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Abstract

Pressure to reduce energy consumption is increasing. The problem of vehicle fuel con-
sumption and emissions is approached by exploring various vehicle propulsion options,
assessing their net effectiveness on a energy conversion basis and on a usability (con-
sumer appeal) basis. Life Cycle Assessment (LCA) of various options indicates that
internal combustion engine powered vehicles compare favourably because of low pro-
duction cost in spite of only achieving modest energy conversion efficiency in operation.
Spark ignition (SI) homogeneous charge engines have dominated as passenger vehicle
power plants, and are likely to maintain their prevalence for passenger vehicle propulsion
into the future, but efficiency improvements are required and achievable. Throttling
losses are a significant contributor to reduced efficiency at low load for SI engines which
is the load range most employed in standard driving behaviour. An Induction Air Mo-
tor (IAM) was conceived, designed, simulated and prototyped to evaluate the potential
to recover some of the work the engine does to reduce its intake air pressure for low load
operation. The prototyped IAM produced work which potentially could contribute to
the engine output while reducing the intake pressure resulting in improved efficiency.
However, further effort is required to reduce the friction in the IAM and optimise the
work produced by the IAM. An alternative strategy for efficiency improvement involves
high Compression Ratio (CR) in conjunction with a reduced compression stroke vol-
ume achieved by Late Valve Closing (LVC). Such an arrangement of the Atkinson cycle
is shown by simulation to produce improved brake efficiency in SI engines. In this
configuration, the maximum power produced by the engine is considerably lower than
the maximum power that is achieved by the same displacement for a full compression
stroke. To achieve both the improved efficiency at low load using the Atkinson con-

figuration and the power achievable from a full induction stroke, the engine requires
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Variable Compression Ratio (VCR). Assessment of VCR concepts from literature and
patents identified that the complexity of continuously variable compression ratio de-
signs prevented their development to production-ready configurations. A simulation
of fuel consumption over a standard driving cycle showed that a two-position VCR
arrangement produces the same benefit as a continuously variable CR for physically
achievable piston-rod-crank configurations. Experiments with supporting simulations
were performed for a previously patented two-position VCR device, an eccentric link
in the big-end of the connecting rod. This work concludes that the eccentric link is
not a viable VCR mechanism. An alternative VCR device involving a hydraulic con-
necting rod was prompted by further experiments and simulations which identified the
behaviour of oil when compressed at high rates in a hydraulic cylinder impacted by a
falling mass. The oil impact work suggested that oil chambers of cross-sectional area
that could be arranged in a conventional connecting rod could readily support the loads
experienced by the rod in a conventionally configured engine, so the design and proto-
typing of a hydraulic connecting rod proceeded. Experiments and simulation confirmed
that a relatively easily manufactured hydraulic connection rod can be successfully op-
erated in an engine, achieving controllable two-position VCR. Further development of
the hydraulic connecting rod control device and improved production techniques are

recommended for this new two-position hydraulic VCR device.
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