J Musculoskelet Neuronal Interact 2011; 11(2):86-93

Review Article

Involvement of Proteoglycans in Tendinopathy

J. Parkinson¹, T. Samiric^{1,3}, M.Z. Ilic^{1,3}, J. Cook², C.J. Handley^{1,3}

¹School of Human Biosciences, La Trobe University, Melbourne, Victoria, 3086, Australia; ²School of Primary Health Care, Monash University, Melbourne, Victoria, 3168, Australia; ³Musculoskeletal Research Centre, La Trobe University, Melbourne, Victoria, 3086, Australia

Abstract

A major feature of chronic tendinopathy is a change in the nature and organisation of the extracellular matrix of tendon. Increased levels of proteoglycans have been shown in the extracellular matrix of tendinopathic tendons and these appear to influence the increased hydration and swelling of the tissue that is a feature of this condition. There is a paucity of knowledge about proteoglycans in normal and tendinopathic tendons. This review sets out to describe the nature, function and metabolism of proteoglycans present in normal tendon and in tendinopathy and outlines how changes in proteoglycan metabolism may contribute to the development and progression of this disease.

Keywords: Proteoglycans, Tendinopathy, Tendon

Introduction

The unique structure of the extracellular matrix of tendon not only allows for the transmission of force generated by a muscle onto a bone, but also gives the tissue its viscoelastic properties. Tendons are heterogeneous structures in that the composition of the extracellular matrix varies along their length allowing tendon to meet specific mechanical requirements¹. In tendinopathy the extracellular matrix is compromised, resulting in swelling and pain that affects an individual's ability to function and in chronic cases their quality of life^{2,3}. Tendons commonly affected by tendinopathy include the patellar, Achilles, and rotator cuff-tendons⁴⁻⁶.

Various theories have been proposed as to the cause of tendinopathy but none have explained all aspects of the disease⁷. From the literature there does not appear to be inflammatory cell infiltration in later stage tendinopathy⁸⁻¹¹ dismissing the term 'tendinitis'. However, inflammation cannot be completely ruled out at earlier stages of the disease process¹². Degenerative and failed healing processes have also been described in the literature^{7,13}.

The authors have no conflict of interest.

Corresponding author: Dr T. Samiric, School of Human Biosciences, La Trobe University, Victoria, 3086, Australia E-mail: T.Samiric@latrobe.edu.au

Edited by: S. Warden Accepted 10 March 2011 In tendinopathy all tendons exhibit similar pathological characteristics including increased levels of proteoglycans, water content and cellularity as well as collagen disorganisation and fibril separation¹³⁻²¹. Various aspects of tendinopathy investigated in these studies have used tendon samples from people with chronic symptoms that represent late stages of the condition. The role of proteoglycans in normal and tendinopathic tendon is poorly understood and this review aims to evaluate proteoglycan functions and interactions in normal tendons and in tendinopathy and to discuss changes in the synthesis and catabolism of proteoglycans in tendinopathy that may influence the progression of this disease.

Proteoglycans in the Extracellular Matrix of Tendon

Normal Tendon

Type I collagen fibres form the majority of the tendon extracellular matrix providing tendon with its tensile strength^{4,22,23} (Figure 1). Other minor collagens such as Type III collagen are also present in the extracellular matrix of tendon⁷. Proteoglycans in the extracellular matrix are often associated with collagen fibrils or hyaluronan. Non-collagenous proteins (elastin, link protein, cartilage oligomeric matrix protein, tenascin-C, fibronectin, thrombospondin) are also present in the extracellular matrix of tendon and are involved in matrix-matrix, cell-matrix organisation or cell-matrix signalling. Embedded between collagen fibrils are tendon cells (tenocytes) that are responsible for the synthesis and maintenance of the extracellular matrix of the tissue (Figure 1).

Figure 1. Interactions of proteoglycans and other matrix macromolecules within the extracellular matrix of the tensile regions of normal tendon.

The function of the different proteoglycans is determined by the structure of their protein core and glycosaminoglycan (GAG) chains. Although proteoglycans make up approximately 1% of the dry weight of tensile regions of most tendons²³, they are likely to contribute to the biomechanical and structural properties of the extracellular matrix of tendon^{24,25}. The proteoglycans found in tendon are classified into two groups: 1) the small leucine-rich proteoglycans (SLRPs) and 2) the large aggregating proteoglycans.

Small Leucine-Rich Proteoglycans

The major proteoglycan present in tendon (based on levels of the respective core proteins) is the SLRP decorin, which constitutes approximately 80% of the total proteoglycan content in the tensional region of tendon²⁶. Also present are other SLRPs including biglycan, fibromodulin and lumican as well as the recently observed keratocan²⁷. The prevalence of this group of proteolgycans in the tissue is reflective of the collagenous nature of tendon. The core proteins of the SLRPs are horseshoe shaped and

are characterised by leucine-rich repeats²⁸, which are involved in the binding of the SLRPs to collagen²⁸⁻³¹ (Figure 1). They have been shown to bind to collagen fibrils and regulate collagen fibrillogenesis³². Decorin, for example, acts to modulate collagen fibril formation through its attachment to collagen fibres every 64-68 nm^{32,33}. Furthermore, collagen fibrils in tendons of SLRP knockout mice (decorin, biglycan, fibromodulin and lumican) have smaller diameter and abnormal morphology, resulting in weaker tendons with decreased stiffness. This demonstrates the importance of these SLRPs in tendon extracellular matrix structure and function especially the organisation of collagen fibrils³⁴⁻³⁹.

Large Aggregating Proteoglycans

The large aggregating proteoglycans found in the tensional region of tendon are aggrecan and versican⁴⁰⁻⁴³ (Figure 1). A characteristic feature of the large aggregating proteoglycans is the presence of globular domains separated by a GAG attachment region⁴⁴.

The aggrecan monomer consists of a large core protein con-

taining three globular domains (G1, G2 and G3)⁴⁴. At the amino-terminus of the core protein is the G1 domain that specifically binds hyaluronan, forming large multimolecular aggregates⁴⁵ (Figure 1). The G1 domain of aggrecan is homologous to link protein⁴⁶ and is separated from the G2 domain by an interglobular domain^{47,48}. The G2 domain of aggrecan appears to have a role in the secretion of the proteoglycan from cells⁴⁹. Aggrecan also contains a carboxyl-terminal G3 domain which has lectin-like structures and therefore has the potential to interact with other matrix macromolecules such as tenascin-R, fibulin-1 and -2 and fibrilin-150-54. Versican contains an aminoterminal G1 domain that is homologous to the G1 domain of aggrecan and also binds hyaluronan and link protein⁵⁵ and a carboxyl-terminal G3 domain but does not contain a G2 domain^{24,56}. Since aggrecan and versican have a high number of negatively charged GAG chains attached to their core protein, this gives these proteoglycans the ability to attract and bind water and in tendon it is likely that they may contribute to the biomechanical properties of normal tissue⁵⁷.

The distal region of tendon (where the tissue wraps around bone) has a fibrocartilagenous structure and contains increased levels of aggrecan and biglycan in comparison to the tensional region⁵⁸. The distal region also contains increased levels of proteoglycan 4; a large proteoglycan which has been shown to have a lubricating role⁵⁹⁻⁶¹.

We have investigated the nature of proteoglycans present in the extracellular matrix of the tensile regions of normal tendons. It appears that the core proteins of the SLRPs are mostly intact indicating that there is little accumulation of degraded SLRPs²⁰. This is in contrast with the large proteoglycans that are present in the extracellular matrix of normal tendon as macromolecules with predominantly degraded core proteins. Furthermore, a number of aggrecan and versican catabolic fragments contain the G3 domain indicating that the G3 domain may be interacting with other components of the extracellular matrix of tendon²⁰. Fragments of large proteoglycans may also be trapped within the extracellular matrix of tendon entangled with each other or other matrix macromolecules.

Tendinopathy

Few studies have investigated the detailed nature of proteoglycan species associated with tendinopathy. Histochemical analysis of pathologic tendons have reported increased GAG content of the extracellular matrix of the tissue compared to normal tendons^{7.57}. Our work showed a 5-fold increase in GAG content in tendinopathic tendons relative to normal tendons, which are reflected in increased levels of the large proteoglycans aggrecan and versican^{19,20}.

As the large proteoglycans bind water, increased levels of these proteoglycans are likely to contribute to tissue swelling that is a common feature of the condition. In patellar tendon sections excised from human subjects, we have shown a 16% increase in water content based on wet weight in tendinopathic tissue compared to corresponding sections of normal tendons²⁰. This increased water content is consistent with a previous study of other pathological tendons, such as supraspinatus and subscapularis ten-

dons, which contained significantly higher water content compared to normal tendons²². In addition, this change in water content may also be in part due to disruption of the collagen network⁶². It is very likely that there may be a concomitant increase in collagen network disruption and proteoglycan levels^{20,62}.

In tendinopathic tendon we have also shown an increase in the levels of the SLRPs fibromodulin and biglycan²⁰. Since the interactions between collagens and SLRPs are critical for the correct assembly of collagen fibrils, changes in the levels of fibromodulin and biglycan in tendinopathy may contribute to the degeneration of the collagen network.

The nature of the SLRPs and large proteoglycans are similar in normal and tendinopathic tendons in that the majority of SLRPs exist in the extracellular matrix with intact core proteins whereas the majority of the large proteoglycans have mainly fragmented core proteins²⁰.

Metabolism of Proteoglycans in Tendon

Normal Tendon

Tenocytes are responsible for the metabolism of proteoglycans in normal tendons. Under steady state conditions, there is a balance between the synthesis and catabolism of proteoglycans. Tenocytes respond to mechanical loading with the expression of proteoglycans and other extracellular matrix macromolecules⁶³.

In normal bovine tendon, the newly synthesised large proteoglycans have a $T_{\frac{1}{2}}$ of approximately two days⁴³. Contrasting the rapid turnover of the large proteoglycans, the rate of loss of newly synthesised SLRPs was shown to be longer with a $T_{\frac{1}{2}}$ of greater than 20 days^{43,64}. It was proposed that the slow loss of newly synthesised SLRPs is due to their close association with tendon matrix components, in particular the collagen network and it is a possibility that the turnover of decorin may be associated with the turnover of collagen⁶⁵.

The catabolism of large proteoglycans in tendon is likely to be mediated by the aggrecanases. Aggrecanases are members of the ADAMTS (A Disintegrin-like and Metalloprotease with Thromospondin motifs) family of proteases. The aggrecanases were first discovered in articular cartilage by their ability to cleave aggrecan at specific sites, with the major site being in the interglobular domain of the aggrecan core protein between residues Glu₃₇₃-Ala₃₇₄⁶⁶⁻⁶⁸. Other aggrecanase sites include the chondroitin sulphate domains of the aggrecan core protein⁶⁷. Cleavage at these sites results in the loss of the GAG attachment regions of aggrecan in cartilage but not in tendon where such fragments are retained by the tissue^{26,66,68,69}.

We have identified aggrecanase- and matrix metalloproteinase-(MMP) products of the catabolism of large proteoglycans in bovine tendon²⁶. Although the mechanisms involved in the catabolism of versican are unclear, most of the versican fragments present in the tendon matrix lack the G1 domain and are most likely generated from versican variants V_0 , V_1 and V_2^{26} . The recombinant aggrecanases, ADAMTS-1 and -4, have been shown to cleave versican at a specific site adjacent to the G1 domain between residues Glu₄₄₁-Ala₄₄₂ and such cleavage has been observed *in vivo*⁷⁰.

Tendinopathy

The rate of synthesis of ³⁵S-labelled proteoglycans is 25fold greater in tendinopathy than in normal tendons²¹. This increase in the rate of synthesis has been attributed to increased synthesis of the large proteoglycans aggrecan and versican in tendinopathic tissue²¹. The increase in proteoglycan synthesis is likely to reflect in part the increase in cellularity in tendinopathic tissue⁷¹. This increased rate of synthesis of proteoglycans in tendinopathy may also be a result of altered mechanical loads that increase local growth factor levels such as transforming growth factor- $\beta^{72,73}$.

Our work has shown no significant change in the gene expression of specific proteoglycan species between normal and tendinopathic human patellar tendons²⁰. There was however a trend for a change in mRNA levels concomitant with the up regulation of versican and down regulation of fibromodulin 20 . A problem with using mRNA expression analysis as a measure of protein production is that it is unknown whether the reported up or down regulation of mRNA for specific genes results in the translation and survival of the specific protein^{74,75}. For example, the trend towards a decrease in fibromodulin expression in tendinopathic tendon did not cause a reduction of protein levels in the extracellular matrix²⁰. Instead, tendinopathic tendons contained higher levels of fibromodulin than normal tendons indicating an accumulation of fibromodulin in the extracellular matrix of tendinopathic tendons suggesting a change in the metabolism of fibromodulin. This may also be true for the accumulation of other proteoglycans in tendinopathy. In contrast to this observation, the trend towards an increase in the gene expression of versican correlated with an increase in versican at the protein level²⁰. Other studies have shown an increase in aggrecan and biglycan gene expression in human Achilles tendinopathy with variability in the expression of total versican and versican variants^{75,76}. In contrast, decorin gene expression showed no significant difference⁷⁷ or a reduction in decorin mRNA76 in tendinopathic Achilles tendons compared to normal Achilles tendons.

The rate of loss of ³⁵S-labelled proteoglycans from tendinopathic tendon is significantly higher compared to normal tendons so that over a ten day period 40% of the radiolabelled proteoglycans remained in the matrix of tendinopathic tendon compared to 90% in normal tendon²¹. This may be due to changes in either tendon metabolism or to increased cellularity or both. The differences in the rate of loss of radiolabelled proteoglycans between normal and tendinopathic tendon explant cultures is likely to be due to increased synthesis of large proteoglycans²¹, since the large radiolabelled proteoglycans are lost more rapidly than the radiolabelled SLRPs and they represent the major proportion of radiolabelled proteoglycan loss in tendinopathic tendon explants^{21,43}.

The influence of growth factors and cytokines in tendinopathy is yet to be established⁷⁸. They are likely to promote the activation of proteinases such as the ADAMTSs and MMPs, causing the breakdown and disorganisation of the tendon extracellular matrix seen in tendinopathy. Indeed changes in the levels of gene expression of ADAMTS, MMP, and tissue inhibitor of metalloproteinases (TIMP) have been reported in tendinopathy^{75,78,79}. However, our work showed no difference in the expression levels of ADAMTS-1, -4 and -5 or TIMP-2, -3 and -4 in tendinopathic tendon compared to normal tendons²¹. Jones and colleagues⁷⁹ showed no difference in the expression of ADAMTS-1 and -4 and TIMP-1, -2 and -4 but showed a downregulation of ADAMTS-5 and TIMP-3 in painful Achilles tendons compared to normal Achilles tendons. Indeed, in another study the expression of ADAMTS-4 showed no significant change between normal Achilles tendons and tendons with chronic pain⁸⁰. In the same study, Corps and colleagues (2008) analysed the nature of ADAMTS-4 in the matrix showing an increase in the processed active form of this proteinase in painful Achilles tendons. These studies indicate that in painful tendinopathy ADAMTS activity is increased by activation of the proteinases and not by elevated gene expression.

The overall gene expression of the MMPs has been shown to be relatively low in normal tendons⁷⁹, as is required for the healthy remodelling of tendons, but in pathological tendons the levels of MMP gene expression can change greatly, possibly resulting in degradation of the tendon⁷⁴. Our work has shown that the gene expression of MMP-9 and TIMP-1 was significantly up regulated in tendinopathy²¹. This finding is supported by a study of ruptured Achilles tendons where MMP-9 and TIMP-1 gene expression was also upregulated⁷⁹. In pathologies of the Achilles tendon MMP-3 gene expression was found to be significantly down regulated compared to normal Achilles tendons^{74,77,79}. Although only MMP-9 was up regulated, the significant loss of proteoglycans suggests an increase in the levels of proteinases in the tendon matrix. It is therefore important to determine the protein levels and activities of these proteinases in tendinopathy.

Perspectives/Discussion

Evidence suggests that proteoglycans must play a key role in the structure and function of the extracellular matrix of tendon in health and disease. Our work has shown that proteoglycan metabolism by tendon is dynamic in that these macromolecules are actively synthesised and catabolised by both normal and tendinopathic tissue^{21,26,43}. This change in the metabolism of proteoglycans that occurs in tendinopathy is likely to be the result of increased levels of cytokines and growth factors. Further studies are needed to establish the role of growth factors and cytokines in the activation of matrix proteinases such as the MMPs and ADAMTSs that cause the breakdown and disorganisation of the tendon extracellular matrix seen in tendinopathy.

Tendons respond to changes in their environment by directly altering the metabolism of large proteoglycans⁸¹⁻⁸⁴. In normal tendons, the synthesis of large proteoglycans is increased in response to compressive loading whereas the synthesis of SLRPs continues at a similar rate irrespective of mechanical loading⁸¹⁻⁸⁴. This change in proteoglycan metabolism leads to the accumulation of large proteoglycans within the area of compression and when the compressive load is removed, tissue

levels of large proteoglycans returns to normal⁸². It has been shown that in individuals with tendinopathy who have undergone strength training there is an immediate increase in Achilles tendon volume⁸⁵. This swelling is likely to result from tendon responding to increased loading by increasing the synthesis of large proteoglycans that accumulate within the tissue. It is possible that normal tendons respond in a similar manner to increased loading by synthesising proteoglycans that result in the short-term in increased tissue levels of large proteoglycans that after a period of rest return to normal levels. However, further work is required to establish these changes.

These changes in the metabolism of large proteoglycans complements a proposed model of tendinopathy that suggests the condition is a continuum consisting of three stages; reactive, disrepair and degeneration⁸⁶. The development of the reactive stage may result from the inability of tendon to modulate the metabolism of large proteoglycans, resulting in accumulation within the tissue as a response to increased loading. It is not until the tendon disrepair phase during which the tendon attempts to regenerate the extracellular matrix, which ultimately fails, and results in collagen disorganisation. This suggests that a change in large proteoglycan metabolism precedes any change in collagen organisation⁸⁶.

This model allows for early intervention during the reactive tendinopathy phase using imaging of the affected tendon that may allow clinicians an opportunity to implement a regime to reverse the condition before the tendon disrepair/tendon degeneration phase through load reduction, pain management and the use of selective pharmacological treatments aimed at reducing tissue levels of large proteoglycans^{86,87}.

Proteoglycans therefore appear to play a major role in the function of normal tendon but an aberration in their metabolism is likely to drive the pathogenesis of tendon where damage to collage fibrils and overall collagen integrity through swelling pressure occurs at all stages of overuse tendinopathy.

Acknowledgements

Supported by the Faculty of Health Sciences, La Trobe University.

References

- Mehr D, Pardubsky PD, Martin JA, Buckwalter JA. Tenascin-C in tendon regions subjected to compression. J.Orthop Res 2000;18:537-45.
- Khan KM, Bonar F, Desmond PM, Cook JL, Young DA, Visentini PJ, Fehrmann MW, Kiss ZS, O'Brien PA, Harcourt PR, Dowling RJ, O'Sullivan RM, Crichton KJ, Tress BM, Wark JD. Patellar tendinosis (jumper's knee): findings at histopathologic examination, US and MR imaging. The Victorian Institute of Sport Tendon Study Group. Radiol 1996;200:821-7.
- Cook JL, Khan KM, Harcourt PR, Grant M, Young DA, Bonar SF. A cross sectional study of 100 athletes with jumper's knee managed conservatively and surgically. The Victorian Institute of Sport Tendon Study Group. Br

J Sports Med 1997;31:332-6.

- 4. Bank RA, TeKoppele JM, Oostingh G, Hazleman BL, Riley GP. Lysylhydroxylation and non-reducible crosslinking of human supraspinatus tendon collagen: changes with age and in chronic rotator cuff tendinitis. Ann Rheum Dis 1999;58:35-41.
- Riley GP, Curry V, DeGroot J, van El B, Verzijl N, Hazleman BL, Bank RA. Matrix metalloproteinase activities and their relationship with collagen remodelling in tendon pathology. Matrix Biol 2002;21:185-95.
- Birch HL. Tendon matrix composition and turnover in relation to functional requirements. Int J Exp Pathol 2007; 88:241-8.
- 7. Riley G. The pathogenesis of tendinopathy. A molecular perspective. Rheumatol 2004;43:131-42.
- Alfredson H, Lorentzon R. Chronic Achilles tendinosis: recommendations for treatment and prevention. Sports Med 2000;29:135-46.
- Yu JS, Popp JE, Kaeding CC, Lucas J. Correlation of MR imaging and pathologic findings in athletes undergoing surgery for chronic patellar tendinitis. Am J Roentgenol 1995;165:115-8.
- Astrom M, Rausing A. Chronic Achilles tendinopathy: a survey of surgical and histopathologic findings. Clin Orthop 1995;316:151-64.
- Khan KM, Cook JL, Kannus P, Maffulli N, Bonar SF. Time to abandon the "tendinitis" myth. BMJ 2002; 324:626-7.
- Miller NL, Hueber AJ, Reilly JH, Xu Y, Fazzi UG, Murrell GAC, McInnes IB. Inflammation is present in early human tendinopathy. Am J Sports Med 2010;38:2085-91.
- Cook JL, Khan KM, Purdam C. Achilles tendinopathy. Man Ther 2002;7:121-30.
- Chard MD, Cawston TE, Riley GP, Gresham GA, Hazleman BL. Rotator cuff degeneration and lateral epicondylitis: a comparative histological study. Ann Rheum Dis 1994;53:30-4.
- Riley GP, Harrall RL, Constant CR, Chard MD, Cawston TE, Hazleman BL. Glycosaminoglycans of human rotator cuff tendons: changes with age and in chronic rotator cuff tendinitis. Ann Rheum Dis 1994a;53:367-76.
- Kannus P. Etiology and pathophysiology of chronic tendon disorders in sports. Scand J Med Sci Sports 1997; 7:78-85.
- Riley GP, Goddard MJ, Hazleman BL. Histopathological assessment and pathological significance of matrix degeneration in supraspinatus tendons. Rheumatol 2001; 40:229-30.
- de Mos M, van El B, DeGroot J, Jahr H, van Schie HTM, van Arkel ER, Tol H, Heijboer R, van Osch GJVM, Verhaar JAN. Achilles tendinosis: changes in biochemical composition and collagen turnover rate. Am J Sports Med 2007;35:1549-56.
- Scott A, Lian O, Roberts CR, Cook JL, Handley CJ, Bahr R, Samiric T, Ilic MZ, Parkinson J, Hart DA, Duronio V, Khan KM. Increased versican content is associated with

tendinosis pathology in the patellar tendon of athletes with jumper's knee. Scand J Med Sci Sports 2008; 18:427-35.

- 20. Samiric T, Parkinson J, Ilic MZ, Cook J, Feller JA, Handley CJ. Changes in the composition of the extracellular matrix in patellar tendinopathy. Matrix Biol 2009;28:230-6.
- 21. Parkinson J, Samiric T, Ilic MZ, Cook J, Feller JA, Handley CJ. Change in proteoglycan metabolism is a characteristic of human patellar tendinopathy. Arthritis Rheum 2010;62:3028-35.
- 22. Riley GP, Harrall RL, Constant CR, Chard MD, Cawston TE, Hazleman BL. Tendon degeneration and chronic shoulder pain: changes in the collagen composition of the human rotator cuff tendons in rotator cuff tendinitis. Ann Rheum Dis 1994b;53:359-66.
- 23. O'Brien M. Structure and metabolism of tendons. Scand J Med Sci Sports 1997;7:55-61.
- 24. Iozzo RV. Matrix proteoglycans: from molecular design to cellular function. Annu Rev Biochem 1998;67:609-52.
- Yoon JH, Halper J. Tendon proteoglycans: biochemistry and function. J Musculoskelet Neuronal Interact 2005; 5:22-34.
- Samiric T, Ilic MZ, Handley CJ. Characterisation of proteoglycans and their catabolic products in tendon and explant cultures of tendon. Matrix Biol 2004a;23:127-40.
- 27. Rees SG, Waggett AD, Kerr BC, Probert J, Gealy EC, Dent CM, Caterson B, Hughes CE. Immunolocalisation and expression of keratocan in tendon. Osteoarthritis Cartilage 2009;17:276-9.
- Henry SP, Takanosu M, Boyd TC, Mayne PM, Eberspaecher H, Zhou W, de Crombrugghe B, Hook M, Mayne R. Expression pattern and gene characterization of asporin - a newly discovered member of the leucine-rich repeat protein family. J Biol Chem 2001;276:12212-21.
- 29. Vogel KG, Paulsson M, Heinegard D. Specific inhibition of type I and type II collagen fibrillogenesis by the small proteoglycan of tendon. Biochem J 1984;223:587-97.
- Hedbom E, Heinegard D. Interaction of a 59-kDa connective tissue matrix protein with collagen I and collagen II. J Biol Chem 1989;264:6898-905.
- Rada JA, Cornuet PK, Hassell JR. Regulation of corneal collagen fibrillogenesis *in vitro* by corneal proteoglycan (lumican and decorin) core proteins. Exp Eye Res 1993; 56:635-48.
- Scott JE, Orford CR, Hughes EW. Proteoglycan-collagen arrangements in developing rat tail tendon. An electron microscopical and biochemical investigation. Biochem J 1981;195:573-81.
- Hedbom E, Heinegard D. Binding of fibromodulin and decorin to separate sites on fibrillar collagens. J Biol Chem 1993;268:27307-12.
- Danielson KG, Baribault H, Holmes DF, Graham H, Kadler KE, Iozzo RV. Targeted disruption of decorin leads to abnormal collagen fibril morphology and skin fragility. J Cell Biol 1997;136:729-43.
- 35. Svensson L, Aszodi A, Reinholt FP, Fassler R, Heinegard D,

Oldberg A. Fibromodulin-null mice have abnormal collagen fibrils, tissue organization, and altered lumican deposition in tendon. J Biol Chem 1999;274:9636-47.

- 36. Ameye L, Aria D, Jepsen K, Oldberg A, Xu T, Young MF. Abnormal collagen fibrils in tendons of biglycan/fibromodulin-deficient mice lead to gait impairment, ectopic ossification, and osteoarthritis. FASEB J 2002;16:673-80.
- Ameye L, Young MF. Mice deficient in small leucine-rich proteoglycans: novel *in vivo* models for osteoporosis, osteoarthritis, Ehlers-Danlos syndrome, muscular dystrophy, and corneal diseases. Glycobiol 2002;12:107R-16R.
- Chakravarti S. Functions of lumican and fibromodulin: lessons from knockout mice. Glycoconj J 2003;19:287-93.
- Jepsen KJ, Wu F, Peragallo JH, Paul J, Roberts L, Ezura Y, Oldberg A, Birk DE, Chakravarti S. A syndrome of joint laxity and impaired tendon integrity in lumican- and fibromodulin-deficient mice. J Biol Chem 2002;277:35532-40.
- 40. Vogel KG, Sandy JD, Pogany G, Robbins JR. Aggrecan in bovine tendon. Matrix Biol 1994;14:171-9.
- Campbell MA, Winter AD, Ilic MZ, Handley CJ. Catabolism and loss of proteoglycans from cultures of bovine collateral ligament. Arch Biochem Biophys 1996;328:64-72.
- 42. Rees SG, Flannery CR, Little CB, Hughes CE, Caterson B, Dent CM. Catabolism of aggrecan, decorin and biglycan in tendon. Biochem J 2000;350:181-8.
- Samiric T, Ilic MZ, Handley CJ. Large aggregating and small leucine-rich proteoglycans are degraded by different pathways and at different rates in tendon. Eur J Biochem 2004b;271:3612-20.
- 44. Doege K, Sasaki M, Horigan E, Hassell JR, Yamada Y. Complete primary structure of the rat cartilage proteoglycan core protein deduced from cDNA clones. J Biol Chem 1987;262:17757-67.
- 45. Heinegard D, Hascall VC. Aggregation of cartilage proteoglycans. III. Characteristics of the proteins isolated from trypsin digests of aggregates. J Biol Chem 1974; 249:4250-6.
- 46. Hering TM, Kollar J, Huynh TD. Complete coding sequence of bovine aggrecan: comparative structural analysis. Arch Biochem Biophys 1997;345:259-70.
- Paulsson M, Morgelin M, Wiedemann H, Beardmore-Gray M, Dunham D, Hardingham T, Heinegard D, Timpl R, Engel J. Extended and globular protein domains in cartilage proteoglycans. Biochem J 1987;245:763-72.
- Fosang AJ, Hardingham TE. Isolation of the N-terminal globular protein domains from cartilage proteoglycans. Identification of G2 domain and its lack of interaction with hyaluronate and link protein. Biochem J 1989; 261:801-9.
- 49. Kiani C, Chen L, Lee V, Zheng P-S, Wu Y, Wen J, Cao L, Adams ME, Sheng W, Yang BB. Identification of the motifs and amino acids in aggrecan G1 and G2 domains involved in product secretion. Biochem 2003;42:7226-37.
- 50. Aspberg A, Binkert C, Ruoslahti E. The versican C-type lectin domain recognizes the adhesion protein tenascin-R. Proc Natl Acad Sci USA 1995;92:10590-4.

- 51. Aspberg A, Miura R, Bourdoulous S, Shimonaka M, Heinegard D, Schachner M, Ruoslahti E, Yamaguchi Y. The C-type lectin domains of lecticans, a family of aggregating chondroitin sulfate proteoglycans, bind tenascin-R by protein-protein interactions independent of carbohydrate moiety. Proc Natl Acad Sci USA 1997; 94:10116-21.
- 52. Aspberg A, Adam S, Kostka G, Timpl R, Heinegard D. Fibulin-1 is a ligand for the C-type lectin domains of aggrecan and versican. J Biol Chem 1999;274:20444-9.
- 53. Olin AI, Morgelin M, Sasaki T, Timpl R, Heinegard D, Aspberg A. The proteoglycans aggrecan and versican form networks with fibulin-2 through their lectin domain binding. J Biol Chem 2001;276:1253-61.
- 54. Isogai Z, Shinomura T, Yamakawa N, Takeuchi J, Tsuji T, Heinegard D, Kimata K. 2B1 antigen characteristically expressed on extracellular matrices of human malignant tumors is a large chondroitin sulfate proteoglycan, PG-M/versican. Cancer Res 1996;56:3902-8.
- LeBaron RG, Zimmermann DR, Ruoslahti E. Hyaluronate binding properties of versican. J Biol Chem 1992; 267:10003-10.
- Zimmermann DR, Ruoslahti E. Multiple domains of the large fibroblast proteoglycan, versican. EMBO J 1989; 8:2975-81.
- 57. Fu SC, Chan KM, Rolf CG. Increased deposition of sulfated glycosaminoglycans in human patellar tendinopathy. Clin J Sports Med 2007;17:129-34.
- Gillard GC, Merrilees MJ, Bell-Booth PG, Reilly HC, Flint MH. The proteoglycan content and the axial periodicity of collagen in tendon. Biochem J 1977;163:145-51.
- 59. Rees SG, Davies JR, Tudor D, Flannery CR, Dent CM, Caterson B. Immunolocalisation and expression of proteoglycan 4 (cartilage superficial zone proteoglycan) in tendon. Matrix Biol 2002;21:593-602.
- 60. Marcelino J, Carpten JD, Suwairi WM, Gutierrez OM, Schwartz S, Robbins C, Sood R, Makalowska I, Baxevanis A, Johnstone B, Laxer RM, Zemel L, Kim CA, Herd JK, Inle J, Williams C, Johnson M, Raman V, Alonso LG, Brunoni D, Gerstein A, Papadopoulos N, Bahabri SA, Trent JM, Warman ML. CACP, encoding a secreted proteoglycan, is mutated in camptodactyly-arthropathy-coxavarapericarditis syndrome. Nat Genet 1999;23:319-22.
- Rhee DK, Marcelino J, Baker M, Gong Y, Smits P, Lefebvre V, Jay GD, Stewart M, Wang H, Warman ML, Carpten JD. The secreted glycoprotein lubricin protects cartilage surfaces and inhibits synovial cell overgrowth. J Clin Invest 2005;115:622-31.
- 62. Kojima T, Mwale F, Yasuda T, Girard C, Poole AR, Laverty S. Early degradation of type IX and type II collagen with the onset of experimental inflammatory arthritis. Arthritis Rheum 2001;44:120-7.
- 63. Banes AJ, Horesovsky G, Larson C, Tsuzaki M, Judex S, Archambault J, Zernicke R, Herzog W, Kelley S, Miller L. Mechanical load stimulates expression of novel genes *in vivo* and *in vitro* in avian flexor tendon cells. Os-

teoarthritis Cartilage 1999;7:141-53.

- 64. Koob TJ, Vogel KG. Proteoglycan synthesis in organ cultures from regions of bovine tendon subjected to different mechanical forces. Biochem J 1987;246:589-98.
- 65. Vogel KG, Heinegard D. Characterization of proteoglycans from adult bovine tendon. J Biol Chem 1985; 260:9298-306.
- 66. Sandy JD, Neame PJ, Boynton RE, Flannery CR. Catabolism of aggrecan in cartilage explants. Identification of a major cleavage site within the interglobular domain. J Biol Chem 1991;266:8683-5.
- 67. Ilic MZ, Handley CJ, Robinson HC, Mok MT. Mechanism of catabolism of aggrecan by articular cartilage. Arch Biochem Biophys 1992;294:115-22.
- 68. Ilic MZ, Vankemmelbeke MN, Holen I, Buttle DJ, Robinson HC, Handley CJ. Bovine joint capsule and fibroblasts derived from joint capsule express aggrecanase activity. Matrix Biol 2000;19:257-65.
- 69. Ilic MZ, Robinson HC, Handley CJ. Characterization of aggrecan retained and lost from the extracellular matrix of articular cartilage. Involvement of carboxyl-terminal processing in the catabolism of aggrecan. J Biol Chem 1998;273:17451-8.
- 70. Sandy JD, Westling J, Kenagy RD, Iruela-Arispe ML, Verscharen C, Rodriguez-Mazaneque JC, Zimmermann DR, Lemire JM, Fischer JW, Wight TN, Clowes AW. Versican V1 proteolysis in human aorta *in vivo* occurs at the Glu⁴⁴¹-Ala⁴⁴² bond, a site that is cleaved by recombinant ADAMTS-1 and ADAMTS-4. J Biol Chem 2001;276:13372-8.
- 71. Andersson G, Forsgren S, Scott A, Gaida JE, Stjernfeldt JE, Lorentzon R, Alfredson H, Backman C, Danielson P. Tenocyte hypercellularity and vascular proliferation in a rabbit model of tendinopathy: contralateral effects suggest the involvement of central neuronal mechanisms. 2010; In press, Br J Sports Med.
- 72. Robbins JR, Evanko SP, Vogel KG. Mechanical loading and TGF-beta regulate proteoglycan synthesis in tendon. Arch Biochem Biophys 1997;342:203-11.
- 73. Jones ARC, Flannery CR. Bioregulation of lubricin expression by growth factors and cytokines. Eur Cell Mater 2007;13:40-5.
- 74. Ireland D, Harrall R, Curry V, Holloway G, Hackney R, Hazleman B, Riley G. Multiple changes in gene expression in chronic human Achilles tendinopathy. Matrix Biol 2001;20:159-69.
- 75. Corps AN, Robinson AHN, Movin T, Costa ML, Ireland DC, Hazleman BL, Riley GP. Versican splice variant messenger RNA expression in normal human Achilles tendon and tendinopathies. Rheumatol 2004;43:969-72.
- 76. Corps AN, Robinson AHN, Movin T, Costa ML, Hazleman BL, Riley GP. Increased expression of aggrecan and biglycan mRNA in Achilles tendinopathy. Rheumatol 2006;45:291-4.
- 77. Alfredson H, Lorentzon M, Backman S, Backman A, Lerner UH. cDNA-arrays and real-time quantitative PCR techniques in the investigation of chronic Achilles tendi-

J. Parkinson et al.: Involvement of Proteoglycans in Tendinopathy

nosis. J Orthop Res 2003;21:970-5.

- 78. Riley G. Chronic tendon pathology: molecular basis and therapeutic implications. Exp Rev Mol Med 2005;7:1-25.
- 79. Jones GC, Corps AN, Pennington CJ, Clark IM, Edwards DR, Bradley MM, Hazleman BL, Riley GP. Expression profiling of metalloproteinases and tissue inhibitors of metalloproteinases in normal and degenerate human Achilles tendon. Arthritis Rheum 2006;54:832-42.
- Corps AN, Jones GC, Harrall RL, Curry VA, Hazleman BL, Riley GP. The regulation of aggrecanase ADAMTS-4 expression in human Achilles tendon and tendon-derived cells. Matrix Biol 2008;27:393-401.
- Merrilees MJ, Flint MH. Ultrastructural study of tension and pressure zones in a rabbit flexor tendon. Am J Anat 1980;157:87-106.
- 82. Koob TJ, Clark PE, Hernandez DJ, Thurmond FA, Vogel KG. Compression loading *in vitro* regulates proteoglycan synthesis by tendon fibrocartilage. Arch Biochem Bio-

phys 1992;298:303-12.

- 83. Evanko SP, Vogel KG. Proteoglycan synthesis in fetal tendon is differentially regulated by cyclic compression *in vitro*. Arch Biochem Biophys 1993;307:153-64.
- 84. Vogel KG. The effect of compressive loading on proteoglycan turnover in cultured fetal tendon. Conn Tiss Res 1996;34:227-37.
- Shalabi A, Kristoffersen-Wiberg M, Aspelin P, Movin T. Immediate Achilles tendon response after strength training evaluated by MRI. Med Sci Sports Exerc 2004; 36:1841-6.
- Cook JL, Purdam CR. Is tendon pathology a continuum? A pathology model to explain the clinical presentation of load-induced tendinopathy. Br J Sports Med 2009; 43:409-16.
- 87. Fallon K, Purdam C, Cook J, Lovell G. A "polypill" for acute tendon pain in athletes with tendinopathy? J Sci Med Sport 2008;11:235-8.