

where 𝐵 = 𝑁
∆𝑡

 ∆𝑧 2, YH is the array in the computer code for the variable mass fraction of fuel, i is the 

index for mixture fraction and j is the index of the time step. Equations (35) and (36) were coded in 

FORTRAN to simulate the CMC modelling. Parts of the FORTRAN code for the explicit and implicit 

methods are listed in appendixes A and B. 

Three parameters were used as input to the code: dt is time step size, dz is step size in mixture 

fraction space and TT is total time for the simulation. These three parameters will determine the 

accuracy and total time taken to run the code. The more steps taken, the longer it will take to complete 

the simulation. The result of the simulation must be checked to ensure its convergence meets 

expectations. These parameter must also comply with the Courant-Friedrichs-Lewy (CFL) condition 

[60,61] to ensure the stability of the solution and that the result acceptably reaches a converged 

solution. The stability of the solution is very important because an unstable condition will create large 

errors in the solution and wrong predictions of the result. The time-step must satisfy the condition 

shown in equation (37) otherwise the simulation will produce incorrect results. 

 

𝐶𝐹𝐿 = 𝑁
𝑑𝑡

𝑑𝑧2 ≤
1

2
                                                         (37) 

 

In order to achieve this condition, the time step must be small enough for the flow conditions. 

 

 

4. Results and Discussions 

In this study, the value for the conditional scalar dissipation N in was assumed to be the constant 0.5. 

Results from the simulation are plotted in Figures 1. The explicit method was found to converge faster 

than the implicit method, reaching the steady-state condition after 190 time steps whereas implicit 

required 247 time steps. (“Steady-state” is defined as no variation in 5 significant figures.) In addition, 

the time required for the computer to calculate one time step was significantly shorter for the explicit 

method. However, the explicit method reaches the steady-state too quickly due to greater errors in this 

method for the same time-step. The implicit method can have a bigger time-step  𝛿𝑡  for the same 

accuracy as the explicit method. 

The first lines (from Y = 1.0 to 0.0 over the gap of Z = 0.1) are the initial conditions that oxidizer 

(left lines) is zero everywhere except at Z = 0 and fuel (right lines) is zero everywhere except at Z =1. 

The cell size used here is Z = 0.1, which is why the line drops at both edges for both methods. The 

explicit and implicit methods start to show changes for both air and fuel mass fraction immediately 
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(after the first time step: the second lines in Figure 1). For the explicit method at mixture fraction 

equal to 0.2, mass fraction is still 0.00 whereas for the implicit method, for mixture fraction equal to 

0.2, mass fraction values are between 0.0 and 0.2. This variation is because differences between 

adjacent cells in the explicit method can only march one cell at a time, while the difference influences 

all cells immediately in the implicit method. Because of this, the explicit method influences the 

adjacent cell too much, which results in the method reaching steady-state quicker. These mixing 

processes were repeated over many time steps. The mixing process will reach steady-state and 

equilibrium when both air and fuel completely mix with both reaching 0.5 at mixture fraction equal to 

0.5 (Figure 1(b) and Figure 1(d)). 

 

 
 

Figure 1..CMC mass fraction vs mixture fraction for iteration 10 and 100 for explicit and implicit 

method 

 
The mixing behaviour between fuels and oxidisers in the previous discussion was studied without 

combustion process. Next step of this study is taking into account the combustion effect in addition to 

the mixing process, and after certain time, the mixing behaves differently compared to without 

combustion. A one-step chemical reaction of hydrogen react with oxygen was used to study the effect 

of combustion, which is represented in the following formula: 

2𝐻2𝑂 + 𝑂2 ↔ 2𝐻2𝑂                                                                          (38) 

The combustion effect was studied in a closed system, with the same amount of initial volume. The 

change in mass fraction due to the chemical reaction is given by: 

𝜕𝑌𝑖

𝜕𝑡
=

𝑤𝐼

𝜌
 𝑣𝐼𝑗 𝜔𝑗𝑗                                                                             (39) 
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where, Y is the mass fraction, I is the species, W is the molecular weight, is the density, 𝑣𝐼𝑗  is the 

stoichiometric coefficient for species I in reaction j and 𝜔𝑗  is the reaction rate. The overall 

stoichiometric coefficient of a chemical reaction is: 

𝑣𝐼𝑗 = 𝑣𝐼𝑗
′′ − 𝑣𝐼𝑗

′
                                                                                (40) 

where 𝑣𝐼𝑗
′′  is the stoichiometric coefficient of product and  𝑣 is the stoichiometric coefficient of 

reactant. The reaction rate is given by: 

𝜔𝑗 =  𝑘𝑓𝑗   𝑋𝐼 
𝑣𝐼𝑗

′𝑛𝑠
𝐼=1 − 𝑘𝑏𝑗   𝑋𝐼 

𝑣𝐼𝑗
′′𝑛𝑠

𝐼=1                                             (41) 

where, k is the reaction rate coefficient with subscripts f and b represent "forward" and "backward" 

reaction. XI is the mole fraction of species I. Summarise and combining equation (20) and (21), the 

equation (19) in its full form is represented by:  

𝜕𝑌𝐼

𝜕𝑡
=

𝑤𝐼

𝜌
   𝑣𝐼𝑗

′′ − 𝑣𝐼𝑗
′   𝑘𝑓𝑗   𝑋𝐼 

𝑣𝐼𝑗
′𝑛𝑠

𝐼=1 − 𝑘𝑓𝑗   𝑋𝐼 
𝑣𝐼𝑗

′𝑛𝑠
𝐼=1   𝑗                         (42) 

where the equation (22) is used to determine the change in mass fraction of the species due to 

combustion. The result for the combustion effect by using explicit method is shown in Fig. 2. It shows 

that the fuel will consume the oxidiser if we allow time for the species to mix. The mixture is not 

completely mixed at 10 iterations, where it will reach steady state condition (completely mixed and 

chemical equilibrium) when the iterations is increased to 100. 

For the results in Figs. 3 and 4, the step size in mixture fraction space (dz) for both explicit and 

implicit methods for combustion is 0.01 while the time step (dt) used is 0.0001. This is smaller (both 

dz and dt) compare to the simulation without combustion where dz was reduce from 0.1 to 0.01 and dt 

was reduce from 0.01 to 0.0001. The reason is to achieve more stable computation and obtain an 

appropriate resolution when the combustion is involved in the mixing process. It can be seen from 

Figs. 3 and 4 that the mass fraction and the mixture fraction are different compared to without 

combustion (Fig. 1), after the mixing process reaches steady state condition. The result is showing 

significant difference in mixture fraction between fuels and oxidisers, where fuels consume some 

amounts of oxidisers to reach the steady state condition. The mass fraction is not completely zero at 

the intersection line because the effect of backward reaction. Therefore, CMC modelling would be 

useful to study the mixing behaviour due to chemical reactions [12,14,15]. 

 

             

           (a)        (b) 

Figure 2. Mixing behaviour between hydrogen and oxygen for (a) 10 iterations, and (b) 100 iterations 

Hydrogen Hydrogen Oxygen Oxygen 

Initial condition 

Final time step 
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Figure 3. CMC simulation for mass fraction vs mixture fraction at final time step with hydrogen 

combustion using implicit method  

 

 

 
 

Figure 4. CMC simulation for mass fraction vs mixture fraction with hydrogen combustion at final 

time step using explicit method. 
 
 

Explicit method is faster to converge than the implicit method, where the time taken for 

convergence for explicit method is 3867.75 s, while 4088.07 s for implicit method. The difference 

between the two methods at the final time step is shown in Fig. 5, where the error is small for Z > 0.2, 

Hydrogen 

Hydrogen 

Oxygen 

Oxygen 
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which corresponds to richer compositions than the point where the mass fractions of oxygen and 

hydrogen intersect (Figs. 3 and 4). For the lower mixture fractions, the explicit results for both species 

are smaller than the implicit values, while the reverse is true where the mass fraction of hydrogen is 

significant. The error has its greatest magnitude near to where it changes sign on both sides of this 

change. A smaller time step might be required to reduce the error in this region. It seems that the 

explicit method is faster to converge at the expense of accuracy. 

 

 
 

Figure 5. Result comparison for both oxygen and hydrogen between explicit and implicit methods at 

final time step. Error represents explicit – implicit. 

 

 

5. Conclusions 

The simulation process is very important to reduce high cost on the extensive experimental work. 

After simulation results are obtained and ready to be validated, then experimentation can take place to 

confirm the findings and results from the simulation. The Taylor expansion was utilized to discretize 

the partial differential equation for the CMC model. The modelling of CMC using explicit and implicit 

methods was successfully implemented using FORTRAN as the simulation software.  

From the results, we conclude that the implicit method is more accurate for the same time step, 

whereas it is much easier to write the FORTRAN code for the explicit method and the computational 

time to calculate is much shorter for the same time step. When preparing to conduct simulations, the 

researcher needs to balance the requirements of time step size with the necessary accuracy and time 

required for the simulations to be run. Further work on modelling the combustion of hydrogen with 

oxygen using CMC was successfully carried out. From the results of the simulations, CMC modelling 

using FORTRAN code is very useful to analyse the mixing process and behaviour for the case of 

mixing coupled with chemical reactions. 
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Nomenclature 

T   Temperature, K 

D   Diffusivity 

N             Scalar Dissipation Rate 

V  Volume, m
3 

W                     Chemical Source Term 

Z                       Mixture Fraction (a Conserved Scalar) 

P                      Favre Joint PDF of Composition 

B                    Constant (Function of dt and dz) 

Ea                   Activation Energy 

A, β                 Constants 

K, j                Grid Point Involved in Space Difference 

L, i         Grid Point Involved in Time Difference 

Sk         Reaction Rate for Species k 

Jik            Molecular Diffusion Flux Vector 

RANS       Reynolds Averaged Navier Stokes 

CMC        Conditional Moment Closure 

IEM  Interaction by Exchange with the Mean 

DNS  Direct Numerical Simulation 

MMC        Multiple Mapping Conditioning 

CFD   Computational Fluid Dynamics 

CFL  Courant-Friedrichs-Lewy 

PDF       Probability Density Function 

EMST       Euclidean Minimum Spanning Tree 

MC         Modified Curl's model 

TT  Total time for the simulation  

YA         Air Mass Fraction 

YH         Fuel Mass Fraction  

dt   Time step size  

dz   Step size in mixture fraction space  

𝑢𝑖          Favre Mean Fluid Velocity Vector 

𝜓  Composition Space Vector 

𝑢𝑖
′′   Fluid Velocity Fluctuation Vector 

𝜔 𝑖     Net Formation Rate per Unit Volume  

𝑣   Kinematic Viscosity,  

𝛼   Thermal Diffusivity, m
2
/s  

𝜙       Particle Composition 

𝑘   Thermal Conductivity, W/mK  

𝑘𝑗    Arrhenius Reaction Rate Coefficient 

𝜌   Density or Mean Fluid Density, kg/m
3 

R  Universal Gas Constant (8.31431 kJ kmol
-1

K
-1

) 

𝑤    Molecular Weight of a Gas Mixture 
                  Ensemble Average 

 𝑌 𝑍    Mass Fraction of Fuel 
 𝑁 𝑍   Conditional Scalar Dissipation 

 𝑊 𝑍    Conditional Chemical Source Term 
 𝑆 𝑍   Conditional Generation Due to Droplet Evaporation 
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Appendix A: Part of FORTRAN code for explicit method 
 

YH(:,1)  = 0.0     Comment: Initial Condition 

YH(L,1) = 1.0 

YA(1,:)  = 1.0 

YA(L,1) = 0.0 

Comment: Main Calculation 

Do j=1, K 

Do i=2, L 

YH(i,j+1) =((1-(2*B))*YH(i,j)) + (B*YH(i+1,j)) + (B*YH(i-1,j)) 

YA(i,j+1) =((1-(2*B))*YA(i,j)) + (B*YA(i+1,j)) + (B*YA(i-1,j)) 

End Do 

YH(1,j+1)=0    Comment: Boundary Condition 

YH(L,j+1)=1 

YA(1,j+1)=1 

YA(L,j+1)=0 

End Do 

 
Appendix B: Part of FORTRAN code for implicit method 
 

A(1,1) = 0.0    Comment: Initial Condition 

A(2,1) = 1.0 

A(1,2) = 0.0 

Do i=2, dz-1 

A(3,i-1) = - B 

A(2,i ) = 1.0 + 2.0 * B 

A(1,i+1) = - B 

End Do 

A(3,dz-1) = 0.0 

A(2,dz) = 1.0 

A(3,dz) = 0.0 

Comment: Factor the matrix 

Call MatrixC (dz,a,b,FF) 

Do j = 2, dt 

Call YH (z_min,z_max,t_min,t(j),B(1)) 

B(2:dz-1) = YH(2:dz-1,j-1) 

Call YA (z_min,z_max,t_min,t(j),B(dz)) 

WW = 0 

Call MatrixD (dz,a,b,WW) 

YH(1:dz,j) = B(1:dz) 

End Do 

Comment: Subroutine for matrix 

Do i = 1, n-1 

If (P(2,i) .eq. 0.0 ) then 

info = i 

Write (*, '(P)') 'MatrixD - error' 

Return 

End If 

P(3,i) = P(3,i) / P(2,i) 

P(2,i+1) = P(2,i+1) - P(3,i) * a(1,i+1) 

End Do 
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