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Abstract. The development of text classification techniques has been
largely promoted in the past decade due to the increasing availability
and widespread use of digital documents. Usually, the performance of
text classification relies on the quality of categories and the accuracy of
classifiers learned from samples. When training samples are unavailable
or categories are unqualified, text classification performance would be
degraded. In this paper, we propose an unsupervised multi-label text
classification method to classify documents using a large set of categories
stored in a world ontology. The approach has been promisingly evaluated
by compared with typical text classification methods, using a real-world
document collection and based on the ground truth encoded by human
experts.

1 Introduction

The increasing availability of documents in the past decades has greatly pro-
moted the development of information retrieval and organising systems, such as
search engines and digital libraries. The widespread use of digital documents has
also increased these systems’ accessibility to textual information. A fundamen-
tal theory supporting these information retrieval and organising systems is that
information can be associated with semantically meaningful categories. Such a
theory supports also ontology learning, text categorisation, information filtering,
text mining, and text analysis, etc. Text classification aims at associating tex-
tual documents with semantically meaningful categorises, and has been studied
in the past decades, along with the development of information retrieval and
organising systems [11].

Text classification is the process of classifying an incoming stream of docu-
ments into predefined categories. Text classification usually employs a supervised
learning strategy with the classifiers learned from pre-classified sample docu-
ments. The classifiers are then used to classify incoming documents. In terms
of supervised text classification, the performance is determined by the accuracy
of pre-classified training samples and the quality of the categorisation. The ac-
curacy of classifiers determines their capability of differentiating the incoming
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stream of documents; the descriptive and discriminative capacity of categorisa-
tion reduces noise in classification, which is caused by sense ambiguities, sparsity,
and high dimensionality of the documents [7]. Text classification performance is
also affected by the topic coverage of categories. An inadequate category may
be assigned to a document if an in-comprehensive set of categories is employed,
because non-adequate categories can be found. The performance of text classifi-
cation relies upon the descriptive and discriminative capacity of categories and
the accuracy of classifiers learned from training sets.

However, there exist situations that a qualified training document set may
not be available (e.g., the “cold start” problem in recommender systems); a set
of categories with in-comprehensive topic coverage may be used for classifica-
tion; sometimes although a set of categories with comprehensive topic coverage
is available, the large number of classes would easily introduce noise in classifi-
cation results [5]. Traditionally, text classification models are designed to handle
only single-label problems. However, in some circumstances (e.g., categorizing
documents in library catalogue into multiple subjects), multi-label text clas-
sification is required and automatic classification is necessary, especially when
classifying a very large volume of documents [15]. To deal with these prob-
lems, in this paper we propose an automatic unsupervised text classification
approach to classify documents into multiple classes, without the requirement of
pre-classified sample documents for training classifiers. The approach consists of
three modules; pattern mining for document feature extraction; feature-subject
mapping for initial classification; knowledge generalisation for optimal classifica-
tion. The method incorporates comprehensive world knowledge stored in a large
ontology and classifies documents into the classes in the ontology without any
pre-classified training samples available. The world ontology is built from Library
of Congress Subject Headings (LCSH), which represents the natural growth and
distribution of human intellectual work [4]. The subject classes and semantic
relationships in the ontology are investigated and exploited to improve the clas-
sification results. The proposed method was experimentally evaluated using a
large library catalogue, by compared with typical text classification approaches.
The presented work makes three-fold contributions:

– An unsupervised text classification method that classifies documents into
multiple classes;

– A knowledge generalisation method to optimise text classification by analysing
the semantic relations of categories;

– An exploration of using the LCSH as a world knowledge to facilitate text
classification.

The paper is organised as follows. Section 2 discusses the related work; Sec-
tion 3 introduces the research problem and the the conceptual model of proposed
supervised text classification method; Section 4 presents the technical detail of
the proposed method. The experiment design is described in Section 5, whereas
the results are discussed in Section 6. Finally, Section 7 makes conclusions.



2 Related Work

Unsupervised text classification aims to classify documents into the classes with
absence of any labelled training documents. In many occasions the target classes
may not have any labelled training documents available. One particular example
is the “cold start” problem in recommender systems and social tagging. Unsu-
pervised classification can automatically learn an annotation model to make
recommendations or label the tags when the products or tags are rare and do
not have any useful information associated. Unsupervised classification has been
studied by many groups and many successful models have been proposed. With-
out associated training samples, Yang et al. [16] built a classification model for a
target class by analysing the correlating auxiliary classes. Though as similar as
theirs in investigating correlating classes, our work is different by exploiting a hi-
erarchical world knowledge ontology for classification, instead of only auxiliary
classes. Also exploiting a world knowledge base, Yan et al. [14] examined un-
supervised relation extraction from Wikipedia articles and integrated linguistic
analysis with web frequency information to improve unsupervised classification
performance. However, our work has different aims from theirs; ours aims to
exploit a world knowledge ontology to help unsupervised classification, whereas
Yan et al. [14] aims to extract semantic relations for Wikipedia concepts by using
unsupervised classification techniques. Cai et al. [2] and Houle and Grira [6] pro-
posed unsupervised approaches to evaluate and improve the quality of selecting
features. Given a set of data, their work is to find a subset containing the most
informative, discriminative features. Though the work presented in this paper
also relies on features selected from documents, the features are further investi-
gated with their referring-to ontological concepts to improve the performance of
classification.

Text classification models are originally designed to handle only single-label
problems, where each document is classified into only one class. However, in
many circumstances single-label text classification cannot satisfy the demand,
for example, in social network multiple labels may need to be suggested for a
tag [8]. Comparing with the work done by Katakis et al. [8], our work relies on
the semantic content of documents, rather than the meta-data of documents used
in [8]. As similar as the work conducted by Yang et al. [15], our work also targets
on multi-label text classification. However, Yang et al. [15]’ work is different in
adopting active learning algorithms for multi-label classification, whereas ours
exploits concepts and their structure in world knowledge ontologies.

Ontologies have been studied and exploited by many works to facilitate text
classification. Gabrilovich and Markovitch [5] enhanced text classification by
generating features using domain-specific and common-sense knowledge in large
ontologies with hundreds of thousands of concepts. Comparing with their work,
our work moves beyond feature discovery and investigates the hierarchical ontol-
ogy structure for knowledge generalisation to improve text classification. Camous
et al. [3] also introduced a domain-independent method that uses the Medical
Subject Headings (MeSH) ontology. The method observes the inter-concept rela-
tionships and represents documents by MeSH subjects. Similarly, Camous’ work



considers the semantic relations existing in the ontological concepts. However,
their work focuses on only the medical domain, whereas our approach works on
general areas because exploiting the LCSH, a superior world knowledge ontol-
ogy. Another world ontology commonly used in text classification is Wikipedia.
Wang and Domeniconi [13] and Hu et al. [7] derived background knowledge from
Wikipedia to represent documents and attempted to deal with the sparsity and
high dimensionality problems in text classification. Instead of Wikipedia with
free-contributed entries, our work uses the superior LCSH ontology, which has
been under continuous development for a hundred years by knowledge engineers.

Many works utilise pattern mining techniques to help build classification
models, which is similar as the strategy employed in our work. Malik and Kender [10]
proposed the “Democratic Classifier”, which is a pattern-based classification al-
gorithm using short patterns. Different from our work, their democratic classifier
relies on the quality of training samples and cannot deal with the “no training
set available” problem. Bekkerman and Matan [1] argued that most of informa-
tion on documents can be captured in phrases and proposed a text classification
method that employs lazy learning from labelled phrases. The phrases in their
work are in fact a special form of sequential patterns that are used in our work
for feature extraction of documents.

3 Unsupervised Multi-label Text Classification

Let D = {di ∈ D, i = 1, . . . ,m} be a set of text documents; S = {s1, . . . , sK}
be a large set of classes, where K is the number of classes. If there is available
a training set Dt = {dj ∈ D, j = m + 1, . . . , n} with ykj = {0, 1}, k = 1, . . . ,K
provided for describing the likelihood of dj belonging to class sk, it is easy to
learn a binary prediction function p(yk|d) and use it to classify di ∈ D. However,
our objective is to learn a prediction function p(yk|d) to classify di into {sk} ⊂ S
without Dt available. We refer to this problem as unsupervised multi-label text
classification.

The proposed classification method consists of three steps: feature extraction,
initial classification, and optimising classification, using a world ontology.

3.1 World Ontology

The world knowledge ontology is constructed from the Library of Congress Sub-
ject Headings (LCSH), which is a knowledge system developed for organising
information in large library collections. It has been under continuous develop-
ment for over a hundred years to describe and classify human knowledge. Because
of the endeavours dedicated by the knowledge engineers from generation to gen-
eration, the LCSH has become a de facto standard for concept cataloguing and
indexing, superior to other knowledge bases. Tao et al. [12] once compared the
LCSH with the Library of Congress Classification, the Dewey Decimal Classifica-
tion, and Yahoo! categorisation, and reported that the LCSH has broader topic
coverage, more meaningful structure, and more accurate semantic relations. The
LCSH has been widely used as a means for many knowledge engineering and
management works [4]. In this work, the class set S = {s1, . . . , sK} is encoded
from the LCSH subject headings.



Definition 1. (SUBJECT) Let S be the set of subjects, an element s ∈ S is a
4-tuple s := 〈label, neighbour, ancestor, descendant〉, where

– label is a set of sequential terms describing s; lable(s) = {t1, t2, . . . , tn};
– neighbour refers to the set of subjects in the LCSH that directly link to s,
neighbour(s) ⊂ S;

– ancestor refers to the set of subjects directly and indirectly link to s and
locating at more abstractive level than s in the LCSH, ancestor(s) ⊂ S;

– descendant refers to the set of subjects directly and indirectly link to s and
locating at more specific level than s in the LCSH, descendant(s) ⊂ S. �

The semantic relationships of subjects are encoded from the references de-
fined in the LCSH for subject headings, including Broader Term, Used for, and
Related to. The ancestor(s) in Definition 1 returns the Broader Term subjects
of s; the descendant(s) is the reversed function of ancestor(s), with additional
subjects Used for s; the neighbour(s) returns the subjects Related to s.

With Definition 1, the world knowledge ontology is defined:

Definition 2. (ONTOLOGY) Let O be a world ontology. O contains a set of
subjects linked by their semantic relations in a hierarchical structure. O is a
3-tuple O := 〈S,R,HSR〉, where

– S is the set of subjects defined in Definition 1;
– R is the set of relations linking any pair of subjects;
– HSR is the hierarchical structure of O constructed by S ×R. �

3.2 Document Features

Various representations have been studied to formally describe text documents.
The lexicon-based representation is based on the statistic of occurring terms.
Such a representation is easy to understand by users and systems. However, along
with meaningful, representative features, some noisy terms are also extracted,
caused by sense ambiguity of terms. To deal with this problem, pattern-based
representation is studied, which uses frequent sequential patterns (phrases) to
represent document contents [9]. The pattern-based representation is superior
to lexicon-based, as the context of terms co-occurred in phrases is considered.
However, the pattern-based presentation suffers from a limitation caused by
the length of patterns. Though a long pattern is wealthy with information and
so more discriminative, it usually has low frequency and as a result, becomes
inapplicable. To overcome the problem, we represent the content of documents
by a set of weighted closed frequent sequential patterns discovered by pattern
mining techniques.

Definition 3. (FEATURES) Given a document d = {t1, t2, . . . , tn} as a se-
quential set of repeatable terms, the feature set, denoted as F(d), is a set of
weighted phrase patterns, {〈p, w(p)〉}, extracted from d that satisfies the follow-
ing constraints:

– ∀p ∈ F(d), p ⊆ d.
– ∀p1, p2 ∈ F(d)(p1 6= p2), p1 6⊂ p2 ∧ p2 6⊂ p1.
– ∀p ∈ F(d), w(p) > ϑ, a threshold. �



3.3 Initial Classification

The initial classification of d to sk ∈ S is done through accessing a term-subject
matrix created by the subjects and their labels. Adopting the features discovered
previously, we use a feature-subject mapping approach to initially assign subject
classes to the document.

Definition 4. (TERM-SUBJECT MATRIX) Let T be the term space of S, T =
{t ∈

⋃
s∈S label(s)}, 〈S, T 〉 is the matrix coordinated by T and S, where a map-

ping exists:
µ : T → 2S , µ(t) = {s ∈ S|t ∈ label(s)}

and its reverse mapping also exists:

µ−1 : S → 2T , µ−1(s) = {t ∈ T |s ∈ µ(t)} �

Adopting Definition 3 and 4, we can initially classify di ∈ D into a set of
subjects using the following prediction:

ŷki = I(sk ∈ h ◦ g ◦ f(di)), i = 1, . . . ,m (1)

where I(z) is an indicator function that outputs 1 if z is true and zero, otherwise;
f(d) = {p|〈p, w(p)〉 ∈ F (d)}; g(ρ) = {t ∈ ∪p∈ρp}; h(τ) = {s ∈ ∪t∈τµ(t)}.

3.4 Generalised Classification

The initial classification process easily generates noisy subjects because of direct
feature-subject mapping. Against the problem, we introduce a method to gener-
alise the initial subjects to optimise the classification. We observed that in initial
classification some subjects extracted from the ontology are overlapping in their
semantic space. Thus, we can optimise the classification result by keeping only
the dominating subjects and pruning away those being dominated. This can be
done by investigating the semantic relations existing between subjects. Let s1

and s2 be two subjects and s1 ∈ ancestor(s2) (s2 ∈ descendant(s1)). s1 refers
to an broader semantic space than s2 and thus, is more general. Vice versa, s2

is more specific and focused than s1. Hence, if some subjects are covered by a
common ancestor, they can be replaced by the common ancestor without infor-
mation loss. The common ancestor is unnecessary to be chosen from the initial
classification result, as choosing an external common ancestor also satisfies the
above rule. After generalising the initial classification result, we have a smaller
set of subject classes, with no information lost but some focus. (The handling of
focus problem is presented in next section.)

Definition 5. (GENERALISED CLASSIFICATION) Given a document d and
its initial classification result, a subject set denoted by SI(d), the generalised
classification result, denoted as SG(d), is the set of subjects satisfying:

1. ∀s ∈ SI(d),∃s′ ∈ SG(d), s 6= s′, s ∈ descendants(s′).
2. ∀s1, s2 ∈ SG(d)(s1 6= s2), s1 /∈ descendants(s2) ∧ s2 /∈ descendants(s1).



input : d = {t1, t2, . . . , tn} where n = |d|, a threshold ϑ.
output: The feature set F(d) = {〈p, w(p)〉}.
P (d) = ∅,F(d) = ∅, p = ∅;1
//Extracting sequential patterns;2
for (i = 1; i <= n; i+ +) do3

for (j = i; j <= (n− i); j + +) do4
p = p ∪ {tj};5

end6
if p ∈ P (d) then w(p) + + for 〈p, w(p)〉 ∈ F(d)else P (d) = P (d) ∪ {p},7
F(d) = F(d) ∪ {〈p, 1〉};

end8
//Filtering F(d) for closed, frequent patterns;9
foreach 〈p, w(p)〉 ∈ F(d) do10

if w(p) < ϑ then F(d) = F(d)− {〈p, w(p)〉}else foreach 〈pk, w(pk)〉 ∈ F(d) do11
if p ⊂ pk and w(p) ≤ w(pk) then F(d) = F(d)− {〈p, w(p)〉}12

end13

end14
return F(d).15

Algorithm 1: Extracting Features from a Document

4 Implementation

In this section, we present the technical details for implementing the proposed
approach of unsupervised multi-label text classification.

Algorithm 1 describes the process of extracting features to represent a docu-
ment. The output is F(d), a set of closed frequent sequential patterns discovered
from d. Adopting the prediction in Eq. (1), with F(d) the initial set of subjects,
SI(d), can be assigned to classify d. Taking into account the weights of feature
patterns, we can evaluate t ∈ d:

w(t) =
∑

p∈{p|t∈g◦f(d),p∈f(d)}

w(p)

All s ∈ SI(d) can then be re-evaluated for their likelihood of being assigning to
d with consideration of term evaluation and term distribution in s ∈ SI(d). A
prediction function can then be used to assess initial classification subjects for
the second run of classification:

ŷ′
κ

i = I(
∑

t∈µ−1(sκ)

w(t)× log(
|SI(di)|

sf(t, SI(di))
) > θ), i = 1, . . . ,m (2)

where I(z > θ) returns the value of z if z > θ is true and zero, otherwise;
κ = 1, ...,K and SI(d) = {s1, . . . , sK} with |SI(d)| = K; θ is the threshold for
filtering out noisy subjects. In experiments different values were tested for θ.
The results revealed that setting θ as the top fifth z in SI(di), a variable rather
than a static value, gave the best performance. (Refer to Section 6 for detail.)

In the generalisation phase, descendant subjects are replaced by their com-
mon ancestor subject. However, the common ancestor should not be too far
away from the replaced descendants in the ontology structure. The focus will be
significantly lost, otherwise. In implementation, we use only the lowest common



input : Si = {s1, s2, . . . , sj} (subject classes assigned to di after Eq. (2)), O;
output: S′i = {s1, s2, . . . , sk} (subject classes generalised for optimising classification).

S′i = ∅, Stemp = ∅, Sredundant = ∅;1
foreach s ∈ Si do2

Extract S(s) from O where S(s) = {s′|s′ ∈ ancestor(s), δ(s 7→ s′) ≤ 3}; foreach3
sn ∈ Si where sn 6= s do

Extract S(sn) from O like Step 3;4
if S(s) ∩ S(sn) 6= ∅ then5
{ŝ = LCA(S(s) ∪ S(sn)), str(i, ŝ) = str(i, s) + str(i, sn); Stemp = Stemp ∪ {ŝ};
Sredundant = Sredundant ∪ {s, sn}}

end6

if Stemp 6= ∅ then {S′i = S′i ∪ Stemp; Si = Si − Sredundant; Stemp = ∅;7

Sredundant = ∅} else S′i = S′i ∪ {s}
end8

return S′i.9

Algorithm 2: Generalising Subjects for Optimal Classification

ancestor (shortened by LCA) to replace its descendant subjects. The LCA is
the common ancestor of a set of subjects, with the shortest distance to these
subjects in the ontology structure. The LCA replaces descendant subjects with
full information kept and minimised focus lost.

Algorithm 2 describes the process of generalising the initial subject classes
to optimise classification. The function str(i, s) describes the likelihood of assign

s todi and returns the value of I(z > θ) in Prediction function ŷ′
κ

i in Eq. (2).
The function δ(s1 7→ s2) returns a positive real number indicating the distance
between two subjects. Such a distance is measured by counting the number of
edges travelled through from s1 to s2 in HSR. The function LCA(S(s1) ∪ S(s2))
returns ŝ, the LCA of s1 and s2. Note that δ(s1 7→ s2) ≤ 3, which restricts
LCAs to three edges in distance. Subjects further than that in distance are too
general; whereas using a highly-general subject for generalisation would severely
jeopardise the focus of original subjects. (In the experiments, δ(s1 7→ s2) ≤ 3
and ≤ 5 were tested under the same environment in order to find a valid distance
for tracking the competent LCA. The testing results revealed that as of three
the distance was better.)

5 Evaluation

The experiments were performed, using a large corpus collected from the cat-
alogue of a library using the LCSH for information organising. The title and
content of each catalogue item were used to form the content of a document.
The subject headings associated with the catalogue items were manually assigned
by specialist librarians who were trained to specify subjects for documents with-
out bias [4]. The documents and subjects provided an ideal ground truth in the
experiments to evaluate the effectiveness of the proposed classification method.
This objective evaluation methodology assured the solidity and reliability of the
experimental evaluation.

The testing set was crawled from the online catalogue of library of the Uni-
versity of Melbourne1. General text pre-processing techniques, such as stopword

1 http://www.library.unimelb.edu.au/



removal and word stemming (Porter stemming algorithm), were applied to the
preparation of testing set for experiments. In the experiments, we used only doc-
uments containing at least 30 terms, resulted in 31,902 documents in the testing
set. Documents shorter than that could hardly provided substantial frequent
patterns for feature extraction, as revealed in the preliminary experiments.

Given that the LCSH ontology contains 394,070 subjects in our implemen-
tation, the problem actually became a K-class text classification problem where
K = |S| = 394, 070, a very large number. Hence, we chose two typical multi-
class classification approaches, Rocchio and kNN, as the baseline models in the
experiments.

The performance of experimental models was measured by precision and
recall, the modern evaluation methods in information retrieval and organising.
In terms of text classification, precision was to measure the ability of a method
to assign a document with only focusing subjects, and recall the ability to assign
a document with all dealing subjects.

Taking into account K = |S| = 394070, in respect with the testing document
set and the ground truth featured by the LCSH, the classification performance
was evaluated by:

precision =
|FT (Stgt) ∩ FT (Sgrt)|

|FT (Stgt)|
and recall =

|FT (Stgt) ∩ FT (Sgrt)|
|FT (Sgrt)|

where FT (S) =
⋃
s∈S µ

−1(s) (see Definition 4); tgt referred to the target model;
grt referred to the ground truth subjects.

F1 Measure as another common method used in information organising sys-
tems was also employed in evaluation. We used micro-F1, which evaluated each
document’s classification result first and then averaged the results for the final
F1 value. Greater F1 values indicate better performance.

6 Results and Discussions

Naming our proposed unsupervised classification approach as the UTC model,
the experiments were to compare the effectiveness performance of the UTC
model to the baselines, Rocchio and kNN models. Their effectiveness perfor-
mances are depicted in Fig. 1 for the number of documents with valid effective-
ness (> 0), where the value axis indicates the effectiveness rate between 0 and 1;
the category axis indicates the number of documents whose classification meets
the respective accuracy rate. As shown in the figure, the effectiveness rates were
measured by precision, recall, and F1 Measure, where P (x) refers to the preci-
sion results of experimental model x, R(x) the recall results, and F (x) the F1

Measure results. Their overall average performances are shown in Table 1.

Table 1. Effectiveness Performance on Average

Precision Recall F-Measure

UTC 0.158 0.135 0.125
Rocchio 0.020 0.290 0.020

kNN 0.021 0.054 0.016



Fig. 1. Effectiveness Performance Results

F1 Measure equally considers both precision and recall. Thus the F1 Measure
results can be deemed as an overall effectiveness performance. The average F1

Measure result shown in Table 1 reveals that the UTC model has achieved a much
better overall performance (0.125) than other two models (0.020 and 0.016). Such
a performance is also confirmed by the detailed results depicted in Fig. 1 - the
F (UTC) line is located at much higher bound level compared to the F (Rocchio)
and F (kNN) lines.

Precision measures how accurate the classification is. In terms of this, the
UTC model once again has outperformed the baseline models. The average pre-
cision results shown in Table 1 demonstrates the achievement (UTC 0.158 vs.
Rocchio 0.020 and kNN 0.021). The precision results depicted in Fig. 1 illustrate
the same conclusion; the P (UTC) outperformed others.

Recall measures the performance of classification by considering all dealing
classes. The recall performance in the experiments shows a slightly different
result, compared with those from F1 Measure and precision performance. The
Rocchio model achieved the best recall performance (0.290 on average), com-
pared to that of the UTC model (0.135) and the kNN model (0.054). The result
is also illustrated in Fig. 1, where R(UTC) lies in the middle of R(Rocchio) and
R(kNN).

There was a gap between the recall performance of the UTC and the Rocchio
models. From the observation of recall results, we found that the classes assigned
by the Rocchio model were usually a large set of subjects (935 on average),
whereas the UTC model assigned documents with a reasonable number of sub-
jects (16 on average) and the kNN results had an average size of 106. Due to
the natural of recall measurement, more feature term would be cover if the sub-
ject size became larger. As a result, the Rocchio classification with the largest
size achieved the best recall performance. The subject sets assigned by the kNN
model had larger size than those assigned by the UTC. However, when expand-
ing the classification by neighbours, a large deal of nosey data was also brought
into the neighbourhood - the average number of neighbours arisen was 336. This
was caused by the very large set and short length of documents in consideration.



As a result, the classification became inaccurate though only the documents with
the top cosine values were chosen to expand and only the subjects with the top
similarity values were chosen to classify a document.

Table 2. Performance Comparison for Finding the LCA

Precision Recall F-Measure

Level = 3 0.158 0.135 0.125
Level = 5 0.154 0.112 0.111

Different number of levels were tested in sensitivity study for choosing a right
number of levels to find the lowest common ancestor when generalising subjects
for optimal classification. Table 2 displays the testing results for finding such a
right level number. In the same experimental environment, if tracing three levels
to find a LCA the UTC model’s overall performance including F1 Measure,
precision, and recall was better than that of tracing five levels. In addition,
tracing three levels only would give us better complexity. Therefore, we chose
three levels to restrict the extent of finding CLAs.

7 Conclusions

Text classification has been widely exploited to improve the performance in
information retrieval, information organising, text categorisation, and knowl-
edge engineering. Traditionally, text classification relies on the quality of target
categorises and the accuracy of classifiers learned from training samples. Some-
times qualified training samples may be unavailable; the set of categories used
for classification may be with inadequate topic coverage. Sometimes documents
may be classified into noisy classes because of large dimension of categories.
Aiming to deal with these problems, in this paper we have introduced an un-
supervised multi-label text classification method. Using a world ontology built
from the LCSH, the method consists of three modules; closed frequent sequen-
tial pattern mining for feature extraction; extracting subjects from the ontology
for initial classification; and generalising subjects for optimal classification. The
method has been promisingly evaluated by compared with typical text classi-
fication methods, using a large real-world corpus, based on the ground truth
encoded by human experts.
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