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Introduction

The unique structure of the extracellular matrix of tendon
not only allows for the transmission of force generated by a
muscle onto a bone, but also gives the tissue its viscoelastic
properties. Tendons are heterogeneous structures in that the
composition of the extracellular matrix varies along their
length allowing tendon to meet specific mechanical require-
ments1. In tendinopathy the extracellular matrix is compro-
mised, resulting in swelling and pain that affects an
individual’s ability to function and in chronic cases their qual-
ity of life2,3. Tendons commonly affected by tendinopathy in-
clude the patellar, Achilles, and rotator cuff-tendons4-6.

Various theories have been proposed as to the cause of
tendinopathy but none have explained all aspects of the disease7.
From the literature there does not appear to be inflammatory cell
infiltration in later stage tendinopathy8-11 dismissing the term ‘ten-
dinitis’. However, inflammation cannot be completely ruled out
at earlier stages of the disease process12. Degenerative and failed
healing processes have also been described in the literature7,13.

In tendinopathy all tendons exhibit similar pathological
characteristics including increased levels of proteoglycans,
water content and cellularity as well as collagen disorganisa-
tion and fibril separation13-21. Various aspects of tendinopathy
investigated in these studies have used tendon samples from
people with chronic symptoms that represent late stages of the
condition. The role of proteoglycans in normal and tendino-
pathic tendon is poorly understood and this review aims to
evaluate proteoglycan functions and interactions in normal ten-
dons and in tendinopathy and to discuss changes in the syn-
thesis and catabolism of proteoglycans in tendinopathy that
may influence the progression of this disease.

Proteoglycans in the Extracellular Matrix of
Tendon
Normal Tendon

Type I collagen fibres form the majority of the tendon ex-
tracellular matrix providing tendon with its tensile
strength4,22,23 (Figure 1). Other minor collagens such as Type
III collagen are also present in the extracellular matrix of ten-
don7. Proteoglycans in the extracellular matrix are often asso-
ciated with collagen fibrils or hyaluronan. Non-collagenous
proteins (elastin, link protein, cartilage oligomeric matrix pro-
tein, tenascin-C, fibronectin, thrombospondin) are also present
in the extracellular matrix of tendon and are involved in ma-
trix-matrix, cell-matrix organisation or cell-matrix signalling.
Embedded between collagen fibrils are tendon cells (teno-
cytes) that are responsible for the synthesis and maintenance
of the extracellular matrix of the tissue (Figure 1). 

J Musculoskelet Neuronal Interact 2011; 11(2):86-93

Involvement of Proteoglycans in Tendinopathy

J. Parkinson1, T. Samiric1,3, M.Z. Ilic1,3, J. Cook2, C.J. Handley1,3

1School of Human Biosciences, La Trobe University, Melbourne, Victoria, 3086, Australia; 2School of Primary Health Care, Monash University,
Melbourne, Victoria, 3168, Australia; 3Musculoskeletal Research Centre, La Trobe University, Melbourne, Victoria, 3086, Australia

Abstract

A major feature of chronic tendinopathy is a change in the nature and organisation of the extracellular matrix of tendon. In-
creased levels of proteoglycans have been shown in the extracellular matrix of tendinopathic tendons and these appear to influence
the increased hydration and swelling of the tissue that is a feature of this condition. There is a paucity of knowledge about pro-
teoglycans in normal and tendinopathic tendons. This review sets out to describe the nature, function and metabolism of proteo-
glycans present in normal tendon and in tendinopathy and outlines how changes in proteoglycan metabolism may contribute to
the development and progression of this disease.

Keywords: Proteoglycans, Tendinopathy, Tendon

Review Article Hylonome

The authors have no conflict of interest.

Corresponding author: Dr T. Samiric, School of Human Biosciences, La Trobe
University, Victoria, 3086, Australia
E-mail: T.Samiric@latrobe.edu.au

Edited by: S. Warden
Accepted 10 March 2011

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Southern Queensland ePrints

https://core.ac.uk/display/11047358?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


J. Parkinson et al.: Involvement of Proteoglycans in Tendinopathy

87

The function of the different proteoglycans is determined
by the structure of their protein core and glycosaminoglycan
(GAG) chains. Although proteoglycans make up approxi-
mately 1% of the dry weight of tensile regions of most ten-
dons23, they are likely to contribute to the biomechanical and
structural properties of the extracellular matrix of tendon24,25.
The proteoglycans found in tendon are classified into two
groups: 1) the small leucine-rich proteoglycans (SLRPs) and
2) the large aggregating proteoglycans.

Small Leucine-Rich Proteoglycans 

The major proteoglycan present in tendon (based on levels
of the respective core proteins) is the SLRP decorin, which con-
stitutes approximately 80% of the total proteoglycan content in
the tensional region of tendon26. Also present are other SLRPs
including biglycan, fibromodulin and lumican as well as the re-
cently observed keratocan27. The prevalence of this group of pro-
teolgycans in the tissue is reflective of the collagenous nature of
tendon. The core proteins of the SLRPs are horseshoe shaped and

are characterised by leucine-rich repeats28, which are involved in
the binding of the SLRPs to collagen28-31 (Figure 1). They have
been shown to bind to collagen fibrils and regulate collagen fibril-
logenesis32. Decorin, for example, acts to modulate collagen fibril
formation through its attachment to collagen fibres every 64-68
nm32,33. Furthermore, collagen fibrils in tendons of SLRP knockout
mice (decorin, biglycan, fibromodulin and lumican) have smaller
diameter and abnormal morphology, resulting in weaker tendons
with decreased stiffness. This demonstrates the importance of these
SLRPs in tendon extracellular matrix structure and function espe-
cially the organisation of collagen fibrils34-39.

Large Aggregating Proteoglycans

The large aggregating proteoglycans found in the tensional
region of tendon are aggrecan and versican40-43 (Figure 1). A
characteristic feature of the large aggregating proteoglycans is
the presence of globular domains separated by a GAG attach-
ment region44.

The aggrecan monomer consists of a large core protein con-

Figure 1. Interactions of proteoglycans and other matrix macromolecules within the extracellular matrix of the tensile regions of normal tendon.
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taining three globular domains (G1, G2 and G3)44. At the
amino-terminus of the core protein is the G1 domain that
specifically binds hyaluronan, forming large multimolecular
aggregates45 (Figure 1). The G1 domain of aggrecan is homol-
ogous to link protein46 and is separated from the G2 domain
by an interglobular domain47,48. The G2 domain of aggrecan
appears to have a role in the secretion of the proteoglycan from
cells49. Aggrecan also contains a carboxyl-terminal G3 domain
which has lectin-like structures and therefore has the potential to
interact with other matrix macromolecules such as tenascin-R,
fibulin-1 and -2 and fibrilin-150-54. Versican contains an amino-
terminal G1 domain that is homologous to the G1 domain of
aggrecan and also binds hyaluronan and link protein55 and a
carboxyl-terminal G3 domain but does not contain a G2 do-
main24,56. Since aggrecan and versican have a high number of
negatively charged GAG chains attached to their core protein,
this gives these proteoglycans the ability to attract and bind
water and in tendon it is likely that they may contribute to the
biomechanical properties of normal tissue57. 

The distal region of tendon (where the tissue wraps around
bone) has a fibrocartilagenous structure and contains increased
levels of aggrecan and biglycan in comparison to the tensional
region58. The distal region also contains increased levels of
proteoglycan 4; a large proteoglycan which has been shown to
have a lubricating role59-61. 

We have investigated the nature of proteoglycans present in
the extracellular matrix of the tensile regions of normal ten-
dons. It appears that the core proteins of the SLRPs are mostly
intact indicating that there is little accumulation of degraded
SLRPs20. This is in contrast with the large proteoglycans that
are present in the extracellular matrix of normal tendon as
macromolecules with predominantly degraded core proteins.
Furthermore, a number of aggrecan and versican catabolic
fragments contain the G3 domain indicating that the G3 do-
main may be interacting with other components of the extra-
cellular matrix of tendon20. Fragments of large proteoglycans
may also be trapped within the extracellular matrix of tendon
entangled with each other or other matrix macromolecules.

Tendinopathy

Few studies have investigated the detailed nature of proteo-
glycan species associated with tendinopathy. Histochemical
analysis of pathologic tendons have reported increased GAG
content of the extracellular matrix of the tissue compared to
normal tendons7,57. Our work showed a 5-fold increase in GAG
content in tendinopathic tendons relative to normal tendons,
which are reflected in increased levels of the large proteogly-
cans aggrecan and versican19,20. 

As the large proteoglycans bind water, increased levels of these
proteoglycans are likely to contribute to tissue swelling that is a
common feature of the condition. In patellar tendon sections ex-
cised from human subjects, we have shown a 16% increase in
water content based on wet weight in tendinopathic tissue com-
pared to corresponding sections of normal tendons20. This in-
creased water content is consistent with a previous study of other
pathological tendons, such as supraspinatus and subscapularis ten-

dons, which contained significantly higher water content com-
pared to normal tendons22. In addition, this change in water con-
tent may also be in part due to disruption of the collagen
network62. It is very likely that there may be a concomitant in-
crease in collagen network disruption and proteoglycan levels20,62.

In tendinopathic tendon we have also shown an increase in
the levels of the SLRPs fibromodulin and biglycan20. Since the
interactions between collagens and SLRPs are critical for the
correct assembly of collagen fibrils, changes in the levels of
fibromodulin and biglycan in tendinopathy may contribute to
the degeneration of the collagen network.

The nature of the SLRPs and large proteoglycans are similar
in normal and tendinopathic tendons in that the majority of
SLRPs exist in the extracellular matrix with intact core pro-
teins whereas the majority of the large proteoglycans have
mainly fragmented core proteins20.

Metabolism of Proteoglycans in Tendon

Normal Tendon

Tenocytes are responsible for the metabolism of proteoglycans
in normal tendons. Under steady state conditions, there is a bal-
ance between the synthesis and catabolism of proteoglycans.
Tenocytes respond to mechanical loading with the expression of
proteoglycans and other extracellular matrix macromolecules63. 

In normal bovine tendon, the newly synthesised large pro-
teoglycans have a T½ of approximately two days43. Contrasting
the rapid turnover of the large proteoglycans, the rate of loss
of newly synthesised SLRPs was shown to be longer with a
T½ of greater than 20 days43,64. It was proposed that the slow
loss of newly synthesised SLRPs is due to their close associa-
tion with tendon matrix components, in particular the collagen
network and it is a possibility that the turnover of decorin may
be associated with the turnover of collagen65.

The catabolism of large proteoglycans in tendon is likely to
be mediated by the aggrecanases. Aggrecanases are members
of the ADAMTS (A Disintegrin-like and Metalloprotease with
Thromospondin motifs) family of proteases. The aggrecanases
were first discovered in articular cartilage by their ability to
cleave aggrecan at specific sites, with the major site being in
the interglobular domain of the aggrecan core protein between
residues Glu373-Ala374

66-68. Other aggrecanase sites include the
chondroitin sulphate domains of the aggrecan core protein67.
Cleavage at these sites results in the loss of the GAG attach-
ment regions of aggrecan in cartilage but not in tendon where
such fragments are retained by the tissue26,66,68,69. 

We have identified aggrecanase- and matrix metalloproteinase-
(MMP) products of the catabolism of large proteoglycans in bovine
tendon26. Although the mechanisms involved in the catabolism of
versican are unclear, most of the versican fragments present in the
tendon matrix lack the G1 domain and are most likely generated
from versican variants V0, V1 and V2

26. The recombinant aggre-
canases, ADAMTS-1 and -4, have been shown to cleave versican
at a specific site adjacent to the G1 domain between residues
Glu441-Ala442 and such cleavage has been observed in vivo70. 
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Tendinopathy

The rate of synthesis of 35S-labelled proteoglycans is 25-
fold greater in tendinopathy than in normal tendons21. This in-
crease in the rate of synthesis has been attributed to increased
synthesis of the large proteoglycans aggrecan and versican in
tendinopathic tissue21. The increase in proteoglycan synthesis
is likely to reflect in part the increase in cellularity in tendino-
pathic tissue71. This increased rate of synthesis of proteogly-
cans in tendinopathy may also be a result of altered mechanical
loads that increase local growth factor levels such as trans-
forming growth factor-β72,73. 

Our work has shown no significant change in the gene ex-
pression of specific proteoglycan species between normal and
tendinopathic human patellar tendons20. There was however a
trend for a change in mRNA levels concomitant with the up
regulation of versican and down regulation of fibromodulin20.
A problem with using mRNA expression analysis as a measure
of protein production is that it is unknown whether the reported
up or down regulation of mRNA for specific genes results in
the translation and survival of the specific protein74,75. For ex-
ample, the trend towards a decrease in fibromodulin expres-
sion in tendinopathic tendon did not cause a reduction of
protein levels in the extracellular matrix20. Instead, tendino-
pathic tendons contained higher levels of fibromodulin than
normal tendons indicating an accumulation of fibromodulin in
the extracellular matrix of tendinopathic tendons suggesting a
change in the metabolism of fibromodulin. This may also be
true for the accumulation of other proteoglycans in tendinopa-
thy. In contrast to this observation, the trend towards an in-
crease in the gene expression of versican correlated with an
increase in versican at the protein level20. Other studies have
shown an increase in aggrecan and biglycan gene expression
in human Achilles tendinopathy with variability in the expres-
sion of total versican and versican variants75,76. In contrast,
decorin gene expression showed no significant difference77 or
a reduction in decorin mRNA76 in tendinopathic Achilles ten-
dons compared to normal Achilles tendons.

The rate of loss of 35S-labelled proteoglycans from tendino-
pathic tendon is significantly higher compared to normal ten-
dons so that over a ten day period 40% of the radiolabelled
proteoglycans remained in the matrix of tendinopathic tendon
compared to 90% in normal tendon21. This may be due to
changes in either tendon metabolism or to increased cellularity
or both. The differences in the rate of loss of radiolabelled pro-
teoglycans between normal and tendinopathic tendon explant
cultures is likely to be due to increased synthesis of large pro-
teoglycans21, since the large radiolabelled proteoglycans are
lost more rapidly than the radiolabelled SLRPs and they rep-
resent the major proportion of radiolabelled proteoglycan loss
in tendinopathic tendon explants21,43.

The influence of growth factors and cytokines in tendinopa-
thy is yet to be established78. They are likely to promote the ac-
tivation of proteinases such as the ADAMTSs and MMPs,
causing the breakdown and disorganisation of the tendon extra-
cellular matrix seen in tendinopathy. Indeed changes in the lev-
els of gene expression of ADAMTS, MMP, and tissue inhibitor

of metalloproteinases (TIMP) have been reported in tendinopa-
thy75,78,79. However, our work showed no difference in the ex-
pression levels of ADAMTS-1, -4 and -5 or TIMP-2, -3 and -4
in tendinopathic tendon compared to normal tendons21. Jones
and colleagues79 showed no difference in the expression of
ADAMTS-1 and -4 and TIMP-1, -2 and -4 but showed a down-
regulation of ADAMTS-5 and TIMP-3 in painful Achilles ten-
dons compared to normal Achilles tendons. Indeed, in another
study the expression of ADAMTS-4 showed no significant
change between normal Achilles tendons and tendons with
chronic pain80. In the same study, Corps and colleagues (2008)
analysed the nature of ADAMTS-4 in the matrix showing an in-
crease in the processed active form of this proteinase in painful
Achilles tendons. These studies indicate that in painful
tendinopathy ADAMTS activity is increased by activation of
the proteinases and not by elevated gene expression.

The overall gene expression of the MMPs has been shown
to be relatively low in normal tendons79, as is required for the
healthy remodelling of tendons, but in pathological tendons
the levels of MMP gene expression can change greatly, possi-
bly resulting in degradation of the tendon74. Our work has
shown that the gene expression of MMP-9 and TIMP-1 was
significantly up regulated in tendinopathy21. This finding is
supported by a study of ruptured Achilles tendons where
MMP-9 and TIMP-1 gene expression was also upregulated79.
In pathologies of the Achilles tendon MMP-3 gene expression
was found to be significantly down regulated compared to nor-
mal Achilles tendons74,77,79. Although only MMP-9 was up reg-
ulated, the significant loss of proteoglycans suggests an
increase in the levels of proteinases in the tendon matrix. It is
therefore important to determine the protein levels and activi-
ties of these proteinases in tendinopathy.

Perspectives/Discussion

Evidence suggests that proteoglycans must play a key role
in the structure and function of the extracellular matrix of ten-
don in health and disease. Our work has shown that proteogly-
can metabolism by tendon is dynamic in that these
macromolecules are actively synthesised and catabolised by
both normal and tendinopathic tissue21,26,43. This change in the
metabolism of proteoglycans that occurs in tendinopathy is
likely to be the result of increased levels of cytokines and
growth factors. Further studies are needed to establish the role
of growth factors and cytokines in the activation of matrix pro-
teinases such as the MMPs and ADAMTSs that cause the
breakdown and disorganisation of the tendon extracellular ma-
trix seen in tendinopathy.

Tendons respond to changes in their environment by directly
altering the metabolism of large proteoglycans81-84. In normal
tendons, the synthesis of large proteoglycans is increased in
response to compressive loading whereas the synthesis of
SLRPs continues at a similar rate irrespective of mechanical
loading81-84. This change in proteoglycan metabolism leads to
the accumulation of large proteoglycans within the area of
compression and when the compressive load is removed, tissue
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levels of large proteoglycans returns to normal82. It has been
shown that in individuals with tendinopathy who have under-
gone strength training there is an immediate increase in
Achilles tendon volume85. This swelling is likely to result from
tendon responding to increased loading by increasing the syn-
thesis of large proteoglycans that accumulate within the tissue.
It is possible that normal tendons respond in a similar manner
to increased loading by synthesising proteoglycans that result
in the short-term in increased tissue levels of large proteogly-
cans that after a period of rest return to normal levels. How-
ever, further work is required to establish these changes.

These changes in the metabolism of large proteoglycans
complements a proposed model of tendinopathy that suggests
the condition is a continuum consisting of three stages; reac-
tive, disrepair and degeneration86. The development of the re-
active stage may result from the inability of tendon to
modulate the metabolism of large proteoglycans, resulting in
accumulation within the tissue as a response to increased load-
ing. It is not until the tendon disrepair phase during which the
tendon attempts to regenerate the extracellular matrix, which
ultimately fails, and results in collagen disorganisation. This
suggests that a change in large proteoglycan metabolism pre-
cedes any change in collagen organisation86.

This model allows for early intervention during the reactive
tendinopathy phase using imaging of the affected tendon that
may allow clinicians an opportunity to implement a regime to
reverse the condition before the tendon disrepair/tendon de-
generation phase through load reduction, pain management
and the use of selective pharmacological treatments aimed at
reducing tissue levels of large proteoglycans86,87.

Proteoglycans therefore appear to play a major role in the
function of normal tendon but an aberration in their metabo-
lism is likely to drive the pathogenesis of tendon where dam-
age to collage fibrils and overall collagen integrity through
swelling pressure occurs at all stages of overuse tendinopathy.
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