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Abstract 

 

Microorganism disruption using ultrasound treatment is the focus of this thesis. 

There has been aboard spectrum of theoretical and experimental work on 

microorganisms disruption methods undertaken in the past. However, there is a lack 

of fundamental understanding on the actual reason of microorganism disruption 

using ultrasound. The reported literature in the microorganisms and cell disruption 

research field indicates that shock wave and shear effects occur together in typical 

ultrasound processing systems and may both contribute to microorganism disruption. 

However the question of whether the real cause of disruption is shock and/or shear 

remains unanswered.  

 

To address this issue, two independent mechanical devices – a shock apparatus and a 

shear apparatus were developed for this study. An ultrasound apparatus operated in a 

batch configuration was also used for microorganism disruption.  

 

The ultrasound work includes a detailed experimental characterisation of processing 

conditions associated with the ultrasound treatment. The heat transfer through the 

ultrasound chamber and the suspension mixing during the ultrasound treatment was 

evaluated using theoretical and experimental approaches. It was found that one 

second was sufficient to have complete suspension mixing in the ultrasound chamber 

and 13.5% of the total ultrasound energy was lost to the surroundings as heat.  

Saccharomyces cerevisiae was selected as a sample microorganism in this study, and 

a log reduction of 4 was achieved when ultrasound treatment was used.  

 

To determine how the yeast cell wall disrupts using a shock treatment, a finite 

element model was developed and the simulation results showed that von Mises 

stress generated due to dynamic external pressure loading was concentrated at the 

bottom part of the cell wall of the yeast. A vertical gas gun was commissioned to 

apply a dynamic load on a water-filled tube. To understand the relationship between 

the dynamic stress and the microorganism behaviour when subjected to external 

pressure, a plastic bag full of yeast suspension was placed at the bottom of the tube. 
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The result showed that the yeast disruption rate using the shock wave treatment was 

relatively modest when an external shock loading pressure of around 115 MPa was 

used. 

 

In the case of shear stress treatment, analysis of the intense turbulent flow region of 

the apparatus combined with the experimental results demonstrated that when the 

energy dissipation rate in the turbulence region is high and the eddies are smaller 

than the size of the cell, the likehood of yeast disruption is high. The microorganism 

mechanical properties combined with the calculated energy dissipation rate were 

used to simulate the yeast disruption efficiency using shear stress. The results 

showed that a maximum yeast log reduction of 4 was achieved with the shear 

apparatus in the absence of pressure rise. 

 

The specific energy required for yeast disruption in these three mechanical methods 

was evaluated and a comparison was made with two relevant conventional methods: 

homogenizer and Ultra High Temperature (UHT) treatments.  

 

It was found that the specific energy required to achieve a log reduction of 2.5 was 

108 MJ/kg in the case of shear and around 0.905 MJ/kg in the case of ultrasound. In 

the case of shock treatment, the maximum log reduction achieved was 0.57 which 

required 0.00477 MJ/kg. Therefore, on the assumption that log reduction is 

proportional to the specific treatment energy, for a 1 log reduction, 0.008 MJ/kg is 

required for the shock treatment, 0.46 MJ/kg is required for the ultrasound treatment, 

and around 48 MJ/kg is required for the shear treatment. These results show that 

shock wave treatment requires less specific energy to achieve the same yeast log 

reduction as the shear or ultrasound treatment. This implies that the cause of 

microorganism disruption using ultrasound is shock wave energy.  

 

Additional work in the finite element simulation and shock treatment apparatus is 

recommended to extend this study to different microorganisms and cells.   
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___________________________________________________________________ 

CHAPTER I 

____________________________________________________________________ 

 

Introduction  
 

1.1 Overview  

 

Experimental studies of microorganism inactivation using mechanical treatments 

have been performed since the 1950s and it is clear that mechanical methods such as 

ultrasonic treatment, shock wave treatment, and shear stress treatment can damage or 

destroy certain microorganism. Ultrasonic treatments for example have been used in 

food processing applications such as milk sterilization and homogenisation. 

However, commercial implementation of ultrasonic treatments, in milk sterilization, 

has not yet occurred for a number of reasons. Certainly, the advantages of 

mechanical treatments from economic and energy perspectives are not yet clear. The 

three main mechanical methods for microorganism disruption that are addressed in 

this thesis are: 

 

1. High power ultrasound,  

2. High hydrostatic pressure and shock waves, and  

3. Shear treatments.  

 

Research into the use of mechanical means for microorganism disruption has been 

conducted on different microorganism and some results have been reported 

(Balachandran et al., 2006). But there is a lack of technical information about the real 

cause of microorganism disruption, this gap of information needs to be addressed. 

This thesis addresses this need by developing and implementing new mathematical 

models for ultrasonic, shock wave and shear treatments. Experimental work was also 

conducted, and results were compiled and analysed to provide a substantial 

explanation on the cause of disruption resulting from these three methods.  

 

 



   

Introduction 2 Chapter 1 

 

1.2 Background and hypothesis 

 

Ultra heat treatment (UHT) is widely used to destroy microorganism in milk; 

however UHT significantly reduces the nutritional value of the milk and can lead to a 

burnt flavour (Sahoo et al., 2002). In order to maintain milk quality, ultrasonic 

treatments have been proposed, as these methods do not directly heat the milk to the 

temperature involved in UHT treatment.  

 

There is no specific theory to explain the real cause of disruption of microorganism 

due to ultrasound. When an ultrasonic wave passes through a liquid, bubbles or 

(cavities) can produce cavitations. Schebra et al. (1991) claims that the collapse of 

these cavitations causes local shock waves with accompanying high temperatures 

and pressures that could be responsible for a microorganism’s disruption. Akbari et 

al. (2007) showed that the amplitude of the ultrasound wave influences the intensity 

of cavitation and the higher the amplitude, the higher the intensity of cavitations.  

 

When small gas bubbles oscillate during the compression and rarefaction phases of 

the sound waves as in stable cavitation, strong eddies are developed in the 

surrounding area of the bubbles which ultimately dissipate into the liquid. This 

effect, which is known as micro streaming, causes large localised forces to shear 

‘rub’ the membrane surfaces of surrounding organisms and cause physical damage. 

Doulah (1975) and Doulah et al. (1977) claim that yeast cell disintegration in 

ultrasonic cavitation occurs by shear stresses developed by viscous dissipative eddies 

arising from shock waves.  

 

Both strong shock wave and shearing flow effect are generated by high power 

ultrasound but the dominant effect on microbial disruption has not yet been resolved 

(Smith et al., 2000a). It is unclear how ultrasonication destroys microorganism. 

However, research suggest that cavitation is one way with other possibilities being  

shear forces, localized heating and free radical formation (Hughes and Nyborg, 

1962). Micro jets, acceleration, resonance effects and collisions between the 

microorganism are also other possibilities that have been suggested as mechanisms 

of destruction (Loske et al., 1998). It is hypothesized that shear forces and shock 
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waves operate together in typical high power ultrasonic processing system to 

contribute to microorganism disruption.  

 

1.3 Ultrasonic treatment  

 

The killing potential of ultrasound was discovered when sonar was used in anti-

submarine warfare, it was noticed that the source waves were killing fish. This 

instigated research into ultrasound as a method of destroying or inactivating cells. In 

the 1960s research was concentrated in understanding the mechanism of ultrasound 

interaction with microbial cells (Hughes and Nyborg, 1962). By 1975, it had been 

shown that brief exposure to ultrasound caused the thinning of the cell membrane 

due to the separation of the cytoplasm membrane from the wall cell (Alliger, 1978). 

During the 1980s research continued to look at the effect of ultrasound in 

combination with other treatments such as heat (Ordonez et al., 1987; Garcia et al., 

1989; Wringley and Liorca., 1992). 

 

The progress of investigations on the effect of ultrasound on microorganism was 

parallel to that of the technology of instrumentation (Balachandran et al., 2006). The 

first ultrasonic apparatus comprised piezoelectric generators of quartz submerged in 

oil that generated ultrasonic waves of a very high frequency but low intensity (10 

W/cm
2
, approximately). When applied with sufficient intensity, ultrasound has the 

potential to destroy bacteria although the bactericidal effects of the ultrasonic 

treatment vary with organism, the duration of the treatment and the intensity of the 

ultrasound (Scherba et al., 1991). 

 

The work in this thesis involves delivering ultrasonic energy into a yeast suspension 

in a batch configuration for certain interval of time. The ultrasonic work includes 

evaluating the heat transfer in the suspension, and assessing the Residence Time 

Distribution (RTD) using image process techniques and comparing experimental 

results with the reported literature. RTD was considered to ensure treatment 

uniformity of all microorganism. 
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1.4 Pressure disruption of microorganism  

 

The use of shock waves to destroy microorganism is considered one of the developed 

methods. The form of shock waves used in inactivation of microbes is shock waves 

in aqueous ambient such as water. 

 

Although many studies have been conducted in the past decades, the real cause of the 

microorganism death using shock wave processing is yet to be identified. A 

fundamental study is necessary to understand the effect of the dynamic and static 

stress due to the pressure loading on the cell wall rupture. A thorough investigation 

and fundamental mathematical simulation is needed to understand the relationship 

between the dynamic load and the cell wall rupturing.  

 

The effect of dynamic stress on cell wall behaviour (rupturing) due to shock waves 

has not yet been addressed by others. For a good understanding of the influence of 

the dynamic stress on cell wall rupture, a Finite Element (FE) model was developed 

using the commercial software ABAQUS. This model will help to deduce the cell 

wall stress for given values of external pressure.  

 

1.5 Shear stress for microorganism disruption  

 

Microstreaming in ultrasonic processing causes large localized forces to shear the 

cell membrane surfaces resulting in physical damage to the cells (Doula, 1977). In 

addition to this microstreaming effect, which is normally associated with stable 

cavitation, an additional shear effect will result from the transient cavitation 

processes as the viscosity ultimately dissipates a large fraction of the absorbed 

ultrasonic energy. These shear forces do not necessarily break the cell into fragments 

but can cause damage to the cell wall. The microorganism can therefore become 

more fragile and susceptible to subsequent heat treatment.  

 

This thesis aims to explain microorganism disruption due to shear flow effects. A 

model for microorganism disruption in turbulent flow and an experimental study are 

combined in an effort to give a better understanding of the real cause of 

microorganism disruption in shear flow. Most of the scientific papers did not discuss 
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the effect of the combination of shear force and eddies generated due to the 

turbulence flow. A mathematical model has been developed to couple both eddies 

and shear stress.  

 

1.6 Summary of thesis structure 

 

The thesis is broken down into seven chapters. 

 Chapter 1 and chapter 2 introduce the thesis and explain some non-

conventional methods for microorganism disruption.  

 

 Chapter 3 investigates the use of ultrasonic techniques for microorganism 

disruption. The first part focuses on theoretical aspects of ultrasonic 

disruption. The second part of this chapter details the experimental work as 

well as discussing and analysing the results. This chapter will cover the 

following items 

 

1. A literature review combined with theoretical considerations to provide a 

fundamental understanding of the cause of a microorganism’s disruption 

using ultrasound. Saccharomyces cerevisiae was used as representative 

microorganism, because of its well established mechanical properties.   

2. The experimental work which includes a detailed of explanation of the 

ultrasonic experimental apparatus, the yeast preparation and counting, 

and the test procedure. Two basic experimental ultrasonic configurations 

are introduced in this chapter:  

i. Energy assessment configuration. It is essential to evaluate the net 

ultrasonic power dissipated into the suspension. A 30 mL 

suspension was exposed to approximately 238 kW/m
2
 of 

ultrasonic power intensity at 20 kHz. The net heat transfer from 

high power ultrasonic device to the suspension was evaluated. 

Measurements of the convective heat transfer at the surface of the 

processing cell were obtained through a transient heat transfer 

experiment.  

ii. Mixing assessment configuration. A batch configuration was 

evaluated to ensure that all microorganism spend sufficient time 
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under the high power ultrasonic device, and ultimately secure the 

microorganism disruption. Evaluating the RTD helps 

understanding and improving the mixing process to obtain 

homogeneous milk.  

3. The last part of this chapter will discuss and analyse the experimental 

results. The effectiveness of yeast destruction was found to be reasonably 

acceptable; however the treatment time was an important factor that was 

considered in this experimental work.   

 

 Chapter 4 involves a detailed fundamental theoretical study of cell wall 

rupture using external hydrostatic pressure. This chapter includes a 

description of the shock wave apparatus that was used in this study.  This 

chapter consists of four main elements: 

1. Analysis to help explain the response of microbe static behaviour 

when it subjected to external pressure loads. 

2. Numerical Simulation using FE software ABAQUS to help 

understand the microorganism dynamic and static behaviour when it 

subjected to external pressure. 

3. Experimental work using a shock wave apparatus to apply external 

pressure loads to a suspension of S. cerevisiae. This involves the 

impact of a high-speed piston on a volume of liquid. The shock wave 

generated could disrupt the microorganism in the absence of the any 

thermal stress or/and shear force. 

4. The results from the experiments will then analysed and verified the 

context of the simulation from point 1 and 2.  

 

 Chapter 5 focuses on the shear stress, and details both theoretical and 

experimental works. The shear experimental apparatus was designed and 

constructed to make sure that microorganism disruption occurred due to shear 

stress in the absence of pressure elevation and thermal stress. This chapter 

aims to: 

a) provide a fundamental engineering understanding of the relationship 

between the shear stress generated on the cell wall of the microbe due to 

the laminar and turbulent flow and the mechanical properties of the cell, 
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b) describe the use of a shear rotary device that generates sufficient shear 

forces that will disrupt microorganism in the absence of the significant 

temperature and pressure effects. Various energy levels of shear treatment 

were tested and disruption results were used for prediction of 

microorganism disruption, and   

c) discuss and analyse the results obtained from the model and the 

experimental work.  

 

 In chapter 6, the specific energy required for yeast disruption using 

ultrasound, shock and shear treatments was estimated. The specific energy 

results were compared with homogenizer and UHT. 

 

 Chapter 7 of this thesis is conclusion and suggestion for further work. 
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____________________________________________________________________ 

CHAPTER II 

____________________________________________________________________ 

Alternative Methods for Microorganism 

Disruption 

 

This chapter reviews various techniques for microorganism disruption. Methods of 

treatment to destroy microorganism can be categorized as thermal treatment method 

and non-thermal treatment methods. Non-thermal treatments are the alternative 

methods considered in this chapter. The alternative methods, where heat is not the 

cause of the death of the microorganism, include mechanical treatment, electrical 

treatment, and ultraviolent treatment, bead milling treatment, shear stress treatment 

and high hydrostatic pressure treatment. Homogenization techniques may, as a side 

effect, also induce microorganism disruption. 

 

2.0 Thermal methods 

 

Thermal methods can be regarded as the traditional approach for microorganism 

disruption. Temperatures in the range 160 
o
C to 280 

o
C are commonly used. Thermal 

methods are commonly used in the food industry and dairy product industry. The 

exposure time to kill microorganism varied from 2.5 to 30 minutes depending on the 

nature of the bacteria (Tan, 1999). Pasteurisation is one of the most important steps 

in processing milk. However, these processes may alter the nutritional quality and 

milk flavour, rendering it a less desirable product. UHT is one form of sterilisation 

which is widely used to destroy the microorganism in milk (Prakash et al., 2010). 

Thermal process treatments can also be used to kill the complex microorganism in 

wastewater by exposure to 300 
o
C for 1.75 minutes (Tan, 2004).  
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2.1 Mechanical methods 

 

Mechanical methods aim to disrupt microorganism without adding substances or 

changing the internal structure of the suspension containing the microorganism. For 

optimization of mechanical methods a good understanding of the mechanical 

properties of the cell wall and the cytoplasm are required, so that the likely 

mechanical loads and disruption probability can be identified.  

 

The mechanical methods for microorganism disruption that are discussed in this 

thesis are ultrasonic, shock wave, and shear treatments. Mechanical methods are 

recommended to treat bacteria that required high energy (power) for disruption, 

because this method can generate sufficient energy and shear to rupture those 

microorganisms.  

 

2.1.1 Ultrasonic methods 

 

When ultrasound is applied with sufficient intensity and time, it has the potential to 

cause the death of microorganism (Scherba et al., 1991). As stated earlier, the 

destructive potential of ultrasound was discovered when sonar was investigated and 

used for anti-submarine warfare. Scherba et al. (1991) reported that the source waves 

were killing fishes (Hughes and Nyborg, 1962), eventually, leading to research in 

ultrasound as a method of destroying or inactivating cells (Akbari et al., 2007).  

 

In the 1960s, research concentrated on understanding the mechanism of ultrasound 

interaction with microbial cells (Hughes and Nyborg, 1962). By 1975, it had been 

shown that brief exposure to ultrasound caused thinning of cell walls. This led to 

separation of the membrane from the cell (Alliger, 1978).  Ultrasonic waves passing 

through a liquid consist of alternate rarefaction and compression waves. If these 

waves have sufficiently high amplitude, bubbles or cavities are produced and this 

phenomenon is known as cavitation (Sherba et al., 1991). Theoretical analyses to 

describe the relationship between the generation of cavitation and ultrasound strength 

are discussed in chapter 3.  
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2.1.1.1 High power Ultrasound for sterilization  

 

High power ultrasound can generate localized high pressure and temperature when 

cavitation bubbles collapse. The high pressures generated are thought to be 

responsible for cell disruption (Scherba at el., 1991). The high temperatures formed 

in cavitation bubble collapse also have some effect on the suspension treatment 

process. Other researchers contend that the combination of pressure and temperature 

generated by high power ultrasound contribute to the death of the microorganism 

(Balachandran et al., 2006).  

 

During the 1980s, researches continued to study the effect of ultrasound in 

combination with other treatments for use in the food industry (Ordonez et al., 1984; 

Garcia et al., 1989; Wringley and Liorca, 1992). Furthermore, the effects of low 

frequency ultrasound combined with increased temperature on the disruption of 

microorganism in milk suspended in water has been investigated  (Ciccolini et al., 

1997). The tests were conducted at different treatment temperatures of 45 °C, 50 °C 

and 55 °C and ultrasonic powers of 50 W, 100 W and 180 W.  

 

Koda et al. (2009) used an ultrasound power of 12.8 W and frequency of 20 kHz to 

treat 50  cm
3 

of water contaminated with along reduction S.Mutans for 15 mins and 

reported a percentage reduction of about 97% or   

 

    
 

  
       ,  

 

where N/No is the surviving ratio of the microorganism.  

 

The results of Koda et al. (2009) indicate that ultrasonic waves do not completely 

destroy the cells, but damage some of them by increasing the cells sensitivity to heat. 

The optimum ultrasonic power for a maximum deactivating effect was found to be 

around 100 W. The following section will cover the combination of ultrasonication 

with other techniques related to temperature, pressure and pH. 
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2.1.1.2  Combination of Ultrasound with temperature 

 

Microorganism become more sensitive to heat treatment if they have undergone an 

ultrasonic treatment (Ordonez et al., 1984; Garcia et al., 1989). The combination of 

heat treatment with ultrasonic treatment is called “thermo-sonication” (Earnshaw et 

al., 1995). As mentioned in Chapter 1, Ordonez et al. (1987) studied the thermo-

sonication, on the survival of a strain of Staphylococcus aureus in a phosphate 

buffer. Garcia et al. (1989) found that thermo-sonication (5 W/mL) on Bacillus 

subtilis was not significantly effective in killing the spores in water at temperatures 

close to boiling point (100 
o
C). The low effectiveness was attributed to the decrease 

in the violence of bubble collapse due to the higher vapour pressure acting like a 

cushion (Garcia et al., 1989; Alliger, 1975).  

 

From the literature, it can be concluded that bacterial cells generally become more 

sensitive to heat treatment after being subjected to ultrasound treatment. Sequential 

or simultaneously applied ultrasonic and heat treatments result in the destruction of 

bacteria at much lower temperatures than would be required for heat treatment alone. 

Earnshaw et al. (1995) demonstrated that the elimination of bacteria can be improved 

by subjecting them to a combination of ultrasonic and heat treatment compared with 

bacteria that are subjected to ultrasonic treatment only. The conclusions Raso et al. 

(1994) were consistent with those of Earnshaw et al. (1995). Garcia et al. (1989) 

reported a reduction of 43% in the heat resistance of Bacillus subtilise (B. subtilise) 

when it was subjected to ultrasonication in hot water at temperature from 70
o
C to 

95
o
C.  

 

2.1.1.3 Combination of Ultrasonic with temperature and pressure 

 

When the temperature of a liquid exceeds the boiling point, a loss in the cavitation 

effect takes place due to the high vapour pressure (Garcia et al., 1989). In order to 

overcome this problem, pressure is often applied to thermo-sonication. This kind of 

combination treatment is known as Mano-Thermo-Sonication (MTS). In the MTS 
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technique, cavitations can be generated by ultrasound despite the high temperature of 

the liquid (Earnshaw et al., 1995). 

 

2.1.1.4  Other possible combinations involving Ultrasound 

 

Apart from thermo-sonication and MTS treatment, there are other combinations that 

have proven to be effective against microorganism. 

 

Combination with pH control 

Microorganisms have been observed to vary in their response to ultrasonic treatment 

when subjected to treatment at different pH (Kinsloe et al., 1954). It was found that a 

lower pH value reduces the resistance of microorganism during ultrasonic treatments 

(Kinsloe et al., 1954), which lead to a better destruction result. 

 

Combination with chemical control 

Lillard (1993) demonstrated that the effectiveness of ultrasound treatment can be 

enhanced by the use of a chemical such as chlorine. In this research, the focus is on 

mechanical methods; therefore, other reported possible combinations related to 

chemical control is not explained further.  

 

2.1.2 Shock wave treatment 

 

A shock wave can be generated by methods such as shock tubes or electrical 

discharge shock wave generators (Yu et al., 2009). It has been reported that a static 

pressure of about 100 MPa is required to destroy bacteria (Loske et al., 1998), a 

pressure at which the proteins structure would not be changed. However, the 

destruction of microorganism at static pressure cannot be attributed due to evaluate 

static pressure is a very different process to shock treatments and ultrasound 

treatments which are fundamentally dynamic processes. 

 

Oshima et al. (1997) used a shock tube to generate a transient positive pressure of 

about 0.1 MPa with pulse duration of approximately 900 s. However Escherichia 
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coli (E. coli) was found to be difficult to destroy. Tamagawa and Akamastsu (1997) 

used the same diaphragm-less shock tube as Oshima et al. (1997) for their 

experiment on recombinant cells of Escherichia coli. The pressure pulses generated 

with their device had a duration of about 20 s and an amplitude of up to 14 MPa. 

They noticed that cell rupture occurred after 100 shock waves at 14 MPa. This 

suggests that using higher pressures will lead to a higher level of damage to the 

microorganism, for repeated shock wave loads. 

 

The research of Kerfoot et al. (1992) aimed to isolate the effects of shock waves on 

of Pseudomonas aerugmiosa, Streptococcus faecalis, Streptococcus aureus and 

Escherichia coli as well as to determine whether bactericidal activity exists. For this 

purpose, an electrohydraulic lithotripter of 20 kV was used together with a shock 

wave rate of 100 shocks per minute (Garcia et al., 1989). The result of the study was 

discouraging as no bactericidal activity was noticed.  

 

Loske et al. (1998) studied the effects of an experimental electrohydraulic shock 

wave generator on an Escherichia coli suspension. The frequency of the device used 

was 0.4 kHz with a capacitance of 80 nF and voltage of 20 kV. The duration of the 

experiment was 24 minutes while the pressure pulse amplitude and pulse duration 

were 44 MPa and 4 s respectively. The cells were suspended in tap water, which 

had a conductivity of about 960 µs and a temperature of 27 
o
C. The treatment 

resulted in a log reduction 0.9 (from 10
6
 to 10

5
 CFU/mL). Lado  et al. (2002) found 

that to inactivate the entire cell population, 6 D or about 143 minutes would be 

required. The results of this study differ from those of Kerfoot et al. (1992) who used 

the same 20 kV electrohydraulic lithotripter.  

 

Loske et al. (1998) concluded that the effectiveness of shock wave microbial 

inactivation depends on the maximum pressure amplitude (peak compression and 

rarefaction), the rise time, duration of the pulse and the repetition rate. The authors 

also noted that the importance of the cell container and the environment around the 

cell tube would influence the transmission of shock waves to the cells. 
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2.1.3 Shear treatments  

 

Several mechanical devices using shear stress for the disruption of microorganism 

have been investigated, including bead mills, presses, ultrasonication, 

microfluidization and homogenization (Geciova et al., 2002). The primary cause of 

the disruption in these devices appeared to be a shearing effect, though in the case of 

ultrasonication shock waves will also present.  

 

When small gas bubbles oscillate during the compression and rarefaction phases of 

the sound wave, strong eddies are developed in the area surrounding the bubbles 

which ultimately spread into the liquid. This effect, which is known as 

microstreaming, leads to significant localized shear forces that rub the membrane 

surfaces causing membrane disruption (Doula, 1977).  

 

A high pressure homogenizer is one of the devices used in the milk industry that 

utilises mechanical shear force to break-up particles to smaller sizes. This device 

works by pushing the contaminated suspension through a small orifice at very high 

pressure. The suspension is circulated through a closed system where 

microorganisms are subjected to repeated shear stresses.  A wet milling device is 

another mechanical means of sterilization that operates in a similar way to the 

homogenizer. The treatment involves mixing the suspension with small glass beads. 

The device consists of a cylindrical chamber, a driver to rotate the chamber, and an 

impellor to mix the suspension and the beads (Melih and Murray, 1998).   

 

2.2 Non-Mechanical methods 

 

2.2.1 Pulse electrical field (PEF)    

 

Pulsed electric fields (PEF), oscillating magnetic fields (OMF) and light pulses (LP) 

are attractive and popular methods used in the food industry and research 

laboratories for sterilization purposes (Guyot et al., 2006).
 
These methods offer good 

alternatives to conventional thermal processes
 
where nutritive aspects and costs are a 

concern. These methods avoid the use of chemical preservatives that may cause a 
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change in the nutritional value of the food. To adopt this technology in a larger scale, 

a good understanding of the electrochemistry is required (Yu et al., 2009; Mosqueda 

et al., 2008).  

 

The PEF method is strongly affected by the required electric power and the  time to 

apply the power. PEF used to kill S.cerevisiae (Guyot et al., 2006) in a medium of 

water and glycerol and the power applied was low-intensity electric fields and with 

long-duration pulses (Guyot et al., 2006). The destruction was attributed to the direct 

effect of the electromechanical phenomena and the indirect effect of the membrane 

polarization phenomena. Hence, it was suggested that the technique used high 

intensity electric field with short duration pulses (Guyot et al., 2006).  

 

The application of using electrical fields in biological cells medium such as 

contaminated suspension can cause build up of electrical charges at the membrane of 

the cell as reported by Schoenbach et al. (1997). Membrane disruption takes place 

when the critical value of the cellular system the exceeds the induced membrane 

potential of approximately 1 V, e.g. corresponds to an external electric field of about 

10 kV/cm for E. coli (Castro et al., 1993). Many PFE theories have been suggested to 

explain microbial disruption. The common studies focused on electrical breakdown 

and electroporation or disruption of cell membranes (Zimermmann 1986; Castro et 

al., 1993; Vega-Mercado et al., 1996). 

 

Dunn et al. (1987) studied with homogenized milk contaminated with Salmonella 

Dublin (S. Dublin), and then treated using 36.7 kV/cm and 40 pulses for 25 mins. It 

was found that there was no S. Dublin after the PEF treatment. The concentration of 

the bacteria in the milk was 10
7
 CFU/mL in the untreated milk, while the treated 

milk presented about 4×10
2
 CFU/mL, i.e. a log reduction 5. Furthermore, Dunn 

(1996) showed that there are no changes on milk flavour, chemical and/or physical 

quality related to subsequent cheese making. A log reduction 3 was achieved when 

E. coli was used.  
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2.2.2 Non-Thermal plasma  

 

Plasma is a neutral ionized gas; it includes photons, electrons, positive and negative 

ions, free radicals and excited and non-excited molecules (Moreau et al., 2008). 

Plasma can be either thermal or non-thermal depending on the conditions of its 

creation. Non-thermal plasma is created with low pressure and low power, such as 

the plasma which is generated by an electric discharge with low pressure gas 

(Moreau et al., 2008). Factors that affect the activity of plasma in terms of destroying 

microorganism are: the electric charge that causes the interaction between the 

microorganism and the plasma, the diffusion constant of the microorganism and the 

acidity (pH) of the medium. The general mechanism of this method is that the 

surface of the cell wall absorbs components from the plasma to form volatile 

components that are then removed from the cell causing its destruction (Lerouge et 

al., 2000).  

 

2.2.3 Ultraviolet (UV) method  

 

Ultraviolet light is an electromagnetic radiation that occurs for example in sunlight 

and can also be emitted by electric arcs. Ultraviolet light is used to kill 

microorganism, but when used alone is not as effective as the other methods that 

have mentioned previously (Ward et al., 2000). Since ultraviolet light is propagated 

by electrical fields, the parameters which affect its effectiveness are the level of 

electric power and the time. Other factors that impact on this method of sterilisation 

include the medium which contains the microorganism and the type of 

microorganism which will be treated by the ultraviolet light. The unique element of 

this method is that ultraviolet light could attack the DNA as well as the cell wall of 

the microorganism. Ultraviolet light combined with laser light has been used to 

inactivate B. Cereus (Armstrong et al., 2006). Laser application alone was not 

enough to disrupt the microorganism effectively and ultraviolet light was effective 

for exposure duration of more than six minutes (Ward et al., 2000). While a 

combined treatment of laser and ultraviolet light can be an optimum method to kill 

bacteria such as B. Cereus. According to these cited references, the combination of 
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UV with other methods can produce better microorganism disruption. The UV 

method requires high security equipment and this makes it expensive.   

 

2.2.5 Chemical treatment methods 

 

Some chemical methods rely on the addition of chemical substances to weaken the 

structure of the microorganism. Some examples are identified below 

a. Biofilm removal caused by chemical treatments: biofilm is an aggregate of 

microorganism in which cells are stuck to each other and to a surface (Chen, 

2000).  

b. Using supercritical carbon dioxide and hydrogen peroxide to kill Bacillus 

anthracis: Bacillus anthracis is a Gram-positive spore-forming, rod-shaped 

bacterium with a width of 1-1.2µm and a length of 3-5µm. These bacteria can be 

found in the blood of sheep suffering from anthrax, which is a fatal disease 

(Geciova et al., 2007). An example of chemical treatment is Inhalation spores of 

B. anthraces’ can be chemically killed by a mixture of supercritical carbon 

dioxide (SCCO2) and hydrogen peroxide (H2O2). The percentage of peroxide is 

30% and the purity of carbon dioxide is 99.8%. This method uses medium 

temperature and high pressure to effectively kill B. anthracis (Geciova et al., 

2007).  

c. Chemical Process: another way to chemically treat the bacteria is via a chemical 

processes such as hydrogenations and oxidations. An example of this method is 

the oxidative killing of microorganism by neutrophils. Neutrophils are the most 

abundant type of white blood cells in mammals and form an essential part of the 

immune system (Roos et al., 2003). This method has wide applications in 

medicine.  

    

2.2.5 Other methods  

 

There are several other methods of treating microorganism which are beyond the 

scope of this study. They include physical, enzymatic, ionizing and osmotic methods. 
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Physical methods are commonly used for cells with weak membranes and require 

breaking the cell wall without rupturing its cytoplasm, which is similar to the 

mechanical methods. Enzymatic methods involve attacking the enzyme of the cell 

without destroying the integrity of the cell. Ionizing radiation is another method 

which is designed to produce safe healthy food, while maintaining the nutrition 

values and sensory qualities (Beatrice et al., 2002). Osmotic shock or osmotic stress 

is a method where a sudden change in the solute concentration around a cell leads to 

a fast change in the water movement across the membrane (Flores and Galston, 

1982). 

 

2.3 Conclusion 

 

Much research has been conducted in the past decades in an effort to replace 

conventional thermal methods of microbe treatment with alternative technologies. 

The alternative methods suggested involve chemical, mechanical, or electrical 

treatment. Research studies have demonstrated that non-conventional methods such 

as mechanical treatment can be improved by either pre-treatment or combined 

treatments. A combination of ultrasound with heat or/and pressure has proven to be a 

good solution for certain bacteria and spores. Whilst a large number of techniques 

result in membrane or cell wall damage, very few methods adequately meet the 

demands of industry in terms of energy efficiency, environmental issues, and cost 

effectiveness. According to Smith et al. (2000a), physical methods are generally 

inefficient, and not used in industry, while chemical methods alone cause a reduction 

in protein, and they depends significantly on the physiological state of the 

microorganism. Adding chemicals to a product often leads to undesirable 

contamination.  

 

The mechanical methods adopted in this work have many advantages for hard 

microorganism at low operating cost and higher efficiencies. Three mechanical 

methods to replace thermal treatment are proposed in this thesis. These methods are 

ultrasound. Hydrostatic High Pressure (HHP), and shear stress and will be discussed 

in chapters 3, 4 and 5 respectively. 
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__________________________________________________________ 

CHAPTER III 

__________________________________________________________ 

 

Ultrasound Disruption of Microorganisms 

 

 

3.0 Introduction  

 

Ultrasound is a known means to disrupt biological structures. In spite of the 

significant academic work that has been done on high power ultrasonic treatment, no 

practical system for milk processing (for example) has been developed because of 

variable experimental results, lack of theory and insufficient reporting on 

experimental work.  

 

Ultrasonic treatments of microorganism are sensitive to a wide range of parameters 

that have been thoroughly reported in the literature.  Hence, apparently conflicting 

results are sometimes reported and replication of previously reported treatments is 

often difficult (Kinsloe et al., 1954; Alliger, 1978; Sala et al., 1995).  Furthermore, 

prohibitively high power levels have sometimes been necessary to inactivate certain 

bacteria. Hence, the advantage of ultrasonic treatments from economic and energy 

perspectives is not yet clear.  

 

The work in this chapter is provided in six parts 

 

1. Introduction to cavitation theories in ultrasound and the cavitation influence 

on microorganism disruption, 

2. heat transfer through the ultrasound chamber wall,  

3. suspension mixing using image processing techniques, 

4. yeast preparation and viable process of counting the colony forming units per 

millilitre,   
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5. ultrasound apparatus based on the results obtained from heat transfer 

modelling evaluation and  

6. ultrasound experimental results and discussion, this part consists of three 

main elements; collecting results and discussion, analysing the results and 

conclusion. 

 

3.1 Cavitation induced by ultrasound  

 

3.1.1 Cavitation 

 

Cavitation refers to the process of bubble growth that occurs when the pressure 

inside a liquid system, at any point, is reduced to a critical value known as the 

cavitation threshold. The cavitation threshold is the pressure at which cavitation 

starts and it depends on a number of factors that will be discussed in the following 

sections.  The cavitation threshold is directly proportional to the hydrostatic pressure 

applied to the liquid. The bubbles oscillate according to the amplitude of the pressure 

waves generated which determines whether the cavitation produced is either stable or 

transient.  

 

3.1.2 Stable and transient cavitation 

 

When a suspension is subjected to ultrasound, two types of cavitation can develop 

depending on the frequency, amplitude and the power of the device, stable cavitation 

and transient cavitation.  

 

Stable cavitation refers to small bubbles oscillating during the compression and 

rarefaction cycles produced during ultrasound. In stable cavitation, the average 

bubble size changes only after many thousands of the oscillating cycles. This type of 

cavitation is less violent than transient cavitation and occurs with high frequency, 

low amplitude sound waves. 

 

In contrast to stable cavitation, transient cavitation occurs when the bubble size 

changes much more rapidly (within a few oscillatory cycles). The bubbles then 



Ultrasound  21 Chapter 3 

 

collapse with different intensities. On collapsing, the high energy burst momentarily 

produces high pressure up to 100 MPa and high temperature up to 5000 K in the 

surrounding region.  Stable cavitation can change to transient cavitation during the 

oscillating cycles. An important difference between both types of cavitation is that 

stable cavitation bubbles do not implode while the transient cavitation bubbles do. 

The main mechanism in which cavitation acts in the destruction of microorganism 

appears to be the implosion of the bubbles which creates either high energy shock or 

shear stress which can disrupt cell walls. Due to the lower energy dissipation of 

stable cavitation, transient cavitation is preferred for optimum cell destruction. 

 

3.1.3 Temperature rise due to ultrasound 

 

When ultrasonic sound waves pass through a medium, thermal effects can occur. 

However, it has been found that the thermal impact is insignificant in terms of 

producing a temperature rise in biological systems, when using an ultrasonic 

frequency of 26 kHz at various intensity levels (Scherba et al., 1991). According to 

the research conducted by Scherba at al. (1991), the maximum rate of temperature 

rise due to ultrasound is too small to inflict significant harm on the biological 

systems of the microorganism. Therefore, ultrasonically induced thermal effects are 

not responsible for altering biological systems of microorganism under the exposure 

conditions. Sanz et al. (1985) successfully used an ultrasound device that can 

generate a power of 120 W at 20 kHz.  

 

3.1.4 Power input  

 

In general, the level of cell damage is higher when the power is higher. It is known 

the velocity and pressure of any particle is increased when power is increased 

(Chamber and Gaines 1932). In addition, Chamber and Gaines (1932) stated that if 

the power provided by the oscillator is high enough, cavitation will occur even in the 

absence of gas. They also pointed out that cavitation does not occur throughout the 

entire cell sample (i.e. it is confined to restricted regions), and only occurs in the 

region adjacent to the free ends of the ultrasound probe.  
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3.1.5 Energy transfer effects ultrasound 

 

The collapsing bubbles in the transient cavitation of the ultrasound field transfer 

ultrasonic energy into hydrodynamic energy due to the release of elastic waves 

(Doulah and Hammond, 1975; Doulah et al., 1977). Collapsing bubbles disintegrate 

into eddies which in turn break up further to form a new set of eddies. The process of 

breaking up will continue until eddies become small enough to be dissipated by the 

viscosity of the medium. 

 

3.1.6 Exposure time and cell density 

 

Consideration of the exposure time and the density of the cell sample indicated that 

the fraction of undamaged cells decreased as the exposure time to ultrasound 

irradiation was increased. However, the effectiveness of the ultrasound in the 

destruction of the cells decreased as the density of the cell sample was increased 

(Ciccolin et al., 1997). These effects were more prominent for large volumes of the 

sample.  

 

3.1.7 Effect of species of microorganism 

 

Different species of microorganism exhibit different resistances to ultrasound. Large 

sized microorganisms are generally more sensitive to ultrasound as the area directly 

in contact with ultrasound is larger. Coccal forms are more resistant than rod-shaped 

bacteria (Jacobs and Thorney, 1954; Alliger, 1978). Spore gram-positive micro-

organisms are more resistant than gram negative, and aerobic (requiring oxygen) are 

more resistant than anaerobic bacteria (Ahmed and Russel, 1975). 

 

3.1.8 Factors influencing cavitation intensity 

 

There are a number of factors influencing cavitation intensity (Earnshaw et al., 

1995).  
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Liquid temperatures is an important factor as many liquid properties affecting 

cavitation intensity are related to temperature. A change in temperature also results in 

changes to the viscosity of the liquid medium, the solubility of gas in the liquid, the 

diffusion rate of the dissolved gasses in the liquid and the liquid vapour pressure. The 

viscosity of the liquid must be minimized to gain maximum cavitation effect as a 

more viscous liquid environment makes the ultrasound strength easily disrupted and 

could hamper the formation of cavitation bubbles and thus the implosion of the 

cavities. In order to minimize viscosity, the temperature has to be increased. At high 

temperatures, the vapour pressure is increased and the tensile strength of the liquid is 

decreased. However, the intensity or the violence of the bubble collapse or implosion 

is cushioned by this vapour pressure. Due to this, at temperature close to the boiling 

point of the liquid (100 C for water at atmospheric pressure), the violence of the 

bubble collapse decreases as the liquid starts to boil at the cavitation sites.  

 

The second factor is the frequency of the ultrasound. The frequency of the ultrasound 

is an important factor as it determines the maximum bubble size before implosion. In 

general, cavitation intensity is inversely related to the ultrasound frequency. For low 

frequencies, the cavitation bubbles are bigger in size and thus produce higher energy 

when they collapse (greater intensity of implosion). For high frequency ultrasound 

(approximately 1 MHz), however, the cavitation bubbles are difficult to produce and 

at frequencies greater that 2.5 MHz there would be no cavitation bubble formation. 

The energy liberated during cavity implosion depends on the ratio of the maximum 

bubble size to the initial radius of the bubble. The maximum or resonance radius of a 

gas (air) bubble in water at atmospheric pressure, given as a, for frequencies of less 

than 10
6
 cycles per second, is given by the relationship a = 3.0/f where a is in 

millimetres and the frequency is in kilocycles per second (Hughes and Teshima, 

1962). Bubbles whose sizes are less than the resonance size attract each other and 

coalesce until they grow to the resonance size. After the resonance size is reached, 

the bubbles then vibrate or oscillate according to the pressure waves generated. If the 

pressure wave is high enough, the bubbles grow at a very fast rate. When the energy 

supplied by the ultrasound is not enough for the bubbles to retain their vapour phase, 

the bubbles experience sudden condensation back to their liquid phase. These 

condensed bubbles then impact each other violently creating shock waves with 
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accompanying very high-localized temperature and pressure. This is the basis of 

transient cavitation. If the pressure levels are lower, the evolution of the bubble 

diameter is weak and occurs over a long period of time. This results in slow growth 

of the bubbles and is the basis for stable cavitation.    

 

Amplitude of the ultrasound. The amplitude of the ultrasound determines the 

intensity of cavitation. The higher the amplitude of the sound waves, the higher the 

intensity of cavitation. When there is no ultrasound, the liquid molecules remain very 

close to each other due to liquid tensile strength. However, when ultrasound is used, 

the rarefactions and compression cycles will be generated within the liquid 

molecules. When the negative pressure generated in the expansion cycle is low 

enough to overcome the tensile strength thus fracturing the liquid, small bubbles are 

formed which are the nuclei of cavitation. This happens for high amplitude of 

ultrasound. Tensile strength in pure liquids is very high and for example, the tensile 

strength of the pure water is about 10
5
 kPa and difficult to overcome (Beer et al., 

2005). 

 

Viscosity of the liquid environment. If the viscosity of the liquid environment were 

high, cavitation would decrease as the penetration of the ultrasound through the 

liquid medium would be less. A low frequency, high power (high intensity) 

ultrasound would be a better choice than a high frequency ultrasound wave (in which 

the wave is more easily dispersed) to achieve penetration in a liquid with high 

viscosity. Alternatively the liquid could be heated to decrease its viscosity. 

 

3.2  Heat transfer in the ultrasonic processing cell 

 

An initial experiment was conducted to evaluate the net heat dissipated in a small 

volume of water subjected to 117 W at 20 kHz.  

 

3.2.1 Introduction 

 

The aim of this work was to assess the overall heat loss through the walls of 

container when ultrasonic power was applied. This was achieved by measuring the 
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convection heat transfer at the surface of the processing cell. It was anticipated that 

quantification of the heat transfer associated with ultrasonic processing would enable 

future experimental results on microorganism disruption to be reported with greater 

clarity. These results would also contribute to an accurate assessment of the 

economic viability of any future proposed ultrasonic treatment processes.  

 

3.2.2 Experimental apparatus 

 

The ultrasonic treatment apparatus consisted of a commercial ultrasonic processor 

(Dr. Hielscher GmbH, type: UIP500) attached to a 316 stainless steel processing cell 

as illustrated in Fig. 3.1. The cell for these heat transfer experiments was operated in 

a batch configuration with a perspex base which did not have a flow port. 

 

The ultrasonic processor provided approximately 117 W of power (at 20 kHz) to a 

sample of approximately 4 mL of water in the processing cell.  Three thermocouples 

(type K) were located at various points around the processing cell as illustrated in 

Fig. 3.1. The most important thermocouples are the water temperature thermocouple 

(giving the value, Tw) and the thermocouple located at the perspex surface in contact 

with the water (giving the value, Tsp). The thermocouple located on the lower surface 

of the perspex (giving the value, Tl) was used to indicate the time at which the heat 

transfer within the perspex departed from the assumed semi-infinite process.  Signals 

from the thermocouples were amplified using an integrated circuit with cold junction 

compensation (Analogue Devices, AD595) and the temperature signals (voltages) 

were recorded at 20 Samples/s using an A/D card and Lab-View software. 

 

In this study there was a need for adequate cooling arrangements to reduce the 

temperature of the liquid, so that microorganism would be inactivated by ultrasound 

without thermal influences. As a large portion of the energy provided by the 

ultrasound oscillator ultimately dissipates as heat, it was necessary to prevent any 

undue increase in the temperature of the irradiated material.  
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Fig. 3.1 Illustration of the ultrasonic processing cell for heat transfer experiments. 

 

3.2.2 Experimental results  

 

Measurements from the three thermocouples over a period of 5 min (300 s) are 

presented in Fig. 3.2. Time 0 in Fig. 3.2 corresponds to the point at which the 

ultrasonic processor was switched on. The temperature differences relative to the 

initial (pre-run) level are presented in Fig. 3.2. It is these differences in temperature 

that are necessary in the transient heat flux analysis. The initial temperatures 

indicated by each thermocouple were: Tw=15C, Tps= 17C, and Tl= 18C.  

 

Two relatively large disturbances appeared on the signal from the water temperature 

thermocouple – the first at about 15 s and the second at around 140 s on the time 

scale in Fig. 3.2. The second of these disturbances has been removed from the signal 

presented in Fig. 3.2, and hence the data appears smooth in this region. These 

disturbances were attributed to thermocouple sensitivity from the ultrasonic 

treatment (causing microscopic cavitation bubbles). This disturbance did not affect 

the results of this test because only average water temperatures were required.   
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Fig. 3.2 Temperature measurements from thermocouples in the heat transfer 

experiment of water, upper and lower prespex surface.  

 

3.2.3 Heat transfer analysis  

 

3.2.3.1  Perspex surface 

  

Provided the substrate into which heat is transferred can be regarded as semi-infinite, 

the surface heat flux can be identified from measurements of surface temperature 

(Carslaw and Jaeger, 1959). In the case of a flat surface without any lateral 

conduction effects, Schultz and Jones (1973) demonstrate that the appropriate 

expression is:   
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A numerical implementation of equation 3.1 has been used to identify the heat flux 

(q) to the surface of the perspex from the Ts results (in Fig. 3.3) for a certain period 

of time ( ). Approximate values for the perspex thermal properties of density, 
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specific heat and conductivity ρ, c, and k are presented in Table 3.1. Assuming the 

calculated value of heat flux applies across the entire perspex surface exposed to the 

water (an area of 531 mm
2
), the heat transfer to the perspex surface can be obtained 

as illustrated in Fig. 3.3. 

 

Table 3.1 Properties of materials used in the processing cell construction. 

Material ρ c k α 

(kg/m
3
) (J/kgK) (W/mK) (10

-6 
m

2
/s) 

Perspex 1200 1450 0.2 0.11 

Stainless  steel 8300 470 13 3.3 

Titanium 4500 520 22 9.4 

 

 

Fig. 3.3 Heat transfer to the Perspex in the heat transfer experiments. 

 

From Fig. 3.2 a measurable increase in temperature at the lower surface of the 

perspex is apparent approximately 1 min after heating begins.  This is to be expected 

since the thickness of the perspex was x = 12.7 mm and the thermal diffusivity of 

perspex (Table 3.1) was α = 0.1110
-6 

m
2
/s, so that the heat penetration time (Schultz 

and Jones, 1973) is 
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s. 92
16
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x
t                     3.2 

 

Thus, approximately semi-infinite conditions persist for about 100 s after the start of 

heating (the time at which the ultrasonic processor was switched on). Provided the 

induced flow and thermal transport conditions within the processing cell remain 

constant during the experiment, the surface heat flux should be proportional to the 

difference in temperature between the water and the surface, 

 

),( sw TThq                    3.3 

 

where h is convective heat transfer coefficient. Equation 3.3 was used in conjunction 

with the water and perspex surface temperature measurements and the perspex heat 

flux results from equation 3.3to estimate the heat transfer coefficient. Results from 

this analysis are presented in Fig. 3.4.  Convective heat transfer coefficient data prior 

to the start of the ultrasonic processor is not meaningful and has not been included in 

Fig. 3.4. Likewise the data from around 15 s is contaminated by the large disturbance 

on the water thermocouple at this time and hence is also not included in Fig. 3.4. 

 

 

Fig. 3.4 Heat transfer coefficient at the Perspex surface from the heat transfer 

experiment. 
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From Fig. 3.4, it can be observed that the apparent heat transfer coefficient is not 

exactly constant, but steadily decreases from a value of approximately 500 W/m
2
K at 

the start of heating to about 300 W/m
2
K at a time 100 s after the start of heating. In 

this experiment, the water temperature changed by around 18C in the first 100 s. 

The associated changes in viscosity and thermal conductivity would be around 30% 

and 5% respectively. Thus some variation in the heat transfer coefficient would be 

expected. Another effect that may contribute to the apparent variation in heat transfer 

coefficient is the fact that the ultrasonic processor may actually require a few minutes 

to reach a steady operating condition. Another factor that may contribute to the 

apparent variation in heat transfer coefficient with time is lateral conduction. Such 

effects have been assumed to be negligible.  However, lateral conduction is likely to 

be present since there will be a heat flux-induced temperature difference between the 

perspex and the stainless steel.   

 

3.2.3.2 Stainless steel surface  

 

In the case of the vertical stainless steel wall which is a concave cylindrical surface, a 

convenient (approximate) expression for the relationship between the heat flux and 

the measured surface temperature is (Buttsworth and Jones, 1997) 
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the Laplace transformation of  equation 3.4 is, 
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where the over line denotes the Laplace transformation.  Assuming the convective 

heat transfer coefficient is constant, the Laplace transformation of equation 3.5 is, 
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Subtracting equation 3.6 from equation 3.5 gives an expression for the surface 

temperature: 

,)( ws TsGT                    3.7 

with the transfer function between the water temperature and the surface temperature 

given by 
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The inverse Laplace transformation of equation 3.8 is  
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The surface temperature history can therefore be obtained from equation 3.7 using 

the convolution integral, 

 

t

ws dtTgT
0

.)()(                                      3.11 

No thermocouple was located on the stainless steel surface.  However, the surface 

temperature history can be estimated using equation 3.11 if the heat transfer 

coefficient on the stainless steel is assumed to be constant and equal to the heat 

transfer coefficient measured at the perspex surface. This assumption is reasonable 

and acceptable as shown in Fig. 3.4. The constant value adopted for the convective 

heat transfer coefficient was h = 500 W/m
2
K. The derived surface temperature 

history for the stainless steel is presented in Fig. 3.5. 

 

Having estimated the stainless steel surface temperature history (Fig. 3.5), the 

surface heat flux can be calculated using equation 3.1. Heat transfer to the stainless 

steel as determined with this method is presented in Fig. 3.6. As was the case with 

the perspex results in Fig. 3.3, the heat flux results (expressed in W/m
2
) have been 
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scaled by the relevant surface area (1633 mm
2
 in this case) for presentation in Fig. 

3.6. 

 

 

Fig. 3.5 Assumed surface temperature of the stainless steel in the heat transfer 

experiments. 

 

 

Fig. 3.6 Heat transfer to the stainless steel deduce from the heat transfer experiment. 
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Limitations of the above analysis include the approximate nature of equation 3.3 

which produces results within 1% of the actual solution for heating times such that 

,1.0
 
2


R

t

 
according to Buttsworth and Jones (1997).  

 

3.2.3.3 Titanium surface  

 

Heat transfer to the titanium surface (the sonotrode tip) can be estimated using the 

analysis outlined in the previous section. Slight adjustments to the analysis in 3.3.3.2 

needs to be made to accommodate the fact that the titanium is a flat surface (R) 

with significantly different thermal properties to the stainless steel (see Table 3.1).  

When this is done, the resulting heat transfer across an area of 380 mm
2
 (the area of 

the sonotrode) is obtained as presented in Fig. 3.7. 

 

 

Fig. 3.7 Heat transfer to the titanium deduced from the heat transfer experiment. 
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magnitudes, the time 100 s after the start of the ultrasonic processor is considered. At 

this point, the heat transfer to the perspex, stainless steel, and titanium surfaces is 

approximately 0.4, 11, and 2.1 W respectively. Thus the combined heat transfer from 

the water is 13.5 W of the applied ultrasonic power. 

 

A transient one dimensional heat conduction modelling has been applied to evaluate 

the heat transfer to the surfaces of an ultrasonic processing cell.  The processing cell 

was filled with water and instrumented with thermocouples.  Ultrasonic power at 20 

kHz and approximately 85 W was applied for a few minutes and temperature 

histories were recorded. Estimates for the current configuration suggested that less 

than 15.9 % of the applied ultrasonic power was removed from the processing 

volume in the form of heat. Such heat transfer can have a significant impact on 

efficiency calculations for the ultrasonic processor based on calorimetric experiments 

in this and related configurations. The 15.9 % lost was considered in the subsequent 

experimental work of this chapter where the net ultrasound power dissipated in the 

suspension was evaluated. One of the limitations of the present data and analysis is 

that the heat transfer coefficient appears to vary with time, however the variation was 

not very significant and the impact on the final heat transfer result was marginal. The 

modelling deficiencies such as the semi-infinite one dimensional heat conduction 

assumption, may also contribute to the apparent variation with time.   

 

3.3 Mixing characterization within the ultrasonic processing cell 

 

3.3.1 Introduction  

 

To adequately assess the potential of high power ultrasound in the present 

application, it is necessary to have some knowledge of the uniformity of the 

treatment. To achieve uniform ultrasound treatment for yeast in the suspension, a 

theoretical and experimental mixing investigation was conducted in this work. 

Evaluating the mixing time is a very important factor to confirm that the yeast cells 

in the suspension are subjected to uniform ultrasound energy. 
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The flow field established within a high power ultrasound processor has a critical 

influence on the uniformity of treatment. The intensity of the acoustic field varies 

with position relative to the ultrasound source (Pugin, 1987) and strong acoustic 

streaming (Lighthill, 1978) can be established within the processing volume which 

convects the fluid into or out of the high intensity treatment regions. 

 

For uniform treatment in a batch reactor arrangement, the characteristic mixing time 

within the vessel should be small, relative to the treatment time. Cadwell and Fogler 

(1971) measured the rate of CO2 absorption by glycerol in a batch reactor with and 

without ultrasonic agitation. They related the enhanced absorption with ultrasound to 

a surface renewal effect associated with the vortex structures they observed in batch 

configurations with 20 kHz and 800 kHz agitation. Vichare et al. (2001) analysed 

conductivity measurements in a sonochemical batch reactor to yield mixing time 

results for different geometric configurations. 

 

For continuous flow systems, the treatment uniformity (or lack thereof) can be 

characterized using a RTD (e.g., see Levenspiel et al., 1999). There are many 

standard techniques for the measurement of RTDs which usually involve introducing 

a trace element (such as a saline solution or a dye) at the entrance to the processing 

device and measuring the concentration of the tracer just downstream of the vessel 

(Levenspiel et al., 1999; Missen et al., 1999; Fogler, 1999). Measurements of the 

RTD in ultrasonic processing configurations have been performed using such tracer 

methods (Gondrexon et al., 1998; Monnier et al., 2000). 

 

In the work of Gondrexon et al. (1998), a NaCl tracer pulse was injected into the 

inlet stream entering their ultrasonic cell. The RTD was identified by monitoring the 

conductivity within the outlet pipe. Over the tested range of ultrasonic powers and 

reactor flow rates, the reactor behaved as a continuous stirred-tank reactor (CSTR). 

Similarly Monnier et al. (2000) characterised macromixing in their continuous flow 

ultrasonic reactor by injecting KCl in the inlet and monitoring conductivity in the 

outlet for different ultrasonic powers and flow rates. In contrast to the arrangement of 

Gondrexon et al. (1998), the configuration of Monnier et al. (2000) had a 

characteristic performance between that of a plug flow reactor and a CSTR. For 
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continuous flow arrangements, there are established methods for estimating an 

effective turbulent diffusivity or as a non-dimensional parameter, the vessel 

dispersion number, based on an appropriate dispersion model and the measured RTD 

(Levenspiel et al., 1999; Missen et al., 1999; Fogler, 1999).  

 

However, the introduction of the injection and detection hardware into the system 

can add a substantial volume which distorts the Residence Time Distribution (RTD) 

(Monnier et al., 2000). Ideally, the actual input to the system should be measured or 

at least quantified in some manner so that deviations from the ideal impulse or step 

inputs can be accommodated if necessary through appropriate analysis of the tracer 

concentration histories (Levenspiel, 1999). However, even if such measurements are 

made, the mixing that takes place as the flow enters and leaves the processor can 

make a significant contribution to the apparent RTD (Fogler, 1999). That is, if 

significant mixing takes place either side of the important reaction or treatment zone, 

then it will be difficult to identify the actual mixing that takes place within the 

treatment zone. 

 

The technique introduced in this work avoids the difficulties in determining the true 

RTD by (i) considering the case of an ultrasonic batch reactor arrangement, and (ii) 

visualizing the mixing process within the high power treatment zone itself. The 

mixing results are interpreted with the aid of a one dimensional diffusion analysis to 

yield effective values of turbulent diffusivity. If a geometrically similar continuous 

flow configuration is adopted, the effective turbulent diffusivity should remain 

unchanged at each power level provided the through put of material contributes 

minimal mixing energy.  

 

3.3.2 Apparatus, methods, and calibration 

 

3.3.2.1 Ultrasonic processor and mixing experiments 

 

The ultrasonic processor used was a commercial device with a 22 mm diameter 

probe tip (sonotrode, BS20d22 titanium), operating at a frequency of 20 kHz. The 

general arrangement of the apparatus used in the experiments is illustrated in Fig. 
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3.8. Mixing experiments were conducted using a 50 mL Pyrex beaker (internal 

diameter of approximately 36.5 mm) filled with 30 mL of water and the probe tip 

immersed to a depth of 7 mm. The water was tap water with no special treatment. 

The relative position of probe tip within the beaker of water is shown in Fig. 3.8. The 

probe tip is actually uniform in diameter; the apparent increase in the probe diameter 

in the submerged regions in Fig. 3.9 is due to refraction. The probe tip is 

approximately 22 mm from the bottom of the beaker. 

 

Fig. 3.8 Experimental apparatus used in the mixing experiment. 

 

 

Fig. 3.9 Image of the probe tip and beaker used in mixing experiments. 
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With the water stationary in the beaker and the system at a uniform initial 

temperature of approximately 20 
o
C, the ultrasonic processor was switched on. After 

approximately 5 s, a drop of blue food colouring (volume around 0.01mL) was 

injected into the water and proceeded to mix under the agitation of the ultrasonic 

processor. The mixing process was imaged using a Canon UC-X30Hi 8 mm video 

camcorder and recorded directly onto VHS tape. Mixing sequences were digitised 

from the VHS recordings using Pinnacle hard/software and a sequence of around 40 

images was saved in jpeg format. 

 

The beaker was back-lit with a 12 V 50 W halogen bulb with DC excitation. The 

light from the bulb was made somewhat diffuse by placing paper towel between the 

bulb and the beaker. This relatively high intensity lighting allowed the exposure on 

the video camera to be manually set to the minimum possible: 1/10,000th of a 

second. The framing rate remained at the standard 1/25th of a second, but the 

development of mixing was clearly captured because of the short expose time for 

each frame. The camera iris was also set manually to avoid the camera automatically 

adjusting the exposure during the experiments. 

 

Five different amplitude level settings on the ultrasonic generator were tested: 20, 40 

60, 80, and 100%. These values correspond to the markings on the dial of the 

ultrasonic generator, and these values are not related in a linear manner to the 

electrical power drawn by the generator or the thermal energy dissipated in mixing 

volume. 

 

3.3.2.2 Input electrical power 

 

The electrical power delivered to the ultrasonic generator from the AC mains (240V, 

50Hz) was identified by recording the voltage and current signals on a Tektronics 

digital storage oscilloscope (TDS420A) as illustrated in Fig. 3.8. The voltage and 

current data was recorded at a rate of 10 kSamples/s giving around 200 samples per 

AC cycle. Data was transferred to a PC for analysis. 
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The instantaneous electrical power delivered to the generator varied through the AC 

cycle, so results derived from this equation were averaged over the period of each 

AC cycle. Results from this analysis for three of the five power level settings are 

shown in Fig. 3.10 for the first few seconds of operation after switch-on. 

 

The electrical power delivered to the generator approaches a steady-state condition 

after about 1 s of operation. The results in Fig. 3.10 established that the droplet 

addition should take place after at least one second of processor operation to ensure 

steady input of electrical power. Results in Fig. 3.10 are also relevant to the analysis 

of the thermocouple signal, the first second of operation should be avoided in the 

calorimetric analysis due to the unknown power delivery by the sonotrode during the 

start-up transients.Fig. 3.11 shows the variation in electrical power input to the 

ultrasonic generator with the dial settings. Although the minimum dial setting on the 

generator was around 26%, it is certainly not 26% of the maximum electrical power 

input under these conditions. The vertical bars associated with each data point in Fig. 

3.11 correspond to a variation of ±2% which is representative of the measured 

variability associated with manually setting the control dial. 

 

 

Fig. 3.10 Variation of input electrical power during start-up of the ultrasonic 

processor in the mixing experiments. 
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Fig. 3.11 Steady state input electrical power for the five dial settings up of the 

ultrasonic processor in the mixing experiments. 

 

3.3.2.3 Thermal dissipation 

 

To confirm the amount net energy dissipated into the suspension, and confirm the 

results obtained from the heat transfer work (section 3.2), an additional energy 

experiment was conducted.  

 

To establish the rate of thermal energy dissipation in the water, separate experiments 

were performed in which a bare wire K-type thermocouple (wire diameter 

approximately 0.2 mm) was inserted approximately 5 mm from base of the Pyrex 

beaker, near the centre. The thermocouple signal was amplified using an AD595 chip 

with the ‘cold junction’ being formed on the printed circuit board. The voltage signal 

from the amplifier was recorded using the TDS420A digital storage scope as 

illustrated in Fig. 3.8.  

 

The thermocouple and amplifier circuit was calibrated using a water bath and a 

mercury-in-glass thermometer as the reference from approximately 20 
o
C to 50 

o
C. 
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Even using this calibration, the absolute temperatures from the thermocouple and 

amplifier are probably still not accurate to better than 1 
o
C. However, absolute values 

of temperature are not required; only temperature changes are of interest for the 

calorimetric analysis. Thus, for the temperature changes of a few 
o
C that are 

observed in the experiments, it is estimated that the measured temperature changes 

are accurate to within 5%. 

 

Calorimetric experiments were performed at the five power level settings (26, 40, 60, 

80 and 100%) and experiments were repeated using different volumes of water (20, 

30, 40, and 50 mL) in the Pyrex beaker. A few seconds after processor switch-on, the 

measured variation of water temperature with time was approximately linear. 

However, there was some tailing-off of the temperature rise which was noticeable 

after about 30 s, presumably due to heat loss from the water to the beaker and probe. 

 

The thermal energy that is dissipated by the water can be estimated using the 

following equation 

 

             
  

  
                                                  3.12 

 

where m is the mass of the water in the beaker, c is the specific heat capacity of the 

water (taken as 4200 J/kgK for this analysis), and dT/dt is the rate of temperature 

change identified from a linear regression to the data between 5 and 20 s after 

processor switch-on. The thermal dissipation estimated in this manner for each 

power level is presented in Fig. 3.12. The horizontal bars associated with each data 

point represent the ±2% variability in the manual setting of the generator, and the 

vertical bars represent the variation in the results for the four different water volumes 

that were tested. There was no consistent variation in the results across the four water 

volumes that were used in these experiments. The thermal dissipation indicated in 

Fig. 3.12 will underestimate the actual thermal dissipation of ultrasonic energy 

because of heat losses to the beaker and the probe tip.  
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Fig. 3.12. Rate of thermal energy dissipation for the five levels of input electrical 

power on the ultrasonic process in the mixing experiments. 

 

3.3.2.4 Image calibration 

 

The saturation component of the video images was used in the analysis of the mixing 

process. Fig. 3.13 presents a typical calibration of the saturation component with the 

dye concentration in normalised scales. The different lines in this figure correspond 

to different locations within the image for the same variation in dye concentration. 

The normalisation is such that a concentration of 0.0 indicates no dye, and 1.0 

corresponds to the fully-mixed dye concentration. A saturation of 0.0 corresponds to 

the level when no dye is present and a value of 1.0 corresponds to the fully-mixed 

dye value. A concentration of 0.9 was used to define the mixing time in the 

subsequent analysis and this corresponds to a normalised saturation of approximately 

0.97, Fig. 3.13. 
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Fig. 3.13 Normalised saturation component of the video image as a function of dye 

concentration for different positions within the image in the mixing experiment. 

 

3.3.2.5  RTD experiments 

 

To demonstrate that results from the mixing experiments in the batch reactor 

arrangement can be used to deduce a residence time distribution (RTD) in a similar 

continuous flow configuration, an additional experiment was performed. The 

arrangement for this experiment consisted of a processing geometry similar to that of 

the Pyrex beaker with the addition of inlet and outlet pipes as illustrated in Fig. 3.14. 

 

The flow rate through the system was 4.7 mL/s and the inlet and pipe diameters were 

2 mm. The diameter of the processing volume was 37.5 mm and the volume of water 

in the processing volume was 31 mL. The vertical distance from the centre of the 

inlet pipe to bottom of the processing volume was 28.5 mm.  

 

A droplet of saline solution was added at the top surface of the water, in a manner 

similar to that of the dye mixing experiments, and the injection timing was detected 

with a pair of electrodes positioned between the saline dropper outlet and the surface 
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of the water. The recirculating arrangement was adopted as a convenient way to 

ensure the water level in the treatment volume remained constant. The volume of the 

pipe work and pump was designed so that saline tracer did not enter through the inlet 

to the processing volume on the times scales of interest in the determination of the 

RTD of the ultrasonic processing arrangement. Ice bath cooling of the recirculating 

water resulted in a steady state operating temperature slightly below room 

temperature. 

 

Detection of the saline arrival in the outlet pipe was achieved using a pair of 

electrodes as illustrated in Fig. 3.14 and the voltage (Vout) was recorded on the 

Tektronics TDS420A oscilloscope at a sample rate of 1.0 kSample/s. The electrodes 

in the outlet pipe were gold plated with a diameter of 1.4 mm and were separated 

axially by 3.5 mm between centres. The outlet pipe diameter at the location of the 

electrodes was 3mm. Calibrations of the detection system indicated that Vout varied 

with saline concentration in a linear manner (estimated maximum error of 5%) for 

the present experiment. A thermocouple was positioned in the processing volume 

near the outlet pipe and both the experiment and the linearity calibration were 

performed when the system reached the steady state operating temperature of 16.1 

o
C. 

 

Fig. 3.14 Illustration of arrangement used for characterising RTD in the mixing 

experiments. 
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3.3.3 Mixing results and analysis 

 

Fig. 3.15 presents a sequence of images showing the initial stages of dye mixing for 

the 26% setting and the dye injected from the top left as represented in Fig. 3.8. For 

each power setting, two experiments were performed: one with injection at the top 

left, the other with injection at the top right. The sequence in Fig. 3.15 illustrates the 

acoustic streaming commonly observed in ultrasonic experiments. The frame in 

which the droplet first appears is taken as corresponding with the time of zero 

seconds. 

 

To identify the mixing time, a specific window within the image was identified as 

illustrated by the broken line in Fig. 3.9. The rays within this broken line on the 

image have passed through approximately 50% of the total liquid volume. Note that 

refraction effects give the illusion that the rectangular prism represented by the 

broken line encapsulates more than 50% of the liquid volume. The central circle in 

Fig. 3.9 identifies the location of the ray passing through approximately the centre of 

the total volume of the liquid. 
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Fig. 3.15 A sequence of video frames showing the development of mixing for the 

26% setting with dye injection on the left. Frame 1 which corresponds to a time of 0 

s, shows the die droplet having just entered the water. 
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The saturation component at each pixel of each digitized image was normalised 

using frames taken prior to the droplet addition and images taken after complete 

mixing was achieved (when there was no further change in the saturation component 

of each pixel with time). The normalised saturation of each pixel generally varied 

between 0.0 (corresponding to no dye) and 1.0 (corresponding to the final or fully 

mixed dye concentration). However, for pixels close to the injection point, transient 

values larger than 1.0 were registered soon after injection due to the presence of high 

dye concentrations at these locations and times. Fig. 3.16 presents the variation in 

normalised saturation averaged over the window identified in Fig. 3.9 for the two 

droplet injection locations and the 26% power setting. The open symbols in this 

figure indicate the time at which the normalised saturation reaches a value of 0.97, 

which, according to the calibration should correspond to an average concentration of 

approximately 0.90. 

 

Times to reach an average concentration of 0.90 within the 50% volume window 

were identified for the other power levels in the same way and Fig. 3.17 presents 

these results. The vertical bars in Fig. 3.17 give the time limits identified from the 

two different experiments (droplet injection at the top left and top right), and the 

horizontal bars represent the uncertainty in setting the power level. As expected, the 

higher power levels produce more rapid mixing. Within the range of powers 

investigated, and given the uncertainties in the experimental data, the linear 

regression (the broken line in Fig. 3.17) provides a reasonable representation of the 

data. 
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Fig. 3.16 Variation of saturation as a function of time for the 26% setting for the two 

different injection positions. The open symbols indicate the time at which the 

normalised saturation reaches 0.97. 

 

Fig. 3.17 Time to reach a 90% concentration in the 50% volume region (the mixing 

time) for the five levels of input electrical power. The broken line represents the 

linear regression for the data. 
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3.3.4 One dimensional diffusion analysis 

 

The results presented in Fig. 3.17 are sufficient for the characterization of mixing in 

this particular ultrasonic batch reactor. Considering the one-dimensional diffusion 

equation of 3.13 for the dye concentration C, 

 

  

  
  

   

                                                                                                                                    

               

Where x is the distance, t is the time, and D diffusivity. The appropriate boundary 

conditions for this equation are, 

 

  

  
                                                                                                                                              

 

when x = 0 (the location nearest the dye injection location), and x = l (the furthermost 

point from the injection location within the volume). That is, the dye cannot enter or 

leave the volume during the mixing process (t > 0). If the initial distribution of dye 

concentration is, 

 

                                            3.15  

 

at the time the droplet enters the water (t = 0), then the solution of  equation 3.13 is 

(Carslaw and Jaeger, 1959), 

 

        
 

 
      

 

 

     
 

 
  

       
      

   

 

 

   

         
    

 

 

 

                   

 

Equation 3.16 is presented graphically in Fig. 3.18 for different positions within the 

limits of the volume. The concentration in Fig. 3.18 is non-dimensional and the 

normalisation was the same as that adopted in the experiments; the time is likewise a 

non-dimensional parameter Dt/l
2
. The time at which the non-dimensional 

concentration reaches the value of 0.9 is clearly a strong function of position. For 
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example, at a location x/l = 0.25, the concentration reaches 0.9 at Dt/l
2
 = 0.00802 and 

then overshoots the steady state value, while at x/l = 0.75 (further from the point of 

injection), the concentration does not reach 0.9 until Dt/l
2
 = 0.268 (beyond the range 

shown in Fig. 3.18). It is worth noting that Fig. 3.18 indicates the concentration 

history averaged over the central 50% of the volume reaches a concentration of 0.9 at 

Dt/l2 = 0.644 (as indicated by the open symbol) and this is slightly ahead of 

concentration history at precisely the centre of the volume (compare the solid line 

with the nearby broken line in Fig. 3.18). 

 

 

Fig 3.18 One-dimensional diffusion model results. The open symbol indicates the 

time at which the normalised concentration reaches 0.90 for the centred 50% volume 

case. 

 

Taking l = 45 mm which is the largest distance across the volume, the effective 

diffusivity can be identified from D = 0.644l
2
/t, where t is the mixing time to reach a 

concentration of 0.9 in the identified volume. The results of this analysis are 

presented in Fig. 3.19. The vertical and horizontal bars correspond directly with 

those in Fig. 3.17. Again, within the range of powers investigated, and given the 
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uncertainties in the experimental data, the linear regression (the broken line in Fig. 

3.19) provides a good representation of the data. 

 

Fig 3.19 Diffusivity over the range of input electrical powers based on the mixing 

time data and the one-dimensional diffusion analysis. The broken line represents the 

linear regression for the data. 

 

If these results were applied to a geometrically similar continuous processing 

arrangement with the inflow delivered to the cell via a relatively small diameter pipe, 

then an appropriate dispersion model for estimating the RTD might be either the 

closed-closed or closed-open model (Missen et al., 1999) depending on the flow 

outlet arrangement. For example, in the arrangement used in Monnier et al. (2000), 

where the flow enters the cell via a relatively small diameter (3 mm) pipe positioned 

below the probe tip and passes out of the high intensity region along the probe shank, 

the appropriate dispersion model is perhaps the closed-open one. The effective 

diffusivity identified above could be applied directly in such a dispersion model 

provided the fluid through put does not substantially alter the cell mixing 

characteristics. Certainly the RTDs measured by Monnier et al. (2000) display the 

requisite elements of such dispersion models. However as mentioned previously, 

such RTDs may not be a true reflection of the mixing in the high intensity ultrasound 
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region beneath the probe tip because of distortions that arise due to additional mixing 

in the injection and detection cells. 

 

3.3.5 RTD results 

 

An experiment was performed to validate the claim that the diffusivity identified in 

the batch mixing arrangement can be used in estimating the RTD of a geometrically 

similar continuous processing arrangement. The adopted arrangement was described 

in section 3.3.2.5, and the ultrasonic generator was operated at the lowest power 

setting. The results from this experiment are presented in Fig. 3.20. Care was taken 

to ensure that the introduction of the injection and detection systems would have 

minimal impact on the mixing characteristics of interest. The origin of the time axis 

in Fig. 3.20 corresponds to the time at which the saline drop entered the water as 

identified from the injection timing electrodes. 

 

The boundary conditions for this processing arrangement are best approximated as 

closed-closed since there was minimal mixing across the inlet and outlet. In the case 

of closed-closed boundary conditions, analytical solutions for the governing equation 

are not available, although graphical representations for certain values of D/uL are 

presented in many texts (eg, Levenspiel, 1999; Fogler, 1999), where D is the 

diameter, u is the velocity, and L is the length. 

 

The diffusivity for the lowest power setting identified from the mixing experiments 

and the one dimensional analysis was approximately 0.22×10
-3

 m
2
/s (Fig. 3.19). For 

the flow rate of 4.7 mL/s and a volume diameter of 37.5 mm, the average flow speed 

in the vertical direction was u = 4.27 mm/s. The vertical distance from the inlet to the 

outlet pipe was L = 28.5 mm. Therefore, based on the previously presented mixing 

results and the current operating conditions the vessel dispersion number for this case 

is estimated as D/uL = 1.8. The comparison between the experimental RTD result 

and the theoretical simulation using the dispersion equation and closed-closed 

boundary conditions (Fogler, 1999) is shown in Fig. 3.20. For the experimental 

results, the non-dimensional time t/tm is the actual sampling time t divided by the 
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mean residence time tm = 6.7 s. (The mean residence time was identified from the 

volume, 31.5 mL divided by the flow rate, 4.7 mL/s). 

 

Fig. 3.20 Variation of non-dimensional concentration (C/C0) with non-dimensional 

time (t/tm) from the RTD experiment and comparison with theoretical curve for 

D/uL = 1.8 and closed–closed boundary conditions. 

 

The non-dimensional concentration C/Co is the instantaneous concentration C 

divided by the tracer concentration that would appear at the outlet immediately after 

injection if the mixing were instantaneous and complete following the droplet entry 

to the water Co. The experimental result has been scaled in the vertical direction to 

match the theoretical results at the non-dimensional time t/tm = 1. Such scaling was 

necessary because, although a calibration was performed on the concentration 

detection system, there was not sufficient precision in dispensing the saline droplet 

volume to use the available calibration to accurately determine the Co. 

 

The equality of the experimental and simulated results in the vicinity of t/tm = 1 is 

forced by the adopted scaling, Fig. 3.20. However, the value of the maximum in each 
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result (around C/Co = 0.9 when the noise is smoothed out in the case of the 

experiment) and its timing (around t/tm = 0.1) indicates a good level of correlation 

between the experiment and the simulation. There were some slight geometrical 

differences between the batch and continuous flow arrangement, principally in the 

vessel diameter and its volume. However, the differences are very minor and the 

results in Fig. 3.20 demonstrate that it is appropriate to estimate the RTD for a 

continuous flow system from a geometrically similar batch arrangement when 

necessary. 

 

3.3.6 Summary of mixing in ultrasonic processing  

 

A new technique for the identification of mixing characteristics associated with high 

power ultrasonic treatment at 20 kHz has been detailed. The mixing rate within the 

batch arrangement (30 mL) is a function of the applied ultrasonic power, but the 

macroscopic mixing is substantially complete within one second for absorbed 

ultrasonic power levels greater than 40 W (thermal dissipation).  

 

A method to deduce the effective diffusivity from the mixing time measurements in 

the batch reactor has been demonstrated. The effective diffusivity increased with 

ultrasonic power and ranged from about 0.2 × 10
-3

 m
2
/s to 0.7 × 10

-3  
m

2
/s for input 

electrical power levels from about 70 to 120 W. Such values of diffusivity may be 

applied directly in a dispersion model for the RTD in the high intensity region in 

continuous flow cell arrangements provided the in/out flow does not substantially 

augment the mixing adjacent to the probe tip. Therefore, coupling the effective 

turbulent diffusivity identified in a batch reactor with a suitable dispersion model for 

the reactor provides an alternative approach to the deduction of RTD when 

determining the actual RTD in the high intensity zone of steady flow sonochemical 

reactors is problematic. 

 

 In continuous flow processing arrangements where the processing region of interest 

extends only a few mm beneath the probe tip, or when the processing volume is quite 

small, the direct visualisation method developed here may find application. However, 

the characteristic mixing times in such configurations at comparable power levels 
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will be shorter than those observed in this work. Thus, higher video framing rates 

would be required in such applications. 

 

The outcome results of this model demonstrated a new method to identify mixing 

characteristics associated with the present work of ultrasound treatment. The mixing 

time was a very important factor to confirm that the microorganisms in the 

suspension are subjected to uniform ultrasound energy. Thus mixing was identified. 

It was found that the mixing rate in the present batch apparatus can be completed in 

one second for an ultrasound power of greater than 40 W. (thermal dissipation).  

 

3.4 Microbial disruption in an ultrasonic processing cell 

 

3.4.1 Introduction  

 

The use of ultrasound techniques in microbial disruption is not commercially used in 

the food and dairy product industries. An experimental apparatus was developed to 

evaluate the microorganism disruption using ultrasound. In this section yeast log 

reduction will be evaluated for different ultrasound power. 

 

The work aims to also establish comparison data for other treatments such as UHT, 

shear stress and shock wave (Chapter 6 of the thesis will cover this comparison 

study).  

 

 3.4.2 Apparatus 

  

This section describes the application of a commercial ultrasonic device UIP 500 

(previously described) to destroy microorganisms. Fig. 3.21 shows the ultrasound 

apparatus used in the current work. The ultrasound machine consists of a generator, 

transducer and sonotrode. As indicated in the manufacturer’s instruction manual, the 

generator provides electrical oscillations of 400 W to power an ultrasonic device 

with a frequency of 20 kHz which is transferred to the transducer. The transducer 

converts electrical oscillations into mechanical vibration and is an interface between 

the generator and the sonotrode. The sonotrode carries the vibrations from the 
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transducer to the suspension. In these experiments, the sonotrode was immersed in a 

suspension of commercial yeast, S. cerevisiae. The ultrasound device generates heat 

which is dissipated into the suspension and the heat can affect the quality and the 

accuracy of the experiments. Results obtained from heat transfer section of this 

chapter were considered to evaluate the correct net power dissipated into the 

suspension. A means of a temperature control was also included in the present 

configuration so that there would be no thermal effect on the microorganism 

disruption. As a result, an ice bath configuration was added to the original design to 

maintain the suspension temperature sufficiently low to avoid thermal disruption of 

microorganism. An image of the machine showing the adopted ice bath in the 

ultrasound machine is displayed in Fig. 3.21. A set of thermocouples were used to 

monitor the temperature of the yeast suspension, wall and air temperature. Once the 

suspension temperature reached 45 
o
C the apparatus was shut down to allow the 

setup to cool down.  

 

 

   

a)                                                                    b) 

Fig. 3.21 a) Schematic diagram illustrates the assembling of the setup b) image of the 

chamber immersed in an ice bath. 
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3.4.3 Yeast preparation and test procedure 

 

Yeast was grown and tested at the laboratories of University of Southern 

Queensland. S. cerevisiae was chosen as they are easy to grow, have well established 

mechanical properties, are large enough for counting, readily available and are not 

expensive.  

 

3.4.3.1 Yeast preparation: 

 

Stock yeast, Luria Bertani Broth (LB) Broth, 4% glucose solution and 0.9% saline 

solution, are required to grow S. cerevisiae. A shaking incubator and centrifuge were 

used to mix the solution, following the steps below 

 

1. Mix the stock yeast solution with LB Broth and 4% glucose solution to make 

a nutrient solution. 

2. Place the nutrient solution in a shaking incubator at 37 
o
C for approximately 

20 hours. 

3. Centrifuge the solution at 6000 g for approximately 10 minutes. 

4. Resuspend in 0.9% saline solution. 

 

Freshly prepared yeast solutions were required for experiments in this chapter as well 

as chapter 4 and 5.  

 

3.4.3.2 Procedure for preparing the samples 

 

A yeast suspension was prepared with a concentration of approximately 10
5
 

CFU/mL. Yeast suspensions were used in ultrasonic, shock wave test and shear 

stress tests. With each test, an untreated sample was also reserved for comparison 

purposes. This provided an accurate means of comparing different test with different 

test conditions. 

 

Agar was used as a food for yeast, preparation of agar plates using a dilution series 

was prepared in a very accurate method. The average final value for the agar plate 
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count is obtained by taking the averaging counting of CFU/mL. It was noticed that 

there was no significant variation in the three individual counts, the average value 

gives a result that is accurate enough to identify if cells were destroyed.  

 

3.4.4 Viable count 

 

In this work, the number of microorganisms before and after each treatment 

(ultrasound, shock wave treatments and shear stress) had to be evaluated. This was 

done to determine whether or not the specified treatment had been effective in 

microorganism disruption. The number of colony form units per millilitre (CFU/mL) 

was determined using a viable count procedure in standard sterile laboratory 

conditions as follows: 

 

1. Prepare a dilution series by placing 900 mL of distilled water in each test tube 

and labelling them from 1 to 10. 

2. Use a pipette to place 100 µl of microorganism solution into one of the test tubes 

and mix the solution. The 100 µl of the solution in tube 1 was pipetted into tube 

2. Repeat the process until the final tube is reached. 

3. Divide a nutrient agar plate into equal segments. Drop onto the agar 3 drops each 

containing 10 µl from each dilution, one segment per dilution.  

4. Place the Petri dishes in the incubator for approximately 24 hours at 37 
o
C.  

5. Incubate and observe each segment of the Petri dish and then select the segment 

containing a countable number of colonies, then count the number of colonies in 

each drop and calculate the average. 

 

To find the final result, the average and the inverse of the dilution are multiplied and 

further multiplied by 100 to obtain the results in colony forming units per millilitre.  

For example, if the average was 9.1 colonies; dilution was 1/100, the result would be 

9.1 × 100 × 100 = 9.1 × 10
4
 CFU/mL. 
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Fig. 3.22 Petrie dish with yeast growth. 

 

3.4.5 Experiment preparation  

 

The procedure of conducting the ultrasound experiments started with sterilising the 

equipment, carrying out the ultrasound treatment and taking treated samples to 

evaluate yeast counting. The treated sample was then refrigerated and transferred to 

the biological laboratory for analysis. An appropriate environment for the experiment 

was established and the ultrasound treatment completed as follows 

 

1. A 50 mL beaker, the ultrasonic sonotrode, thermocouples and flask were 

washed in methylated spirits and flushed with compressed air. A 30 mL of 

yeast suspension was transferred from the conical flask to the beaker and an 

ice bath was prepared. 

2. The thermocouples were connected and the ultrasound transducer placed into 

position to ensure that the beaker was not in contact with the sonotrode before 

the ultrasound was activated. 

3. When the ultrasound was turned on, temperature of the yeast suspension, air 

temperature and beaker temperature were monitored and recorded. If the 
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temperature of the yeast suspension approached 45 
o
C the system was shut 

down.   

4. The yeast sample was transferred to a sterile test tube and stored in a 

refrigerator. Culturing and counting process will take place. Further testing 

was undertaken if needed. 

5. A viable count determined the number of CFU/mL before and after the 

treatment. 

 

This procedure was also followed for the shock wave and shear and tests. The 

outcomes from these experiments are reported in chapters 4 and 5. As power 

dissipated into the yeast suspension could cause the temperature to rise, the 

ultrasound treatment was carefully monitored and treatment times regulated to keep 

the temperature below 45 
o
C to ensure that thermal effects did not impact on the test 

results. 

 

3.4.6 Ultrasound experimental work  

 

A series of ultrasound experimental test (Fig. 3.23) were performed. The results 

presented in this chapter will be compared with the traditional method of treatment 

such as homogenization and UHT as well as the two other methods that were 

adopted in this thesis, shock and shear.  

 

An electrical experimental test was conducted to evaluate the net electrical energy 

converted into mechanical energy as the amplitude changes. Three different electrical 

power settings of 74 W, 104 W and 117 W, which is equivalent to a dial amplitude of 

20, 70 and 100 respectively, were used in the experimental work. The net magnitude 

of energy dissipated into the suspension was evaluated based on the results obtained 

from section 3.3.  

 

3.4.7 Experimental results  

 

An initial test was conducted at an amplitude of 20 (power of 74 W) over different 

treatment times ranging between 0 (no treatment) to 300 s. Due to several factors 
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related to the experimental conditions such as suspension temperature and the way 

yeasts were counted, this test had to be repeated three times to ensure the reliability 

of the results. The initial concentration of the suspension prior the treatment was 

6.3×10
4 

 CFU/mL, 1.53×10
6 

 CFU/mL, and 2.17×10
7 

 CFU/mL. Another test was 

conducted by the research team members, using the research equipment 

commissioned by the author of this thesis, for a period of 30 s at an ultrasound power 

of 74 W, the suspension temperature was closely monitored and recorded over time. 

The results of this test indicated that a yeast log reduction of 0.25 was achieved at 

treatment time of 30 s as shown in Fig. 3.23, while maximum suspension 

temperature was around 45 
o
C. The treatment time was then increased to be 60 s at 

same ultrasound power, and the yeast log reduction was calculated and found to be 

0.8, some improvement was achieved. The treatment time was then gradually 

increased up to 240 s. The yeast reduction results was recorded and presented in Fig. 

3.23. It was found that maximum yeast log reduction 2.5 was achieved when 

treatment time was 240 s and the suspension temperature was 55 
o
C. The results 

confirmed that the ultrasound apparatus was able to achieve a yeast log 

reduction of 2.5 at 240 s at 74 W, 20 kHz, and suspension temperature of 

between 45
 o

C to 55 
o
C. Due to the high suspension temperature, further 

experiments with higher amplitude and lower suspension temperature 

(below 35 
o
C) were required.  

 

Fig. 3.23 The effect of treatment time on yeast log reduction at amplitude of 20 (74 

W), at suspension temperature of between 45 
o
C and 55 

o
C.  The raw data was 

obtained by Speering (2004) using the research equipment commissioned by the 

author of this thesis in the initial stage of the candidature. 
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Further tests were conducted using different amplitude and treatment time while 

suspension temperature was carefully monitored and controlled below 30 
o
C. In this 

test, the ultrasound chamber was submerged in an ice bath to ensure that yeast 

disruption occurred in the absence of thermal effect. Three amplitudes of 20, 70 and 

100 were used in this test, and these amplitudes correspond to ultrasound power of 

74 W, 104 W and 117 W respectively, the treatment time ranging between 240 s and 

900 s.  Table 3.2 illustrates the yeast log reduction results for different treatment time 

and different amplitudes. As shown in Table 3.2, higher yeast log reduction occurred 

at higher treatment time. The yeast log reduction of 4 was achieved when the 

treatment time was around 365 s at ultrasound power of 117 W (amplitude = 100). 

The yeast log reduction of 2.5 was achieved at treatment time of 292 s and an 

ultrasound power of 117 W. 

 

Table 3.2 Summary of the yeast log reduction results using different amplitude, 

ultrasound power and treatment time, suspension temperature was 

controlled to around 30 
o
C.  

Amplitude Power Log reduction 2.5 Log reduction 4 

 (W) Treatment time (s) Treatment time (s) 

20 74 540 900 

70 104 360 600 

100 117 292 365 

 

3.5 Conclusion 

 

Cavitation and Ultrasound 

 

The literature review presented in this chapter indicates that when an 

ultrasonic wave propagates through a suspension, bubbles or cavities can be 

produced, the collapse of these cavitations cause local shock waves which may be 

responsible for microorganism disruption (Schebra et al., 1991). However shear 

effects and turbulent mixing may contribute to disruption so the actual mechanism 

responsible for a microbe’s disruption in low frequency, high power ultrasonic 

processing systems has not yet been clearly identified. The theoretical and the 
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experimental work reported in this chapter provide the foundation for further 

investigation into the disruption process.  

 

Energy transfer in ultrasonic processing 

  

1. The heat losses associated with the ultrasound components: steel 

chamber, perspex base, and sonitrode (titanium) were experimentally 

evaluated using a transient one dimensional heat conduction model. The 

result of this model indicated that heat losses through the perspex, 

stainless steel, and titanium surfaces are approximately 0.4, 11, and 2.1 W 

respectively. The combined heat lost through solid surface was 

approximately 13.5 W of the total input applied ultrasonic power which 

was 117 W. Heat transfer will have a significant impact on efficiency 

calculations for the ultrasonic processor based on calorimetric 

experiments in this and related configurations. Although subsequent 

disruption experiment were performed in an ice bath, the heat transfer 

must be determined to make sure that the cell wall temperature and the 

yeast suspension temperature will be maintained below 45 
o
C to avoid 

yeast disruption due to thermal stress. 

2. Experiments were conducted to evaluate the actual electrical energy and 

that was converted into useful ultrasound energy available for 

microorganism disruption. The maximum electrical power input was 

found to be 117 W and 74 W was the minimum power, while the 

maximum thermal energy dissipation rate was approximately 73 W and 

the minimum thermal energy was approximately 42 W.  

 

 Mixing quality in ultrasound processing  

 

1. A new technique for the identification of mixing characteristics associated 

with high power ultrasonic treatment at different power was successfully 

implemented and evaluated. It was found that for a batch arrangement of 

30 mL, homogeneity was achieved in approximately one second.  
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2. The mathematical method to deduce the effective diffusivity from the 

mixing time measurements in this ultrasound apparatus has been verified. 

Combining the effective turbulent diffusivity identified in a batch reactor 

with a suitable dispersion model for the reactor can provide an alternative 

approach to the deduction of RTD when determining the actual RTD in 

the high intensity zone of steady flow sonochemical reactors is 

problematic. 

 

Microorganism disruption in ultrasound processing: 

 

1. The results generated from the experimental ultrasonic work indicated 

that ultrasonic treatment is capable of destroying yeast over different 

treatment times and amplitudes.  

2. Three different power inputs with different time exposures were 

investigated to determine the S. cerevisiae disruption when it subjected to 

ultrasound. The results showed that the concentration of yeast cells in the 

suspension decayed exponentially with time of exposure and that by 

increasing the power input, the rate at which the cells are destroyed is 

similarly increased.  

3. Yeast log reduction result demonstrated that the experimental outcome 

were acceptable and consistence. For example, to achieve yeast log 

reduction of 2.5 at a treatment time of 292 s and 365 s, an ultrasound 

power of 117 W is needed.  
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__________________________________________________________ 

 CHAPTER IV 

__________________________________________________________ 

 

Pressure Disruption of Microorganisms  

 

4.0 Introduction 

 

Although a significant amount of experimental data on the pressure disruption of 

microorganism does exist, a large variability in results is also apparent. Furthermore, 

the dominant mechanisms for disruption have not yet been identified with any 

certainty. Hence, there remain large uncertainties regarding suitable optimisation 

strategies for pressure processing techniques.  

 

As a step towards understanding the physical response of the microorganism to 

quasi-static pressure and shock treatments two models that may offer some assistance 

have been developed. In the first model, the deformation of cell walls is treated using 

thick walled spherical shell analysis, and the cell contents are treated as an isotropic 

material characterised using a single value of bulk modulus. Using this approach, the 

cell wall stress for given values of external pressures can be deduced. From the cell 

wall stress, failure can be inferred with the aid of a suitable failure theory. Von Mises 

theory of failure is adopted in this work and the properties of S. cerevisia are used as 

a representative of the microorganism.  

 

The second model presented in this chapter is a Finite Element (FE) analysis 

developed using ABAQUS to aid the understanding of the dynamic behaviour of a 

microorganism when it is subjected to external pressure. The remaining part of this 

chapter then discusses the application of a shock tube apparatus to generate shock 

loading on a yeast suspension. The experimental results obtained with the current 

apparatus are discussed and analysed within the context of the pressure and shock 
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loading models. Results from other studies are also discussed and compared with the 

present work. 

 

4.1 Quasi static pressure disruption – an introduction 

 

In order to maintain food quality in the sterilised product, non-thermal processing 

alternatives such as high power ultrasound, pulsed electrical field (PEF), high 

pressure carbon dioxide (HPCD), and high hydrostatic pressure (HHP) treatments 

have been proposed as possible alternative. These methods do not aim to increase the 

temperature of the foods during processing, though some temperature increase may 

occur as a consequence of the treatment. Although these alternative techniques may 

offer solutions for maintaining food quality, disincentives to their implementation 

include the capital cost of the new processing equipment, re-skilling of staff, food 

product safety concerns, and other technical problems (Devlieghere et al., 2004; 

Estrada-Giron et al., 2005). For example, in the case of HHP and HPCD treatments, 

it appears that certain vegetative bacteria are resistant to the pressure treatments, and 

furthermore, batch processing is most easily implemented but this does not suit many 

operations.  

 

In the case of HHP treatment, food is subjected to pressures ranging between 300 

MPa and 600 MPa (Splimbergo et al., 2002). The HHP process involves a pressure 

rise from 1 bar to the high pressure (300 MPa – 600 MPa), then the pressure is held 

for some time (varying from 2 minutes to 20 minutes, depending on the bacteria), 

and the last stage is to decompress the food back to 1 bar. In a recent HHP study, the 

explosion of the bubbles due to the cavitation generated in the suspension is believed 

to be the main cause of the microorganism rupture (Gonzalez et al., 2009). Lin et al. 

(1994) and Nakamura et al. (1994) reported that the decompression rate can be the 

most significant parameter enhancing the disruption of the cell wall.  

 

In the case of HPCD treatment, food is subjected to pressures ranging between 10 

MPa and 20 MPa (Splimbergo et al., 2002). The process consists of a pressurization 

followed by CO2 penetration into the cell and finally sudden pressure releas, usually 

to atmospheric pressure. The rapid gas expansion within the cell is believed to 

rupture the cell like “a popped balloon” (Spilimbergo et al., 2002). The CO2 has a 
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strong ability to penetrate through the cell wall, making it fragile. The accumulated 

amount of CO2 helps to disorder the structure of the cell wall and increase its 

permeability, and therefore lower pressures and decompression can be used to 

rupture the cell. The solubility of the CO2 is not strongly dependent on the increase 

of the pressures above 10 MPa (Spilimbergo et al., 2002). A higher pressure and 

rapid decompression are important to enhance the process of the membrane (cell 

wall) disruption (Lin et al., 1994; Hong and Pyun, 1999). Zhang et al. (2004) 

confirmed that the biological activity of both S. cerevisiae and Spores of Absidia 

coerulea are influenced by the decompression rate (7.5 MPa at 30 
o
C and 30-90 

minutes). However, tests by Enomoto et al. (1997) on S. cerevisiae showed that rapid 

decompression did not always enhance the disruption because rupture happens at the 

stage of pressurizing. The Enomoto et al. (1997) result conflicts with the outcome of 

Spilmbergo et al. (2002). According to Arreola et al. (1991) and Hong et al. (1997), 

decompression had no significant effect on the quality of bacteria disruption in their 

experiments. Others reported the death of the cell is due to the temperature drop 

associated with the decompression process using CO2 (Debs-Louka et al., 1999).       

 

4.2 An introduction to shock disruption   

 

The stress developed within the cell wall can be estimated by modelling the 

microorganism as a spherical shell. Depending on the type of the microorganisms, a 

cylindrical model may be a better approximation in some cases. The approach for a 

cylindrical geometry is identical to that presented here, but the results are different.  

 

The cell wall is the outer layer of the cell which covers the cell membrane and the 

cell cytoplasm. The cell membrane is also known as the plasma membrane. It is the 

cell wall that experiences stress due to external loading. In many research analyses 

(especially mathematical models) membrane materials are treated as they thought 

they are cytoplasm materials (Hartmann et al., 2006; Schlegel, 1992). 

 

The cell wall can be found in bacteria, yeast, algae and plant cells, while it is absent 

in animal cells one of the difference between the animal cell and the yeast cell is that 

the yeast cell is surrounded by a cell wall to protect the membrane and the 

cytoplasm, while the animal cell has no cell wall. 
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In the present work, the cell wall is assumed to be composed of a homogeneous, 

linear elastic material. The material within the membrane is considered to be entirely 

cytoplasm and is likewise treated as a homogeneous, linear elastic material. The 

stress distribution on a yeast cell wall in a spherical shell under hydrostatic pressure 

uniform load is investigated. Perrier-Cornet et al. (1999) and Hartmann et al. (2006) 

used the same approach in evaluating the mechanical properties of the cell when it 

was subjected to a uniform external pressure loading. A similar mathematical 

approach developed by Hartmann et al. (2006) was adopted in the present work. The 

von Mises stress and strain results were then compared with the Hartmann et al. 

(2006) mathematical model and with their experimental results. The von Mises stress 

and strain results in the present work and Hartmann et al. (2006) were found to be 

comparable.  

This analysis proceeds by: (1) considering the internal pressure that develops within 

the cytoplasm as a consequence of the mechanical deformation of the cell wall; (2) 

combining the internal pressure-shell deformation relationship with the spherical 

shell equations to determine the ratio of internal to external pressure; and (3) 

considering the von Mises stress equations which can then be used to evaluate the 

stress state of the shell, the cell wall of the microorganism.  

 

4.2.1 Cytoplasm deformation  

 

If an isotropic material element is under the stresses σx, σy , and σz, the change of its 

volume per unit volume (e) can be written as (Beer et al., 2005)  
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where 

ΔV =  the change of the volume 

 V  =  initial volume 

v   =  Poisson’s ratio for the material 

E  =  modulus of elasticity of the material 

 

σx, σy and σz = normal stress components along x, y and z axes respectively. 
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The cytoplasm is assumed to be an isotropic fluid and hence each stress component 

σx, σy and σz in equation 4.1 is identical and equal to the internal hydrostatic pressure 

Pi which develops as a result of the deformation of the wall. This internal pressure is 

related to the volume change of the internal material and its bulk modulus according 

to equation 4.2 
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where the bulk modulus or the modulus of compression B of the internal material 

(the cytoplasm) is 
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B ,  4.3 

 

and a1   =   internal radius before the loading,  

            a2  =   internal radius after the loading.    

 

4.2.2 Cell wall deformation and stress 

 

The thick wall spherical shell theory provides an analytical approach that can be used 

to evaluate the tangential and normal stress within a spherical shell subjected to an 

external and/or internal pressure. Although in the constitutive law, the relationship 

between the stresses-strain in a yeast cell wall is not well defined as reported by 

Stenson et al. (2010), several studies (Smith et al., 2000a; Hartmann et al., 2006) 

demonstrated that a linear elastic material model is an appropriate approach that can 

be used when evaluating the mechanical properties of yeast cells. Thus, in the present 

work, the relationship between the stress and strain of the yeast cell wall is 

considered to be linear. Hartmann et al. (2006) used linear isotropic elastic material 

model in their study to understand the yeast disruption when the cell is subjected to a 

uniform external pressure. This approach matches with the assumptions of the 

present work, in which it is assumed that the yeast cell remains spherical during a 

compression process. 
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A thin walled shell theory approach is more appropriate when the ratio of the cell 

thickness to its diameter is less than 0.05. In this case, the tangential stress and hoop 

stress would be constant across the wall thickness (Beer et al., 2005). In the case of a 

thin walled shell theory, the radial stress can be neglected. For S. cervesia the 

thickness of the cell wall to its diameter ratio ranged between 0.03 and 0.05 (Smith et 

al., 2000a; Hartmann et al., 2006; Stenson et al., 2010), therefore, a thick or a thin 

walled shell theory can be adopted. Hartmann et al. (2006) and Schlegel (1992) 

adopted a thick-walled theory in their works. The advantages of using thick walled 

spherical theory is that the radial stress through the cell wall would be calculated 

across the thickness of the cell wall as reported by Hartmann et al. (2006). In the 

present work, a thick walled spherical shell theory is adopted, and therefore, the 

tangential and the radial stresses are to be considered in the mathematical 

calculations.  

 

Hartmann et al. (2006) in their linear spherical shell model showed that the external 

pressure transmitted through the shell to the cytoplasm decreased marginally. It was 

also reported that the pressure drop through the cell wall varied with the material 

properties of the cell wall, the cytoplasm and the thickness of the cell wall (Hartmann 

et al., 2006). Therefore, in the present work, it becomes important to study the effect 

of the wall thickness on the yeast disruption.  

 

Consider a spherical shell with an internal diameter of a and an external diameter of 

b, Fig. 4.1. The internal pressure Pi arises due to the elasticity of the cell wall and the 

external pressure Pe. The two stress components that are generated along an element 

of the shell can be described using the two equilibrium equations (Timoshenko and 

Goodier, 1982), which are 
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where  
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a   = internal radius, and  

b   = external radius. 

 

Pi

Y

b a
X

r

Po

 

Fig. 4.1 Spherical shell configuration 

 

If we consider the internal surface of the shell, and thus substitute r = a in equation 

4.4 and 4.5, the tangential and radial stresses at the internal surface of the spherical 

shell are 
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The strain in the tangential direction (εt) generated at the internal surface of the wall 

due to the external pressure is (Beer et al., 2005)   
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Now the tangential strain at the internal surface can be written as:  

Pe 
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and therefore,    
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Equation 4.2 includes the ratio  
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Since only small tangential strains are considered (ε << 1), we can write  
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with a maximum error O(εt
2
). Substituting equation 4.12 in equation 4.2 yields 

B
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t
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 .  4.13 

The internal to external pressure ratio can be obtained by substituting σr and σt of 

equation 4.6 and 4.7 in equation 4.8, and also replacing the strain in equation 4.8 

with equation 4.13.  
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. 4.14 

 

In the present work, it is assumed that the strain value is very small, and thus the 

terms   
     

  in equation 4.11 can be ignored (approximating zero). This 

approximation is acceptable in the analytical work as recommended by Hartmann et 

al. (2006). For example, the tensile stress and the modulus of elasticity of a 

commercial yeast is 25 MPa and 150 MPa respectively as reported by Kleinig 

(1997), the calculated strain is then 0.16. In this case, the calculated   
       

  is 

0.08, which is a very small value comparing with the product of      , which is 

1.32. Thus,   
     

   term can be ignored in equation 4.11.  
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4.2.2.1 Cell permeability 

Permeability is not a core part of the study reported here.  It is however important to 

demonstrate that permeability in yeast cell is not a major issue. Feng and Yang 

(1973) and Lardner and Pujara (1980) assumed the yeast cell to be a spherical cell 

filled with an incompressible liquid. The incompressible liquid volume was assumed 

to be constant, this implied im-permeability of the cell wall material. This approach 

was confirmed by Perrier-Cornet et al. (1999). Stenson et al. (2010) used a 

micromanipulation compression rate to study the mechanical properties of cells and 

assumed that the water transfer from the cell wall during the compression to be 

negligible. Fleet (1991) reported the yeast cell wall to be a non-permeable substrate 

(Kleinig, 1997). Thus in the present work, it has been assumed that the initial 

compression of the cells is pure compression with no major mass transfer, which 

means the cell is non-permeable. The internal to an external pressure ratio will then 

be close to one. 

Osmotic pressure is the hydrostatic pressure contributed to prevent the water flow 

across the membrane due to concentration difference of the solution on either side.  

A single microorganism such as yeast maintains a higher internal pressure than that 

of the surrounding medium. This pressure is counteracted by the cell wall and 

referred to a cell turgor pressure. It was reported that in the case of yeast, the effect 

of the static pressure on the cell wall properties is insignificant (Hartmann et al., 

2006).  

Levin et al. (1978) assumed that the turgor pressure of yeast cell wall was 1.33 MPa, 

the yeast wall thickness 90 nm, and cell diameter 5  . Using these data, the 

expected tensile stress in the cell wall is 20 MPa using the following relationship 

(Kleinig, 1997) in equation 4.15. 

  
  

  
                                                                                                                                         

 

Kleinig (1997) assumed that the shape of the yeast is spherical, and his calculation 

showed that the tensile cell wall pressure is 25 MPa. It would be expected that the 

yeast cell can withstand a pressure of around 20 to 25 MPa as suggested by this 

simple calculation and the recommendation of Kleinig (1997).  
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The cell wall is able to stretch during the growth phase, and to also respond to any 

external changes in the cell’s osmotic environment (Levin et al., 1978). Ludwig 

(1997) and Hartmann et al. (2004) confirmed that the effect of high hydrostatic 

pressure is more significant on slender bacteria rather than these with a spherical 

shape. Hartmann et al. (2004) assumed that mechanical state of yeast cell does not 

change during the holding pressure. Thus, in the present work, it can be assumed that 

the hydrostatic pressure will have no significant effect on the osmotic pressure. A  

saline was used to prepare the inoculums and to balance the osmotic pressure of the 

cell with the medium. 

 

4.2.3 Stress normalized by external pressure 

 

The tangential stress at the internal surface of the cell wall, normalized with the 

external pressure, can be obtained by substituting the internal to external pressure 

ratio represented in equation 4.14 in equation 4.7 giving 
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4.2.4 Von Mises stress 

 

In general, the von Mises stress σv and strain εv can be evaluated using the stress 

components along x, y and z axes (Beer et al., 2005)  
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where 

τxz  =   shear stress along x-z axes  

τxy   =  shear stress along y-x axes 

τyz   =  shear stress along y-z axis 
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    =  strain along x axes 

    = strain along y axes  

    =  strain along z axes 

    = strain  due to shear on xz 

   = strain  due to shear on xy 

   = strain  due to shear on yz. 

 

In the case of a uniformly loaded 2D spherical configuration, the tangential stress is 

the same in all directions, this yields  

,0 yzzxxx     4.19 

and at allocation where the z axes is aligned with the radial direction,  

,, zrtyx  
 
and thus, the von Mises stress σv is  

rtv   ,    4.20 

which is a general result for uniformly loaded spherical shell.  

 

4.3 Physical properties of microorganism cells 

 

Several methods have been used to evaluate the mechanical properties of 

microorganisms’ cell walls. Most of these methods are based on the measurement of 

the cell wall deformation due to applied loading. A widely used technique consists of 

squeezing the microorganism between two parallel plates and measuring 

simultaneously the distance between the two plates and the compression force. These 

techniques are often used to evaluate only the bursting force (Zhang et al., 1992; 

Rachik, 2006). Atomic Force Microscopy (AFM) is a widely used nano-indentation 

technique for the measurement of the cell elastic properties. Force versus indentation 

curves are usually analysed with the aid of mathematical or numerical models to 

provide quantitative information on sample elasticity (Touhami et al., 2003).     

 

In order to apply the shell analysis of the previous section to the identification of 

mechanical disruption of microorganism due to pressure effects, representative 

values for the physical properties of microorganism are required. In this section, 

some techniques for identification of certain physical properties of microorganism 



Pressure 76 Chapter 4 

 

are reviewed and representative values for the relevant physical properties of S. 

cerevisiae identified from the literature. Table 4.1 presents the dimensions and the 

mechanical properties of yeast adopted in the present work. The following subsection 

discusses the origin of the values presented in Table 4.1. 

 

Table 4.1 S. cervisiae geometric and mechanical properties adopted in this work. 

Dimensions S. cervisiae dimension and material properties 

Radius  

Thickness  

Thickness / Radius 

 2.5-2.7 µm 

 0.135 µm 

approximately 0.05 

Modulus of elasticity 

Cell wall 

Cytoplasm 

 

112 MPa 

6.2 MPa 

Density 

Cell wall 

Cytoplasm 

 

3500 kg/m
3
 

1100 kg/m
3
 

Bulk modulus  

Cytoplasm 

 

2.2 GPa 

Poisson’s ratio 

Cell wall 

Cytoplasm 

 

0.4 

0.4995 

Cell wall Strength   

von Mises stress 

von Mises strain 

 

70 MPa 

0.85 

 

4.3.1 Dimensions 

 

According to Smith et al. (2000a), yeast cell diameters can range from approximately 

3 μm to 6 μm, depending on the growth phase. The diameter of the cell is likely to be 

around 5 μm. The cell wall thickness to the cell radius ratio was assumed to be 

around 5% following Smith et al. (2000a). Another work reported that a commercial 

yeast radius is between 2.5 – 2.8 µm, and the thickness to the radius ratio is around 

0.037 (Smith et al., 2000c).  
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4.3.2 Modulus of elasticity – cell wall 

 

Svaldo (2006) investigated the mechanical properties of S. cerevisiae by performing 

AFM measurements. A quantitative evaluation of the cell wall elasticity was 

obtained through the Hertz-Sneddon model which showed that coated cells (with 

hard protein layers) are characterized by a Young’s modulus higher than the value of 

the uncoated cells and similar to the value observed on the bud scar region of 

uncoated cells. The Young’s modulus of the cell itself was reported to be 1.79 

(±0.08) MPa for encapsulated cells, 1.12 (±0.02) MPa for uncoated cells without bud 

scar and 2.0 (±0.2) MPa for uncoated cells with bud scar. Svaldo (2006) used a 

combined AFM imaging and nano-indentation measurement for bud scar and its 

mother of S. cerevisiae, and observed a higher rigidity of the bud scar compared to 

the mother cell. For uncoated mother cells, the Young’s modulus value was 0.6 

(±0.4) MPa while the value was 6.1 (± 2.4) MPa for the bud scar. From the Young’s 

modulus values, it was noticed that the bud scar is about 10 times stiffer than the 

mother cell surface, a finding which was consistent with the presence of chitin in the 

bud scar as reported by DeMarini (1997). These values, which are in the range of 

MPa, are in agreement with values reported in literature for bacterial cell such as E. 

coli of Yao (1999), but they are about hundred times smaller than the value of 150 

MPa reported for yeast by Smith et al., (2000b, and c) and Hartman et al. (2006).   

 

It appears these widely different values may be attributed to different growth phases 

and whether the measurement was conducted on the cell as a whole or the wall of the 

cell (Smith et al., 2000b). Middelberg (1992) determined that the Young’s modulus 

of the wall of a single S. cerevisiae cell was about 100 MPa and showed that yeast 

cells strengthen as they enter the stationary phase by increasing the wall thickness 

without altering the average elastic properties of the cell wall material. Smith et al. 

(2000a), reported the Young’s modulus of the commercially available yeast cells’ 

wall to be 112 MPa (±3 MPa) during the exponential growth phase and 107 MPa 

(±2.8 MPa) during the stationary phase. Smith et al. (2000c) reported that the 

Young’s modulus of a commercial yeast cell with a wall thickness of 90 nm and 

radius of 2.7 µm was approximately 127 MPa (±4 MPa) during the stationary phase. 

Hartman et al. (2006) tested different types of microorganisms and the yeast cell wall 
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modulus of elasticity was reported to be 150 MPa. From the relevant literature, it can 

be concluded that that average modulus of elasticity of the yeast cell wall is in the 

range of 100 MPa to 150 MPa. 

 

4.3.3 Poisson’s ratio 

 

Fry (1995) indicated that the relationship between the mechanical properties of the 

plant cell walls and the structure of the wall is not fully understood. The contribution 

of other wall components and their interaction with cellulose is not clear (Cosgrove, 

2000). Wang et al. (2004) reported that there is no reliable method of measuring the 

material properties of walls of single cells. There is a difference between the cellular 

Poisson’s ratio and the actual value for the cell wall. In this research, the cell wall 

Poisson’s ratio is of interest.  

 

According to Guillaume et al. (2002), the cellular Poisson’s ratio, i.e., the value of 

Poisson’s ratio obtained by treating the cell as a single unit, remains unknown. 

However experiments by Maniotis et al. (1997) reported that the animal cell 

Poisson’s ratio is around 0.25 (±0.05). In experimental work by Savldo (2006), the 

Poisson’s ratio of the biological cell was assumed to be 0.5. Touhami et al. (2003) 

agreed with Svaldo (2006) and assumed that the Poisson’s ratio can reasonably be 

treated as 0.5 since biological cells are composed of soft material like water. Lardner 

and Pujara (1980) treated the tomato cell as incompressible, with a Poisson’s ratio of 

less than 0.5. 

 

Wang et al. (2004) conducted experimental and simulation work on the actual cell 

wall Poisson’s ratio. Wang et al. (2004) considered the cell wall material to be 

incompressible with an equivalent Poisson’s ratio of less than 0.5, but claimed there 

is no sufficient and/or reliable method to measure the Poisson’s ratio of the tomato 

cell wall. Wang et al. (2004) tested a tomato cell wall under compression between 

two plates and performed simulations for different Poisson’s ratios in the range from 

0.3 to 0.5. The results were not particularly sensitive to the value of Poisson’ ratio 

and therefore Wang et al. (2004) used a Poisson’s ratio of 0.4 for all subsequent 

modelling.  
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In the simulations by Guillaume et al. (2002), when a cell stretch was applied, the 

Poisson’s ratio of the cell was varied from 0.2 to 0.5, while other parameters were 

kept constant. Guillaume et al. (2002) reported that strains varied by 15% over the 

range of Poisson’s ratio values. However, in the models of hydrostatic pressure or 

fluid shear, Poisson’s ratio was treated as an important factor and it reduced the 

maximal, median, and average maximal strains by 93% when Poisson’s ratio was 

varied from 0.2 to 0.5 Guillaume et al. (2002). Therefore, Poisson’s ratio was of 

importance in hydrostatic compression or fluid shear experiments, which applies 

predominantly compressive stresses. Hartmann et al. (2006) used different Poisson’s 

ratios for different cell wall in the range between 0.3 and 0.499. In the case of yeast, 

Hartmann et al. (2006) assumed the Poisson’s ratio of the cell to be 0.499. From the 

cited papers, it was found that the most common yeast cell wall Poisson’s ratio value 

used was 0.4, and that will be adopted in this work. 

 

4.3.4 Bulk modulus 

 

Hartmann et al. (2006) suggested that cytoplasm has a viscosity of 1.5 Pa.s and a 

bulk modulus of elasticity of 2.29 GPa. Hartmann et al. (2006) ignored the viscous 

properties in their analyses as they were considered to be very small and to have no 

significant impact on the stress. Smith et al. (2000c) reported that the cytoplasm is 

assumed to hold similar properties to water (as biological cells are composed of 

largely liquid material) and hence a Young’s modulus of 6.2 MPa was assumed. 

Assuming the cytoplasm has a Poisson’s ratio value of 0.4995 and E of 6.2 MPa, 

thus the bulk modulus elasticity (B) of the cytoplasm is calculated as 2.2 GPa using 

the equation  

 

   
 

       
                                                                                                                          

 

where 

B = Bulk modulus of elasticity 

E = Modulus of elasticity  

v = Poisson’s ratio.  
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As reported by Hartmann et al. (2006), the physical properties of the cytoplasm are 

very close to pure water, and this assumption is valid because of the high percentage 

of water in the cytoplasm. The B value of pure water is approximately 2.2 GPa, and 

value of 2.2 GPa was adopted in this work based on equation 4.21.  

 

4.3.5 Cell wall and cytoplasm density 

  

Cell wall and cytoplasm density are required for the dynamic analysis of section 4.6 

so a simple calculation was employed to estimate the cell wall density based on the 

cell density and the cytoplasm density. In the case of commercial yeast quoted by 

Kleinig (1997), the cell density was 1330 kg/m
3
, and the wall thickness to radius 

ratio was 5%. If the cytoplasm density is assumed to be slightly higher than water, 

say 1050 kg/m
3
, this will lead to a cell wall density of 3500 kg/m

3
 as shown via the 

following equations. 

 

Mcell = Mcyt + Mmem,                    4.22 

ρmem =  ρcell (Vcell/Vmem)  - ρcyt(Vcyt/Vmem),             4.23 

where,  

ρcell = cell density, 

ρcyt = cytoplasm density,  

ρcw = cell wall density, 

Vcell = cell volume, 

Vcyt = cytoplasm volume, 

Vcw = cell wall volume, 

Mcell = mass of the cell, 

Mcyt = mass of the cytoplasm, and  

Mcw = mass of the cell wall. 

 

4.3.6 Cell wall strength 

 

The von Mises stress and strain methods were developed to help predict the yielding 

of metals in which are stresses are present in all three directions. The von Mises 

approach provides a simple way of reducing the combination of the stresses in three 

directions into a single failure criterion. Von Mises stress theory is a possible failure 
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criterion that is commonly used to evaluate the yeast cell wall rupture (Smith et al., 

2000b; Hartmann et al., 2006; and Stenson et al., 2010). Stenson et al. (2010) 

reported that von Mises stress is often used to determine the yielding point of ductile 

material (such as cell wall) – the point at which is begins to deform plastically. 

Stenson et al. (2010) reported that the corresponding stress and strain failure of yeast 

cell were 102 MPa and 0.55. However these figures do not match with the reported 

von Mises stress and strain suggested by Smith et al. (2000b). This was because 

Smith et al. (2000b) assumed the stretch cell ratio was constant as explained by 

Stenson et al. (2010). 

 

In line with the work of Smith et al. (2000b) determined that the von Mises stress and 

strain. The von Mises strain to rupture of the cell wall was 82% (±1.4) for the 

exponential phase, 80% (±1.6) for stationary phase and 75% (±8) for the commercial 

yeast (Smith et al., 2000b). The stresses produced in a thin wall rigid sphere filled 

with liquid has been evaluated by Kleinig and Middelberg (1998) using 

micromanipulation techniques, but no further progress in understanding and 

characterizing the mechanical properties of the yeast cell wall was obtained.  

 

Following Smith et al. (2000b), Hartmann et al. (2006), Stenson et al. (2010) and 

Kleinig (1997), the von Mises stress and strain required to rupture the cell wall of the 

yeast will be taken as 70 MPa and 0.85 respectively.  

 

Another failure criterion is the strain energy per unit volume (Stenson et al., 2010). 

The energy required to break the cell wall should be greater than surface energy of 

the cell wall which depends on the mechanical properties of the cell wall. Stenson et 

al. (2010) reported that a strain energy of 30 MJ/m
3 

is required to break the yeast cell 

wall.   
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4.4 Result and discussion of quasi-static analysis 

 

4.4.1 Comparison with Hartman et al. (2006) analysis  

 

The internal pressure generated in the cytoplasm, the radial stress and the tangential 

stress generated in the cell wall were calculated using a thick wall spherical shell 

theory. The results were then compared with the Hartmann et al. (2006) model using 

yeast material properties given in Table 4.1. Table 4.2 shows very good agreement 

between the internal to external pressure ratio results provided by the Hartmann et al. 

(2006) model and the presented quasi-static analysis. As illustrated in Table 4.2, the 

difference percentage between the two results is very small. 

 

Table 4.2 Comparison of Pi/Pe results between Hartmann et al. (2006) and the 

present static analytical model. 

a/b Pi/Pe 

Hartmann et al. (2006) 

Pi/Pe 

Present model 

Difference  

 

0.90 0.9997 0.9990 0.0007% 

0.93 0.9998 0.9993 0.0005% 

0.96 0.9999 0.9996 0.0003% 

0.99 0.9999 0.9999 0.0000% 

 

 

4.4.2 Assessment of σt/σr 

 

The ratio of tangential to radial stress generated at the inner surface of the cell wall 

can be calculated directly using three dimensional stress-strain equations (Beer et al., 

2005) 
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Considering a point on the spherical cell wall which crosses the y-axis, 

 

σr = σy, and σt = σx = σz, and εx = εz. 

 

The ratio of the tangential stress and radial stress can therefore be achieved by 

dividing equation 4.25 by equation 4.26, and using      , this yields:   

  

  

  
 

 

   
                                                                                                                                

                 

Equation 4.27 indicates that σt/σr varies with the cell wall Poisson’s ratio only. For 

example, when the cell wall is assumed to have ν = 0.5, σt is expected to be equal to 

σr (according to equation 4.27). For this case, equation 4.6 and 4.7 were solved to 

find the tangential to radial stress ratio using B = 2.2 GPa, E = 6.2 MPa, ν = 0.4995 

for different a/b ratio and it was found that the tangential stress is equal to radial 

stress as shown in Fig.4.2. As shown in Fig. 4.2, von Mises stress calculated from 

equation 4.20 is equal to zero for the case v = 0.4995, and this matches with the 

results obtained from equation 4.27, where the tangential stress must equal to the 

radial stress in this case.  



Pressure 84 Chapter 4 

 

 

Fig.4.2 The normalized internal pressure, tangential stress, radial stress, and von 

Mises stress for different radius ratios and E = 6.2 MPa, B = 2.2 GPa, v = 0.4995. 

 

4.4.3 Normalized internal pressure (Pi/Pe)  

 

The effect of Poisson’s ratio ( ), modulus of elasticity (E) and bulk modulus (B) on 

the internal to external pressure ratio (Pi/Pe) for different internal to external radius 

ratios (a/b) was investigated. Fig. 4.3 represents the relationship between a/b and 

Pi/Pe for different Poisson’s ratios (v). Fig. 4.3 shows that Pi/Pe is approaching one 

when the thickness of the shell wall decreases for the ν values of 0.35, 0.4, 0.45 and 

0.4995. The E of the cell wall is 112 MPa and the B of the cytoplasm is 2.2 GPa for 

this calculation (as given in Table 4.1) giving the value of E/B = 0.05.  

 

As shown in Fig. 4.3, when ν increases, the Pi/Pe values decrease. For example Pi/Pe 

= 0.98 for a/b = 0.9 and ν = 0.4995, while the Pi/Pe = 1.07 when ν = 0.35 for a/b = 

0.9. Over the range of a/b values considered in Fig. 4.3, the Pi/Pe values vary 

between 0.98 and 1 when ν = 0.4995, however Pi/Pe varies between about 1.08 and 1 

for ν = 0.35. This result closely follows the results obtained from Hartmann et al. 

(2006). In the case of S. cervasia considered in this work, where ν = 0.4, B = 2.2 

GPa, and E is 112 MPa or E/B = 0.05, the Pi/Pe ratio is about 1.024 when a/b is 0.95 

as shown in Fig. 4.3.  
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Fig. 4.3 The effect of ν values on Pi/Pe as a function of a/b when E/B = 0.05. 

 

Fig. 4.4 shows that the Pi/Pe ratio increases when the E/B values decrease. The 

results presented in Fig. 4.4 shows that Pi/Pe is approaching unity when a/b is 

approaching one for E/B values of 0.002, 0.05 and 0.11. The E/B values of 0.002, 

0.05 and 0.11 were selected because a similar range of these values has been reported 

in the literature (Smith et al., 2000c; Hartmann et al., 2006 and Wang et al., 2004). In 

the case of the S. cervisiae (Table 4.1) the Pi/Pe value is approximately 1.024 when 

a/b = 0.95, v = 0.4, and E/B = 0.05 as shown in Fig. 4.4.  
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Fig.4.4 The relationship between the a/b ratio and Pi/Pe for different E/B values and 

cell wall Poisson’s ratio of 0.4. 

 

4.4.4 Tangential and radial stress  

 

The effect of Poisson’s ratio and the E/B ratio on the normalized tangential and radial 

stress at the inner surface of the cell wall for different a/b ratios are studied in this 

section.  Fig. 4.5 shows the relationship between the a/b ratio and σt/Pe and σr/Pe for 

ν values of 0.35, 0.4, 0.45 and 0.4995 and E/B of 0.05. Results presented in Fig. 4.5 

illustrate the following: 

1. When the spherical shell becomes thinner (i.e. a/b values approaching 1), 

σt/Pe increases for ν values of 0.35, 0.4, 0.45, but not in the case when ν = 

0.4995 (as the cell wall material becomes water-like). When ν = 0.4995, σt/Pe 

decreases slightly for a/b approaching one, Fig.4.5 (a). The radial stress 

follows the same trend as the tangential stress when ν = 0.4995, while the 

radial stress increases when a/b increase for cell wall ν values between 0.4 

and 0.35, Fig.4.5 (b).  

2. Some researchers believe that ν has a significant influence on the stress 

generated in the cell wall while others believe differently (Touhami et al. 

2003; Svaldo 2006; Smith et al., 2000a; Wang et al., 2004). Touhami et al. 

(2003) in their experimental work agreed with the result reported by Svaldo 

(2006) that Poisson’s ratio has an insignificant effect on the tangential stress 
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developed on the cell wall when a static load is applied. The present results 

indicated that the Poisson’s ratio has a minor effect on the tangential stress 

developed at the cell wall when ν = 0.4995, but it has a significant effect on 

this stress when ν is 0.35 or 0.4, which is probably a better approximation in 

the case of yeast.   

3. As discussed in section 4.3.3, Wang et al. (2004) tested a tomato cell wall  

under compression (experimentally and numerically) between two plates for 

different Poisson’s ratio in the ranged from 0.3 to 0.5. The result showed that 

there was no great difference in the external force required to rupture the cell 

at a given deformation for a change of Poisson’s ratio. Therefore Wang et al. 

(2004) used a Poisson’s ratio of 0.4 for all subsequent modelling. On the 

other hand, in the model of hydrostatic pressure reported by Guillaume et al. 

(2002) showed that the Poisson’s ratio played an important factor in the 

stress-strain calculation and the change of the Poisson’s ratio from 0.2 to 0.5 

reduced the average maximal strains by 93%. The difference between these 

two results could be due to the different test configurations. In the present 

study, the configuration is closer to Guillaume et al. (2002). The analytical 

results of the present work, Fig. 4.5, demonstrates that Poisson’s ratio is an 

important factor in the calculation of stress and strain, thus the effects of ν 

needs to be carefully evaluated.  

4. Analytical results presented in Fig. 4.5, show that the change of a/b ratio has 

an important influence on the tangential and radial stress developed on the 

cell wall for different Poisson’s ratio. In the case of S. cervisiae, the results of 

the normalized tangential stress for different a/b ratio is presented in Fig. 

4.5a. The results show that when a/b is 0.95 (corresponding to yeast) the 

normalized tangential stress is approximately -0.775, negative sign show the 

direction), when E/B = 0.05 and ν = 0.4. 

5. Fig.4 .5b shows the relationship between a/b ratio and radial stress for 

different Poisson’s ratio. The results of this curve are identical to the curves 

for Pi/Pe, which is the expected result as indicated in equation 4.6.  In the case 

of yeast, the results show that when a/b is 0.95 (yeast) the normalized radial 

stress is expected to be approximately 1.024, when E/B = 0.05 and ν = 0.4. 
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a) Normalized tangential stress

 

b) Normalized radial stress 

Fig. 4.5 The relationship between the internal to external radius ratio and a) the 

normalized tangential stress and b) the normalized radial stress  for different 

Poisson’s ratios and E/B = 0.05. 

 

Fig. 4.6 describes the effect of the a/b ratio on σt/Pe for different E/B values of 0.002, 

0.05 and 0.11. This figure shows that the increase of a/b leads to an increase in σt/Pe 
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stress for E/B values of 0.002, 0.05 and 0.11. As for yeast cells with B = 2.2 GPa, E = 

112 MPa and ν = 0.4, and a/b = 0.95, the value of σt/Pe is 0.775. 

 

 

Fig. 4.6 The relationship between the a/b ratio and the normalized tangential stress 

and different E/B ratios for ν = 0.4. 

 

4.4.5 Von Mises stress  

 

The relationship between the a/b ratio and the normalized von Mises stress (σv/Pe) 

for different ν values is presented in Fig. 4.7. As discussed in section 4.3, previous 

researchers have assumed that the cell wall material fails at a critical von Mises 

stress and von Mises strain, the values of which can be determined experimentally 

(Smith et al., 2000b; Hartmann et al., 2006; Stenson et al., 2010). In the present 

study, σv/Pe was evaluated for different a/b ratios. The von Mises stresses represent a 

simple way of representing the combination of the stress in three dimensions as a  

single stress. The Poisson’s ratio values in this study were varied from 0.35 to 0.4995 

as reported section 4.3.3. 

  

As can be seen in Fig. 4.7, when ν = 0.35, σv/Pe reaches a value of 0.42 at a/b = 0.9, 

while σv/Pe reaches a value of 0.09 and 0.13 when ν = 0.4995 and 0.45 respectively. 

These are rational results, since σv/Pe is the difference between the normalized 
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tangential and radial stress (Fig. 4.5). Fig .4.7 also shows that the increase of a/b 

ratio will have only a small influence on σv/Pe for high Poisson’s ratios such as 

0.4995 and 0.45, this figure shows a very minor change of σv/Pe when a/b changes. 

In the case of S. cervisiae, where it is assumed that ν = 0.4, E/B = 0.05 and a/b ratio 

0.95, the σv/Pe value is around 0.255.   

 

 

Fig. 4.7 The relationship between the internal to external radius ratio and von Mises 

stress for different Poisson’s ratios, and E/B = 0.05. 

 

The relationship between the σv/Pe and a/b for E/B values of 0.002, 0.05 and 0.11 is 

presented in Fig. 4.8, which shows that the σv/Pe values decrease when the cell wall 

becomes thinner (a/b values increase).  
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Fig. 4.8 The relationship between the internal to external radius ratio and von Mises 

stress for different E/B ratios, and ν = 0.4. 

 

4.4.6 Conclusion 

 

This parametric study has shown the following. 

 

1. The internal to external pressure ratio and radial stress developed in the cell 

wall of the yeast increases when the cell wall Poisson ratio’s and E/B 

decreases. In the case of yeast where it is assumed v = 0.4, a/b = 0.95 and E/B 

= 0.05, the extended to internal pressure ratio was found to be 1.025.   

2. The tangential stress developed on the cell wall was found to be increased 

when Poisson’s ratio and E/B decreased. In the case of yeast, the normalised 

tangential stress was found to be -0.775.  

3. The normalized von Mises stress was found to be increased when the cell 

wall Poisson’s ratio the E/B value decreased. The normalized von Mises 

stress was found to be around 0.255 in the case of yeast.  

The analytical results obtained from this model will be used in the discussion of the 

numerical simulations and of the experimental work. 
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4.5 An introduction to the FE simulations  

 

A numerical model was developed using the commercial FE software package 

(ABAQUS 2010) to study the dynamic behaviour of a microorganism modelled as a 

spherical shell and with dimensions and physical properties close to S. cerevisiae. 

The microorganism model will be suddenly subjected to external uniform pressure 

loadings.  

 

An existing USQ gas gun has been used with different pistons to generate shock 

wave pressures in the range of 100 MPa to 400 MPa. The ABAQUS model was 

developed to help understand the extent of cell wall rupturing achieved using this 

facility. The effect of shock loading on the microorganism's cell wall was 

investigated numerically using von Mises stress theory of failure as it has been used 

extensively by others in related application (Smith et al., 2000b; Wang et al., 2204; 

Hartmann et al., 2006; and Lee et al., 2000). A single cell of yeast was used in this 

simulation and was assumed to be isotropic, incompressible with the material 

properties presented in Table 4.1. The governing equations and other mathematical 

equations can be found in the ABAQUS manual help. 

 

Tamagawa and Akamatsu (1997) used a free piston shock tube with the ability to 

generate a pressure wave of between 10 and 40 MPa. The experiment was used to 

determine the threshold of maximum pressure, rise time, and energy for damage to 

various living tissue such as red blood cells and cancer cells. In their work, 

Tamagawa and Akamatsu (1997) used an optical device to determine the degree of 

the cell damage using a deformation approach. The cell diameter reported in 

Tamagawa and Akamatsu (1997) was larger than the yeast, being in the range of 10 

micrometer. Tamagawa and Akamatsu (1997) reported that the effect of the 

concentration of cell, on the cell disruption, was very significant. This effect was also 

related to the distance between the cells, Young’s modulus of the cell wall, cell 

diameters (Tamagawa and Akamatsu, 1997). 

 

A shock work was conducted by Lee et al. (2000) using two stage shock treatment. 

The results showed that transdermal delivery increased with increasing the peak 

pressure (Lee et al., 2000). Lee at al. (2000) claimed that the shock tube extends the 
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envelope of the parameters available for the study of biological effects of the shock 

wave. Hosokawa (1997) reported that using a shock tube to generate pressure waves 

of 4 MPa for treatment of non adherent cells, including normal and transformed 

thymus cells and leukaemia cells, destroyed cells proportionally with pulse pressure. 

Tougher cells such as fibroblast cells and melanoma cells required higher pressure up 

to 6.5 MPa.  

 

Kerfoot (1990) demonstrated that there was no significant killing of four species of 

bacteria tested using 4000 repeated high energy shock waves in the range of 5 MPa. 

Kerfoot (1990) raised many questions to be answered: for example, do high energy 

shock waves kill bacteria? If so, is there a large enough kill to be clinically 

significant? Are high pressure shock waves bactericidal to all, some or none of the 

different strain of bacteria, and finally are different types of a shock wave more 

effective bactericidal agents? According to Morgan (1988), high energy shock waves 

generate a physical effect including free radical production, development of high 

pressures and acoustic cavitation. 

 

The above cited papers investigated the damage and disruption quality using shock 

waves. The applications of disruption using shock waves were mostly concentrated 

on the soft and fragile cell such as blood cell and cancer as well as live animal cells. 

The present work investigates the effect of dynamics pressure rise on the yeast cell 

wall rupturing. The analytical calculation presented in section 4.4 aimed to analyse 

the stress developed in the cell wall due to external static loads. The remainder of 

this chapter will focus on dynamic (shock) effects on the cell wall rupturing while 

using the quasi-static results as a point of reference.   

 

The material properties presented in Table 4.1 are used in comparing the results of 

this FE simulation with the analytical solution presented in section 4.3. The 

analytical and numerical results for Pi/Pe, σv/Pe, and σt/Pe are expected to be 

comparable especially when the FE model is solved for static loading. Another aim 

of this section is to evaluate the effect of the stress amplification due to the pressure 

wave reflection between the cell wall and the cytoplasm of the microorganism.  
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4.6   FE model structure and validation 

 

Model geometry  

 

Fig. 4.9 illustrates the model geometry for the spherical (axi-symmetric) 

microorganism configuration adopted for this simulation. The model consists of a 

long water tube containing a single yeast cell sitting on the centre line of the tube. A 

detail description of the shock tube apparatus is presented in section 4.10. The model 

consists of three parts: cell wall, cytoplasm, and water. Since the size of the yeast is 

very small compared to the water tube (in the range of micrometer), the cell wall 

thickness to radius ratio was maintained. The interface between the materials was 

treated as “hard contact, surface to surface explicit” with no damping and no 

separation. These were used to simulate the impact transient process and pressure 

transfusion through the water to the cell wall and cytoplasm of the cell. The friction 

and the viscosity were not considered in this simulation.  

 

Mesh construction 

 

As recommended by the ABAQUS manual, a 11543 quadratic triangular element 

explicit type named CAX6M was used for part 1 (water) and part 3 (cytoplasm), and 

2000 linear triangular element explicit type CAX3 was used to build part 2 (cell 

wall). The total number of nodes that was used to build the geometry of this model 

was 24680 (see Figure 4.9). Validation and error estimation of the model was 

conducted (Appendix A and B) to ensure that numerical errors were sufficiently 

small while maintaining a sufficient simulation time. As shown in the results 

presented in Appendix C the mesh density used in these simulations was based on 

convergence of the results.  

 

Configuration assembly 

 

The geometry was developed using the pre-processing ABAQUS software. The 

surface located at the top of the tube was subjected to a uniform external loading 

pressure; the pressure was maintained for few microseconds to make sure that the 

pressure wave travelled through to the bottom of the tube. The cell wall and the 
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cytoplasm of the cell (part 2 and part 3 respectively) and the water (part 1) were 

assembled as one unit. The cytoplasm and cell wall were connected as a tied surface 

with no separation. The validation results and the choice of the mesh arrangement are 

discussed in Appendix C. 
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Fig.4.9 Model structure – spherical shell configuration (dimensions are measured in 

unit of length; the cell wall thickness to radius ratio is constant). 

 

Material properties 

 

The cell wall material properties were selected according to the literature review data 

presented in section 4.2 and summarized in Table 4.1.  
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Boundary conditions 

 

The boundary conditions applied to the geometry were: 

1. BC-left: this is an axis of symmetry.  

2. BC-right: there is no horizontal movement, U1 = 0, since the water is 

assumed to be rigidly constrained in the lateral direction.   

3. BC-bottom: no movement in any direction will occur U2 = 0, and the lateral 

constraint is imposed by the axis of symmetry and the BC – right.   

 

Pressure wave propagation 

 

The model structure presented in Fig. 4.9 was used in this simulation. The pressure 

wave was propagated through the water, hit the cell wall, and penetrated through the 

cytoplasm. A tabulation of uniform pressure values applied on the top surface of the 

tube with initial pressure of 1 MPa, is presented in Table 4.3. The pressure was 

applied when the simulation time increased from zero to 10
-7

 ms; was and held for 

0.75 ms, until the pressure wave reached the bottom of the water tube (detail results 

are presented in Appendix C. 

 

Table 4.3 Amplitude of external pressure applied to the top surface of the model 

with step time of simulation  

Time (ms) Amplitude pressure (MPa) 

0 0 

10
-7

 1 

0.75  1 

 

The maximum time step size that should be used in the simulation can be estimated 

from the stability limit. The time step size should remain smaller than the smallest 

transit time of a dilatational wave across any of the elements in the mesh         

 
    

  
, where Lmin is the smallest element dimension in the mesh and Cd is the 

dilatational wave speed. Thus the element size and the time step size must be 

considered simultaneously to avoid numerical stability problems. The simulation 

time step size refers to the period over which equations are integrated in order to 
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produce a new solution which is then used to update the mesh properties ready for 

the next time step. To avoid numerical errors related to time stepping,         must 

be greater than the time step size. In the present work, the size of the elements were 

adjusted to ensure the time step size will stay smaller than          The pressure 

history of a node located in the water is presented in Fig.4.10 for an applied pressure 

load of 1 MPa on the top surface of the tube.  

 

 

Fig. 4.10 Sample of pressure history from a node located in the water. 

 

4.7 Statics results from FE simulation  

 

The model arrangement presented in Fig. 4.9 and discussed in section 4.5 was also 

solved using a static general step, the results were then compared with the analytical 

results in section 4.2 to provide a further demonstration of the validity of the 

numerical model. Von Mises stress was used to assess the likelihood of yeast 

disruption in this simulation.  
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4.7.1 Pressure ratio Pi/Pe 

 

A preliminary static simulation was first performed with uniform material properties 

applied throughout the entire domain. A 100 MPa external static pressure was 

applied on the top of rectangular geometry given in Fig. 4.9 using water-like material 

properties of density, modulus of elasticity and Poisson’s ratio of 1000 kg/m
3
, 6.2 

MPa and 0.4995 respectively. To validate the numerical results, the stress as 

generated along the x, y and z axes were calculated using equation 4.27. The 

numerical result showed that for Py = 100 MPa, the horizontal and vertical stress is σx 

= 99.999 MPa and σy = 100 MPa, while the von Mises stress is close to zero. These 

results match those obtained from the analytical calculation using equation 4.20 and 

4.27.  

 

Next, a Poisson's ratio of 0.4 was used in this static simulation. The simulated σx was 

66.667 MPa and σy was 100 MPa, while the von Mises stress was approximately 28 

MPa, which is the difference between the horizontal and vertical stress. These 

numerical results showed a very good agreement with the analytical calculation 

presented in section 4.4, where the von Mises stress was around 26 MPa.  

  

After achieving these results, the properties of the cell wall, cytoplasm and water 

presented in Table 4.1 were used in the simulation. The initial results obtained from 

this model were assessed and compared with the results obtained from section 4.4 

using water-like material and found to be very comparable. Table 4.4 presents a 

comparison of the numerical and analytical results.  
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Table 4.4 Analytical and FE results for the case of static loading with water-like 

material properties to compare the analytical and simulation results.  

Normalized Stress 

or Pressure 

Analytical 

method 

FE method  Difference  

(%) 

σt/Pe 1.003 1.004 0.2 

 σr/Pe 0.998 0.996 0.2 

σv/Pe 0.009 0.008 0.1 

Pi/Pe 0.998 0.996 0.2 

 

Hartmann et al. (2006) claim that Pi/Pe is equal to one when the cytoplasm B is 4 

GPa, and E and ν of the cell wall are 150 MPa and 0.499 respectively. These material 

properties were used in the analytical model and the result of Pi/Pe was found to be 

1.002 which is in a good agreement with the Hartmann et al. (2006) results. The 

assumption made by Hartmann et al. (2006) that cell wall ν equals 0.499 means the 

tangential stress essentially is equal to the radial stress for any particular point 

located in the cell wall and thus σv is predicted to be very small approaching zero 

(equation 4.2). Using the von Mises theory of failure, a microorganism with a cell 

wall ν = 0.5 will not rupture because σv is very insignificant (close to zero). 

However, most of the yeast cell wall Poisson's ratio values reported in the recent 

literature are in the range of 0.3 to 0.4. In other cases such as animal cells and blood 

cells, the cell wall v is close the Poisson’s ratio of the cell (close to 0.4995), but it is 

not the case for yeast, because the yeast cell wall is not a fluid-like material but a 

fibre material as reported by Kleinig (1997).  

 

A good agreement was found between the FE results of this work and Hartmann et 

al. (2006) results as presented in Table 4.5. Hartmann et al. (2006) studied three 

different cytoplasm - cell wall configurations (cases 1, 2 and 3, as shown in the first 

column of Table 4.5. These configurations were used in the FE model and were 

solved to yield values of Pi/Pe. For example, in case 1, the Pi/Pe values of the two 

works (Hartmann et al., 2006 and the present work) were very close (1 and 1.002) 

and the difference was 0.02%. In general, results presented in Table 4.5 show a very 

good agreement between the presented FE model results and the Hartmann et al. 

(2006) results. The last case presented in Table 4.5 (case 4) shows the Pi/Po stress 

using mechanical properties identified in Table 4.1. The results of this comparison 
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show good agreement, Table 4.5, case 4, where the difference between two results 

was 0.485%.  

 

Table 4.5 Comparison between Hartmann et al. (2006) results and our simulation. 

case a/b Bcyt 

(GPa) 

Emem 

(GPa) 

vνmem Hartmann et 

al. (2006) 

model 

(A) 

Pi/Po 

From FE 

model  

(B) 

Difference (%) 

 
          

 
  

1 0.96 4 0.150 0.4995 1 1.002 0.02% 

2 0.99 4 210 0.3 0.672 0.674 0.3% 

3 0.99 4 70 0.3 0.866 0.863 0.346% 

4* 0.95 2.2 0.112 0.4 1.029 1.024 0.485% 

* Yeast properties presented in Table 4.1 were used in this case. 

 

4.7.2 Von Mises stress σv and strain    

 

Using the properties of Table 4.1 and static loading, the normalized σv/Pe value was 

evaluated using the FE model. For 100 MPa external static pressure, σv would be 

approximately 28 MPa. This value varies with the location of the node through the 

thickness of the cell wall. The FE simulation results show that σv developed in 

cytoplasm of the cell is relatively insignificant in comparison to the cell wall, since it 

remains in a hydrostatic stress state. Alexander et al. (2000) evaluated σv as failure 

theory from the experimental data (when    and E is given) using equation 4.28: 

 

vv E
3

2
 ,                              4.28 

which is valid for a spherical geometry. 

 

For σv = 28 MPa and E of cell wall = 112 MPa, from equation 4.28, εv = 0.38. 

According to Smith et al. (2000b), rupture in the yeast cell wall can only happen if 

the εv value is above 85%, or at least between 75% and 100%. Therefore, no failure 

is expected to occur when a 100 MPa external static pressure is used. Thus, the 

external pressure had to be increased. Since both analytical and FE models are 

assumed to be linear elastic, it is expected that σv/Pe and εv/Pe are constants. The 
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calculated FE results demonstrated that the σv/Pe and εv/Pe are constants of 0.28 and 

0.0038 MPa
-1

 respectively. The external static pressure required to generate a stain of 

0.85 in the cell wall can be identified by scaling the above results and will be 226 

MPa.  

 

Experimental results from Perrier-Cornet et al. (1995) showed that a volumetric 

shrinkage of 25% occurred in S. cervesia when a 250 MPa external pressure was 

applied. Perrier-Cornet et al. (1995) claim that the mass transfer between the cell and 

the medium led to a change in the cell wall properties and finally caused cell wall 

rupturing. However, comparing their treatment pressure of 250 MPa with the present 

static analysis suggests that the cell wall could have ruptured directly through a 

mechanical process, rather than via a transfer process.  

 

Hartmann et al. (2006) reported that when a pressure load of 400 MPa is applied on a 

yeast cell, the wall of the cell will rupture at a maximum σv stress of 70 MPa and 

maximum effective εv of about 0.8. As indicated in section 4.7.1, if the cell wall has 

similar properties to water, it would be very difficult to develop a σv of 70 MPa 

unless ν values are reduced. Thus, the Hartmann et al. (2006) assumption of using the 

cell wall properties of ν = 0.5 is likely to be inaccurate. To simulate Smith et al. 

(2000b) conditions where von Mises failure stress was around 100 MPa, the applied 

external pressure for failure would have to be around 357 MPa.  

 

 4. 8 Dynamic results from FE simulation 

 

4.8.1 Uniform properties throughout domain 

  

The initial testing of the dynamic simulation was conducted using water properties 

for cytoplasm and cell material properties. The initial dynamic simulation results 

show that the pressure wave can smoothly travel through the water, cytoplasm and 

cell wall zones with no disruption or reflection in this case since the material 

properties of the cytoplasm and the cell wall were treated as the same as the 

surrounding water. The results of this numerical simulation are presented in Fig. 

4.11, which demonstrated that the radial stresses at any point in the geometry are 

equal (see Fig. 4.11). Fig. 4.11 displays five sections along the geometry with a 
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different simulation time. The results shows that the pressure wave required about 

0.025 ms to reach the upper part of cell wall, and that the wave leaves the cell wall at 

about 0.28 ms. These results were obtained when water material properties are used 

throughout the domain, and detail of this simulation can be found in Appendix B. 

 

Results from three nodes located in the water, cell wall and cytoplasm were selected 

from this simulation, and are presented in Fig. 4.12. These results show that the 

radial stress is essentially the same regardless the location of the nodes. These results 

(especially the cell wall results) will be used for comparison with other simulations 

where three different materials are used for the water, cytoplasm, and cell wall.  
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Simulation Time = 0.025 ms 

 
Simulation Time = 0.19 ms 

 
Simulation Time = 0.22 ms 

 
Simulation Time = 0.24 ms 

 

Simulation Time = 0.28 ms 

 

Fig. 4.11 Images of the radial stress wave propagation through the water, cell wall 

and the cytoplasm using material properties of E = 112 MPa, ν = 0.4995 and density 

1000 kg/m
3
 throughout the entire domain (part 1, 2 and 3). 
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Fig. 4.12 Normalized radial stress against simulation time for three elements in the 

geometry located in part 1, 2 and 3 for a simulation where the water, cell wall, and 

cytoplasm have properties of ρ = 1000 kg/m
3
, E = 6.2 MPa and v = 0.4995. 

 

4.8.2 Cell wall - stress and strain 

 

In this simulation the material properties of water, cell wall and cytoplasm presented 

in Table 4.1 were used. The effect of the external pressure loadings on the cell wall 

was evaluated using σv and εv theories of failure. A 1 MPa dynamic uniform pressure 

was applied at the top surface of the water tube shown in Fig. 4.9. Four nodes in four 

different locations of the cell wall were selected to examine the maximum σv 

generated on the cell wall. These four nodes were located on the inner diameter of 

the cell wall in four different locations. The simulated σv result and the node 

locations are graphically presented in Fig. 4.13.  

 

The result shows that the maximum value of σv/Pe occurred at node number 4 (green 

solid curve in Fig. 4.13). Node 4 is located at the bottom (inner diameter) of the cell 

wall. Another set of nodes (4, 5, 6 and 7) were selected to identify the maximum 

σv/Pe value through the thickness of the cell wall, see Fig. 4.14. The results presented 

in Fig. 4.14 confirmed that the maximum σv/Pe occurred in the node number 4 which 
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is located at the inner diameter of the cell wall.  Thus, node 4 was selected to be the 

focus for this study.  

 

 

Fig. 4.13. Normalized von Mises stress generated on four different nodes in different 

locations along the inner circumference of the cell wall. 

 

 

Fig. 4.14. Normalized von Mises stress generated on four nodes through the cell wall 

thickness at the lowest point on the circumference of the cell wall. 
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The stress generated at node number 4 of the cell wall shows that the maximum σv/Pe 

is approximately 0.85, while the average σv/Pe generated in the cell wall over the 

time period from 0.3 ms to 0.4 ms was approximately 0.45. As discussed in the 

previous section, the static σv/Pe value was calculated and found to be 0.28. This 

result shows that the maximum dynamic von Mises stress is approximately three 

times greater than the static von Mises values generated in the same cell wall using 

the same mechanical properties given in Table 4.1. The stress rise at a simulation 

time of about 0.3 ms (presented in Fig. 4.13, and Fig. 4.14) was due to the combined 

effect of transmission through the cytoplasm and water, and the pressure wave 

reflection between the cytoplasm and the lower part of the cell wall (node 4).  

 

To illustrate the event, a zoom-in image of the node 4 zone (at simulation time of 0.3 

ms) was selected and presented in Fig. 4.15. The water wave arrives before the 

cytoplasm wave, and thus a wave reflection is expected to occur due to the wave 

speed differences. As shown in Fig. 4.16, the total simulation time of 0.32 ms was 

found to be sufficient to allow the wave to travel through the water, cytoplasm and 

cell wall.  

 

 

Fig. 4.15 Wave speed through the water, cell wall and the cytoplasm using material 

properties presented in Table 4.1 throughout the entire domain (part 1, 2 and 3). 

 

Fig. 4.16 shows the pressure wave travelling through the cell at different simulation 

times (pressure map). Fig.4.16 (a) shows that the pressure wave passes through the 

cell wall toward the cytoplasm, with the pressure value reaching about 0.5 MPa at 
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0.21 ms. At the time of 0.22 ms, the pressure wave reached 1.17 MPa as shown in 

Fig 4.16(b). The maximum pressure of 1.6 MPa was achieved in this simulation as 

shown in Fig.4.16 (d) for a simulation time of 0.32 ms. Reasons for selecting the 

pressure instead of von Mises stress for the map is because the von Mises stress in 

the cytoplasm is approaching zero (in the case of cytoplasm). The corresponding von 

Mises stress at the simulation time of 0.32 ms (Fig.4.17 (d)) was around 0.85 MPa. 

The reasons of von Mises stress rise will be discussed in the next subsection. 

 

 
 

a- Simulation time = 0.21 ms b- Simulation time = 0.22 ms 

  

c- Simulation time = 0.26 ms d- Simulation time = 0.32 ms 

Fig. 4.16 Maps of pressure wave travelling through the cell at different simulation 

times of a- 0.21 ms, b- 0.22 ms, c- 0.26 ms and d- 0.32 ms. 
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4.8.3 Cell wall stress due to external pressure loading 

 

Lardner and Pujara (1980) and Smith et al. (2000a and b) state that the cell failure is 

expected to occur in the cell wall, however there was no information on the exact 

location on the cell wall where the failure occurred. The simulation result indicates 

the likely failure location is the point on the inner surface of the cell wall furthest 

from the oncoming shock wave.   

 

As previously demonstrated, σv/Pe generated on node 4 (the node on the inner surface 

of the cell wall further from the oncoming shock wave) is the part of maximum von 

Mises stress. The σv/Pe, σr/Pe, and σv/Pe stresses generated in node 4 are presented in 

Fig. 4.17. The maximum σv/Pe is the difference between the maximum radial stress 

and the maximum tangential stress (2.26 – 1.41 = 0.85 ) and occurs at a simulation 

time of about 0.33 ms as indicated in Fig. 4.17.  

 

 

Fig. 4.17 Normalized von Mises stress and the tangential and radial stresses at 

node 4 using cell wall mechanical properties presented in Table 4.1. 

 

Fig. 4.18 and Fig. 4.19 display the normal stress wave in the water, cytoplasm, and 

cell wall for different simulation times. As shown in  Fig. 4.18, the wave travels 

smoothly through the water, where the radial stress along y axis is 1.0 MPa for 

simulation times less than 0.19 ms. Once the pressure wave reached the cell wall at a 
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simulation time of about 0.19 ms, the first element of the pressure waves started to 

reflect from the cell due to the material properties associated with the yeast cell. 

From Figs. 4.18 and 4.19, the maximum radial stress occurs when the wave reached 

the bottom of the cell wall, at the simulation time of 0.32 ms.  

 

Four different external pressure loadings were applied to the water tube surface to 

confirm the linear relationship between the von Mises stress and applied external 

dynamic pressure. The four different pressure values that were used in this 

simulation were 100 MPa, 200 MPa, 400 MPa and 800 MPa. Node number 4 was 

again assessed in this work; σv/Pe stress at the node 4 was evaluated and the data is 

presented in Table 4.6. The relationship was found to be linear as stated in the 

validation section of this chapter. As it can be seen from Table 4.6, the normalized 

von Mises (σv/Pe) and strain εv/Pe was found to be constant of 0.85 and 1.14 MPa
-1

 

respectively. 

 

Table 4.6 Values for σv/Pe and εv/Pe for different external dynamic pressure.  

Pe  (MPa) σv (MPa) σv/Pe εv εv/Pe (MPa
-1

) 

100 85 0.85 1.14 0.0114 

200 170 0.85 2.27 0.0114 

400 340 0.85 4.55 0.0114 

800 680 0.85 9.1 0.0114 
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a- Simulation Time = 0.13 ms 

 
b- Simulation Time = 0.19 ms 

 
c- Simulation Time = 0.24 ms 

 
d- Simulation Time = 0.28 ms 

 
e- Simulation Time = 0.32 ms 

 
f- Simulation Time = 0.36 ms 

Fig. 4.18 Illustration of radial stress wave travelling along R axis through the water 

(E = 6.2 MPa, ν = 0.4995 and ρ = 1000 kg/m
3
), cell wall (E= 112 MPa, ν = 0.4 and ρ 

= 3500 kg/m
3
) and the cytoplasm (E = 6.2 MPa, ν = 0.4995 and ρ = 1100 kg/m

3
) for 

the domain in the vicinity of the yeast cell. 
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a- Simulation Time = 0.19 ms 

 
b- Simulation Time = 0.22 ms 

 
c- Simulation Time = 0.24 ms 

 
d- Simulation Time = 0.27 ms 

 
e- Simulation Time = 0.33 ms 

Fig. 4.19 Illustration of radial stress wave along R axis travelling through the water 

(E = 6.2 MPa, ν = 0.4995 and ρ = 1000 kg/m
3
) the cell wall (E= 112 MPa, ν = 0.4 

and ρ = 3500 kg/m
3
) and the cytoplasm (E = 6.2 MPa, ν = 0.4995 and ρ = 1100 

kg/m
3
) for the yeast cell only. 
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Smith et al. (2000b) indicated that the cell wall rupture of a single yeast cell occurred 

when the strain of the cell wall was around 82% (±1.4) for the exponential growth 

phase, and 80% (±1.6) for the stationary growth phase (Smith et al., 2000b). From 

the simulated strain results shown in Fig. 4.20, it can be seen that the maximum 

strain of approximately 0.99% can be achieved at an external pressure of 1 MPa. The 

simulated von Mises strain to external pressure ratio obtained from the previous 

section was around 0.0114 MPa
-1

, which is located within the reported strain range 

that is capable of rupturing the cell wall. Thus cell wall rupture is expected to occur 

at σv/Pe of 0.85 at 100 MPa. 

 

From this simulation, it was demonstrated that σv and εv presented in this work  are 

theoretically sufficient to disrupt a yeast cell when external dynamic pressure greater 

than 100 MPa, since the reported disruption range was greater than the required σv 

and εv of cell wall disruption.  

 

 

 

Fig. 4.20      at node 4 located at the cell wall using E = 112 MPa, ν = 0.4 and ρ = 

3500 kg/m
3
 at normalized pressure of 1. 
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4.8.4 Dynamic focusing of pressure waves  

 

From the results presented in section 4.6.5, it was found that maximum σv/Pe 

occurred in node 4 as shown in Fig. 4.13 and 4.14. The pressure rise in this node 

occurs due to the reflection of the pressure wave at the bottom part of the cell wall. 

When the front part of the pressure wave (Fig.4.19 (d) – red and orange colour) 

reaches node 4, the pressure wave will reflect while the remaining part of the wave 

(Fig. 4.19 (e), green and blue) continues to travel towards node 4. The effective 

accumulation of the incident wave and the reflected wave in the vicinity of node 4 

leads to an increase in the stress in the lower part of the cell wall, and this point 

therefore experiences the maximum stress. Fig. 4.13 show that the maximum σv/Pe of 

node 1 located at the top of the cell wall is approximately 0.3, while the maximum 

σv/Pe of node 4 is 0.85, which is three times greater than the maximum σv/Pe of node 

1. This static and dynamic simulations show that the von Mises stress developed in 

node 4, using a dynamic model, is three time greater than von Mises stress using a 

static model at the same node.   

 

To understand and analyse the cause of σv/Pe rise in node 4 of the cell wall, the sound 

speed in the cytoplasm was evaluated. The sound speed of the wave can be 

calculated using equation 4.29 

C =    
 

 
                                   4.29 

The bulk compressibility (B) can be calculated using equation 4.38 

   
 

   –    
                              4.30 

From equation 4.29 and 4.30, the following observation can be made 

  

1. The pressure wave speed in a fluid increases when B increases.  

2. Since B is directly proportional with E, thus the wave speed is expected to 

increase when E increases as shown in equation 4.29 and 4.30. 

3. When ν decreases, the B will increase (for a fixed E), and this leads to 

increase the speed of the wave as shown in equation 4.30. 
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The above three observations showed that wave speed changes with respect to the 

mechanical properties of cytoplasm, cell wall and water. Another reason for the 

stress rise in the dynamic mode could be due to the acoustic waves travelling through 

different areas. When the wave travels from a wide area such as water to a very 

narrow area such as a cytoplasm, the acoustic wave will increase, and thus pressure 

will increase.  

 

4.9 Sensitivity to uncertainty in physical properties  

 

The transmission and reflection of the shock wave are influenced by the cell wall and 

cytoplasm mechanical properties. This introduces significant complexity as the 

literature cites a range of mechanical properties. Given the uncertainties in the 

physical properties of the cell wall and cytoplasm, simulations were performed to 

evaluate the effect of possible variations in these properties on yeast cell rupturing 

under shock loading.  

 

4.9.1 Cytoplasm Poisson’s ratio 

 

Cytoplasm Poisson’s ratio (ν) is an important factor as it will influence the σv/Pe 

generated on the cell wall. The effect of ν on the σv/Pe stress generated on the cell 

wall was investigated using three different cytoplasm ν values of 0.4995, 0.4 and 0.3. 

The relationship between the speed of the pressure wave travelling through the 

cytoplasm and the Poisson’s ratio of the cytoplasm (equation 4.30) shows that the 

increase in ν will increase the speed of the wave. Thus using a low ν value will 

provide sufficient time for the pressure wave to travel through the cytoplasm, impact 

the bottom of the cell wall and reflect back to be combined with the pressure wave 

travelled downward and finally increase the stress on the bottom of the cell wall. Fig. 

4.21 shows that the σv/Pe increases from 0.85 when ν = 0.4995, to approximately 8.5 

when ν = 0.3. In the case of ν = 0.3, the speed of the sound in the cytoplasm was 

approximately 330 m/s, and this low speed will give sufficient time for the wave to 

travel down and impact the cell wall and reflect back causing pressure rise.  
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Fig. 4.21 The effect of cytoplasm Poisson’s ratio on σv/Pe, using material properties 

presented in Table 4.1. 

 

4.9.2 Elasticity of the cytoplasm 

 

The effect of the E of the cytoplasm on σv/Pe is investigated in this section, while 

Poisson’s ratio and density are remained unchanged. The results show that when E 

values increase from 6.2 MPa to 10 MPa and 30 MPa, the σv/Pe value decreases by 

approximately 10% and 20% respectively, see Fig. 4.22.  

 

The relationship between the speed of the sound and the E of the cytoplasm shows 

that an increase in E will increase the speed of the wave. The time required for the 

wave to reach node 4 will be small. This means there will not be a sufficient time for 

the wave to hit the bottom of the cell and multiply the pressure, as discussed in 

section 4.8.  
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Fig. 4.22 The effect of cytoplasm E values on σv/Pe using material properties 

presented in Table 4.1. 

 

4.9.3 Cytoplasm density 

 

The density of cytoplasm was one of the factors influencing the magnitude of the 

σv/Pe values when the external pressure loading was applied. It was found that the 

maximum σv/Pe generated on the cell wall due to the pressure wave reflection at the 

bottom of the cell wall, node 4, was increased from 0.85 to 0.89, when the cytoplasm 

density increased from 1100 kg/m
3
 to 2500 kg/m

3
 as shown in Fig.4.23. The 

simulated results shows also that increasing the density of the cytoplasm from 1100 

kg/m
3
 to 1500 kg/m

3 
will increase the σv/Pe by approximately 1.5%, which is 

insignificant. As indicated in the previous section, the increase of σv/Pe on the cell 

wall was due to the pressure wave reflection that occurred at the bottom of the cell 

wall. Considering equation 4.29, the speed of the sound in the cytoplasm decreases 

when the cytoplasm density increases. Therefore the pressure wave reflection will be 

increased as there will be sufficient time for the wave to travel, impact the bottom of 

the cell wall and reflect back to combine with the pressure wave. This process leads 

to an increase in stress at node 4.  
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Fig.4.23 The effect of cytoplasm density on σv/Pe using material properties presented 

in Table 4.1. 

 

4.9.4 Cell wall Poisson’s ratio 

 

The relationship between the cell wall ν values and σv/Pe was investigated for the 

different cell wall Poisson’s ratios that were reported in the literature in section 4.2 

(0.35 to 0.4995). The results presented in Fig. 4.24 show that σv/Pe increases when ν 

decreases. Another simulation was conducted using a ν value of 0.4995. The result 

shows that possibility of rupturing the cell wall with ν close to a fluid value (ν = 0.5) 

is very unlikely since σv/Pe and εv will be very small (Table 4.7). 

 

Table 4.7 shows that σv/Pe and εv decrease when Poisson’s ratio increases. As given 

in Table 4.7, σv /Pe = 2.1 and εv = 2.8 when ν = 0.2. The εv value decreased to be 0.99 

and σv /Pe = 0.85 when ν = 0.4. This means the possibility of having cell wall rupture 

is high when the ν value is low. The last row of Table 4.7 shows that the von Mises 

stress and strain are close to zero when Poisson’s ratio is 0.4995. These results agree 

with the analytical and FE static simulations.   
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Fig.4.24 The effect of Poisson’s ratio on σv/Pe using material properties 

presented in Table 4.1. 

 

Table 4.7 Simulated σv and εv results for different cell wall ν values. 

v σv /Pe εv 

0.2 2.1 2.8 

0.3 1.5 1.99 

0.4 0.85 0.99 

0.4995 0.00198 0.0026 

 

4.9.5 Cell wall elasticity 

 

The effect of the E of the cell wall on σv/Pe and εv was also investigated. The 

simulation results show that the change of the cell wall E values has a significant 

influence on the σv/Pe value. A cell wall E of a commercial yeast of 112 MPa was 

initially used in this simulation (Smith et al., 2000a). It was found that the 

corresponding σv/Pe was 0.85 when the cell wall E = 112 MPa and ν = 0.4 as shown 

in Table 4.8. When the E value increases to 220 MPa, 440 MPa, and 880 MPa, the 

σv/Pe was noticed to be marginally increased to be 0.91, 0.92 and 0.94 respectively 

and εv decreased to be 0.620, 0.31 and 0.16 respectively.  
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Table 4.8 Simulated σv and εv results for different cell wall E values. 

E (MPa) σv /Pe εv 

112 0.85 1.139 

220 0.91 0.620 

440 0.92 0.310 

880 0.94 0.160 

 

4.9.6 Cell wall density 

 

Simulations were conducted using same basic material properties, except the cell 

wall density was changed. Since the most commonly reported cell wall density 

values are in the range of 1000 kg/m
3 

to 3500 kg/m
3
, a set of density values of 1000, 

1100, 2500, and 3500 kg/m
3
 was selected for these simulations. The simulated results 

for σv/Pe are presented in Table 4.9. As shown in Table 4.9, the change of the cell 

wall density has a very modest impact on σv/Pe values. Thus, the change of the cell 

wall density will have less impact on the cell wall rupturing. 

 

Table 4.9 σv /Pe and εv simulated dynamics results for different cell wall density 

values. 

Density (kg/m
3
) σv /Pe εv 

1000 0.81 1.085 

1100 0.815 1.09 

2500 0.84 1.125 

3500 0.85 1.139 

 

4.9.7 Summary of the FE simulation results  

 

The results from the FE simulations presented in this chapter can be summarized as 

follows: 

 

1. The FE static model was compared with the analytical calculation and other 

reported simulation results. Very good agreement between the two models as 

well as the reported results were achieved (Hartmann et al., 2006; Smith et 

al., 2000a).  
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2. Von Mises stress was adopted as a theory of failure based on the data 

reported in the literature review. The σv/Pe generated on the cell wall was 

evaluated, and stress focussing due to a dynamic effect was found to occur at 

the inner surface of the cell wall at the location furthest from the oncoming 

shock wave (node number 4 in Fig. 4.15).  

3. The maximum dynamic value of σv/Pe in node 4 was found to be three times 

greater than the static σv/Pe value. The stress increase was analysed and the 

reason for this rise was found to be due to the pressure wave focusing and 

reflection when it reached the bottom part of the cell wall. It appeared likely 

that the region of the cell wall further from the oncoming shock is the 

location where cell wall rupture will occur. 

4. A parametric study was performed to evaluate the effect of the yeast cell 

mechanical properties on the cell disruption using von Mises theory of 

failure. The simulation results showed that, σv/Pe increases when:  

a) the E and v values of the cytoplasm decrease and,   

b) the E and ν values of the cell wall decrease.  

 

The parametric study also showed that the cell wall and cytoplasm density have less 

effect on the von Mises stress.  

 

4.10 Shock disruption experiments  

 

4.10.1 Experimental apparatus 

 

The results obtained from the FE model can provide valuable information about 

when and where the rupture may occur in the yeast cell wall. Simulation results 

generally have less value without some experimental verification so experimentation 

was conducted. Fig. 4.25 shows a schematic illustration of the vertical gas gun tunnel 

at USQ 

  

The experimental shock wave apparatus used in this work was designed to provide 

different external pressure loading of between 100 MPa and 300 MPa on yeast 

suspension. The pressure wave propagates through the water tube with a speed of 

sound of around 1450 m/s. The shock wave will then hit the bottom of the water tube 
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and reflect back to join the wave, a sample of the shock test is shown in Fig. 4.26. 

This range of pressure was selected based on the FE analysis which indicated cell 

wall rupture (based on von Mises theory of failure) would occur for such loading. 

 

A vertical gas gun was commissioned in the hydraulics laboratory of USQ. With 

reference to Fig. 4.25, the experimental apparatus consists of the following 

components : 

 

1. An air reservoir tank at the top of the apparatus. The air reservoir was connected 

to a compressor which can generate pressures of 4 MPa.  

2. A 3.1 m long and 25.5 mm bore tube (barrel), this tube is connected to the bottom 

of the tube. Four light sources attached to the tube and these light sources were 

used to capture electrical signals to evaluate the speeds of the pistons.   

3. Three pistons made of Brass and Aluminium with different lengths. These 

pistons were launched with high speeds so they can generate different external 

pressure on the surface of a water tube. The pressure values ranging between 100 

MPa – 400 MPa.  

4. A water filled tube with a diameter of 25.5 mm was placed at the barrel exit; the 

water pressure values were recorded at a point located half way along the tube. A 

connector tube was used to allow the piston to travel from the reservoir to the 

water tube.  

5. A plastic bag full of yeast suspension was placed in the tube. 

It is important to note here that the time required for the pressure rise within the cell 

wall is very small in comparison to the yeast cell response time associated with the 

hydraulic conductivity, Smith et al. (2000c). Smith et al. (2000c) reported that the 

yeast cell wall hydraulic conductivity is between 0.1 to 1             . For yeast 

hydraulic conductivities between 0.1 and 1, the calculated cell respond time is 

between 0.25 to 2.5 s (where the yeast cell diameter is 5 µm and pressure load is 100 

MPa). In contrast, the treatment time of the shock is calculated to be around 1×10
-9 

s, 

thus the treatment time is relatively small. This result is consistent with others. For 
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example, Stenson et al. (2010) reported that the time required to allow sufficient 

water loss through the cell was very small, and was ignored even their non-shock 

loading work. 

 

 

 

 

  

Fig.4.25 Image and schematic illustration of the vertical gas gun at USQ. 
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Fig. 4.26 The pressure wave propagation through the water tube against time. 

 

4.10.2 Methodology 

 

As detailed earlier, S. cerevisiae, commonly known as yeast, was used because it is 

easy to grow, readily available and inexpensive. The procedure for yeast preparation 

and counting was described in sections 3.5.2.  

 

A 15 mm long plastic bag made of LDPE was used to house the yeast suspension. A 

0.5 ml volume of the yeast suspension was pipetted into the plastic bag and then 

sealed using a bagging machine. The sample was then stored in the refrigerator at 

4°C until the tests were performed to make sure the yeast cell remain live.  

 

The bag thickness initially used was 35 µm, but these bags tended to rupture during 

the shock exposure, so a stronger plastic bag of 45µm thickness LDPE was used in 

the tests to avoid any failure on the bag. The plastic bag was held in place at the 

bottom of the water tube using sticky tape. Sample of the suspension was shocked 

treated; the number of CFU per millimetre of yeast was counted and compared with 
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initial CFU/mL before the shock treatment. This was done by means of a viable 

count. 

 

For each test, two small plastic bags full of a yeast suspension were stuck to the 

bottom of the water tube as shown in Fig.4.20. The sample cradle is then connected 

to the water tube and bolted prior the tube being filled with water. The connector 

tube was then bolted to the water tube and placed under the gas gun apparatus. The 

tube was lifted and bolted to the gun tube apparatus. 

After connecting the water tube to the barrel, the piston was fired at 0.6 MPa 

pressure. Four optical sources and detectors had to be connected to the barrel. A 1 

mm diameter fibre optic cable was used to capture the pressure signals. A PCB 

pressure transducer (model number 109C12, serial number 5095, with a sensitivity of 

10.19 mV/MPa) was used to capture the pressure signal. Two Bourdon-tube pressure 

gauges were used to measure the reservoir pressure immediately prior to opening the 

fast acting valve. The signals were then recorded using optical detectors, pressure 

transducer and digital storage oscilloscopes (Tektronix TDS210 and 2014). The 

signals were then transferred from the oscilloscopes to a computer via the serial 

communications port and subsequently analysed.  

4.11 Experimental results  

 

Experimental shock treatment was performed by the author of this thesis and 

Shepherd (2004). From the above experimental results, four tests results were 

selected for this study (114 MPa, 114.5 MPa, 115.7 MPa, and 116.6 MPa) and are 

presented in Table 4.10. The corresponding piston velocities of these pressures are 

between 79 m/s and 81 m/s. As shown in Table 4.10, the average shock pressure 

used was about 115 MPa, while the log yeast reduction varied between 0.23 to 0.57 

MPa. The results presented in Table 4.10 shows that maximum yeast reduction of 

0.57 can be achieved when pressure average of 115 MPa is applied. The average 

yeast log reduction was found to be around 0.25 and this value will be used in 

chapter 6 for comparative study. Overall, the results of yeast disruption did not 

achieve the expected level and the underpinning reasons are discussed. 
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Table 4.10 The log reduction and for different shock tests using different shock 

pressure and yeast suspension concentration (Shepherd, 2004). 

Test Shock 

pressure 

(MPa) 

Piston 

velocity 

(m/s) 

Before 

treatment 

(CFU/mL) 

After 

treatment 

(CFU/mL) 

 

                

 

Control  - - 2.5 × 10
5
 2.5 × 10

5
 0 

Test 1 114 79.2 1.46 × 10
5
 1.16 × 10

5
 0.13 

Test 2 114.5 79.5 1.3 × 10
7
 0.9 × 10

7
 0.25 

Test 3 115.7 80.3 6.3 × 10
5
 5.6 × 10

5
 0.5 

Test 4 116.6 81 5.3 × 10
5
 3.0 × 10

5
 0.57 

 

4.12 Reasons for modest yeast disruption results  

 

The experiments yielded less disruption than anticipated due to a number of reasons.  

 

1. The yeast suspension was subjected to the external pressure for only a very 

short time (one pressure pulse) in comparison to similar work reported in the 

literature. For example, Perrier-Conet et al. (1995) required ten minutes of 

exposure to reduce the cell volume by 15-20% using shock treatment of 250 

MPa pressure on Saccharomycopsis fibuligera cells. Splimbergo et al. (2002) 

reported treatment times from 2 minutes to 20 minutes, by repeating the 

shock treatment, depending on the bacteria. In the present study, the 

treatment time was very short and there was no recurrence treatment. If the 

yeast suspension had been subjected to an increased number of shock waves, 

the like-hood of microorganism disruption is expected to be higher. However, 

in this case, the microorganism disruption could then be due to fatigue stress.  

 

2. Smith et al. (2000b), Lee et al. (2004) and Hartmann et al. (2006) conducted 

their experimental works on a single yeast cell, while in the present 

experiments the yeast aggregation (colony) forming units in one millilitre was 

in the range of 1 × 10
5
  CFU/mL (Table 4.10). Comparing results with Smith 

et al. (2000b), Lee et al. (2004) and Hartmann et al. (2006) is not very 

accurate.  
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3. Another possible reason (related to point 2) for modest yeast disruption using 

shock treatment is that before any sort of treatment, cells may have grouped 

and made aggregation (colony) forming units. When such as sample is 

treated, the pressure load may be just sufficient to break up the groups of 

aggregation (colony) forming units without reducing the viability of the 

component cells. Therefore, when both the control and test samples are 

counted, some of the viable test appears to have more colony forming units 

than the control sample. Better estimates of some other techniques such as 

Coulter Counter can be used in the future to evaluate the size of cell 

distribution. 

 

4. When shock treated, some of the samples did not have a uniform dispersion 

of aggregation (colony) forming units.  It is assumed that the shock intensity 

is greatest at the centre of the water tube. It was expected that the number of 

aggregation (colony) forming units were well distributed in the bag; however 

this may not be the case. Thus the entire samples would not be subject to the 

full intensity of the shock wave.  

 

4.13 Effect of sample bag on microorganism disruption   

 

Another possible reason for the modest level of yeast disruption in the experimental 

results was due to the energy lost in the plastic bag containing the yeast suspension. 

The bag is able to absorb or reflect some of the pressure waves, thus reducing the 

energy available for treatment of the yeast.  

 

A FE element model using ABAQUS was developed to investigate and analyse the 

effect of the plastic bag material on the process of yeast cells rupturing in the plastic 

bag. An explicit dynamic step was used with same mesh quality and density that was 

used in the simulation described in section 4.4. The procedure of verification and 

validation of spherical model was adopted and repeated to validate this model where 

the plastic bag shape assumed to be cylindrical.  
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A small plastic bag made of low density polyethylene LDPE was used in this 

simulation. This bag was simulated using the geometric model presented in Fig. 4.27. 

According to Willett (1994), the Poisson’s ratio and the density of the LDPE is 0.43 

and 1300 kg/m
3
 respectively. The modulus of elasticity of the LDPE was reported by 

Mfoumou et al. (2006) in the range of 80 to 127 MPa for LDPE. A value of 127 MPa 

was selected for this work. A uniform pressure load of 100 MPa was applied on the 

surface of the tube and the pressure load was held constant until the pressure wave 

reached the bottom of the tube, having passed through passed the bag. The bag was 

positioned in the middle of the water tube.  

 

The effect of the plastic bag material on the pressure propagation through the bag 

was simulated. As discussed earlier, the experimental results demonstrated that there 

was only a small amount of yeast disruption when the shock wave technique was 

used. In this section, the external pressure magnitude value was simulated with and 

without the plastic bag. Fig. 4.27 shows that the pressure value was reduced by 

approximately 35% when the plastic bag was used. The two curves in Fig. 4.28 

represents two nodes located inside the bag and outside the bag. This means, the net 

magnitude of the pressure transmitted into the bag for yeast disruption was 

approximately 65% of the applied external pressure. Therefore, the calculation must 

be adjusted to incorporate the 35% losses, and thus the yeast cell disruption was not 

achieved when only 100 MPa pressure was applied. This is a good explanation of 

why very little microorganism disruption was observed experimentally. 
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Fig. 4.27 Plastic bag full of yeast cell in a water tube (measurement in mm) 
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Fig. 4.28. The effect of the plastic bag on radial stress with and without bag. 

 

4.14 Conclusion 

 

The technique of the microorganism disruption using shock waves was investigated 

mathematically and experimentally. Two mathematical models were developed in 

this chapter, a static analytical model and a FE model solved using either static or 

dynamic methods. The analytical model was developed to study the effect of the 

mechanical properties of cell wall, cytoplasm and water on the tangential, radial and 

von Mises stress developed on the cell wall. The analytical model is suitable for any 

type of microorganism that has different material properties such as elasticity, 

density, and Poisson’s ratio.  

 

Von Mises stress was used as a theory of failure and the dynamic load was proved to 

be concentrated at the bottom of the cell wall. The maximum dynamic σv/Pe (0.85) 
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was found to be over three times greater than the static σv/Pe (0.25). The dynamic 

stress rise was analysed and the reason of this rise was found to be due to the 

pressure wave reflection when it reached the bottom part of the cell wall. This 

suggests a location of the cell wall rupture when shock pressure loading is applied; 

such a result has not previously been reported in the literature. 

 

Another parametric study was conducted using the FE model to evaluate the effect of 

the cell mechanical properties on the tangential, radial and von Mises dynamic 

stresses. It was found that σv/Pe stress increased when cell wall Poisson’s ratio 

decreased and E/B ratio increased. It was also found that the σv/Pe increase when 

cytoplasm density increases, the E of cytoplasm decreases, and the ν of the 

cytoplasm increases.  

 

The dynamic FE results show that a minimum pressure of 100 MPa is required to 

generate 85 MPa von Mises stresses which should be sufficient for rupturing the cell 

wall of the yeast according to other comparisons with the reported results in the 

literature. However the experimental results show that σv cannot reach 70 MPa when 

100 MPa external dynamics pressure is applied. The average yeast log reduction was 

around 0.25 when external pressure was around 115 MPa. 

 

With respect to the modest yeast disruption observed in the USQ gas gun apparatus, 

it was found that the simulation model is an excellent tool to provide clear answers of 

the cause of the modest yeast killing. Reasons of modest microorganism disruption 

experimentally was due to the plastic bag material, short treatment time, high yeast 

density in the suspension, and other secondary reasons that were discussed in 4.8.  
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CHAPTER V 

__________________________________________________________ 

 

Shear Disruption of Microorganisms 

 

5.0 Introduction 

  

Microstreaming is normally associated with stable cavitation. However additional 

shear effects will arise from the transient cavitation processes as the viscosity 

ultimately dissipates a large fraction of the absorbed ultrasonic energy. These shear 

forces do not necessarily break the cell into fragments but can cause damage to the 

cell wall. The microorganism thus becomes more fragile and susceptible to 

subsequent heat treatment. This chapter investigates the effect of the shear stress on 

the microorganism disruption.  

 

A mathematical model has been developed to evaluate the influence of shear stress 

due to turbulent flow on microorganisms. A shear stress apparatus was also designed 

and constructed for this investigation because the relative significance of shock and 

shear effects in ultrasonic disruption of microorganisms is not clear. The shear 

apparatus consists of a stationary hollow cylinder (a stator) and rotating cylinder (a 

rotor) with an annulus of 0.4 mm between these two cylinders. A yeast suspension 

was injected through the annulus of the shear apparatus; the suspension was 

subjected to a shear stress due to the speed of the rotor. The mathematical model and 

experimental results were compared to enhance the understanding of cell wall 

disruption due to shear stress.  

 

This chapter aims to: 

 

1. provide a fundamental engineering understanding of the relationship between 

the shear stress generated on the cell wall and the turbulent flow.  
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2. demonstrate a shear stress apparatus that is capable of generating sufficient 

shear stress for microorganism disruption in the absence of the significant 

temperature and pressure effects, and   

3. analyze the experimental results with the aid of a mathematical model and 

other reported results from the literature.   

 

5.1 Review of shear disruption of microorganism  

 

5.1.1 Introduction 

 

As discussed in the section 1.4, microstreaming causes large localized forces to shear 

the cell wall surfaces resulting in physical damage to the cells (Doula, 1977). Doulah 

and Hammord (1975) and then Doulah (1977) describe a theory of shear stress as a 

main cause of microorganism rupturing. Doulah (1977) has also reported that when 

small gas bubbles oscillate during the compression and rarefaction phases of the 

sound wave, strong eddies are developed in the area surrounding the bubbles which 

ultimately spread into the liquid. This effect, which is known as microstreaming, 

leads to a significant localized shear force that rubs the cell wall surfaces of 

surrounding organisms and causes cell wall rupture (Doulah, 1977).  

 

According to Walstra (1969) and Doulah (1977), and Hartmann et al. (2006) and 

Doulah (1977) the use of the Kolmogoroff theory of universal balance is essential for 

understanding the cell wall damage or rupturing where the flow is turbulent. Others 

believe that both laminar and turbulent flow can produce the same amount of cell 

disruption, which indicates that eddies are not an essential feature for disruption 

(Doulah, 1977). Nevertheless, when the flow is turbulent, eddies play an important 

role in cell disruption as will be explained in section 5.3.   

 

5.1.2 Mechanical devices 

 

Several mechanical devices that used shear stress for microorganism disruption have 

been investigated by other researchers, including homogenization in the dairy 

product industry (Kleinig and Middelberg, 1998), bead mills and microfluidization 

(Geciova et al., 2002). The apparent cause of the cell disruption in these devices 
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appears to be a shearing effect. Another relevant field of study, which will be 

discussed in this section is the development of shear stress due to the flow in blood 

vessels and animal cell disruption (Born et al., 1992).  

 

Homogenizer   

 

A homogenizer is a device that is commonly used in the dairy industry to break-up 

fat globules into smaller particles. The fat globules appear to break-up in a 

homogenization process due to a shearing stress which develops between the milk 

and the valve and/or the seat of the homogenizer (Mulder and Walstra 1974).  

 

Microorganism disruption can also occur in a high pressure homogenizer. The 

interaction between the cell and the valve is suspected as one of the reasons for 

microorganism disruption. However, the real cause and the exact mechanism of cell 

breakage still remains unknown (Kleinig, 1997).  

 

Another theory attributes the cause of microorganism disruption in the 

homogenization process to the impact between particles and the side wall of the 

homogenizer (Walstra, 1969).  In addition to these two theories, an additional shear 

and effect may result from a cavitation process due to the strong pressure gradients 

which arise in the homogenizer (Anderson et al., 1999; Donsi et al., 2009).  

 

French Press  

 

The French pressure cell press is a device that is used to rupture the cell wall.  The 

process is achieved by passing the suspension through a narrow valve subject to high 

pressure. The French pressure cell for disruption of cells was invented by S. French 

in the 1950s (Jaschke et al., 2009).  

 

The device can also be used for disintegrating different biological particles including 

chloroplasts and homogenates of animal tissue (Holger, 2003). The rupturing process 

occurs by increasing the pressure of the French pressure cell press, and thus the 

intercellular pressure increases. Once the sample is ejected out the device tube, the 

external pressure on the cell wall drops to approximately 1 bar. The pressure within 

http://en.wikipedia.org/wiki/Plasma_membrane
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the cell will also drop, but not as rapidly as the external pressure. The pressure 

difference across the cell wall leads to cell wall rupturing.  

 

The French pressure cell press is able to rupture the cell wall of the cell and maintain 

cytoplasm and the nucleus intact, which is very important in some biochemical 

applications. The advantage of using the French pressure cell press is that the cell 

and microorganism can be treated in the absence of the thermal stress. Because the 

treatment time is very short, there is not sufficient time for the temperature to 

increase (Paul et al., 2009). The operating pressure of a particular device described 

by Kleinig (1997) is approximately 275 MPa for a suspension volume of 35 ml.   

 

Other channel and valve devices 

 

An apparatus that is commonly used in pharmacology applications is called a 

microfluidizer processor. The concept of this method also involves shear stress for 

cell disruption and is achieved by forcing the suspension at high pressure 

(approximately 140-200 MPa) through an interaction chamber with a small narrow 

channel that can generate high shear rates (Geciova et al., 2001). 

The rotor stator processor is a closed system device used for cell wall rupture. The 

suspension is induced into the chamber and then pumped through a very fine grid 

that breaks up the cell wall (Geciova et al., 2001). The microorganism are disrupted 

due to the shear stress generated in the grids.   

The valve type processor is another method that operates on placing the sample into 

a narrow gap located between the valve and its seat under high pressure of 140 MPa 

to 200 MPa. The fluid will then pass over the valve with higher velocity generating 

shear stress to rupture the cell wall and leave the intracellular fluid. One of the 

disadvantages of this method is that it creates a significant amount of heat and 

therefore the process requires continuous cooling. 
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Bead mill  

 

The bead method of cell rupturing uses beads made of glass combined with a high 

level of agitation (Zea et al., 2008). It is a simple method that can be achieved by 

adding beads to the cell suspension in a tube and then the sample is mixed using a 

traditional laboratory vortex mixer. The advantage of this method is that it is 

inexpensive and can accommodate many samples at the same time. In this method, 

the shear stress is considered the main cause of microorganism disruption. Another 

related configuration that is used involves a high speed rotor placed in a small 

container containing the cells and beads (Geciova et al., 2001). 

 

Rotational devices  

 

Blood cells can be damaged due to the plasma flow in a rotational viscometer due to 

shear stress. Leverett et al. (1972) constructed a viscometer using a fixed and a 

rotational cylinder, the gap between the two cylinders was maintained at 0.1 mm in 

the first configuration and 0.38 mm in the second configuration. The parametric 

study by Leverett et al. (1972) included the effect of the solid surface interaction, 

centrifugal forces, cell–cell interaction, shear layers, time of exposure and blood 

viscosity.  

 

Leverett et al. (1972) found that there was no significant difference in the hemolysis 

when the two configurations with 0.1 mm and 0.38 mm gaps were used, which 

means shear stress can be generated based on the fluid pressure rise and speed of 

cylinder. It was also found that there was an increase in the fragility of the cell when 

the blood density increased. The threshold level for blood cell damage was a shear 

stress and time of exposure of 150 Pa and 100 s respectively. The result shows that 

for a shear stress of 150 Pa and above generated by the centrifugal pump, extensive 

cell damage can occur.  
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Laminar capillary flow  

 

Born et al. (1992) claimed that there was no fundamental information available for 

the mechanical properties of walls of animal cells that can be used to predict shear 

damage. Thus, Born et al. (1992) used micromanipulation measurements of animal 

cell mechanical properties to predict the animal cell damage due to shear stress in a 

laminar flow field (Born et al., 1992). The Born et al. (1992) results show that the 

shear stress which caused the damage of the animal cells due to laminar flow ranges 

from 0.019 Pa to 100 Pa with the exposure time between 10 minutes and 24 hours. 

The shear stress value and the time of exposure required for cell damage vary with 

the cell mode of growth, physical environment, and history of the cell culture.  

 

Several studies were conducted to evaluate the sensitivity of the animal cell to shear 

force, especially in laminar flow since animal cells are generally soft and fragile 

(Born et al., 1992). West et al. (2008) reported that a 1 to 5 Pa shear stress for 10 

minutes is sufficient to cause cellular damage and death using a laminar flow 

viscometer. The low shear stress values required for damage were due to the fact that 

animal cells lack a protective cell wall and thus are very susceptible to the shear 

stress, as reported by Papoutasakis (1991).  

 

Turbulent capillary flow  

 

Others such as Zhang et al. (1993) estimate the extent of animal cell rupturing by 

turbulent flow. Eddies with a size smaller then the cell sizes are theoretically able to 

interact with the cell causing a local surface deformation which leads to membrane 

damage. It is argued that cell wall rupturing is due to the cell wall deformation that 

leads to an increase in the cell wall tension and cause the surface energy to be above 

the rupturing limit. Zhang et al. (1993) reported that animal cells were ruptured in the 

turbulent flow in capillaries at a mean energy dissipation of 2 × 10
4 

kJ/kg. 
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5.2 Theoretical analysis   

 

5.2.1 Introduction  

 

Due to the lack of reported information about the mechanism and the real cause of 

the microorganism rupturing in mechanical devices, it was judged essential to 

investigate the influence of the eddies and the shear stress due to turbulent flow on 

the cell wall disruption. 

 

Fragile biological structures such as animal cells (Nilsson et al., 1983) can be 

ruptured using shear stress (Born et al., 1992). For example, animal cells can be 

damaged using bioreactors or simple flow devices such as laminar cone and plate 

viscometers. Born et al. (1992) reported that shear stress required for cell wall 

damage can vary significantly from 0.019 Pa to 100 Pa depending on the treatment 

time which was varied from 10 minutes to 24 hours. Born et al. (1992) identified the 

cell disruption of animal cell when the suspension flow was laminar. However, 

Zhang et al. (1993) used a cone and plate viscometer to evaluate the animal cells 

disruption by turbulent flow. The finding of Zhang et al. (1993) was that animal cells 

can be damaged by shear stresses ranging from 0.019 Pa to 577 Pa depending on the 

treatment time. In this turbulent flow region, Zhang et al. (1993) reported that 

significant hybridoma and myeloma cell rupturing can be detected when the 

Kolmogorov micro-scale of turbulence was smaller than the cell diameter.  

 

Ayazi et al. (1994) developed a model of a high speed pressure disruption of the 

yeast cell. Ayazi et al. (1994) reported that yeast cell wall breakage is determined by 

the equilibrium between the stress generated from the fluid dynamic condition and 

the physical strength of the yeast cell. Ayazi et al. (1994) reported that a number of 

researchers such as Cherry and Papoutsakis (1986), Engler (1985) used the same 

technique as used by Ayazi et al. (1994) to evaluate the yeast disruption in 

homogenizers.  

 

When the shear stress increases, the chances of microorganism disruption increase, 

and thus it is important to couple the relationship between the turbulent flow where 

eddies are generated with the shear stress and microorganism disruption. A turbulent 
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flow model was developed as reported in this chapter to predict the amount of shear 

stress and energy required for microorganism disruption and to assess the 

relationship between the experimental results and the turbulent theories. The model 

relating turbulent energy and cell disruption in this chapter largely follows the work 

of Zhang et al. (1993). Although the Zhang et al. (1993) model was used for animal 

cells, the approach suggested by Zhang et al. (1993) may still provide an estimate of 

how much energy is required for rupturing the yeast cell wall. It is noticed that while 

Zhang et al. (1993) applied the approach to animal cells earlier workers such as 

Doulah and Hammond (1975) and Doulah (1977) successfully used essentially the 

same approache to evaluate yeast cell disruption. Doulah and Hammord (1975) used 

the principle of liquid drop breakage and hydrodynamic flow to estimate the yeast 

disruption and the energy required to rupture the yeast cell wall using kinetic energy 

and strain energy. Doulah and Hammord (1975) concluded their work by saying a 

reasonable agreement between the experimental results and the mathematical model 

derived on the basis of turbulence in the homogenizer was achieved.  

 

The present study includes assessing the relationship between Reynolds numbers, 

suspension viscosity, shear stress apparatus geometry and operating conditions 

(speed and temperature) and their affect on microorganism disruption. The analysis 

proceeds by considering the flow energy which is dissipated in either laminar or 

turbulent forms:   

1. Laminar energy (EL) is the energy dissipated into the laminar boundary layers 

or the laminar sublayers of turbulent flow. In the shear apparatus the sublayer 

close to the wall will be laminar flow, but this region is typically a very small 

volume in comparison to the region of turbulence.  

2. Turbulent energy (Et) is the energy dissipated into the suspension due to the 

turbulent flow within the apparatus which arises due to the flow in the pipe 

work, circulation pump, or the annulus with or without the rotor moving.   

 

5.2.2 Energy dissipation in laminar and turbulent flow 

 

Born et al. (1992) and Zhang et al. (1993) developed models for estimating the 

disruption of animal cells due to the laminar and turbulent capillary flow 

respectively. These models are useful for analysing the situation where the rotor of 
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the shear apparatus in the present work was stationary while the suspension was 

circulated through the device. The laminar energy rate (EL) dissipated in the laminar 

sublayer can be calculated from equation 5.1 (Born et al., 1992) 

 

                                                                                                                                           

where 

  viscosity of the suspension 

                              (1/s) 

VL = volume of the laminar sublayer. 

 

The laminar shear rate can be calculated using equation 5.2 from Born et al. (1992) 

which is applicable to fully developed laminar pipe flow and was used in the laminar 

sublayer.    is then given by equation 5.2, 

 

  
  

 
  
   

                                                                                                                                  

where  

   = pressure drop  

L = pipe length 

D = pipe diameter 

  = fluid viscosity. 

 

Zhang et al. (1993) reported that equation 5.2 can be used for a laminar sub-layer for 

the turbulent flow. The wall shear stress can be found using force balance at the pipe 

wall (equation 5.2). The volume of the laminar sub-layer VL can be calculated from 

equation 5.3 

 

                                                                                                                

 

where the thickness of laminar sublayer is  

  
  

    
 

                                                                                                                                    

The wall shear stress (    can be calculated using equation 5.5 
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The energy dissipation rate in the suspension due to turbulent flow through the 

circulation system can be calculated from (Zhang et al., 1993) 

 

                                                                                                                              

 

where 

um = mean velocity  

D = pipe diameter = 0.4 mm 

The pressure lost      is given by (Zhang et al., 1993) 

 

             
 

 
     

                                                                                                          

where     represents the mean friction factor of the annulus which is given by 

equation 5.8 (Born et al., 1992) 

 

    
     

    
 
   

   
                                                                                                                      

The pressure drop through the circulation system will be used in evaluating the flow 

through the system without turning the rotor on. 

 

5.2.3 Energy dissipation in the turbulent Couette flow  

 

The shear stress apparatus consists of a stationary cylinder and a rotational cylinder 

with a radial gap of 0.4 mm between them. The energy and shear stress required for 

microorganism disruption will come from the kinetic energy in the turbulence region 

between the two cylinders. Fig. 5.1 illustrates the velocity profile between the 

moving plate and the fixed plate. The shear apparatus configuration detail is 

discussed in section 5.3, but the analysis required for deducing the turbulent energy 

dissipation rate, which is needed for the microorganism disruption model is 

introduced here. 
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Fig. 5.1 Illustration of the turbulent velocity profile between fixed and moving wall, 

reproduce from Bradshaw (1971). 

 

Fig 5.2 shows the normalized velocity at different locations between the moving and 

fixed walls. Bradshaw (1971) introduced a number of important points which are 

necessary for the analysis of the turbulent Couette flow as follows: 

  

1. The Reynolds shear stress components of     vary with y
3 

 in the region 

close to the wall, and this region describes a laminar sublayer, and thus the 

shear stress in this laminar region can be calculated using (Bradshaw,  1971)   

    
  

  
                                                                                                                 

2. In the region close to the wall, the flow in the sub-layer is assumed to be 

 laminar and wall shear stress is dominant. Parameters affecting the shear 

 stress at the wall    are the fluid properties such as density and viscosity 

 providing that the wall is rough. 

3. Dimensional analysis indicates that the velocity must be in the form of 

     
   

 
 , where the friction velocity    is given by 

    
  

 
                           5.10 

Fixed wall 

U 

x 

Moving wall 

h 
y 
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Inner layer 

  
 

 
 

 

  
 

U ≈ 0.35U∞ 

U = U∞ 

Outer layer 

Viscous  

sublayer 

   
   

 
 

                 

 

Fig. 5.2 Normalized velocity (
 

  
 ) for different position across the annulus (

   

 
 ), 

reproduce from Bradshaw (1971). 

 

The shear stress produced in this region is due to turbulent   eddies where the u and v 

components of the velocity are equal, thus uv =   
  where, 

 

1.    is the friction velocity but is also measure of the turbulent velocity 

fluctuation in this case.  

2. 
   

 
                                  It is empirically reported (Bradshaw, 

1971) that turbulent flow occurred when the Reynolds number is greater than 

30 (which is outside the viscous laminar sub-layer).  

 

Dimensional analysis shows that mean flow velocity gradient in the region 
   

 
     

can be described as follow  
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Integrating equation 5.11 for turbulent Reynolds number  
   

 
  greater than 30 gives 

equation 5.13. 

 

     
 

 
                                                                                                                       

 

The time average kinetic energy contained within a sphere of fluid of the same size 

as the cell, can be estimated from equation 5.14 (Zhang et al., 1993): 

 

                               
 
                                                                                             

  

 

 

where  

    cell density 

    =  cell radius. 

 

Hinze et al. (1994) suggests that for homogenous, isotropic turbulence, the mean 

square of relative velocity between any two points separated by distance (r) can be 

given as follows 

 

               ,                  5.15      

 

where 

ε = local energy dissipation rate (W/kg, or m
3
/s

3
), 

c = 2, according to Hinze et al. (1994). 

Thus from equation 5.14 

 

      
  

  
     

 
                                                                                                                       

                                   

The local energy dissipation rate ε can be evaluated through the use of some 

turbulence length scales that are commonly used to characterize the flow. The large 

scale lo represents the distance between two points in the flow where there ceases to 

be a correlation between the fluctuation velocities (Turns, 2000). The Kolmogorov 
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microscale lk is the length scale at which turbulent kinetic energy transfers to internal 

energy and is related to the energy dissipation rate (ε) and dynamic viscosity ( ) via  

  

    
  

 
 
 
                                                                                                                                    

The two length scale (lo and lk) are related by 

 

  
  
      

   
 ,                               5.18 

where  

 

     = Reynolds number. 

 

5.2.4 Cell disruption probability model 

 

In this subsection, the turbulent cell disruption model developed by Zhang et al. 

(1993) will be presented. The model estimates the surface energy (Es) required for 

rupturing the cell with a cell wall tension (Tb) and elastic area of compressibility 

modulus (K) using equation 5.19 

 

          
  
 
                                                                                                                 

where the cross section area of the cell wall (Ao) is  

 

Ao =                        5.20 

The yeast cell wall is expected to be ruptured when kinetic energy (    is greater 

than surface energy     

 

  
  

                                                                                                                                            

The critical radius (rcr) at which disruption is likely can be found from the 

combination of equation 5.16 and 5.19: 
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The probability of cell rupturing Pε can be estimated using the energy dissipation rate 

 , the elastic area of compressibility modulus K and bursting force Tb as reported by 

Thomas et al. (1994) and Zhang et al. (1993) 

 

                 
 

  
,                   5.23 

 

where            is the probability density function of the cell radius distribution 

using a Gaussian theory with a mean bursting radius of    and mean tension of    

(Zhang et al., 1993) 

 

           
 

     
     

      
 

    
                                                                             

 

The anticipated cell rupturing fraction (P) can be numerically found by integrating 

the equation  

 

                                    

 

  

                                                                  

 

The integration in equation 5.25 can be performed numerically using the mechanical 

properties given in Table 5.1 and the energy dissipation rate ( ). The             is 

the tension probability density function with mean    and standard deviation   , and 

           is the elastic area of compressibility modulus probability density 

function with mean    and standard deviation   . The yeast mean elastic area of 

compressibility modulus (    was 0.5 N/m and mean bursting cell wall tension (    

was 1.6 N/m and mean cell diameter    was 7.1    (Kleinig, 1997; Zhang et al., 

1993). 
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The mechanical properties required for calculating the anticipated cell rupturing 

fraction namely elastic area of compressibility modulus, surface tension, bursting 

force, and failure energy have been obtained from experimental results reported by 

Kleinig (1997) as shown in Table 5.1. The data was obtained by Kleinig (1997) using 

micromanipulation techniques on two different yeast cells in different growth phases 

and sizes as illustrated in Table 5.1.   

 

Table 5.1 Mechanical properties of two different yeast cells as evaluated by Kleinig 

(1997). 

S. cervesia properties Units Cell 

Cell diameter (d)  m 5.1 

Mean elastic area of compressibility modulus       N/m 0.5 

Mean bursting cell wall tension       N/m 1.6 

Mean bursting radius          3.4 

 

5.2.5 Simulation of cell wall disruption in the turbulent flow 

 

In the present work, it was assumed that the mechanical properties of the yeast will 

not change during the treatment, consistent with the McQueen et al. (1989) model. 

Zhang et al. (1993) has also confirmed that the physical properties such as elastic 

area of compressibility modulus and the size of TB/C3 hybridomas cells that were 

used in their experiments do not change significantly during treatment - they remain 

within the acceptable limit of 10%.  

 

To confirm the present implementation of the Zhang et al. (1993) model, and to gain 

confidence in the application of predicting the percentage of the yeast rupturing 

using the present shear apparatus, a sample calculation using data presented in Zhang 

et al. (1993) was performed and is presented in Table 5.2. A TB/C3 hybridomas cell, 

that is commonly available in the blood of human-beings, was used in the work by 

Zhang et al. (1993). The mean elastic area of compressibility modulus measured in 

N/m and the mean bursting cell wall tension measured in N/m was used to predict the 

cell wall rupturing percentage. The data presented in the first experiments of Zhang 

et al. (1993) gives a volumetric flow rate of 4.4 mL/s, a Reynolds number of 5093 

and   was 1470 W/kg. The microscale (lk) was also calculated using equation 5.17.  
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The kinematic viscosity of the fluid in equation 5.17 was taken as water in Zhang et 

al. (1993) and in the present work was taken as 0.99×10
-6

 m
2
/s. The theoretical 

  value was calculated using equation 5.25 as shown in the previous subsection.  The 

analysis shows that the percentage of cell wall rupturing (P) of TB/C3 hybridomas 

using these data is 0.26%. The results of the  anticipated cell rupturing fraction (P) 

was compared with results reported by Zhang et al. (1993) which was 0.28% as 

illustrated in Table 5.2. The analysis shows very good agreement between the two 

results and gives confidence in the results obtained from this model to predict the 

yeast disruption using the present shear stress apparatus.   

 

Table 5.2 Calculations to verify the present implementation of Zhang et al. (1993) 

model.  

Items ε  

(W/kg) 

lk  

(  ) 

   

m.N/m 

 
 
 

m.N/m 

 
 
 

   

P  

 (%) 

Zhang et al. (1993) 

reported results at  

Q (mL/s) = 4.4  

Re   5093 

 

1470 

 

5.1 

 

0.5 

 

1.6 

 

1.6 

 

0.28% 

Present implementation 

of  Zhang et al. (1993) 

model  

Q (mL/s) = 4.4 at  

Re   5093 

 

1470 

 

5.1 

 

0.5 

 

1.6 

 

1.6 

 

0.26% 

 

 

5.2.6 Yeast disruption curve 

 

To evaluate the yeast disruption percentage using shear treatment, the mathematical 

method developed by Zhang et al. (1993) was for animal cell adopted in the present 

work, noting that the earlier works of Doulah and Hammdon (1975) and Doulah (1977) 

successfully used a very similar approach to model yeast disruption. The untreated yeast 

concentration was assumed to be Ci measured in CFU/mL while the yeast concentration 

after the shear treatment was assumed to be Co (measured in CFU/mL). According to 
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Zhang et al. (1993), the fraction of cells remaining per flow pass (P) can be treated as 

constant for each flow pass, and can be calculated using equation 5.26 

 

      
                                                                                                                                  

 

By taking loge for both side 

     
  
  
                                                                                                                            

 

Thus, the fraction cell remaining can be calculated using equation 5.28 

 

    
     

  
  
 

 
                                                                                                                        

 

where the mean number of passes through the shear apparatus (N) is   

 

  
   

 
                                                                                                                                       

where 

Q  = volumetric flow rate through the shear annulus 

V = volume of the yeast suspension 

t =  time of treatment.  

 

To obtain the fraction of cells remaining, the Co/Ci in the suspension was plotted 

against the treatment time or number of flow passes through the shear region 

(annulus). 

 

5.3 Shear flow apparatus 

 

5.3.1 Introduction 

 

The mathematical results obtained from the previous section provided useful 

technical information about the possibility of yeast disruption due to shear stress 

based on the mechanical properties of the yeast. The next stage was to  obtain 

experimental results to verify the mathematical outcome. The shear apparatus was 
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designed to provide different rotor speeds, at different treatment times, to evaluate 

the specific energy required for yeast disruption. The required shear stress was 

calculated to give another indication on the efficiency of the system in yeast 

disruption.  

 

Mechanical methods for microorganism disruption such as the high pressure 

homogenizer typically force the suspension through a small opening and so generate 

a significant amount of shear stress. However, in the case of homogenizer, the energy 

dissipated in the suspension is caused by a high pressure difference which may also 

generate a cavitation effect. Therefore, to isolate the shear effect from shock wave 

effects, it was necessary to design a device that is able to generate sufficient shear 

energy and shear stress to disrupt the cell wall in the absence of pressure gradients. 

Temperature effects must also be avoided so that any disruption can be reliably 

attributed to the shear effect. In the shear stress apparatus developed in this work, 

turbulent shear energy is developed in the annulus between the rotational cylinder (a 

rotor) and the fixed cylinder (the stator) with virtually no pressure gradients. As in 

section 3.3.1 dealing with the mixing and the residence time distribution of the 

suspension in the ultrasound cell, is essential to make sure that yeast cells are 

subjected to shear treatment uniformity. It was demonstrated in section 3.3 that in 

continuous ultrasound flow processing arrangements where the processing region of 

interest extends only a few mm beneath the probe tip or when the processing volume 

is quite small, the characteristic mixing time in such configurations at comparable 

power levels will be shorter than the batch configuration. It can expected that in the 

case of a shear motor where the power is 2 kW and the suspension volume is 60 mL, 

complete mixing will be achieved in a short time due to high shear power and small 

suspension volume.  

 

5.3.2 Apparatus description  

 

A schematic illustration of the shear apparatus used in the present work is presented 

in Fig. 5.3. The yeast suspension is delivered into the narrow annulus between the 

stator and the rotor using a water pump. An electrical motor positioned on top of this 

apparatus provides a power of up to 2300 W to develop a range of speeds between 

3000 RPM to 12000 RPM. The suspension was subjected to high shear stresses when 



Shear 150 Chapter 5 

 

it passed through the annulus due to the high speed of the rotor. An annular gap of 

0.4 mm exists between the outer case and the rotor as shown in Fig 5.3. 

 

Fig. 5.4 presents a photograph of the shear cell unit; the rotor and the stator are 

shown in Fig 5.3. The speed of the motor was measured using an analogue speed 

detector at a rate of 20 samples/s using an A/D card and Lab-View software. The 

shear cell develops high shear stress through the action of the turbulent fluctuations.  

 

 

99 

 

Fig. 5.3 Schematic illustration of a vertical cross-section of the shear flow apparatus, 

dimensions in millimetres. 

 

5.4 Methodology 

 

5.4.1 Yeast preparation, viable count and contamination  

 

The method of yeast suspension preparation, viable count, and contamination were 

discussed in chapter 3.    

 

Annular gap 
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Fig. 5.4 Photograph of shear flow apparatus consists of electric motor, shear 

chamber, inlet and outlet stream. 

 

5.4.2 Apparatus mechanical performance  

 

5.4.2.1 Power 

 

To evaluate the power dissipated in the suspension, the shear rotor operated at 

different speed varying from 1000 RPM (low speed) to 12000 RPM (high speed). To 

obtain information on frictional effects, the motor was turned off at 10000 RPM and 

the drop in motor speed under the effects of the mechanical and the hydraulic 

frictional resistances was recorded. A sample of these results showing the speed 

decreasing from about 11000 RPM to reach zero RPM (in around 10 s) is presented 

in Fig 5.5.  

 

Electric motor 

 

Outlet stream 

Inlet stream Shear chamber  

Thermocouple  
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The motor angular velocity ω was differentiated with respect to time to evaluate the 

angular acceleration for cases with and without the suspension. The angular 

acceleration was then used to calculate the torque. 

 

Fig. 5.5 Rotor speed with respect to time when yeast suspension was introduced into 

the shear apparatus. 

 

The results with and without the suspension was used to calculated the total power 

dissipated as well as the mechanical friction power. The difference between these 

two powers is assumed to yield the net power available for the shear disruption in the 

annular gap, i.e.  

 

Net viscous Power = Total Power – Mechanical Friction Power  

 

For both cases (with and without the suspension), the power dissipated can be 

calculated using equation 5.30 

 

P = T × ω,                                       5.30 

where  

ω = angular velocity of the rotating cylinder and  

T =      the motor torque, which can be calculated from equation 5.31 

 

     ,                              5.31 

where  
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α = the angular acceleration (obtained from Fig 5.5 in the case of the apparatus 

with the suspension present).   

I =  the moment of inertia of the rotating mass which was 3600 kg.mm
2
.  

  

 

Fig 5.6 The net viscous power generated due to different rotor speeds 

 

Fig. 5.6 shows that when the rotor speed is 10000 RPM, the maximum net viscous 

power (total power – mechanical friction power) dissipated into the suspension is 

2095 W. The mechanical power at this speed was approximately 50 W. The 

polynomial equation of the curve in Fig. 5.6 is obtained from the experimental results    

 

P = -1.74813×10
-9

 N 
3
 - 3.55878×10

-6
 N

2
 + 1.088×10

-3
 N.                5.32 

 

where P is the power measured in watts and N is the angular speed measured in 

RPM. The three angular speeds that were used in this study for yeast treatment were 

4000 RPM, 7000 RPM and 10000 RPM. The net power dissipated into the 

suspension corresponding to the speeds of 4000 RPM, 7000 RPM and 10000 RPM 

was 168 W, 767 W and 2095 W respectively.  
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5.4.2.2 Wall shear stress  

 

The energy required to provide sufficient shear stress for yeast disruption is 

dependent on rotor speed. The wall shear stress generated by the suspension due to 

rotor speed can be calculated using 

 

  
 

   
                                                                                                                                       

                                         

where 

r  = radius of the rotor, 

A = surface area of the rotor =      , 

where  

d = rotor diameter = 0.099 m,  

h = the height of the rotor = 0.05 m  

 

The surface area of the rotor (not including the base or the top area) was 0.01558 m
2
. 

The wall shear stress can be calculated directly from the net viscous power by 

substituting equation 5.30 in equation 5.33  

 

  
 

     
                                                                                                                                  

 

The experimental results for the wall shear stress generated in the suspension for 

different rotor speed is presented in Fig. 5.7. 
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Fig. 5.7 Experimental results for shear stress for different rotor speeds (RPM). 

 

5.4.3 Cooling and circulation arrangements  

  

Initial experiments aimed at understanding the way the shear flow apparatus operated 

were performed and revealed areas that needed to be addressed in order to conduct 

further reliable experimental investigations. The first experiment was conducted to 

evaluate the effect of the shear stress for a suspension in a batch configuration. 

Results showed the suspension temperature can reach 40
 o

C and 55 
o
C for different 

treatment times and different rotor speeds. Such elevated temperatures may lead to 

thermal disruption the yeast. Under such conditions yeast disruption may arise due to 

a combination of thermal stress plus mechanical stress. It was necessarily to maintain 

the temperature of the suspension below 45 
o
C, to ensure that the yeast was disrupted 

because of the shear stress rather than the thermal stress. To avoid this problem and 

to control the experimental conditions and thereby improve the quality of results, the 

cooling of the apparatus had to be improved.  
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A cooling arrangement developed by members of the research team based on an ice 

bath was used to maximize the removal of heat generated by the shear unit. To 

improve the temperature uniformity of the ice bath, a stirrer was used to mix the ice 

and the water. Fig. 5.8 displays the shear cell image within the ice bath. Even with 

the ice bath fully operational, it was possible to exceed 40 
o
C suspension 

temperatures at the high rotor speed. Final temperature control was achieved by 

limiting the operation time of the shear unit. The shear unit was only operated until 

the yeast suspension temperature reached around 40 
o
C, at which time the rotor was 

stopped until the system and yeast suspension cooled.   

 

A water pump was used to circulate the yeast suspension through the shear unit. The 

water pump was powered by a 12 V DC supply and produced a flow rate of around 

1000 mL/min. The water circulation function is to cool the yeast suspension by 

passing the pipe through the ice bath as shown in Fig. 5.8.   

  

 

Fig. 5.8 Cooling system arrangement for the shear stress apparatus including heat 

exchanger and ice bath container. 
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Additional tests were conducted by the research team to make sure the effect of the 

temperature on the yeast concentration was eliminated when the shear apparatus was 

operated. The experimental test showed that there was no viable yeast left in 

suspension when the temperature of the yeast was held between about 40
 o

C and 45 

o
C and the treatment time was 5 minutes. Further tests showed that there was less 

yeast reduction after installing the cooling system and the suspension temperature 

was maintained below 40 
o
C.  These results agree with Chen et al.  (1999) whose 

results indicated that yeast cells cannot be thermally damaged when suspension 

temperature is below 45 
o
C. For the shear cell to function as intended, maximum 

temperature of the yeast must be maintained below 45 
o
C. To avoid any thermal 

stress on upper limit of 40 
o
C was adopted for subsequent investigation.  

 

 

5.4.4 Circulation pump  

 

Prior to running the shear stress apparatus and examining the effect of the shear 

stress on the disruption of S. cervesiae, it was anticipated that the circulation pump 

could have an influence on the results. Thus a test was conducted to examine the 

influence of the circulation pump on the yeast disruption. This test was conducted by 

pumping the yeast suspension of 1 × 10
10 

CFU/mL through the shear apparatus while 

the rotor speed was zero. The test was conducted for different suspension flow rate at 

constant temperature of approximately 25 
o
C. A sample of the treated suspension was 

examined and the CFU/mL was determined as yielding the results in Table 5.3.  This 

simple experiment shows that there is some yeast disruption due to direct mechanical 

shear from pump impellers and turbulent flow in pump and the rest of flow circuit. 

 

The data presented in Table 5.3 shows that the water volumetric flow rate was 

1.72×10
-6 

m
3
/s. In the annulus, and in the absence of the rotor movement, the flow 

will be laminar under these conditions (the Reynolds number was of approximately 

100). Thus, the most significant contribution of microorganism rupturing in the 

absence of the speed of the motor is mainly due to the pressure rise in the pump (2.5 

bar) and pressure loss in the circulation pipes. It is also important to note here that 

there is also a pressure drop thought the pipe circuit due to the laminar and turbulent 

suspension flow and fitting losses through elbows and other fittings.  
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Table 5.3 Yeast suspension CFU reduction due to the circulation through the shear 

apparatus by the water pump. The volumetric flow rate of the suspension 

was 1.72×10
-6

 m
3
/s and pressure difference across the pump was 250 kPa 

(Speering, 2004).   

Test Time 

(s) 

Original 

(CFU/mL) 

Treated 

(CFU/mL) 

                  

1 0 1 × 10
10

 1 × 10
10

 0 

2 60 1 × 10
10

 1 × 10
9
 1 

3 300 1 × 10
10

 1 × 10
8
 2 

**Log reduction is the log (Treated/Original). 

 

A simple calculation was conducted to evaluate the energy dissipated into the 

suspension during its laminar flow through the annulus. It was found that that the 

amount of energy dissipated in the suspension due to the pressure rise when the flow 

is laminar was very insignificant. The energy dissipation in the suspension (when the 

suspension flow rate of 1.72×10
-6

 m
3
/s) due to the pressure rise in the pump and the 

pressure loss in the circulation pipes was estimated (using         and found to be 

0.43 W per one flow pass. The treatment times of experiment ranged between 60 s 

and 300 s.    is the volumetric flow rate which is the volume per unit time. 

 

After confirming that the pump had some impact on the level of yeast disruption in 

the original configuration, the pumping arrangement was modified to avoid yeast 

disruption in the circulation pump. This was achieved by fixing the speed of the 

motor and maintain constant volumetric flow rate to prevent any yeast disruption.  

 

Testing was undertaken to ensure that no yeast disruption occur in the pump by 

forcing the yeast suspension through the shear apparatus using the modified pump 

(operated at lower constant speed), and the results show that the yeast disruption was 

zero. The modified pump was then operated at constant speed over a time period of 

300 s. The final yeast viable count after fixing the circulation pump speed shows that 

the initial count is equal to the final count of 1 × 10
10

 CFU/mL at constant 

suspension temperatures of 18 
o
C.  
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5.4.5 Initial rotor results  

 

Initial shear tests at the lower rotor speeds were conducted using S. cerevisiae 

suspension with a concentration of 1×10
10 

CFU/mL. To evaluate the quality of shear 

treatment, the effect of motor speed, and the treatment time was investigated for 

batch and flow configuration while suspension temperature was controlled to be 

always below 45 
o
C. Table 5.4 shows the log reduction of the yeast suspension for 

different tests with different speeds, different treatment times and suspension 

temperatures. Tests were conducted in batch and flow configurations as indicated in 

Table 5.4. 

Table 5.4 Result of a treated suspension S. cerevisiae for different speed, time and 

temperature. Total suspension volume was 60 ml at batch configuration 

and the volumetric flow rate was 1032 ml/minute at flow configuration. 

Test  

No. 

Speed 

 

 

(RPM) 

Configuration Treatment 

time 

 

(s) 

 

                

Maximum 

suspension 

temperature 

(
o
C) 

Test  1 2000 Batch  120 

60 

3 

2 

42 - 46 

41 – 43 

Test  2 3000 Batch 120 

60 

5 

3 

42 - 45 

42 – 44 

Test  3 4000 Batch 120 

60 

6 

5.5 

42 – 48 

42 – 45 

Test  4 2000 Flow 120 

60 

5 

4 

39 - 44 

40 – 41 

Test  5 3000 Flow 120 

60 

5.5 

3.5 

40 - 45 

40 – 41 

Test  6 4000 Flow 120 

60 

6 

5.5 

41 – 48 

40 – 42 

The test started with an untreated sample of yeast suspension of 1×10
10

 CFU/mL, the 

sample was then shear treated at a speed of 2000 RPM for 60 s using a batch test 

arrangement (the yeast suspension was stationary, no circulation). A viability test 

was used to count the yeast concentration in CFU/mL before and after the treatment. 

The results of this test (2000 PM) show that the log reduction of the suspension was 
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approximately 2. The treatment time was then increased to 120 s; and the log 

reduction increased to 3, which is an indication of treatment improvement.  

A second test was conducted by increasing the motor speed from 2000 to 3000 RPM 

for two different treatment times 60 and 120 s. The log reduction of the treated yeast 

suspension was found to be 3 and 5, for 60 and 120 s respectively. This result 

indicates that increasing the speed will also improve the treatment.   

A third test was conducted using same treatment times of 60 and 90 s with higher 

speed of 4000 RPM. The log reduction was improved to be 5.5 and 6 for 60 s and 

120 s respectively. These results gave a clear indication that motor speed and 

treatment time are very important factors in shear treatment, both influencing total 

energy input. Although the total amount of suspension was 60 mL, the true treated 

suspension volume was approximately 6 mL (the volume of the annulus). To ensure 

that all of the entire yeast in the suspension is subjected to shear stress, a suspension 

flow circulation system was developed to allow recirculation of the yeast suspension 

between the suspension bottle and shear chamber.   

The last three tests presented in Table 5.4 were obtained using a flow configuration. 

A yeast suspension with a concentration of 1×10
9
 CFU/mL was used for these tests. 

As can be seen from the results presented in Table 5.4, the general treatment results 

were improved by approximately 20% when a flow configuration was used. For 

example, at 3000 RPM and treatment time of 60 s and 120 s, the log reduction was 

improved from 3.5 and 5.5 respectively (test 5) in comparison to test 2 (both 

configuration). This is another step toward optimizing the shear stress apparatus. 

Another test was conducted using a higher speed of 10000 RPM which will be 

discussed in the following section 5.6.  

 

5.6 Experimental results  

 

5.6.1 Yeast disruption in shear apparatus at 10000 RPM 

 

Experiments were performed by the research team, using the research equipment 

commissioned by the author of this thesis, at a maximum speed of 10000 RPM for 

total treatment times ranging between 2 and 20 minutes and for temperatures below 
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40 
o
C. The importance of this test is that this test was undertaken at higher speeds 

and lower temperatures (< 35 
o
C), so the treatment is purely shear stress. The average 

maximum suspension temperature ranged between 20 
o
C and 35 

o
C, well below the 

40 
o
C critical upper limits.  

 

The yeast log reduction results at 10000 RPM ranged between 1 and 2 as illustrated 

in Table 5.5. Table 5.5 presents the log reduction results at different treatment time 

and suspension temperature below 35 
o
C. As can be seen, a yeast log reduction 1 was 

achieved when the treatment time was 2 minutes, for which 34 flow passes occurred 

at a suspension temperature of 32 
o
C. In this test (treatment time = 2 minute ), the 

initial yeast suspension count was 8.3×10
6
 CFU/mL, while the treated sample was 

8.3×10
5 

CFU/mL, which means the log (or log10) reduction of 1, or natural 

logarithmic (loge) reduction by a factor of 2.3 (Table 5.5, note the negative sign of 

log10 and loge was removed from this Table).  

 

Table 5.5 illustrate the data for treatment times from 2 minutes to 20 minutes, with 

suspension temperature being controlled between 29
 o

C and 35 
o
C at 10000 RPM. 

For example, when treatment time was 20 minutes and the suspension temperature 

was 29 
o
C, the final count of the treated sample was 8.3×10

4
 CFU/mL, or log 

reduction 2 (or loge of 4.61).  

The energy dissipated into the suspension and the shear stress developed in the 

suspension due to the rotational speed of 10000 RPM (and the suspension flow rate 

was 1032 ml/minute), was 2095 W and 3200 Pa as shown in Fig. 5.6 and Fig 5.7 

respectively, these values represent the maximum power and maximum shear stress 

in the present work. 
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Table 5.5 Reduction results for a suspension of S. cerevisiae for 10000 RPM and 

different treatment times. Volumetric flow rate 1032 mL/minutes and 

initial yeast concentration 8.3×10
6
 CFU/mL. The raw data obtained by 

Speering (2004) using the research equipment commissioned by the author 

of this thesis in the initial stage of the candidature. 

Test 
Time 

(min) 

No. of 

passes 

Suspension 

Temp (
o
C) 

Final 

Count 

CFU/mL 

       
  
  
   

 

      
  
  
   

 

1 2 34 32 8.3×10
5
 1.00 2.3 

2 4 68 35 7.0×10
5
 1.07 2.47 

3 6 103 34 8.3×10
5
 1.00 2.30 

4 8 137 34 6.3×10
5
 1.12 2.58 

5 10 172 35 3.1×10
5
 1.43 3.29 

6 12 206 33 2.1×10
5
 1.60 3.68 

7 14 240 33 1.6×10
5
 1.71 3.95 

8 16 275 34 1.5×10
5
 1.74 4.01 

9 18 309 30 1.03×10
5
 1.91 4.39 

10 20 344 29 8.3×10
4
 2.00 4.61 

 

 5.7 Discussion and analysis  

 

In this section, the results from the shear stress apparatus will be discussed within the 

context of theoretical and experimental analyses. Initially, the theoretical results of 

shear stress and dissipated energy into the suspension were calculated for different 

speeds for the purpose of validation.   

 

For microorganism in a turbulence region, it is suggested that microorganism 

rupturing can occur due to shear stress or the turbulent energy rate dissipation rate, 

and sometimes cavitation (Doulah and Hammond, 1975; Doulah et al., 1977). 

Therefore it is very important to understand the relationship between the shear stress 

generated in the suspension due to the rotational movement of the cylinder and the 

energy dissipated in the turbulence region. 
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5.7.1 Verification of turbulent Couette flow analysis 

 

To verify the mathematical model presented in section 5.2.3, theoretical shear stress 

and power generated in the suspension will be calculated using equation 5.36 and 

equation 5.37, and the results were then compared with experimental results obtained 

from the shear apparatus (equation 5.32 and 5.33). As shown earlier in Fig 5.2,    

can be calculated using equation 5.35,  

 

   
 

               
 

      
                  

                                                       

 

where  

U = 0.35 U∞ (U∞ = cylinder velocity as shown in Fig. 5.2),  

K = 0.41 and  

C = 2.01 in the region of turbulence described in equation 5.35.  

 

The y value ranging between 
   

 
 = 30 and y = 0.1h which is = 1/10 (0.4 × 10

-3
) 

(Bradshaw 1971).  The wall shear stress can be calculated using equation 5.36   

 

      
  ,                         5.36 

where ρ = suspension density. 

 

The energy dissipation rate     can be calculated using equation 5.37 

 

  
  
 

  
                                                                                                                                         

 

Equation 5.37 was used to evaluate the theoretical rate of energy dissipated in the 

suspension for different rotor speeds. The length scale applies when y = 0.1h and y = 

0.9h (Bradshaw 1971). For example, the theoretical energy dissipation rate for a 

speed of 5000 RPM was calculated using equation 5.35 and 5.37. The friction 

velocity    was calculated using equation 5.35, where C = 2.01, K = 0.41, U∞ (for 

5000 RPM) = 25.9 m/s for y = 0.1h = 0.1×0.4×10
-3

 m. 
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The results from equation 5.35, 5.36 and 5.37 for 5000 RPM show that    = 670 Pa 

and   = 24307 W/kg when y = 0.1 h (detail of calculation is presented in Appendix 

H). The experimental   values were calculated using equation 5.38 for the power 

generated by the rotor at different speeds (Fig 5.19) and the treated mass of the 

suspension (density of 1130 kg/m
3
) in the annulus region. Suspension      

                           0.007 kg 

  
      

    
,                   5.38 

For example, the experimental power generated in the suspension at a speed of 5000 

was 300 W as shown in Fig. 5.6, and the mass of the suspension in the annulus at any 

given time was calculated and was 0.007 kg. The specific power was calculated and 

found to be 42.85 kW/kg at 5000 RPM. The theoretical shear stress generated in the 

suspension was calculated using equation 5.36. The experimental shear stress was 

evaluated using equation 5.34, the results presented in Fig 5.9. For example, the 

theoretical and experimental shear stress at 3000 RPM and 4000 RPM were 

calculated and found to be 305 Pa and 495 Pa respectively (see Fig 5.9). The process 

of validation confirmed that overall there is good agreement between the 

experimental and theoretical shear stress generated in the annulus of the apparatus, 

especially in the speed range of 1000-7000 RPM range. 

 

Fig. 5.9 The relationship between the rotor speed and shear stress generated in the 

suspension (theoretical and experimental). 
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5.7.2 Energy rate and shear stress for different speeds  

 

The amount of energy required for rupturing the cell wall varies with the type of the 

cell. As discussed in section 5.1, some animal cells are soft and fragile, and thus they 

can be ruptured using a low shear value and low energy, whilst other microorganism 

can be highly resistant to breakage, and yeast is one of them.  

 

The theoretical disruption percentage can be obtained by integrating equation 5.25 

for different speeds. A sample of calculations for different speed and different energy 

dissipation is presented in Table 5.6. The mechanical properties presented in Table 

4.1 and 5.1 were used in this calculation. 

 

Zhang et al. (1993) reported that significant cell damage can occur when the 

Kolmogorov microscale of turbulence is below the cell diameter. As shown in Table 

5.6, when lk has a relatively large of 7.13    at 1000 RPM, the reduction percentage 

was very low, shown as 0 % in Table 5.6. The yeast log reduction percentage was 

0.28% when lk =5.1     This result shows good agreement with Zhang et al. (1993). 

 

Table 5.6 The relationship between the experimental and theoretical energy 

dissipation into a 60 mL (0.007 kg) suspension and the predicted 

microorganism disruption for different speeds.   
Speed 

 

(RPM) 

Power (Watt) 

 

Theoretical 

Power 

(Watt) 

Experiment 

ε = power/mass 

(kW/kg) 

Experiment  

lk 

 

   

P (%) 

Theory 

Per pass 

* -  - 5.1 0.28% 

1000 4.1 4.5 0.65 7.13 0% 

2000 21 25 3.6 4.22 0.38% 

3000 70 76 10.86 3.135 0.47% 

4000 166 167 33.85 2.514 0.95% 

5000 322 320 42.87 1.95 2.32% 

7000 860 767 110 0.712 4.2% 

10000 2600 2095 300 0.2 6% 

* Results of Zhang et al. (1993). 
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The expected shear stress generated in the annulus when the rotor speed was 7000 

RPM (corresponding to a power of 767 W) and 4000 (corresponding to a power of 

167 W), was 1350 Pa and 495 Pa respectively. As can be seen in Table 5.6, higher 

shear stresses generated in the annulus will lead to a higher level of cell wall 

disruption.  

 

5.7.3 Disruption prediction    

 

The prediction of yeast disruption in the present shear apparatus was calculated and 

compared with results obtained from Zhang et al. (1993) and others. The theoretical 

disruption percentage was calculated using the Gaussian approach presented in 

equation 5.24 (section 5.2.4). The integration of Gaussian equation presented in 

equation 5.25 was solved using a numerical code developed using Matlab software. 

 

An example of the yeast disruption percentage at 10000 RPM is presented here. As 

for test 1 shown in Table 5.5, where the suspension volumetric flow rate of yeast was 

1023 mL/s, and suspension volume used in this test was 60 mL, and a treatment time 

was 2 minutes, the expected number of suspension passes through the shear area can 

be calculated. When N is the number of possess. 

 

  
   

 
 
         

  
                                                                                          

For the same test number 1, natural log reduction (loge) due to this shear treatment 

can be calculated from  

 

     
  
  
       

       

       
                                                                                        

 

Or yeast log10 reduction (Table 5.5)  

       
  

  
        

       

       
                                                                                              

               

This procedure was repeated for different N, as illustrated in Table 5.5 for different 

speeds. Results presented in Table 5.6 are graphically presented in Fig. 5.10, with the 

number of flow passes represented on the horizontal axes and remaining yeast ratio 
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  represented on y axes. The present experimental results in Fig 5.10 were fitted 

by the equation from Thomas et al. (1994) 

 

  
  

       
                                                                                                                             

 

The two constants of 30.5 and -1.32 were obtained using exponential equation best 

fit technique. Thomas et al. (1994) uses the same method of evaluating cell damage 

prediction as Zhang et al. (1993), which is presented in equation 5.19 through to 

equation 5.25. The curve fit equation to the data presented by Thomas et al. (1994) 

was given by  

 

  
  

         
    

                                                                                                                       

 

The best fit exponential equation of the present work given in equation 5.40 

presented in Fig. 5.10 is consistent with the results presented by Thomas et al. (1994) 

presented in equation 5.40. 

               

Fig 5.10 Yeast concentration ratio in the suspension against number flow passes in 

shear apparatus (different rotor speeds). 
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From Fig. 5.10, the decrease of Co/Ci is very significant in the first 10 minutes (N 

between 50 and 200) in comparison to the last 10 minutes of treatment time (for N 

values between 200 and 350). The remaining yeast ratio (Co/Ci) in the suspension 

becomes approximately constant for the last 10 minutes of the shear treatment (N 

value between 200 and 350). This means the ongoing yeast reduction rate as a 

function of shear treatment reduces when treatment time exceeds 10 minutes.  

 

Thomas et al. (1994) reported that modest cell damage in such closed systems is due 

to a large reservoir where cells are exposure to less turbulence in the capillary. The 

third reason can be attributed to the fact that mechanical properties of the cell wall 

were assumed to be constant during the treatment, which is not a totally accurate 

assumption. Some researchers reported that mechanical properties may change 

during the treatment, thus the theoretical prediction value cannot be very accurate.        

 

A number of researchers such as Ayazi et al. (1994) and Cherry et al. (1986) 

suggested that the fluid mechanical stress caused by turbulence flow is the main 

cause of microorganism rupturing in devices that operate in a similar way to the 

present shear apparatus, such as the homogenizer in dairy product industry and the 

bead mill. The key parameter for microorganism rupturing in the fully turbulent flow 

is the ratio of the cell size to the size of the smallest eddies. Ayazi et al. (1994), 

Zhang et al. (1993), Doulah (1977) and Middelberg et al. (1992) reported that for a 

particle diameter greater than the size of smallest eddies, the likelihood of cell wall 

rupture is very high. Therefore, rupture is expected to occur in the present work since 

the average microscale length was 1.236    which is smaller than the size of the 

yeast used in the present work which is 5.4   . McQueen et al. (1987) and Zhang et 

al. (1993) indicate that cell disruption can only occur if the microscale size is smaller 

than the size of the cell.  
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5.8 Conclusion 

 

Many researchers in the field of microorganism disruption using mechanical methods 

have reported using small scale commercially available devices or laboratory scale 

devices including homogenizers, bead mill and French press homogenizer. In this 

work, the author successfully adopted a mathematical method used by Zhang et al. 

(1993), and Thomas et al. (1994) and good agreement between cell ruptures of both 

works was achieved. The model was applied to the present shear apparatus by 

developing the relationship between the specific powers, eddies due to turbulent flow 

and the shear stress that was required for yeast disruption. The mathematical results 

show good agreement between the experimental shear stress results and the 

theoretical results for different rotor speeds. The theoretical energy dissipation rate in 

the annulus of the shear apparatus was then evaluated for different regions within the 

annulus.  

 

The shear stress apparatus was designed to generate shear stress and dissipate 

turbulent energy with virtually no pressure rise. The shear stress apparatus can easily 

change operating parameters and allow investigation into the effect of various 

parameters on shear stress and energy dissipation in the microorganism disruption. 

The shear apparatus was able to perform efficiently and effectively for disrupting S. 

cerevisiae over a spectrum of treatment times, suspension temperature and rotor 

speeds. This shear apparatus can be modified to operate on different microorganism 

and different conditions.  

 

When the shear apparatus operates at 10000 RPM, the net energy dissipation and 

shear stress was 300 kW/kg and 3200 Pa  respectively and the power generated by 

the device was 2095 W. The yeast log reduction was evaluated and compared with 

the mathematical method, a good agreement between the present work results and the 

experimental work of Zhang et al. (1993) was achieved. For example, when shear 

apparatus operated at 10000 RPM, the maximum predicted theoretical yeast 

disruption was found to be around 6% in comparison with the experimental values 

which was around 4%. This mathematical method should be applicable for any 

microbes and not limited to yeast. 
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The experimental result shows that microorganism disruption will only occur in 

turbulent flow if the microscale size is smaller than the size of the cell, as achieved in 

the present work. For example, when the shear apparatus operates at 10000 RPM, the 

microscale was calculated and found to be 1.2    which is smaller than the yeast 

diameter of 5.4   , thus the rupture occurring is expected to be due to shear stress 

and energy dissipation due to turbulent flow. This result confirms the reported 

outcome of Tawatchai et al. (2008), Ayazi et al. (1994), Zhang et al. (1993) and 

Middelberg et al. (1992).  

 

Full treatment can thus likely be achieved in a shorter time by increasing the rotor 

speed or decreasing the annulus gap. This however is an issue for further 

investigation.   
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____________________________________________________________________ 

CHAPTER VI 
__________________________________________________________ 
 

A Comparison of Ultrasound, Shock and Shear 

Treatments 
 

6.1  Introduction 

 

The conventional method of microbial disruption in the food processing industry is 

the thermal method, where the suspension is exposed to a certain temperature 

history, and this process leads to microorganism inactivation. Alternative mechanical 

methods of ultrasound, shock wave and shear stress treatments were discussed in 

chapter 3, 4, and 5 of this thesis. This chapter aims to compare the yeast disruption 

achieved using the three methods examined in this thesis in terms of energy. The 

results obtained from the mechanical treatment will also be compared with the 

conventional method of microorganism inactivation via heat treatment and another 

method of disruption, the high pressure homogenizer. 

  

6.2  UHT energy analysis 

 

The treatment of microbial cells in suspension using UHT generally results in a 

complete destruction of the microorganism. However, this treatment will negatively 

affect the quality of the product as reported in chapter 2, section 2.0.   

 

Sahoo et al. (2002) designed and built a laboratory model helical UHT sterilizer to 

disrupt B. Stearothermophilus with a short residence time, it operates in a 

temperature range of 90 to 150 
o
C. Their UHT treatment involves heating up a mass 

per time of 0.042 kg/s from 10 
o
C to 75 

o
C for 15 s, and then further heating it up to 

140 
o
C for 10 s (Sahoo et al., 2002). In the sterilization process, Shaoo et al. (2002) 

reported that the suspension temperature was kept between 135 and 145 
o
C for 2.64 

s. They claimed that using this short time of sterilization of around 2.64 s can achieve 

a log reduction of 8.  
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If the heat lost to the walls is ignored, the energy rate (  ) delivered into the 

suspension can be calculated using   

 

                                                                                                                   6.1 

            

where  

C = Specific heat of the sample (kJ/kgK).  

T1 = Initial temperature (
o
C) 

T2 = Final temperature (
o
C)  

   = the mass flow rate (kg/s). 

 

Using equation 6.1 in conjunction with Sahoo et al. (2002) data of a suspension mass 

flow rate of 0.042 kg/s at 5 bar, density 1000 kg/m
3
 and specific heat 4.2 kJ/kg.K,  

the net heat rate dissipated in the suspension due to the rise of temperature from 93 to 

140 
o
C is  

 

   = 0.042
 
× 4.2 × (140-93)  = 8.29 kW. 

 

The specific energy (q) can be calculated, for 31.5 g or 0.042 kg/s using equation 6.2  

 

  
  

  
  ,                   6.2 

 

which, for the given above UHT treatment is 197.4 kJ/kg. The specific energy 

dissipation rate measured in kW/kg can be calculated using equation 6.3 

 

  
  

 
                                                                                                                                           

 

where m is the suspension mass = 0.0315 kg. The average specific power is 

 

  
       

      
 = 263.17 kW/kg 
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Table 6.1 Sample of calculation of the energy required for microorganism disruption 

using UHT method. 

Quantity Units Values  

Sahoo et al. (2002) 

 

Mass kg 0.0315 

Density kg/m
3
 1000 

Treatment time second 2.64 

Specific heat kJ/kgK 4.2 

Specific energy kJ/kg 197.4 

Energy rate (power) kW 8.29 

Specific energy rate (Power)  kW/kg 263.17 

Log reduction - 8 

 

The calculation presented in Table 6.1 will be used as a reference for comparison 

with mechanical methods for microorganism disruption.  

 

From the results presented in Table 6.1, it can be seen that Sahoo et al. (2002) 

achieved log reduction 8 at a specific energy of 197.4 kJ/kg and treatment time of 

2.64 s. This result revealed that a high cell reduction (greater than 8) would be 

achieved if 197.4 kJ/kg is used. Summary of the calculated specific energy and 

specific power results related to UHT treatment is illustrated in Table 6.1. 

  

6.3  Homogenization disruption analysis 

 

A single stage homogenizer was used by Keshavarz et al. (1990) to disrupt 

commercial yeast using a pressure of 46 MPa, and temperature of 4 
o
C. The number 

of passes in this homogenizer required to achieve 90% cell disruption (which is 

equivalent to log reduction of 1 was 5. The entry and exit velocity of the suspension 

were 206 m/s and 200 m/s respectively. For the following analysis, the density is 

assumed to be the same as water. The mass per pass was calculated using the volume 

of the chamber between the seat and the valve of the homogenizer chamber 

multiplied by the density of the water.  

 

When the volume flow rate per pass is 57 L/h (0.0157 L/s), and the pressure drop 

across the homogenizer is 46 MPa, the work measure in Watt can be calculated using 

equation 

                           6.4 
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where 

 P = pressure drop (Pa). 

   = volumetric flow rate (m
3
/s). 

 

Thus  

   
              

    
           

 

To calculate the specific power dissipation rate and specific energy, the treated mass 

is calculated using the homogenizer configuration suggested Keshavarz et al. (1990). 

The average suspension velocity of 206 m/s over the distance of the seat is 0.1 mm 

(for the KE configuration of Keshavarz et al., 1990), thus the estimated that the 

treatment time per pass is 5 × 10
-6

 s. The treatment time for 5 passes (corresponding 

to 90% cell disruption or a log reduction of 1) is 5 × 10
-6

 × 5 = 2.5 × 10
-6

 s.  The 

specific energy of the treated mass (circulated treated volume between the valve and 

the seat × suspension density) of 0.00039 g is.  

 

         
        

               
  

  
    

 

In homogenizer technology, the region where the shear stress is developed is located 

between the valve of the chamber and its seat. This is the region where most of the 

yeast rupture occurred according to Keshavarz et al. (1990). According to Keshavarz 

et al. (1990), the shear stress can be calculated using equation 6.5 

 

   
         

   ,         6.5 

 

where  

U = exit jet velocity = 200 m/s  

d = orifice diameter = 5 mm 

X = distance from the seat of the valve to the valve itself. 
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The shear stress for X = 1.4 mm, exit velocity of 200 m/s and orifice diameter of 5 

mm was calculated using equation 6.6, and found to be approximately 81 MPa. This 

calculated shear stress (81 MPa) will be used for comparison study in the following 

section. The results presented in Table 6.2 will be used for comparison in the 

following sections. 

 

Table 6.2 Keshavarz et al. (1990) homogenizer properties for the KE configuration 

and sample of energy calculation. 

Quantity Units Value (KE configuration) 

Valve distance (X) mm 1.4 

Diameter  mm 5 

Radius difference  mm 0.1 

Height mm 12.55 

Exit Velocity  m/s 200 

Average velocity m/s 206 

Pressure MPa 46 

Specific energy kJ/kg 4.67 

Treatment time s 2.5×10
-6

 

Specific power kW/kg 1.868×10
-6

 

Shear stress MPa 81 

Log reduction - 1 

 

 

6.4  Comparison of treatment methods 

 

To evaluate the efficiency of each treatment method used in this thesis, the fraction 

of viable yeast remaining in the suspension or the yeast log reduction values with 

respect to the amount of energy per unit mass that was used in each method was 

evaluated and compared. Fig 6.1 shows the relationship between the specific energy 

(kJ/kg) on the horizontal axes and the yeast log reduction results obtained from 

chapter 3, 4 and 5 on the vertical axes. Fig 6.1 consists of three subfigures of a, b, 

and c which present results obtained from the ultrasound treatment, shock treatment 

and shear treatment respectively. The detail of these results and other data such as 

time of treatment, temperatures, pressure, shear stress, specific energy measured in 

kJ/kg and energy dissipation rate measured in kW/kg is also presented in Table 6.2. 

The methods used to obtain these comparative results are presented in the following 

sections. 
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6.4.1 Ultrasound   

 

The ultrasound can create cavitation in the yeast suspension. If the ultrasound power 

is sufficiently high, the cavitation bubbles will expand until they reach a critical 

radius at which they collapse. Collapse of the cavitation bubbles releases energy into 

the suspension which is presumably the reason of microorganism disruption. 

Whether or not the acoustic energy or the turbulent energy is actually responsible for 

the disruption is the subject of this dissertation. The relationship between the yeast 

disruption and the specific energy dissipated into the yeast suspension is focus of the 

present discussion.  The power intensity is the ultrasound power measured in W per 

unit area 

 

     
      

          
  

    

                     

 

The specific energy is the energy dissipated into the suspension per unit mass, where 

the mass of suspension was 0.03 kg, and the power measured in Watt was ranged 

between 74 and 117 W. In the case of ultrasound treatment, the specific energy 

dissipated into the suspension was calculated and found to be in the range of 250 

kJ/kg to 1132 kJ/kg depending on the treatment time. The specific energy was found 

to be considerably lower than the specific energy used in shear stress apparatus and 

considerably higher than the shock wave values (discussed in subsequent sections). 

Results presented in Fig 6.1 (a) show that the approximate maximum yeast log 

reduction was 4 when specific energy was 1132 kJ/kg as shown in Table 6.3. 

Ultrasound treatment was carried out on yeast by Ciccolin et al. (1997) at 100 W 

(203 kW/m
2
) for at a suspension temperature of between 50 °C and 60 °C. The effect 

of using 203 kW/m
2
 ultrasound power intensity (on a 60 mL suspension) led to a 

yeast disruption of log 2, but disruption was less marked at 50 
o
C (Ciccolin et al., 

1997). Comparing this result with the present results, the yeast log reduction 2 was 

achieved at a specific energy of around 700 kJ/kg or a power intensity of 238 kW/m
2
 

(when the suspension volume was 30 mL) as shown in Fig. 6.1(a). The results of the 

present work were achieved when the yeast suspension temperature was around 30 

o
C.  
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Earnshaw et al. (1995) showed that using ultrasound specific power of 1.65 kW/kg 

resulted in no yeast disruption as no cavitation was expected to be developed, and 

therefore the log reduction was zero. In the Earnshaw et al. (1995) experiment, the 

cross sectional area of the probe diameter was 25 mm, thus ultrasound power 

intensity was about 101.8 kW/m
2
 when 50 W was used. The 101.8 kW/m

2
 power 

intensity is just enough to generate a very small number of bubbles, but these bubbles 

are not able to produce significant energy when they collapse (as reported by 

Earnshaw et al., 1995). These cavitation bubbles were reported to be insufficient to 

even weaken the yeast (Earnshaw et al., 1995). In the present work, the yeast log 

reduction at approximately 50 W was insignificant. The modest microorganism 

disruption in the Earnshaw et al. (1995) experimental work as well as the present 

work when low ultrasound power intensity was used can be attributed to several 

factors.  

 

One of the reasons for this modest disruption could be due to the power transmission 

into the suspension, which is directly proportional to the suspension temperature 

(Ciccolin et al., 1997 and Gogate et al., 2009). If the energy is well propagated and 

acoustic energy released in the suspension, the possibility of causing microorganism 

rupturing is expected to be high. In another words, the elevated temperature enhances 

the transmission of the ultrasound as reported by Ciccolin et al. (1997) and Gogate et 

al. (2009), and finally enhances the yeast disruption. To enhance the possibility of 

microorganism disruption using ultrasound, researchers recommended combining 

ultrasound treatments with heat treatment or pressure treatment as reported by 

Ordonez et al. (1984). For example, Ordonez et al. (1984) used ultrasound of 20 kHz 

and 160 W combined with a temperature of up to 62 
o
C. This combination was 

reported to be very effective in comparison to increasing the treatment time and 

energy consumption, Ordonez et al. (1987).    

 

The ultrasound treatment time of the work done by Cameron et al. (2008) was 10 

minutes for 40 mL yeast at 100 W, which is equivalent to a specific energy of 1500 

kJ/kg. Cameron et al. (2008) achieved yeast log reduction of 4.3. The reported result 

of the present work shows that log reduction 4 can be achieved at specific energy of 

around 1132 kJ/kg. This result show to some extent moderate agreement between the 

present work and the work done by Cameron et al. (2008). Cameron et al. (2008) has 
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not reported the detail of yeast log reduction 4, therefore the 4.3 was selected for this 

comparison. 

 

Ultrasound power intensity is another basis for comparison between treatment 

methods. In comparison to the present work, Cameron et al. (2008) conducted an 

experiment to examine the effect of ultrasound power and treatment time on S. 

cerevisiae. A 40 mL yeast suspension was subjected to 100 W ultrasound probe of 

diameter of 13 mm, giving a power intensity of 744 kW/m
2
. In the present work, the 

power intensity used was calculated and found to be 238 kW/m
2
. Both works use 

same ultrasound power of approximately 100 W, but it seems the possibility of 

generating cavitation and ultimately microorganism disruption is higher in the 

Cameron et al. (2008) work due to the higher power intensity. Ultrasound power 

intensity influences the effectiveness of the treatment and the ultrasound probe 

diameter is another factor that affects the power intensity, and this leads to an 

influence on the cell rupturing efficiency when the power is constant. For example, a 

probe with a diameter of 15 mm can be more effective in cell damage in comparison 

to the probe with 25 mm diameter using same ultrasound power because the 

probability of generating cavitation is higher in the 15 mm case due to the higher 

power  intensity. 

 

Gogate et al. (2009) reported that the cavitational effect is more significant closer to 

the vibrating surface. According to Gogate et al. (2009) the cavitational intensity 

decreases exponentially with the distance from the probe and cavitation may vanish 

at a distance of 2 to 5 cm, this figure varies with the supplied energy and the 

operating frequency. It was also reported that the efficacy of probe type ultrasound 

systems with larger scales is relatively poor in comparison to other systems such as 

multiple transducers. This is due to the fact that ultrasonic probe is unable to transmit 

the acoustic energy throughout a large suspension volume effectively (Gogate et al., 

2009).  

6.4.1 Shock wave  

 

From the results presented in chapter 4, results have been selected from five 

experiments results representing the minimum, maximum and three average yeast log 

reduction values. The external pressure applied on the water tube surface ranged 
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between 114 MPa and 117 MPa while the corresponding maximum piston velocity 

ranged between 79 m/s and 81 m/s. The results of shock treatment was selected and 

presented in Fig 6.1(b). The yeast concentration before treatment was 1.46 × 10
5
 

cfu/mL while the treated sample concentration was 1.16×10
5
 cfu/mL, this is 

equivalent of log reduction of 0.13, and this was the minimum disruption result. The 

maximum yeast log reduction using shock treatment was achieved at 116.6 MPa was 

found to be 0.57, the yeast concentration before the treatment was 5.3 × 10
5 

cfu/mL, 

and the yeast concentration after the treatment was 3.0 × 10
5
 cfu/mL. For the present 

analysis, the energy absorbed by one yeast cell during shock treatment is estimated 

using work equation  

  

        ,                               6.6 

 

where  

 

  = volume change of the cytoplasm due to external pressure 

Pi = internal pressure experienced in the cytoplasm. 

 

The internal pressure (Pi) generated in the cytoplasm due to the external pressure 

load (Pe) can be calculated from equation 6.7 (equation 4.14 in chapter 4)  
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6.7 

 

The following yeast cell properties were used to calculate the internal cell pressure  

 

a = cell internal radius = 2.4 × 10
-6

 m 

b = cell external radius = 2.7 × 10
-6

 m 

B = cytoplasm bulk modulus = 2.2 GPa  

E = modulus of elasticity of cell wall = 112 MPa 

ν = Poisson’s ratio = 0.4 

Pe = external pressure = 114 - 117 MPa 

V = (4/3)π×(2.6 × 10
-6

)
3
 = 7.3 × 10

-17 
m

3
. 
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The volume change due to the pressure was calculated using equation 6.8, and found 

to be 3.65 ×10
-18

 m
3
. 

 

)(
V

V
BPi




                     

6.8 

 

Equation 6.6 was used to calculate the energy absorbed due to the volume changes 

and the external pressure. For example, for an external pressure of 114, the internal 

pressure is around Pi  is around 112 MPa (see Fig.4.3), the energy per cell was found 

to be 3.92 × 10
-10

 J. The cell mass is around 8.4 × 10
-13

 kg, so the specific energy (the 

energy per unit mass) is 4.67 kJ/kg.  

 

The specific energy dissipated into the cell for different pressure loading due to the 

shock treatment was calculated and presented in Table 6.3 and graphically presented 

in Fig. 6.1 (b). Fig. 6.1 (b) shows that the specific energy required to achieve a log 

reduction of approximately 0.25 in yeast using shock wave was approximately 4.68 

kJ/kg, which is the lowest specific energy among the three treatments. 

 

 

Table 6.3  The specific energy (kJ/kg) and log reduction and for different shock tests 

using different shock tests.  

. 

Test Shock 

pressure 

(MPa) 

Specific energy 

 

(kJ/kg) 

 

                

 

Control  - - 0 

Test 1 114 4.67 0.13 

Test 2 114.5 4.68 0.25 

Test 3 115.7 4.73 0.5 

Test 4 116.6 4.77 0.57 

 

 

The specific energy required to have a yeast log reduction of between 0.1 and 0.2 is 

relatively low, but at the same time, the yeast log reduction values are also low in 

comparison to ultrasound and shear methods. Shock treatments are more commonly 



Comparative study 181 Chapter 6 

reported for soft cell rather than relatively hard microorganisms (higher modulus of 

elasticity and density). For example, the shock treatment method has been used for 

different applications such as animal cells and medical applications (Tamagawa et 

al., 1997).  

 

The minimum specific energy required to rupture the cell wall of single yeast was 

around 4.67 kJ/kg, however the real net energy dissipated into the yeast itself is 

expected to be smaller than the 4.67 kJ/kg due to some energy loss in the plastic bag, 

pressure wave propagation through water, and other parameters that were discussed 

in the second last subsection of chapter 4.  

 

Referring to the static and dynamic analyses of chapter 4, the von Mises  stress is 

assumed to be the main reason of microorganism disruption (von Mises  is a failure 

theory which some researchers think is reasonable to apply to microorganism rupture 

as discussed in Chapter 4, section 4.2 and 4.3). The von Mises stress required to 

rupture the cell wall of the yeast was found to be 70 MPa, and this figure was 

reported by many authors as described in Chapter 4. Calculations indicate that a von 

Mises stress of 70 MPa can be achieved when the external pressure applied on the 

cell is around 100 MPa and above, see calculation in section 4.2. In the shock 

experiments, the external pressure applied on the water tube varied between 114 MPa 

and 116.6 MPa. However, the magnitude of the loading was attenuated during 

transmission through the plastic bag as described in detail in section 4.10. An 

attenuation factor of approximately 0.7 was determined in section 4.10 so the 

external pressure loading on the cell in the present work is expected to be between 70 

MPa and 84 MPa, which is insufficient for substantial disruption. 

 

Treatment time is another important factor that played a vital role in cell disruption 

using ultrasound and shear treatment; however it was not the case for the shock 

treatment. In the present work, the treatment time using shock was very small in 

comparison to ultrasound and shear. In the case of shock wave treatment, the yeast 

was subjected to around 115 MPa only one time for a fraction of a microsecond 

second, while the treatment time using ultrasound and shear stress was between 180 s 

to 900 s and between 360 s and 1200 s respectively (Table 6.4).  
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It is important to mention here, the pressure rise in the yeast due to the dynamic FE 

simulation was around three times greater than the static pressure obtained from the 

analytical calculation in section 4.2 for a given applied external pressure. Therefore 

the energy absorbed in the actual treatment which is more closely approximated by 

the dynamic FE simulation is likely to be more than three times greater than the 

value derived from the quasi static analysis.  

6.4.2 Shear stress analysis  

 

Table 6.4 shows that the shear cell generates significant quantities of energy during 

experimentation. The vast majority of this energy dissipated in the suspension is 

responsible for yeast disruptions in form of turbulent eddies and shear stress. From 

Table 6.4, the specific energy required to achieve a log reduction of 4 was found to 

be 360000 kJ/kg with a treatment time of 20 minutes and 10000 RPM, while the 

specific energy required to achieve a 2.5 log reduction was around 108000 kJ/kg 

with a treatment time of 6 minutes in the absence of thermal stress. To compare these 

results with the homogenization process that was discussed in section 6.3, the 

specific energy required to disrupt the yeast during homogenization for a yeast log 

reduction of 1 was found to be 4.67 kJ/kg. However, since the log reduction appears 

to be approximately linearly proportional with the specific energy of treatment in the 

case of the shear apparatus, a comparison can be made on the basis of log reduction 

per specific energy.  

 

In the case of the shear stress apparatus, the yeast log reduction per specific energy 

(log/kJ/kg) is 1.5 × 10
-5

 , whereas in the case of the homogenizer (Keshavarz et al. 

1990) the yeast log reduction per specific energy is 0.214. This means the disruption 

efficiency of shear stress apparatus is less than that of the homogenizer of Keshavarz 

et al. (1990). 

 

 

 

 

 



Comparative study 183 Chapter 6 

 

 

y = -0.0051x + 1.5522

-6

-5

-4

-3

-2

-1

0

250 400 550 700 850 1000 1150

lo
g
 r

ed
u
ct

io
n

 

 

Fig. 6.1 The relationship between specific energy and yeast log reduction using a) 

Ultrasound treatment, b) Shock treatment, and c) Shear treatment. 
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6.5 Discussion and conclusion 

 

Ultra heat treatment and high pressure homogenization treatment methods were 

selected as reference methods for comparison with results obtained from the 

ultrasound and shock wave, and shear treatments in this study. The main operating 

parameters that affect the yeast log reduction presented in the second half of Table 

6.4 are treatment time, suspension temperature, mass or volume of suspension, 

operating pressure and rotor speed (in the case of shear apparatus). The results of the 

experimental work such as specific energy, energy dissipation rate, power, shear 

stress and log reduction are presented in the first half of Table 6.4 and Fig. 6.1.  

 

The conclusions of this chapter can be summarized as follows: 

 

1. The three methods suggested in this thesis can be successfully used for yeast 

disruption, and it is expected these can be applied to disrupt other 

microorganisms which hold similar mechanical properties to yeast. The 

present shear stress and ultrasound device can generate a large amount of 

specific energy and thus it is expected to be able to use these for the treatment 

of hard microorganism.   

2. Ultrasound treatment using low power (50 W) with higher temperature 55 
o
C 

can be used to make the yeast more sensitive as reported by Ciccolin et al. 

(1997), and enhance the cell wall rupturing. 

3. Energy wise, it was found that for given log reduction, the shear stress 

treatment has the highest specific energy in comparison to homogenization, 

ultrasound and shock treatment.  

 

The log reduction per unit specific energy is defined as the ratio between the yeast 

log reductions to the required specific energy, which is the slope of the best fit line 

presented in Fig. 6.1 a, b and c.  

 

Results presented in Fig. 6.1 show that the log reduction per unit specific energy 

(kJ/kg) was 0.0053, 3.9 and 1.5 × 10
-5

 using ultrasound, shock wave and shear 

treatment respectively. The log reduction per unit specific energy for shock treatment 

was found to be the highest (3.9) among the three followed by ultrasound, while the 

log reduction per unit specific energy of shear stress treatment was the lowest of 1.5 
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× 10
-5 

). This result gives a strong indication that within the context of ultrasound 

processing, the chance of yeast disruption due to shock wave is very high in 

comparison with the shear stress. 

 

It is important to mention here, that although the experimental shock treatment 

results show that the maximum log reduction achieved was only around 0.57, this 

does not mean the shock wave effects are less important to the yeast disruption than 

the shear stress in ultrasound processing. The modest yeast disruption results 

(experimentally) were due to many factors related to the experimental setup, the 

yeast plastic bag, including the number of treatment times and other reasons that 

were discussed in chapter 4. The simulation and numerical results presented in 

chapter 4 demonstrated that a 100 MPa external dynamic pressure can lead to a 

possible yeast disruption. Thus, higher yeast log reduction per specific energy can be 

achieved using shock treatment, and ultimately a relatively small specific energy is 

required to achieve yeast disruption when ultrasound treatment is used.  
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Table 6.4 Specific energy and yeast log reduction results of five different mechanical 

yeast disruption in different operating conditions.   

Treatment 
Mass Power 

Specific 

Power 

Shear 

stress 

Specific 

Energy 

Log 

reduction 

(kg) (kW) (kW/kg) (MPa) (kJ/kg) (-) 

Ultrasound 0.03 
0.117 

0.117 

3.1 

3.1 

- 

- 

1132 

905 

4 

2.5 

 

Shear 

 

0.007 

0.007 

2.095 

2.095 

300 

300 

0.002595 

0.002595 

360000 

108000 

4 

2.5 

Shock wave 8.4 × 10
-14

 - - 75
 

4.77 0.57 

 

UHT 

 

0..315 8.29 263.17 - 197.4 8 

 

Homogenization 

 

0.39 × 10
-6

 0.728 1.86 × 10
6
 81 4.67 1 

 

Operating parameters 

 

Treatment 

Treatment 

Time 
Speed 

Time Per 

Pass 
Volume Temp. Pressure 

(s) (RPM) (s) (mL) (
o
C) (MPa) 

Ultrasound 
365 

292 
- - 30 

30 

30 
0.1 

Shear 
1200 

360 

10000 

10000 

0.0076 

0.0076 

60 

60 

30 

30 
0.1 

Shock wave - - - 7.3 × 10
-11

 20 116.6 

UHT 2.64 - - 31.5 93-140 0.5 

 

Homogenization 

 

2.5 × 10
-6

 
- 

5×10
-6

 3.9 × 10
-4

 4 46 

Homogenization data from Keshavarz et al. (1990) and UHT data from Sahoo et al. 

(2002). 
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CHAPTER VII 

_________________________________________ 

Conclusion and Future Work 
 

 

Ultrasound, ultra high temperature, high pressure homogenization, bead milling and 

French press are the most common, commercially-available devices that can be used 

for microorganism disruption. The emphasis of most literature is on 

commercialization and industrial application of these methods, while the innovation 

in the area of microbe disruption technology is not evident. The investigation of the 

ultrasound treatment, and understanding the real cause of microorganism disruption 

using ultrasound treatment - are shock waves or shear stress are responsible - is the 

question of this thesis.  

 

The general aim of this thesis was to fill in the gap of knowledge in the area of 

microorganism disruption due to ultrasound. There are two candidate mechanisms: i) 

shock wave; and ii) shear effect. It was reported (chapters 1 and 2) that strong shock 

wave and shearing flow effects are generated by high power ultrasound but the 

dominant effect on microorganism disruption whether - shock or shear - had not been 

resolved.  

 

Results in chapter 3 showed that the total heat lost to the surrounding was around 

13.5% of the total ultrasound energy. It was also found that one second is sufficient 

time to achieve a complete suspension mixing. The experimental results of chapter 3 

demonstrated that a maximum log reduction of 4 can be achieved at 117 W 

ultrasound power and a treatment time of 365 s.    

 

This thesis provides a substantial explanation of the effect of the shock treatment on 

microorganisms disruption, using an analytical model with the aid of a numerical FE 

technique combined with some experimental results using the shock wave apparatus 

(chapter 4). The shock treatment results show that, due to the difference in 
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mechanical properties between the cell wall and cytoplasm, cell wall disruption 

occurred at the lower part of the cell wall where von Mises stress concentration is 

developed.  

 

Mathematical methods were developed in chapter 5 using yeast mechanical 

properties to help analyse the microorganism disruption due to shear stress using a 

statistical approach. To validate the analysis, a shear stress apparatus was designed 

and constructed to provide shear stress in the absence of a pressure differential. The 

experimental and theoretical shear results demonstrated that, yeast disruption occurs 

due to the high energy dissipation and shear stress in the turbulent region of the 

suspension in the absence of high pressure and temperature within the annular gap in 

the shear apparatus. The shear stress experimental apparatus demonstrates that yeast 

disruption can occur due to shear stress in the absence of high pressure.  

 

Chapter 6 presents a comparative study between ultrasound, shock shear and shear 

treatment in term of specific energy. The results demonstrated that a yeast log 

reduction per unit specific energy was approximately 0.0053, 3.9, and 1.5× 10
-5

 

using ultrasound, shock and shear respectively. This result suggested that shock 

treatment is the most effective method for microorganism disruption in comparison 

to shear stress, and it suggested that the major cause of yeast disruption using 

ultrasound is the shock wave.  

 

The experimental results demonstrates that the specific energy required for yeast 

disruption using shock wave treatment is far below the specific energy required for 

shear stress, while the specific energy required for ultrasound treatment was at an 

intermediate level. In the case of a yeast log reduction of 0.25, it was found that the 

required ultrasound specific energy was around 70 times greater than the specific 

energy in the case of shock treatment. In the case of log reduction 4, it was found that 

the required ultrasound specific energy was around 318 times smaller than the 

specific energy in the case of shear stress. These data suggested that yeast disruption 

using ultrasound is due to shock waves rather than shear stress.   
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The detailed study reported in this thesis provides useful technical information on the 

real cause of microorganism disruption from ultrasound treatment. Further 

investigations are recommended in the following areas. 

  

1. The mathematical methods used in ultrasound and shear analysis in chapter 3 

and 5 assumed that yeast mechanical properties remain unchanged during 

treatment. It is recommended to further this study when mechanical 

properties change during the treatment.  

2. The FE simulation using ABAQUS was found to be a very good tool in this 

research area, so it is suggested that further investigation of non-linear 

analyses and parametric study using non-dimensional variables should be 

performed especially in the area of shock treatment.  

3. It is also recommended to further investigate the issues in turbulence flow in 

the annulus of the shear stress apparatus where shear stress and eddies are 

involved. A further investigation is needed to investigate the localize loading 

of cell wall due to turbulence in the annulus of the shear apparatus through a 

static analytical approach in the first instance as some sort of baseline for any 

future numerical treatment is important.  

4. The shock treatment system should be improved so that microorganisms can 

be subjected to higher pressures (greater than 100 MPa), but for more 

frequent times. 

5. This study used a spherical microorganism, and it is also important to 

examine the non-spherical types. This study should thus be repeated for other 

microorganisms shapes such as E. coli and other cells such as animal cells. 
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Appendix A 

Error Estimate in the FE Simulation  

 

To estimate the error and the convergence order in FE simulation, a difference in 

calculated pressure between difference global element sizes was used. A 2D model 

with 4 different mesh sizes was selected to investigate the quality (accuracy) of the 

numerical solution. The global element size (GES) was selected in the range of 1, 2, 

4, 6 and 8. The number of elements is inversely proportional to the GES. The 

pressure of a specific element was used for the purpose of this study. The difference 

in pressure was used to determine the convergence order of (p) and the estimated 

error. The solution scheme order of convergence, p, can be approximately 

determined using the following relationship 
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where   is the global element size which is 3 in this case and f(s) is the pressure 

obtained at a particular point (s) at the mesh for different GES values. Evaluating the 

estimated fractional error, E, using Richardson extrapolation for the first three f(s) 

gives a scheme order (P) of 3.5. The positive values indicate that the solution is 

converging. The estimated fractional error is given as  
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The error estimate is an order approximation to the actual fractional error of the 

quantity f2. The approximated errors in calculated the pressure for the first three 

highest GES were 0.6366%, 0.27% and 0.008%. The consistently decreasing error 

indicated that the converging in computational scheme is occurred. The error 

percentage for different GES is presented Fig. A1. 
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Fig. A1 The relationship between the error percentages against GES 

 

Fig. A1 shows that using global size of 6 in the configuration will reduce the error 

dramatically. Therefore a global size of around 6 (or close to 6) was used in this 

simulation.  
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Appendix B 

Pressure wave propagation within water 

 

In the FE simulation presented in chapter 4, water material properties was used in 

part 1 (water), 2 (cell wall) and 3 (cytoplasm). The aim of this numerical technique is 

to confirm that the pressure wave will travel smoothly throughout the three parts.  

  

If the model structure presented in Fig. B1 is used; the pressure wave will propagate 

through the water, strike the cell wall of the cell, and finally penetrate through the 

cytoplasm. Tabulated uniform pressure values were applied on the top surface of the 

tube with initial pressure of 1 MPa, Table B1. 

 

Table B1 Sample of tabulated amplitude of external pressure applied to top surface 

of model with step time of simulation  

 

Time (ms) Amplitude 

0 0 

1e-7 1 

0.7 1 

 

The time required for a pressure wave to pass the smallest element in the geometry 

was calculated and compared with the dilatation time presented in the ABAQUS 

model. To avoid any numerical error related to time step, the dilatation time should 

always be always less than the time required for the wave to travel from the top of 

the smallest element to the bottom of the same smallest element in the geometry. To 

avoid this numerical problem, the size of element was adjusted so simulation time 

step will stay greater than the dilatation time. The dynamic step time of the model 

varies with the material properties such as density, modulus of elasticity and 

Poisson’s ratios. Sample of pressure history of a node located in the water was 

calculated and presented in Fig B1. The pressure wave started from zero and in 1e-7 

ms the pressure increased to reach its maximum of 100 MPa. The pressure will then 

hold for sufficient time so wave can propagate through the water and pass the 

microbe located at the middle of the water tube.  
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 Fig. B Sample of pressure history of node located on the water.  

 

Figure B1 show that the pressure propagation through the water is smooth. This 

result provide confident that if water is used the pressure is 1 MPa and so far it is 

fixed. 
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Appendix C 

Dynamics model - accuracy and validation 

 

the purpose of this appendix to provide detail information about the dynamic model 

for different mesh density. It also aims to run simple model and compare the results 

of the simulation with relevant analytical calculation. A rectangular geometry model 

consisting of one material (water) was constructed to evaluate the effect of the mesh 

density, course and fine, on the output simulated results. Three different geometries 

with different mesh densities were generated to confirm that the numerical error was 

insignificant, see Fig. C1. The first mesh consists of 29710 linear triangular CPS3 (as 

define by ABAQUS) elements. The boundary conditions were set as BC1, BC2 and 

BC3 as explained in subsection 4.6. The material properties of the cell wall, 

cytoplasm and water are presented in Table 4.1.  

 

 

a- Fine mesh 

               

b- Coarse mesh  

 

Fig C1 Fine and coarse mesh 

 

  P1 

  P2 
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Two points located at the middle (P1) and the centre (P2) of the rectangular in Fig. 

C1 was selected for this verification study. It is theoretically expected that the 

pressure value at point 1 is half of the pressure value at point 2 as shown in Fig. C1. 

However the first simulated result of the pressure did not perfectly agree with this 

expectation, this was due to the mesh density as it was relatively course. Thus mesh 

density had to be increased by increasing the number of mesh up to 3000000.   

 

The pressure history was calculated and presented in Fig. C2 where 3000000 

elements used. In this trial, the pressure history data curve shows that the pressure 

value at point 1 (Fig. C1 a) is fluctuating from 0, 1 MPa and 2 MPa due to the 

pressure wave propagation. While the pressure value at point 2 (2 MPa) was 2 MPa 

since point 2 located at the bottom of the water tube. This result was very expected as 

described in 4.2. Thus the number of elements was fixed to be 3000000 elements. A 

third trial was repeated by increasing the number of elements to 4000000 to make 

sure that increasing the number of mesh will have no influence on the results, the 

results shows no differences in comparison with 3000000 element mesh.  
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a- Pressure history of point 1 – located at the bottom of the geometry 

 

b- Pressure history of point 2 –located at the middle of geometry 

Fig. C2 The pressure history of point (1) located at the middle of the geometry and 

point (2) located at the bottom of the geometry.  
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