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Abstract

A new micromixing model to close probability degditinction (pdf) models is proposed. The moddiased on the proposition
that each computational timestep, stochastic pestimove within the scalar space (on average) tgtance equal to the turbulent
diffusion length scale. At each timestep, the nhegaluates the distance in scalar space betwéeardicles. During the timestep, a
discrete pdf is computed for the distance betweenixed particles and the cumulative integral far thean calculated. A filter is
applied to retain the lower portion of the distamimemain so that the cumulative integral is equathi® average diffusion length
required to decrease the scalar variance. A satagair of particles) is chosen from this filteqgatt of the domain and the particles
mixed using Modified Curl's model. The completeemptarticle-distance pdf is re-evaluated for eacin waensure that there is
sufficient capacity to mix to meet the varianceajerequirements. Preliminary tests show thatrioslel obeys several fundamental
properties required of micromixing models, inclugltonservation, correct decay of variance and ailaxx to Gaussian pdf.
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latter. Note that EMST used at LES scale prodgoesl
results [13].

A fundamental principle used in another MMC
method is that particles should only be able teraudt if

Numerous turbulent combustion models have been they have to travel no more than a diffusion length
developed for the diffusion process (commonly miedkel reach a coincident location (previously alluded[15]
by scalar micromixing in probability density furani and explicitly stated [16]). This can be considere
[pdf] models [1,2,3]). Some of the most commonsed relaxation of the EMST and MMC-LES methods where
models are: Curl’s Model [4], Modified Curl's Model the closest particles are forced to interact witlthe
[5,6], Interaction by Exchange with the Mean (IEM) other. Consider the Ito form of the MMC model [12]
[7,8], the Flamelet model [9], Conditional Moment

1. Introduction

Closure (CMC) [10], Euclidean Minimal Spanning Tree dé, = Adt+Db,dw (1)
(EMST) [11] and Multiple Mapping Conditioning K
(MMC) [12].

where & is the kth reference variablep, its drift
coefficient, the diffusion coefficient isBg = b, b; and

dw, a Wiener process. Since the Wiener process is
commonly modelled by

A number of these models (Curl's, EMST,
stochastic MMC) use particle interaction to mods t
micromixing process and a major distinction between
them is the selection process of which particlehgsen
to share its values with the particle of interelst.Curl's

model, the particles are chosen at random, sodaeye dw = Co{\/a, (2
separated by any distance, leading to potentiatig- n
physical effects because locality is violated. EMS where ¢ is a random variable with a standard Gaussian

founded on the principle that a particle shouldyonl
interact with the particle that is closest to ithis leads

to an undesirable stranding effect where clustdrs o '~ . . .
particles interact exclusively within that clusteausing ~ d'ift: If there is a single scalar, this would aoonly be
them to locally collapse towards the same value IBlL represented by

To alleviate this problem of over-localisation, age \2Bdt 3)
parameter was introduced so that approximately thalf

particles are available for mixing in any giveneistep  which is the definition of the (scalar) diffusioenigth

distribution, this scalag, varies by (on averagey,/dt
from the relaxation towards the mean imposed by the

[11]. Different perspectives have been utilisedthie scale. Therefore, particles with similar valuestofan
MMC framework. One method for MMC-LES (Large only reach coincident values &f (i.e. meet) if they are
Eddy Simulations) [14] is similar to that used IM&T, separated by no more than (on averagepBdt .

where a normalised distance is minimised; a digtnc
between this MMC-LES method and EMST is that a
weighted average of physical and scalar distarccasad
in the former, while only scalar distances are Usgetthe

Because of the random nature @f it is possible that
any pair of particles could be separated by morkess

than 24/ 2Bdt and still be coincident. The definition in
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(3) has similarly been used for the diffusion irygibal
space, for example using the molecular and Smagorin
turbulent diffusivities D andD; respectively) [14]:

dx:[ﬂ +%D,5(D+ Dt)}dt+,/2(D+ D, )dw .(4)

The drift coefficient is a function of the filteraglocity
vector and mean density.

The remainder of this paper will describe the model
and present results from validation tests.

2. The Stochastic Particle Diffusion Length
(SPDL) Model

The current model relies on the discussion follawin
(3) that particles can be expected to meet, theteby
able to interact, if they are separated by appratety
double the diffusion length scale. L& be the distance
between particlep andq andPy(d™) be the pdf of inter-
particle distance for alp and q that are deemed to be
allowed to interact (in a finite volume descripticall
those patrticles in the same physical cell). Weésirable
to choose a maximum interaction distadgg, so that

d]'axdqu{,(dpq)m(dpq)=2\/2Ddt 5)
0

i.e. the mean inter-particular distance is equatvtice
the diffusion length, whereD is the appropriate
diffusivity corresponding to the variabt&®. The pair of
particles to be mixedp(q) is randomly selected from
those that satisfy

d"<d,,,. (6)
Ostensibly, this pair of particles mix using Cunfedel;

in practice, to remove the known difficulty with Ca
model only producing discrete values from initiéd
functions, a weak Modified Curl’'s model is proposed
Let b be the extent of mixingdx(= O for no mixingb =1

is Curl’'s model). To allow a continuous distritmiti to
form, b was set to be

p=""27% @
n-2i+2
where the total number of particles to be mixecetbgr
is n, and thdth pair is to be mixed.
In practice, to ensure that the set of particlesemi
the correct amount specified by the decay of vagan

2
do Y
dt

(8)

a numerical form of (5) is required. For thile particle
pair (p,g) there is a target diffusion length which has
the property

2 n/2
= L7 =2Ddt. (9)
ni=

If i > 1, then for alf <i, the value of the target diffusion

length is set to the actual inter-particle distafocepairi:

oL, =d™

i<

(10)

and the value of the target diffusion length fdrj&i is

set to:
2 1 (n 2
0L =——|—-2Ddt-> L |. (11)
il 2 =i
This value is used in (5) to determirg,{);:
(dmax)|
[ d™ry(d™)w(d™)=2L (12)

0

Note thatPy;(d™) excludes all those distancd¥ where
eitherp or g had been selected for<i.

It is necessary to ensure that once ithepair has
been selected, the remainimg2i particles are able to
dissipate sufficiently to satisfy (11). The maxlma
change in variance that can be achieved by a gair o
particles using Curl’'s model is:

(ac®) = (@) (13)

maxj 2

therefore the maximal amount by which the-2i
particles are able to reduce the variance is

n2 n-2i s 2
2, (807) =2 m % as

The summation on the rhs of (14) is non-repetitive,
every(q that is selected is not allowed to be considgred
in the summation, so that the summation has affyi
terms. If it is observed that

n/2

2. (87%)..,

k=i+1

, <2Ddt-3> L7,

=1

(15)

then the pairf,q) needs to be reselected to provide the
maximald™. This process almost guarantees that the set
of particles does not undershoot the decay of maea
required: along with every other procedure of pajriit
fails if dt is too large for that realisation of particle
values, and the computational timestep must be spli

Finally, if the amount of mixing for paip(g) using
Curl's model overshoots the required total variance
dissipation, then Modified Curl's model is used to
reduce the mixing amount so the total variance
dissipation satisfies (8).
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Figure 1. Cumulative distribution functions (cdf) from Figure 3: Cumulative distribution functions (cdf) from
initial double &function pdf atx = 0 and 1. Solid lines: fourth sample in Fig. 1. Dashed line: ensembleane:
sample data = 100, ensemble average of 100; dashed other lines: 5 individual realisations.
lines: Sfunction cdf with same mean and variance as
ensemble. Lines of the same colour are from theesa 1 - - - ——
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Figure 4: Cumulative distribution functions (cdf) from
third sample in Fig. 2. As per Fig. 3.
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Figure 2: Cumulative distribution functions from later Figures 3 and 4 show individual realisations
times to Fig. 1. Dashed lines: Gaussian cdf witie compared to the ensemble average. The (almostsCur
mean and variance as ensemble. model (7) causes the occasional large deviatioly ear

(Fig. 3), but otherwise the deviation from the enkke
average is relatively small.

3. Testing of SPDL Model

Initial tests on the ability of SPDL to model cases
accurately have been performed. The first test twas _ )
validate that the procedure satisfied (8), whicHidt to A new turbulent combustion model, the Stochastic

Figures 1 and 2 show the results of the relaxation ~ Proposed. — This micromixing model aims to cause
realisations with 100 particles. Curl's model eshe  are separated by twice the (turbulent) diffusiongté
cumulative distribution function (cdf) at early #mto  Scale. A Modified Curl's model is proposed for the
not be smooth in the vicinity & = 0.5 (Fig. 1), but this mixing of the particles. Initial tests of the méder
eventually disappears. [This cannot be remedied by double &function initial conditions show that this model
using (7).] This is likely to be the cause of Sample obeys the relaxation to Gaussian rule. Furthds tae

4. Conclusions

cdf to have decayed more than tBdunction cdf for o be undertaken for more complex cases.
0.2<x<0.8; for the variance to be identical, the sample
cdf lags thes-function cdf near the tails. However, it is 5. References

apparent that the sample data does relax to Gaussia
(Fig. 2), with a much smaller over-decay in thetoeiof

the cdf, so this is evidence that the scheme sigiis
fundamental property.
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