
Effective Scheduling Algorithm for On-Demand XML Data
Broadcasts in Wireless Environments

Yongrui Qin1 Hua Wang1 Jitian Xiao2

1Department of Mathematics & Computing
University of Southern Queensland, Australia,

Email: yongrui.qin@usq.edu.au, wang@usq.edu.au

2 School of Computer and Security Science
Edith Cowan University, Australia,

Email: j.xiao@ecu.edu.au

Abstract

The organization of data on wireless channels, which
aims to reduce the access time of mobile clients, is
a key problem in data broadcasts. Many scheduling
algorithms have been designed to organize flat data
on air. However, how to effectively schedule semi-
structured information such as XML data on wireless
channels is still a challenge. In this paper, we firstly
propose a novel method to greatly reduce the tuning
time by splitting query results into XML snippets and
to achieve better access efficiency by combining simi-
lar ones. Then we analyze the data broadcast schedul-
ing problem of on-demand XML data broadcasts and
define the efficiency of a data item. Based on the
definition, a Least Efficient Last (LEL) scheduling al-
gorithm is also devised to effectively organize XML
data on wireless channels. Finally, we study the per-
formance of our algorithms through extensive exper-
iments. The results show that our scheduling algo-
rithms can reduce both access time and tuning time
significantly when compared with existing work.

Keywords: wireless environment, data broadcast, on-
demand, XML, multi-item, scheduling algorithm

1 Introduction

With the rapid development of wireless network tech-
nologies, users with mobile devices (such as palmtops,
PDAs, WAP phones and so on) can access a large
amount of information at anytime from anywhere.
Over the past few years, mobility and portability
have created an entire new class of applications. For
example, information services, including news, stock
quotes, airline schedules, weather report and traffic
information, are becoming more and more popular
and helpful. Logically, information access via these
wireless technologies can be classified into two basic
ways: point-to-point access and broadcast (Imielinski
et al. 1997, Xu et al. 2002).

Point-to-point access employs a pull-based ap-
proach where a mobile client initiates a query to the
server which in turn processes the query and returns
the result to the client over a point-to-point chan-
nel. It is suitable for lightly loaded systems in which

Copyright c©2011, Australian Computer Society, Inc. This pa-
per appeared at the 22nd Australasian Database Conference
(ADC 2011), Perth, Australia, January 2011. Conferences in
Research and Practice in Information Technology (CRPIT),
Vol. 115, Heng Tao Shen and Yanchun Zhang, Ed. Reproduc-
tion for academic, not-for-profit purposes permitted provided
this text is included.

wireless channels and server processing capacity is not
severely contended.

On the other hand, data broadcast is an efficient
way for public information delivery to a large num-
ber of mobile users. It offers great scalability, good
power consumption, and efficient bandwidth utiliza-
tion (Imielinski et al. 1997, Xu et al. 2002). In addi-
tion, it allows an arbitrary number of clients to access
data simultaneously and thus is particularly suitable
for heavily loaded systems. Recently, there has been
a push for such systems from the industry and var-
ious standard bodies. For example, born out of the
International Telecommunication Union’s (ITU) In-
ternational Mobile Telecommunications “IMT-2000”
initiative, the Third Generation Partnership Project
2 (3GPP2 2007) is developing Broadcast and Multi-
cast Service in CDMA2000 Wireless IP network.

There are two typical broadcast modes for data
broadcast (Xu et al. 2002): 1) Broadcasting Mode.
Data is periodically broadcast on the downlink chan-
nel. Clients only “listen” to that channel and down-
load data they are interested in; 2) On-Demand
Mode. The clients send their requests to the server
through uplink channel and the server considers all
pending requests to decide the contents of next broad-
cast cycle. In this paper, we focus on on-demand data
broadcasts.

Access efficiency and power conservation are two
important issues in wireless data broadcast system
since mobile clients are typically powered by batteries
with limited capacity. Accordingly, two critical met-
rics, access time and tuning time are used to measure
the system’s performance (Imielinski et al. 1997, Xu
et al. 2002). Access time refers to the time elapsed
from the moment a query is issued to the moment
it is answered while tuning time refers to the time a
mobile client stays in active mode to receive the re-
quested information.

Aiming at reducing tuning time, Imielinski et al.
(1997), Xu et al. (2002), Lee & Zheng (2005) study
air indexing techniques. They introduce some auxil-
iary data structures in broadcast to indicate the ar-
rival time of each data item on a wireless channel.
As a result, mobile clients know the arrival time of
the requested data items in advance and can switch
to the energy-saving mode (doze mode) during wait-
ing. Therefore, the advantage of air index is reducing
tuning time and thus a longer battery life can be at-
tained.

Broadcast schedule determines what data items to
be broadcast by the server and also the order of data
items on wireless channels. Acharya et al. (1995),
Acharya & Muthukrishnan (1998), Aksoy & Franklin
(1999), Sun et al. (2003), Huang et al. (2010 (in print)

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Southern Queensland ePrints

https://core.ac.uk/display/11048505?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


investigate scheduling techniques which aim to reduce
access time. These studies are under the premise that
each user query requires only one data item. Other
work studies the multi-item queries scheduling prob-
lems (Chung & Kim 1999, Lee et al. 2002, Sun et al.
2008).

Besides the traditional flat data information, such
as records in relational databases, more and more
information are described in semi-structured format
over the past few years. XML has rapidly gained
popularity as a standard to represent semi-structured
information, and is also considered an effective format
for data transmission and exchange.

Motivation To a large extent, scheduling XML
data is similar to multi-item scheduling problem.
However, previous multi-item scheduling algorithms
mainly take advantage of access frequencies of data
items and different queried result sets containing mul-
tiple items (Chung & Kim 1999, Lee et al. 2002, Sun
et al. 2008) but not the sizes of data items as well. In
contrast, data items (or XML files) have a variety of
lengths in XML data broadcasts and thus the lengths
of data items should be taken into account. Further-
more, in traditional data broadcasts, data items are
usually considered atomic, but in XML data broad-
casts, the data items are no longer atomic. Therefore,
when scheduling XML data, we should consider not
only the order of data items on the wireless channel,
but also the structured characteristics of XML data.
To the best of our knowledge, little scheduling work
on data broadcasts has addressed scheduling prob-
lems for non-atomic data items.

In this paper, we focus on the scheduling problem
of on-demand XML data broadcasts. Firstly, we dis-
cuss two naive schemes on how to match XML data
against mobile users’ queries. On the basis of these
two schemes, we make use of the structured charac-
teristics of XML data and propose to only broadcast
as less redundant information as possible to reduce
tuning time. We also put forward a more practi-
cal scheme which combines similar queried results to
achieve better performance of access time with a lit-
tle overhead of tuning time. Then we analyze the
scheduling problem of on-demand XML data broad-
casts and devise an improved scheduling algorithm
to achieve better access efficiency. In summary, the
main contributions of this paper are:

• We propose to pre-process XML data before
broadcast to reduce both tuning time and access
time. Taking advantage of the structured char-
acteristics of XML data, we discuss two naive
schemes on how to match XML data with mobile
users’ queries. Then a more practical scheme is
put forward to reduce access time with a little
overhead to the optimal tuning time.

• We analyze the scheduling problem of on-demand
XML data broadcasts and give a formal defini-
tion of the efficiency of a data item. Based on this
definition, we then devise a Least Efficient Last
(LEL) scheduling algorithm to effectively sched-
ule XML data on wireless channels. In addition,
computing complexity and theoretical analysis of
LEL scheduling algorithm are also given.

• We perform extensive experiments to study the
effectiveness of our solutions. These experiments
show that our solutions can achieve better per-
formance when compared with existing work.

We proceed with related work in Section 2. Section
3 proposes a pre-processing technique for on-demand
XML data broadcasts to reduce tuning time and to

achieve better access efficiency. Section 4 analyzes
the scheduling problem of XML data in on-demand
broadcasts and puts forward an improved scheduling
algorithm. Section 5 presents our experimental study
and evaluates the performance of the proposed ap-
proach. Finally, Section 6 concludes this paper.

2 Related Work

Recently, a lot of work dealing with XML data broad-
cast has appeared. Chung & Lee (2007), Park et
al. (2005, 2006) address the performance optimiza-
tion of query processing of XML streams in wireless
broadcast. On the other hand, Qin et al. (2009),
Sun et al. (2009) design some indexing techniques for
XML data broadcasts based on existing XML index-
ing techniques. However, their work mainly focuses
on air indexing techniques and does not discuss the
scheduling problem in XML data broadcasts.

Multi-item scheduling problem is also related to
the scheduling problem of XML data. Multi-item
scheduling problem is proved to be a NP-Complete
problem (Chung & Kim 1999). Also a scheduling
method for multi-item queries called QEM is intro-
duced, which opened up a new perspective in this
field. In addition, the measure Query Distance (QD)
is defined .It shows the coherence degree of a query’s
data set in a schedule. Chung & Kim (1999) prove it
could represent the AT of the query. The basic idea
of QEM is to expand the data of each query according
to their access frequencies.

Lee et al. (2002) propose Modified-QEM. It
loosens the restriction that the QD of previously ex-
panded queries cannot be changed. In fact a “move”
action could be executed so that the QD of the new
coming query is optimized. By doing “move” at spec-
ified times, the algorithm improved the QEM perfor-
mance.

Chang & Hsieh (2004) propose another algorithm
called Improved QEM. It employs the association
rules in data mining to discover the relationship
among data items and then applies QEM method on
data sets instead of queries. Improved QEM method
does consider different length of data items. However,
it is still QEM based and is proven to be less efficient
than the method proposed by (Sun et al. 2008).

Sun et al. (2008) put forward a scheduling algo-
rithm named LRL (short for Least Required Last)
algorithm. Since the queries which will be fully satis-
fied1 by the last broadcast data item have the longest
access time, it is reasonable to have as fewer queries
as possible to be fully satisfied by the last data item.
Thus, the last broadcast data item should have the
least access frequency. Up to now, LRL scheduling al-
gorithm shows the best results when compared with
other work. However, this algorithm does not make
use of different sizes of data items.

3 Pre-processing XML Data

Consider the queried results of different mobile users’
queries submitted almost at the same time. In tradi-
tional data broadcast, the queried result comprises of
a set of data items, such as d1, d2, d3 and so forth.
These data items are independent of the queries which
means the queries will not affect the content of the
data items. In other words, a matched data item is
regarded as atomic item and cannot be divided into
smaller ones. The queries match the whole data item

1‘Fully satisfied’ means that the issuers of these queries have
received all data items they required.



other than some parts of its content. As a result,
traditional scheduling algorithms only need to con-
sider the placements of data items that are selected
by mobile users’ queries.

In contrast, the queried results of XML data are
no longer atomic data items, but a chunk of struc-
tured data that satisfy users’ queries. This chunk
of structured data is usually part of a whole XML
file. Actually, different queries may request the same
XML file. However, only parts of the file match these
queries and these parts might be quite different from
each other. To explain it in another way, the queried
results in each XML data file are dependent on users’
queries that are sent to the server. Thus, the queried
results should not be regarded as atomic data items
(see Figure 1). If each XML file is treated as an
atomic data item, which is similar to traditional data
broadcast, mobile users who have submitted queries
that match some parts of this XML file all need to
download the whole XML file from the wireless chan-
nel. It obviously brings down the overall access effi-
ciency and energy efficiency. Therefore, in order to
enhance the broadcast system performance, a pre-
processing phase is needed in on-demand XML data
broadcasts. According to this finding, we first discuss
two naive schemes for the pre-processing phase.

Figure 1: XML file instance, sample of mobile users’
queries and the queried results

3.1 Two Naive Schemes

There are two naive schemes to pre-process XML data
in on-demand broadcasts. One scheme follows the
concept of traditional data broadcast and does not
take advantage of the structured characteristics of
XML data while the other scheme only broadcasts
XML snippets or sub-trees those mobile users’ queries
exactly match. These schemes can be described as
follows:

1. Atomic Scheme: Similar to the traditional data
broadcasts, in this scheme, the server treats every
XML file as an atomic item. Thus once a mobile
user query matches some part of an XML file, the
whole XML file will be broadcast by the server.
For example, in Figure 1, since all three queries
match the XML file instance, the whole file in-
stance will be broadcast on the wireless channel
and all these three queries can be satisfied by it.

In this case, the total tuning time is 12, if simply
in terms of nodes (4 nodes for each query).

2. Snippet Scheme: In this scheme, by taking the
structured characteristics of XML data into con-
sideration, the server regards XML files as non-
atomic items and all XML files are dividable.
The server broadcasts every XML snippet that
satisfies any of the mobile users’ queries. For
example, in Figure 1, there are three XML snip-
pets that satisfy the three queries respectively.
All these snippets are different from each other
and so the server broadcasts each of them on the
wireless channel. The mobile users of each query
can just download the required XML snippet and
skip the other two snippets. Therefore, the total
tuning time is 9 (that is 3+2+4), if in terms of
nodes.

On the one hand, Atomic scheme is commonly
used in previous work (Chung & Lee 2007, Park et
al. 2005, 2006, Sun et al. 2008, 2009, Qin et al. 2009)
since it results in least broadcast content on the wire-
less channel. On the other hand, Snippet Scheme is
just a theoretical model and is never used in previ-
ous work. This is because although it can achieve the
best tuning time for each mobile user, it can cause a
lot of redundant content to be broadcast on the wire-
less channel. Thus, lots of mobile users have to spend
longer waiting time. Clearly, in the atomic scheme,
most of the mobile users download a large amount of
redundant XML data and thus the tuning time is ex-
treme large while in the snippet scheme, each mobile
user only downloads the exact XML data they require
and thus the tuning time is optimal. Nonetheless, the
snippet scheme is still not the ideal one because it
dose not consider the similarity among different snip-
pets and thus better access time can still be expected.
Hence, we put forward a more effective and practical
scheme in the following subsection.

3.2 Combining Scheme

In the combining scheme, we further make use of
the similarity of different XML snippets based on the
snippet scheme. In this way, we can reduce the overall
access time with a little tuning time overhead.

For instance, in Figure 1, since the queried results
of q1 and q3 are very similar, we can directly use the
queried result of q3 to satisfy q1. Thus, the users
of q1 need to download only one more node (in this
case, node b in the XML file instance). Actually, the
queried results of q1 and q3 can be combined into one
since they are quite similar. In this example, the op-
timal total access time of the snippet scheme is 16
nodes (2 nodes waiting time for q2, 5 nodes waiting
time for q1, 9 nodes waiting time for q3), while in the
combining scheme, the optimal total access time is 14
nodes (2 nodes waiting time for q2, 6 nodes waiting
time for both q1 and q3). Moreover, the optimal to-
tal access time for the atomic scheme is 15 nodes (5
nodes waiting time for all three queries). Therefore,
the combining scheme can achieve better access effi-
ciency when compared with the two naive schemes.
Moreover, it causes only a little tuning time overhead
to the optimal result in theory(the total tuning time
is 10 nodes, only 1 more node than that of the snip-
pet scheme, which is the optimal one). Hence, it can
provide much better balance between access time and
tuning time (See the below Table 1, the numbers in
italic are the best values among three schemes).



Table 1: Comparison of three schemes for Figure 1 in
terms of XML nodes

Scheme Access Time Tuning Time
atomic scheme 15 12
snippet scheme 16 9

combining scheme 14 10

In the combining scheme, we need to define a pa-
rameter sim (short for similarity) to measure the sim-
ilarity of two XML snippets. Suppose that there are
two XML snippets with lengths of L1 and L2 re-
spectively, and the length of the combined one is L3.
Clearly, we have Min(L1, L2) ≤ Max(L1, L2) ≤ L3.

Definition 1. The similarity of two XML snippets
sim is defined as follows:

sim = L3
Min(L1,L2)

Obviously, sim always satisfies sim ≥ 1 and sim ≥
Max(L1,L2)
Min(L1,L2)

. A smaller sim indicates more similarity
between the two XML snippets before combined while
a larger sim indicates less similarity. If sim = 1,
then the two XML snippets are exactly the same.
Therefore, if we suppose to combine only XML snip-
pets that are very similar to each other, we just need
to combine snippets that have small sim values. In
Section 5 we will show that combining XML snip-
pets with sim values equal to or smaller than 1.4 can
achieve the best overall performance.

Note that, in the combining scheme, the combined
result is always part of the original XML file instance,
which means the local structured information will re-
main unchanged. In the example in Figure 1, when
combining the two similar XML snippets, we just use
queries q1 and q3 together to match against the XML
file instance and then we can get the combined result
of these two snippets. However, the so-called combin-
ing stage is not so straightforward.

We do not have to generate separate queried re-
sults of users’ queries first and then combine those
results. But actually we just adopt some XML data
filtering techniques to find the combined result effi-
ciently. By using the XML data filtering techniques
(Vagena et al. 2007, Diao et al. 2003), we can deter-
mine which parts of a specific XML file match some
queries efficiently. Then we can calculate the sim af-
ter the filtering has finished by just identifying which
part of the filtering result is matched the queries. Af-
ter that, take q1 and q3 for instance, if the sim value
indicates that the queried results of q1 and q3 should
be combined, then the filtering result of q1 and q3 is
directly treated as a new XML snippet. We should
continue the calculations with other queried results
until no sim value of any two XML snippets is equal
to or smaller than the specified threshold of sim value,
such as 1.4 (in this case, we can firstly exclude XML
snippets with sim ≥ Max(L1,L2)

Min(L1,L2)
> 1.4 and then find

possible combining results).
At the client side, the clients just need to down-

load the XML data they are interested in. However,
as mentioned before, in the combining scheme, since
the XML data is made up of combined snippets, the
clients may download XML data that contains other
information they are not interested in but required by
other clients. This is due to the combination of dif-
ferent queried results in a snippet but better balance
between access efficiency and power conservation can
be expected.

4 Scheduling XML Data

At this stage, the scheduling problem of on-demand
XML data broadcast is quite similar to the scheduling
problem in multi-item data broadcast. The schedul-
ing problem of multi-item data broadcast is known
as a NP-Complete problem (Chung & Kim 1999).
Up to now, a large body of studies has been done
to solve the scheduling problem of multi-item data
broadcast. However, previous work mainly considers
access frequencies of data items and different queried
result sets containing multiple items. In XML data
broadcast, the data items have a variety of lengths
and thus scheduling algorithms should take it into
account. Moreover, existing scheduling algorithms
suggest that the server only broadcast part of the
queried results of the pending queries in one broad-
cast cycle (or one schedule) in order to achieve bet-
ter access efficiency. This idea is under the premise
that the data items are all atomic and each data item
may be required by different queries. However, in
on-demand XML data broadcast, data items are no
longer atomic and thus each broadcast cycle aims to
satisfy all pending queries that were issued during the
previous broadcast cycle period. Based on this obser-
vation, we analyze the new model of scheduling XML
data in on-demand broadcast and then put forward
an improved scheduling algorithm in the following.

4.1 Analysis of Scheduling On-Demand XML
Data Broadcasts

Consider the broadcast scenario of on-demand XML
data broadcasts in Figure 2. At time t0 and t1,
queries qi and qj arrive respectively. Then a new
broadcast cycle begins at time t2. This cycle aims
to satisfy all the queries that were issued during the
last broadcast cycle period, such as queries qi, qj and
so on. In this cycle, the queries qi and qj will be sat-
isfied at time ti and tj accordingly. The cycle finishes
at time t3 in the end. For queries qi and qj , the total
access time (AT ) can be calculated as follows:

AT = (ti− t0) + (tj − t1)
= (ti− t2 + t2− t0) + (tj − t2 + t2− t1)
= (ti− t2 + tj − t2) + (t2− t0 + t2− t1)

Figure 2: A scenario of on-demand XML data broad-
casts

From the above calculation, we can see that the
only variable factor that affects AT is the total wait
time starting from the beginning the cycle, that is
(ti - t2 + tj - t2). As a result, in on-demand XML
data broadcasts, the server does not need to consider
the arrival time of each query when scheduling XML
data on wireless channel but only need to minimize
the total query wait time from the beginning of the
current broadcast cycle, and in the above case, that
is (ti - t2 + tj - t2) for both queries qi and qj .

4.2 LEL (Least Efficient Last) Scheduling Al-
gorithm

LRL scheduling algorithm (Sun et al. 2008) shows the
best performance when compared with other existing



multi-item scheduling algorithms. It mainly considers
access frequencies of data items and different queried
result sets containing multiple items. However, in
on-demand XML data broadcasts, the sizes of data
items can vary in a very wide range. Thus data item
size should be taken into consideration. In this sub-
section, we devise an improved scheduling algorithm
using similar strategy in LRL algorithm.

First of all, we introduce some notations which will
be used in the rest of the paper:

• di: a data item (XML file) stored in the server

• D: the set of data items that will be broadcast.
D = d1, d2, . . . , dm

• Li: the length of data item di

• qi: a query issued by one ore more mobile users

• Q: the query set Q = q1, q1, . . . , qn that were
issued during the last broadcast cycle

• QS(di): the query set in which all queries require
data item di

• freq(qi): the access frequency of qi

• σ: the broadcast schedule of a broadcast cycle

• FQS(di): given a schedule σ, the query set that
will be fully satisfied by item di

For a given schedule σ and a given query set Q, it
is easier to identify what queries will be fully satisfied
when a data item is broadcast if examining from the
last item to the first item in schedule σ. For example,
if dm is the last item of schedule σ and is required by
q1, q2 and q3, then all these three queries will only
be fully satisfied after they receive dm. Then after re-
moving dm from σ and removing q1, q2 and q3 from Q,
we perform the same check on the updated σ and Q.
Taking similar steps, we can work out what queries
(other than q1, q2 and q3) will be fully satisfied by
the new last item of σ. By doing this repeatedly, the
access time of all queries could be easily figured out.
Moreover, since the last broadcast item produces the
longest access time, it is reasonable that the last item
should have the least access frequency. Furthermore,
taking the lengths of data items into account, we pro-
pose to broadcast the least efficient data item as the
last item in a schedule.

Definition 2. The efficiency of a data item di can
be defined as follows:

Eff(di) =
∑

q∈F QS(di)
freq(q)

Li

Based on this definition, when we schedule a new
broadcast cycle, we first examine the efficiency of each
data item and then select out the less efficient items to
broadcast later and those items with higher efficiency
will be broadcast earlier. The LEL (Least Efficient
Last) scheduling algorithm can be described in the
following.

Note that, in order to calculate Eff(di) for the
first scheduled data item di, we initially set all
FQS(d) the same as QS(d) for every item d in D.
Moreover, suppose the data item set D contains m
items, then step 1 and step 4 both take O(m) time and
step 1 and step 4 will both repeat m times. There-
fore, the computing complexity of LEL scheduling al-
gorithm is O(m2), which is the same as LRL (Sun et
al. 2008).

LEL Scheduling Algorithm:

1. select an item d from data item set D which
has the smallest Eff(d)

2. place item d in the last vacant position of
broadcast schedule σ

3. remove item d from D

4. update FQS(d′) for every item d′ in D

5. repeat step 1 to step 4 until D becomes
empty

LRL algorithm has the property that exchanging
the broadcast order of any two successive data items
in a schedule σ (generated by LRL algorithm) will
not achieve better overall access efficiency (Sun et al.
2008). However, LEL algorithm does not guarantee
to hold this property.

In order to analyse the similar property of LEL
algorithm, according to the finding in subsection 4.1,
we only need to consider the wait time starting from
the beginning of current broadcast cycle. Suppose
two successive data items di and di+1 in σ (generated
by LEL algorithm) will be exchanged, then only the
wait time of queries that are fully satisfied by data
items di and di+1 will be affected. Suppose the total
length of data items broadcast before di is L′, then
the total wait time T of those fully satisfied queries
(just because of receiving data items di and di+1) is

T =
∑

q∈FQS(di)

freq(q)× (L′ + Li) +

∑

q∈FQS(di+1)

freq(q)× (L′ + Li + Li+1) (1)

After data items di and di+1 are exchanged, the
total wait time T ′ of those fully satisfied queries for
the new schedule σ′ is

T ′ =
∑

q∈FQS′(di+1)

freq(q)× (L′ + Li+1) +

∑

q∈FQS′(di)

freq(q)× (L′ + Li + Li+1)

Since data items di and di+1 are successive, we
can infer that after these two items are exchanged,
the whole set of fully satisfied queries of these two
items remains unchanged. Thus we have

FQS(di) ∪ FQS(di+1) = FQS′(di) ∪ FQS′(di+1) (2)

According to the definition of FQS, we also have

FQS(di) ∩ FQS(di+1) = ∅
FQS′(di) ∩ FQS′(di+1) = ∅

Then we have

T − T ′ =
∑

q∈FQS′(di+1)

freq(q)× Li −
∑

q∈FQS(di)

freq(q)× Li+1 (3)

Therefore, if we have T − T ′ ≤ 0, then LEL algo-
rithm holds the similar property of LRL algorithm; if



T −T ′ > 0, we call it a violation of the property. In
other words, violation means exchanging these two
successive data items can result in better access ef-
ficiency. However, detecting all these violations in
a schedule generated by LEL algorithm could help
to improve the overall access efficiency very little.
This is because, according to LEL algorithm, when
scheduling data item di+1, we must have

Eff ′(di+1) ≤ Eff(di+1) ≤ Eff ′(di) (4)

Then according to (3) and the definition of Eff ,
if T − T ′ > 0, we must have

Eff(di) ≤ Eff ′(di+1)

Then we must also have Li ≤ Li+1, otherwise if
Li > Li+1, we have

∑

q∈FQS(di)∪FQS(di+1)

freq(q)

= Eff(di)× Li + Eff(di+1)× Li+1

= Eff(di)× Li+1 + Eff(di+1)× Li + [Eff(di)
×(Li − Li+1)− Eff(di+1)× (Li − Li+1)]

< Eff(di)× Li+1 + Eff(di+1)× Li

≤ Eff ′(di+1)× Li+1 + Eff ′(di)× Li

=
∑

q∈FQS′(di)∪FQS′(di+1)

freq(q)

This is impossible because we have (2). Therefore,
we have Li ≤ Li+1. Also, if a violation happens, we
have T − T ′ > 0. Then according to (3), (4) and the
two schedules σ and σ′, we must have

T − T ′ ≤
∑

q∈FQS′(di+1)

freq(q)× Li

≤
∑

q∈FQS(di+1)

freq(q)× Li+1

Then according to (1),

T − T ′

T

≤
∑

q∈FQS(di+1)
freq(q)× Li+1

T

<
1

1 +

∑
q∈F QS(di)∪F QS(di+1)

freq(q)×(L′+Li)∑
q∈F QS(di+1)

freq(q)×Li+1

Since for most of i (1 ≤ i < m) in schedule σ, we
have

L′ + Li = L1 + L2 + . . . + Li À Li+1

Therefore we have
∑

q∈FQS(di)∪FQS(di+1)

freq(q)× (L′ + Li)

À
∑

q∈FQS(di+1)

freq(q)× Li+1

Then we can infer that if T − T ′ > 0, or in other
words, if a violation happens, in most cases we should
have

T − T ′

T
→ 0

As a result, most violations (if exist) cannot help
to effectively improve the access efficiency. We will
present the experimental results of the analysis in the
next section.

5 Experiments

In this section, we mainly study the performance of
combining scheme described in Section 3 and the ef-
fectiveness of LEL scheduling algorithm in previous
section.

In our experiments, synthetic XPath queries are
generated using the generator developed by Diao et
al. (2003). All queries are distinct. The maximum
depth of XPath queries is 6. Experiments are run
on a synthetic data set: News Industry Text Format
(NITF) DTD, and 500 XML documents are gener-
ated. The average depth of all documents is about
6.

Table 2 shows the descriptions of three parameters
are varied in the experiments: the threshold of sim
(Tsim), the number of queries (Nq), and the probabil-
ity of * and // in each query’s step (prob).

Table 2: Workload parameters for our experiments

Parameter Range Default Value
Tsim 1 to 16 1.4
Nq 100 to 500 300
prob 10% to 50% 30%

5.1 Performance of Combining Scheme

Figure 3 (a) presents the average tuning time of each
query when varying Tsim. TTBC denotes the aver-
age tuning time before using combining scheme while
TTAC denotes the average tuning time after. When
Tsim is 1, the average tuning time is minimized and is
equal to that of snippet scheme. When Tsim is small,
the amount of redundant data incurred by combin-
ing scheme keeps small as well. Also from the figure
we can see that when Tsim is smaller or equal to 1.6,
the average tuning time increases very slowly. After
that it grows rapidly. This is because a larger Tsim
can result in more redundant data to download for
each query. However, when Tsim is greater than 4,
the average tuning time becomes stable since the re-
dundant data is very close to that of atomic scheme,
which contains the most redundant data amount all
three schemes.

Figure 3 (b) shows the total data on the wireless
channel when varying Tsim. LBC denotes the total
length of data on the wireless channel before using
combining scheme while LAC denotes the total length
of data on the wireless channel after. As shown in
the figure, the total length of data drops sharply by
using our combining scheme. When Tsim is 1, the
length is almost one third of original data using snip-
pet scheme. This is because although each query is
different, but the matched snippets or sub-trees of
each XML file are still likely the same. When Tsim
continues to grow, the total length of data continues
to drop. However, when Tsim is greater than 4, the
total length of data becomes stable since the com-
bined results are very close to that of atomic scheme
and thus most possible combinations of snippets have
been performed.

We study the effectiveness of LEL scheduling algo-
rithm by comparing it with LRL scheduling algorithm
(Sun et al. 2008), since it show the best access effi-
ciency for multi-item on-demand data broadcasts in



previous work. Figure 3 (c) demonstrates the compar-
ison2 between LEL and LRL scheduling algorithms
when varying Tsim. From the figure, we can see that
LEL is always better than LRL. When Tsim is very
large, the gap between LEL and LRL becomes small
since each query tends to require much more data
due to combined and need to download much more
redundant data. When Tsim is 1.4, the LEL achieves
the best access efficiency. Meanwhile, from Figure 3
(a), we can see that the overhead of tuning time is
quite low when Tsim is 1.4. Therefore, in combining
scheme, by splitting query results into XML snippets
and combining similar ones, the average access time
can be effectively reduced (by about 14%) only with
a little overhead (about 8%) to the optimal tuning
time. In addition, when Tsim is 1.4, if compared with
atomic scheme which is adopted in previous work, the
tuning time can be reduced by 75%.

(a)

(b)

(c)

Figure 3: Varying Tsim

2Note that, according to subsection 4.1, we only compare the
average wait time starting from the beginning of the current broad-
cast cycle (we still denote it as average AT in the figure, since it
will not affect our comparisons).

5.2 Performance of LEL Algorithm

Figure 4 (a) presents the comparison between LEL
and LRL scheduling algorithms when varying Nq.
Generally, the average access time of LEL algorithm
is only about 50% of LRL algorithm. When Nq in-
creases, the average access time of both LEL and LRL
algorithms increases slowly as well because the more
queries were issued to the server, the more data would
be required and thus could result in more access time.

Figure 4 (b) depicts the comparison between LEL
and LRL scheduling algorithms when varying prob.
The average access time of LEL algorithm is about
40% to 65% of LRL algorithm. When prob increases,
the average access time of both LEL and LRL algo-
rithms increases as well. The reason for this is similar
to Figure 4 (a). When prob is larger, more data will
be required and thus could result in more access time.
Moreover, when prob is 10%, the average access time
of LEL algorithm is about 40% of LRL algorithm and
when prob is 50%, the average access time of LEL
algorithm grows faster than LRL algorithm and is
about 65% of it.

(a) Varying Nq

(b) Varying prob

Figure 4: Performance of LEL algorithm

Table 3 shows the results of fixing violations3 (de-
fined in subsection 4.2). From the table, we can
see that the average number of violations is about
875. However, the average improvement is only about
0.3%. Therefore, detecting and fixing all violations in
the schedule generated by LEL algorithm brings very
limited improvements to the overall access efficiency.
Also, the results in the below table match our analysis
in subsection 4.2 very well.

3LEL-VA algorithm examines any two successive data items in
the schedule generated by LEL algorithm, like di and di+1, to
check whether a violation happens. If so, it exchanges the order
of these two data items. The algorithm continues to run until all
violations have been detected and fixed.



Table 3: Violations fixing results

Nq Average AT (LEL) - KB Average AT (LEL-VA) - KB Number of violations Improvement (%)
100 673.11 672.22 249 0.13
200 726.7 724.27 736 0.33
300 770.7 765.96 1596 0.62
400 842.38 841.61 491 0.09
500 847.07 844.19 1305 0.34

6 Conclusions

In this paper, we propose to pre-process XML data
before broadcast to enhance the overall performance
of on-demand XML data broadcasts. Firstly, taking
advantage of the structured characteristics of XML
data, we discuss two naive schemes (atomic scheme
and snippet scheme) on how to match XML data with
mobile users’ queries and based on these two schemes,
a more practical scheme named combining scheme is
put forward. It further makes use of the similarity
of different XML snippets. Moreover, we analyze the
scheduling problem of on-demand XML data broad-
casts and define the efficiency of a data item. Based
on this definition, we then devise a Least Efficient
Last (LEL) scheduling algorithm to effectively orga-
nize XML data on wireless channels. Computing com-
plexity and theoretical analysis of LEL scheduling al-
gorithm are also given.

In our experiments, in combining scheme, by split-
ting query results into XML snippets and combining
similar ones, the average access time can be effectively
reduced (by about 14%) with a little overhead (about
8%) to the optimal tuning time in theory. More im-
portantly, if compared with atomic scheme which is
commonly adopted in previous work, the tuning time
can be reduced by up to 75%. Hence, combining
scheme can provide much better balance between ac-
cess efficiency and power efficiency. Furthermore, in
our experiments, the average access time of LEL al-
gorithm is only about 40% to 65% of LRL algorithm.
Therefore, by using LEL scheduling algorithm, the
access efficiency can be improved significantly. In ad-
dition, we also demonstrate both theoretically and
experimentally that if we detect and fix all violations
of any two successive data items in a schedule σ gen-
erated by LEL algorithm, the average improvement of
the overall access efficiency is only about 0.3%, which
is quite limited.

References

3GPP2 (2007), 3rd Generation Partnership Project 2,
http://www.3gpp2.org.

Acharya, S. & Muthukrishnan, S. (1998), Schedul-
ing on-demand broadcasts: New metrics and algo-
rithms, in ‘MOBICOM’, pp. 43–54.

Acharya, S., Alonso, R., Franklin, M. J. & Zdonik,
S. B. (1995), Broadcast disks: Data management
for asymmetric communications environments, in
‘SIGMOD Conference’, pp. 199–210.

Aksoy, D. & Franklin, M. J. (1999), ‘RxW: a schedul-
ing approach for large-scale on-demand data broad-
cast’, IEEE/ACM Trans. Netw. 7(6), 846–860.

Chang, Y.-I. & Hsieh, W.-H. (2004), An efficient
scheduling method for query-set-based broadcast-
ing in mobile environments, in ‘ICDCS Workshops’,
pp. 478–483.

Chung, Y. D. & Kim, M.-H. (1999), QEM: A schedul-
ing method for wireless broadcast data, in ‘DAS-
FAA’, pp. 135–142.

Chung, Y. D. & Lee, J. Y. (2007), ‘An indexing
method for wireless broadcast xml data’, Inf. Sci.
177(9), 1931–1953.

Diao, Y., Altinel, M., Franklin, M. J., Zhang, H.
& Fischer, P. M. (2003), ‘Path sharing and predi-
cate evaluation for high-performance xml filtering’,
ACM Trans. Database Syst. 28(4), 467–516.

Huang, Y., Zhang, Y. & He, J. (2010 (in print)), ‘Op-
timizing broadcast completion time by reschedul-
ing worst-bandwidths-links first in clouds environ-
ments’, Journal of Computer and System Science.

Imielinski, T., Viswanathan, S. & Badrinath, B. R.
(1997), ‘Data on air: Organization and access’,
IEEE Trans. Knowl. Data Eng. 9(3), 353–372.

Lee, G., Yeh, M.-S., Lo, S.-C. & Chen, A. L. P. (2002),
A strategy for efficient access of multiple data items
in mobile environments, in ‘Mobile Data Manage-
ment’, pp. 71–78.

Lee, W.-C. & Zheng, B. (2005), DSI: A fully dis-
tributed spatial index for wireless data broadcast,
in ‘ICDE’, pp. 417–418.

Park, C.-S., Kim, C. S. & Chung, Y. D. (2005), Effi-
cient stream organization for wireless broadcasting
of xml data, in ‘ASIAN’, pp. 223–235.

Park, S.-H., Choi, J.-H. & Lee, S. (2006), An effective,
efficient xml data broadcasting method in a mobile
wireless network, in ‘DEXA’, pp. 358–367.

Qin, Y., Sun, W., Zhang, Z., Yu, P., He, Z. &
Chen, W. (2009), A novel air index scheme for
twig queries in on-demand xml data broadcast, in
‘DEXA’, pp. 412–426.

Sun, W., Shi, W., Shi, B. & Yu, Y. (2003), ‘A cost-
efficient scheduling algorithm of on-demand broad-
casts’, Wireless Networks 9(3), 239–247.

Sun, W., Yu, P., Qin, Y., Zhang, Z. & Zheng, B.
(2009), Two-tier air indexing for on-demand xml
data broadcast, in ‘ICDCS’, pp. 199–206.

Sun, W., Zhang, Z., Yu, P. & Qin, Y. (2008), Effi-
cient data scheduling for multi-item queries in on-
demand broadcast, in ‘EUC (1)’, pp. 499–505.

Vagena, Z., Moro, M. M. & Tsotras, V. J. (2007),
RoXSum: Leveraging data aggregation and batch
processing for xml routing, in ‘ICDE’, pp. 1466–
1470.

Xu, J., Lee, D.-L., Hu, Q. & Lee, W.-C. (2002), Hand-
book of wireless networks and mobile computing,
John Wiley & Sons, Inc., pp. 243–265.


