
University of Southern Queensland
Faculty of Engineering and Surveying

Development and Testing of a Networked

PC Power Management Tool

A dissertation submitted by

Simon Brooks

in fulfilment of the requirements of

Courses ENG4111 and ENG4112 Research Project

towards the degree of

Bachelor of Engineering (Computer Systems)

Submitted: October 2010

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Southern Queensland ePrints

https://core.ac.uk/display/11046677?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

i

Abstract

One of the major themes of this project is Personal Computer (PC) power usage,

which is a significant issue as many PCs run 24 hours per day and therefore

potentially waste large amounts of power. This power wastage is unfortunate given

that most operating systems support hibernation

As issues such as fossil fuels, carbon footprint, global warming etc., are highly

topical and politicized, energy efficiency in electrical devices is a significant issue.

Additionally, through capability developments such as ‘green’ computing,

virtualization, and even edge computing, the Information and Communications

Technology (ICT) industry is one of the few industries that seem to be taking

ecological issues seriously.

The main objectives of the project are:

• The research and evaluation of a number statistics that relate to PC energy

consumption.

• Investigation of power spikes and network traffic floods which may be

caused by simultaneous PC start-up.

• Development of a software tool to control the start-up and shutdown of a

PC either via scheduling or manual control.

• Development of a software tool that remotely controls the start-up and

shutdown of either singular or grouped PCs.

In addition to the aim of reducing wasted power, this project aims to improve

network traffic efficiency by minimizing network traffic congestion through

controlling the sequence of PC start-up in a networked environment. This controlled

ii

start-up has a secondary benefit in potentially reducing the severity of power spikes

due to a simultaneous PC start-up.

It is hoped that further development and testing of the ‘PowerMan’ application will

provide greater program functionality. Additionally, it is envisaged that this tool

could be used in conjunction with more energy efficient PCs and peripherals and

therefore provide an overall package that is power efficient whatever its state of

operation, with little control or interaction from the user.

University of Southern Queensland

Faculty of Engineering and Surveying

ENG4111 Research Project Part 1 &
ENG4112 Research Project Part 2

Limitations of Use

The Council of the University of Southern Queensland, its Faculty of Engineering and
Surveying, and the staff of the University of Southern Queensland, do not accept any
responsibility for the truth, accuracy or completeness of material contained within or
associated with this dissertation.

Persons using all or any part of this material do so at their own risk, and not at the risk of the
Council of the University of Southern Queensland, its Faculty of Engineering and Surveying
or the staff of the University of Southern Queensland.

This dissertation reports an educational exercise and has no purpose or validity beyond this
exercise. The sole purpose of the course "Project and Dissertation" is to contribute to the
overall education within the student’s chosen degree programme. This document, the
associated hardware, software, drawings, and other material set out in the associated
appendices should not be used for any other purpose: if they are so used, it is entirely at the
risk of the user.

Professor Frank Bullen
Dean
Faculty of Engineering and Surveying

iv

Certification

I certify that the ideas, designs, and experimental work, results, analyses and

conclusions set out in this dissertation are entirely my own effort, except where

otherwise indicated and acknowledged.

I further certify that the work is original and has not been previously submitted for

assessment in any other course or institution, except where specifically stated.

Simon Brooks

Student Number: 0011120394

 Signature

 Date

v

Acknowledgements

This project was carried out under the supervision of Dr Alexander Kist and I would

like to thank Alexander for his guidance and support during the project.

I am also extremely appreciative for the support I have gained from my loving and

growing family. In particular, I would like to thank my wife who has supported me

over many years while I completed this program.

vi

Table of Contents

Abstract .. i

Limitations of Use.. iii

Certification ... iv

Acknowledgements ... v

Table of Contents ... vi

Appendices.. x

List of Tables ... xi

List of Figures ... xii

List of Abbreviations ... xiv

Chapter 1. Introduction... 1

1.1 Project theme and background.. 1

1.2 Dissertation layout and description... 2

Chapter 2. Project drivers ... 4

2.1 Introduction... 4

2.2 Energy production... 4

2.3 Energy usage... 6

2.4 Significance of PC energy consumption... 8

2.5 Network transmission efficiency .. 9

2.6 Efficient and consistent power draw... 11

Chapter 3. A brief review of PCs and networks ... 12

3.1 Introduction... 12

3.2 Advanced Configuration and Power Interface.. 12

3.2.1 ACPI Global States .. 13

3.2.2 ACPI Sleeping States ... 14

3.2.3 ACPI Processor Power States .. 16

3.3 Operating System Considerations... 17

3.3.1 Windows Management Instrumentation .. 17

vii

3.3.2 Application Programming Interface... 17

3.4 Wake on LAN... 19

3.4.1 Wake on LAN Details.. 19

3.4.2 Wake on LAN Setting Considerations... 21

Chapter 4. Project objectives and scope analysis ... 22

4.1 Introduction... 22

4.2 Project objectives and scoping.. 22

Chapter 5. Project statistics and outcomes ... 26

5.1 Introduction... 26

5.2 Computer usage statistics.. 27

5.2.1 Computer power status... 27

5.2.2 Energy financial cost estimates.. 29

5.2.3 Energy environmental cost estimates... 30

5.2.4 Idle time statistics... 30

5.2.5 Network traffic floods .. 32

5.2.6 Power spikes .. 33

5.3 Environmental and financial impacts ... 34

Chapter 6. Project management .. 35

6.1 Introduction... 35

6.2 Project methodology and lifecycle ... 36

6.3 Project Scope .. 37

6.4 Project risk .. 38

6.5 Project activities and schedule.. 40

6.6 Software Project Management.. 41

Chapter 7. Software development... 42

7.1 Introduction... 42

7.2 Development and implementation environment... 42

7.3 Development methodology... 45

7.4 Design methodology ... 48

7.4.1 Object-oriented approach... 48

viii

7.4.2 Human-computer interaction ... 49

7.5 Security ... 51

7.6 Implementation considerations and resources .. 53

Chapter 8. Program outline... 54

8.1 Introduction... 54

8.2 PowerMan general outline .. 56

8.3 PowerMan client operation... 58

8.3.1 System details .. 59

8.3.2 Server connection... 59

8.3.3 Efficiency ... 60

8.3.4 Sleeping.. 61

8.3.5 Waking ... 62

8.3.6 Storage ... 62

8.3.7 PowerMan client functions .. 63

8.4 PowerMan server operation .. 65

8.4.1 System details .. 66

8.4.2 Network details .. 66

8.4.3 Client management .. 67

8.4.4 Wake list management ... 69

8.4.5 Wake scheduling .. 70

8.4.6 Storage ... 71

8.4.7 PowerMan server functions.. 72

Chapter 9. Testing and evaluation .. 74

9.1 Introduction... 74

9.2 Testing methodology .. 74

9.3 Test environment .. 76

9.4 Test plan and results ... 77

9.4.1 Client specific testing... 77

9.4.2 Server specific testing .. 80

9.4.3 Joint server and client testing... 82

9.5 Testing summary... 83

ix

Chapter 10. Conclusions and Future developments.. 84

10.1 Achievement of project objectives ... 84

10.2 Further work ... 85

List of References ... 86

x

Appendices

Appendix A - Research Project Specification .. 90

Appendix B - Research Project Schedule ... 91

Appendix C – PowerMan Client Code ... 92

Appendix C1 – Form1.cs... 93

Appendix C2 – Form1.Designer.cs ... 112

Appendix C3 – Program.cs ... 114

Appendix C4 – DateTimeState.cs ... 115

Appendix C5 – ServerPacket.cs .. 117

Appendix D – PowerMan Server Code .. 118

Appendix D1 – Form1.cs .. 119

Appendix D2 – Form1.Designer.cs ... 138

Appendix D3 – Program.cs ... 140

Appendix D4 – ClientPacket.cs... 141

Appendix D5 – ServerClient.cs... 142

Appendix E – PowerMan Batch File Contents... 143

Appendix F – PowerMan Class Library Code.. 144

Appendix F1 – Client.cs .. 145

xi

List of Tables

Table 2.1 – PC electrical energy usage... 6

Table 2.2 – Average Power Consumption: Computer and Peripherals 7

Table 3.1 – ACPI Global States.. 13

Table 3.2 – ACPI Sleeping States... 14

Table 3.3 – Practical View of ACPI Sleeping States.. 15

Table 3.4 – ACPI Global States.. 16

Table 5.1 – PC Night Status.. 28

Table 5.2 – Common energy tariffs and costs .. 29

Table 5.3 – Estimates for ‘carbon cost’ of coal fired energy.................................. 30

Table 5.4 – Idle time delay and effect on PC power state 31

Table 6.1 – Project risk management plan.. 39

Table 6.2 – Project Activity Table.. 40

Table 8.1 – Performance of sleep state against desired criteria.............................. 55

xii

List of Figures

Figure 2.1 – Greenhouse gas emissions by sector .. 5

Figure 2.2 – Carbon dioxide emissions from US electricity generation................... 5

Figure 2.3 – Energy usage by sector... 8

Figure 3.1 – System states and transitions.. 16

Figure 5.1 – Power status by equipment type... 27

Figure 5.2 – Idle time delay effect on PC power state.. 31

Figure 5.3 – Effects of network traffic shaping .. 32

Figure 6.1 – Project ‘triple constraint’.. 36

Figure 6.2 – Project lifecycle phases .. 36

Figure 6.3 – Typical software project management ... 41

Figure 7.1 – ‘Waterfall’ software development lifecycle. 45

Figure 7.2 – ‘Incremental’ software development lifecycle 46

Figure 7.3 – Hybrid software development lifecycle ... 47

Figure 7.4 – User interface design approaches ... 49

Figure 8.1 – Transitions between sleeping and waking states 54

Figure 8.2 – Basic client server diagram .. 56

Figure 8.3 – High level application model ... 57

Figure 8.4 – ‘PowerMan’ client side screenshot... 58

Figure 8.5 – Client system details... 59

Figure 8.6 – Client network details... 60

Figure 8.7 – Client efficiency settings .. 60

Figure 8.8 – Client session end settings.. 61

Figure 8.9 – Client session end and start details... 61

Figure 8.10 – Client session wake settings ... 62

Figure 8.11 – ‘PowerMan’ server side screenshot.. 65

Figure 8.12 – Server system details .. 66

Figure 8.13 – Server network details .. 67

Figure 8.14 – Server client management details... 68

Figure 8.15 – Selected client energy details ... 69

Figure 8.16 – Server wake list details... 70

xiii

Figure 8.17 – Server scheduled wake list details.. 71

Figure 9.1 – Testing phases .. 74

Figure 9.2 – Example of software testing process model 75

Figure 9.3 – Application development and testing network environment.............. 76

xiv

List of Abbreviations

ACPI Advanced Configuration and Power Control Interface

API Application Programming Interface

ARP Address Resolution Protocol

BCL Base Class Library

BIOS Basic Input Output System

CLR Common Language Runtime

CPU Central Processing Unit

DLL Dynamic Link Library

GUI Graphical User Interface

ICT Information and Communications Technology

IDE Integrated Development Environment

IP Internet Protocol

IT Information Technology

LAN Local Area Network

MAC Media Access Control

MPS Multiprocessor Support

OS Operating System

PC Personal Computer

PM Project Manager / Project Management

PMI Project Management Institute

PMP Project Management Plan

ROI Return On Investment

RTC Real Time Clock

TCP Transmission Control Protocol

UDP Universal Datagram Protocol

WMI Windows Management Instrumentation

WoL Wake on LAN

 1

Chapter 1. Introduction

1.1 Project theme and background

The chosen topic for this dissertation is the ‘Development and Testing of a

Networked PC Power Management Tool’. The primary theme of this project is

Personal Computer (PC) power usage, which is a significant issue as many home and

office PCs run 24 hours per day, and therefore potentially waste large amounts of

power. This power wastage is unfortunate given that most Operating Systems (OS)

support either hibernation (Kist 2009), or other forms of low power standby.

Building on the theme described above, the primary aim of this project was the

development of simple software tool that would control the start-up and shutdown of

PCs via a user defined schedule. The developed software tool comprises of both a

localised client control capability in addition to a functionality allowing a networked

or supervisory control of a scheduled PC start-up, and also singular remote PC

shutdown capability.

In addition to the broad development objectives outlined above, the project has also

included research into the following areas:

• Average PC energy use and related statistics in common operating

environments.

• Impact of simultaneous PC start-up on network traffic, and mains power

supplies.

• The environmental impact of generated energy.

Given that issues such as fossil fuels, carbon footprint, global warming etc., are

highly topical and politicized, there is quite a broad range of research material

 2

available that supports both the mainstream and extreme views on current

environmental issues. Additionally, through capability developments such as ‘green’

computing, virtualisation, and even edge computing it would appear that the

Information and Communications Technology (ICT) industry is one of the few

industries that are actually taking ecological issues seriously.

This leading approach by the ICT industry which may be seen by many as

unnecessarily restrictive given current laws, may in fact work in the industries long

run favour. That is, by adopting a market leading approach on power efficiency now,

it is likely that the ICT industry will not be as significantly effected should more

rigid power related statutory regulations or governance be put in place in the future.

1.2 Dissertation layout and description

The approximate singular Full Time Equivalent (FTE) project hours against the

major project functional categories are listed below to demonstrate the ‘time’

component of this project:

• Research – 150 hours

• Coding and testing – 200 hours

• Documenting and reporting – 50 hours

The following paragraphs provide a brief description of the layout of this

dissertation:

• Chapter 2 describes the primary project drivers and hence the rationale

and associated benefits of the project.

• Chapter 3 details the research into PCs and networks and forms the base

level of knowledge that this project and subsequent application are built

on.

 3

• Chapter 4 examines in detail the objectives for the project and

subsequently provides some discussion on the rationale behind the

objectives, thus aiding in the provision of a robust scope for the

application development.

• Chapter 5 looks at PC power usage and other network related statistics,

which form the critical components of the research requirements for this

project.

• Chapter 6 details the project management methodologies and processes

which are critical to complex software development, and hence this

project.

• Chapter 7 details the software development considerations including the

development environment and methodology.

• Chapter 8 provides a functional description of both the server and client

applications, in addition to the key features.

• Chapter 9 details the testing methodology, test plan and test results for

the developed applications.

• Chapter 10 details the project conclusions in relation to the project

objectives, and also further work considerations related to the project.

 4

Chapter 2. Project drivers

2.1 Introduction

This chapter describes the primary project drivers, and hence presents the rationale

and the associated benefits for this chosen project.

2.2 Energy production

According to Silver (2008), the majority of energy utilised today is generated from

the burning of fossil fuels. This combustion process which results in the by-product

of carbon dioxide, is responsible for the increases in carbon dioxide in the

atmosphere to levels 35 percent greater than 150 years ago. The exponential

generation of carbon dioxide and other greenhouse gases is likely to continue

throughout this century, and thus if the present strong belief by scientists and

policymakers proves to be correct, then these gases will be a significant driver for

global climate changes in the future (Williams & Balling 1996).

Figure 2.1 below provides an illustration detailing the breakdown of the biggest

contributors to greenhouse gas emissions by sector, while Figure 2.2 illustrates the

breakdown of the US energy sector by carbon dioxide emissions. From this it can be

seen that the burning of coal in the production of energy is one of the major

contributors to global greenhouse gas production.

 5

Waste Disposal
2.8%

Energy Supply
25.9%

Forestry
17.4%

Agriculture
13.5%

Industry
19.4%

Buildings
7.9%

Transportation
13.1%

Figure 2.1 – Greenhouse gas emissions by sector

(Source: Silver 2008)

Natural Gas
13%

Oil
4%

Coal
83%

Figure 2.2 – Carbon dioxide emissions from US electricity generation

(Source: Silver 2008)

 6

2.3 Energy usage

From above it can be readily seen how power consumption directly contributes to

greenhouse gas emissions, and thus possibly global climate change. While

greenhouse gas emissions and climate change are important topics within the broad

context of this project, they are not the primary focus. The primary focus of this

project is the potential for energy savings or the greater efficiency of a standard PC

utilised in a home or small office environment. Table 2.1 below details the energy

consumption for a PC. Importantly, it also compares energy usage between the

different ‘states’ of the computer.

Appliance Wattage Rating

CPU (awake/asleep) 120/30 or less

Monitor (awake/asleep) 150/30 or less

Laptop 50

Table 2.1 – PC electrical energy usage

(Source: Silver 2008)

Table 2.2 below provides a more detailed breakdown of PC power usage in terms of

common PC variants and peripherals. This highlights that the actual PC is not the

only factor in the overall power saving consideration, but just as important are the

attached peripheral devices that often spend their life in a ‘standby’ mode.

 7

Appliance Energy Use (watts)

Desktop CPU 100

LCD Monitor (15-17 inches) 50-150

Laser printer 100

Inkjet printer 12

Multifunction printer/copier 15

Laptop 22

Wireless router 6

Computer speakers 7

USB hub 3

Table 2.2 – Average Power Consumption: Computer and Peripherals

(Source: Leonhard & Murray 2009)

Figure 2.3 below complements the previous graphics detailing greenhouse gas and

carbon dioxide production, and importantly illustrates the energy usage according to

industry sector.

 8

Electricity
40%

Homes, off ices,
businesses

11%

Industrial
21%

Transportation
28%

Figure 2.3 – Energy usage by sector

(Source: Leonhard & Murray 2009)

Using the abovementioned figures and illustrations, it can be seen how switching to a

‘sleeping’ (or like) state of the PC can result in an energy usage of approximately one

quarter of the normal usage. Furthermore, if we consider that a hard shutdown or

power off will have a wattage usage rating of zero, then the energy and potential cost

savings are even more significant.

2.4 Significance of PC energy consumption

Although it may at first seem that PC power usage is insignificant in terms of

magnitude of the issues described above, given that Phillipson (2008) suggests that

67.81% of Australian homes have a desktop PC, 40.66% of homes have a laptop, and

at least 75.80% of homes having either a desktop PC or laptop, it can be seen that the

combined power usage for PCs will be significant. Furthermore, when the use of PCs

within the modern workplace is also considered, the aggregated power usage for all

PCs, whether home or office based, will be even more significant.

 9

2.5 Network transmission efficiency

Another component of this project is the management of networked PCs start-up in

order to minimise the potential for network traffic problems. According to Addie

(2007), network traffic can be affected by either data loss or delay, with the three

major causes of delay being:

• Propagation delay,

• Transmission delay, and

• Queuing delay.

Given that propagation delay is due to the physical transmission distance (Held

1996), it is likely to be insignificant when compared to other forms of delay in a

small office environment. Furthermore, transmission delay which is the delay due to

the time taken to feed a signal onto the communications medium (Slone 2000), is

likely to be much more significant than propagation delay over short distances.

Last but by no means least is queuing delay, which is the delay due to storage and

retransmission of data within a network (Hancock 1990). Queuing delay is likely to

have some impact within a small office environment depending upon the amount and

type of data switching that takes place within the network.

In addition to above, data arriving at a destination will have to be either buffered or

discarded in cases where the destination device is busy. Furthermore, where a buffer

reaches maximum capacity, discarding of data will also occur. Where this data is

discarded, it is effectively lost, and thus is required to be retransmitted, which then

places an additional traffic load on the network. Lewis (2008) suggests that another

significant factor in data corruption or data loss is network collisions, which are

common on an Ethernet network, and are the result of two hosts transmitting frames

simultaneously.

Combining the above, it can be seen that both buffering and collision issues are

likely to arise when multiple devices attempt to communicate on the network at the

same time, and made worse where communication is with a common or shared

 10

device. This combination of collision and buffering issues is then likely to result in

data corruption and/or loss, and therefore retransmission. This will ultimately result

in increased networked traffic.

Simultaneous PC start-up would be one such network event where multiple devices

attempt to communicate over the network at the same time, possibly with the same

destination device. Consequently, a better management of start-up, which included a

phased PC start-up sequence, is likely to reduce network traffic floods due to a

reduction in data retransmissions caused by data collisions and/or data loss by

buffers.

 11

2.6 Efficient and consistent power draw

The final major driver for the project is efficient power consumption, with a focus on

the minimisation of controlled events which could contribute to a power spike. A

power spike is a short duration high voltage condition (Smith 2010) that occurs

across a power circuit. Theses spikes can have a number of effects including

damaging an electronic device’s internal power supply in addition to damaging or

degrading other sensitive components such as motherboards and processors.

While the majority of power spikes can be attributed to environmental factors such as

storms or lightning, power spikes can also be caused by the switching of large

electrical loads (ThomasNet 2010). In the case of a modern office environment

where a vast number of PCs may be either started or shut down simultaneously, there

is a frequent net effect of large electrical load being either applied or removed from a

power circuit. This therefore increases the chances of a power spike being generated

within the circuit.

Furthermore, while the switching of loads may cause power spikes, and hence

damage to internal equipment, the switching of large loads will also impact upon the

primary power feeder into an office or building. This could then have flow on effects

of impacting upon the reliability or consistency of the power network.

Similar to above, a more controlled management of PC start-up, which included a

phased PC start-up sequence, is likely to reduce the chances for power spikes. This

reduction in power spikes, which in the in the long run will minimise the power

related damage to network hardware, will also provide greater availability for the

overall network.

 12

Chapter 3. A brief review of PCs and networks

3.1 Introduction

The following paragraphs detail the research into PCs and networks and

consequently form the base level of knowledge that the project and/or application is

built on. Importantly, while the following paragraphs contain a significant amount of

the overall project research, the remaining research is provided within the remaining

dissertation chapters.

3.2 Advanced Configuration and Power Interface

The Advanced Configuration and Power Interface (ACPI) is a critical component of

this project. According to Hewlett-Packard et al (2010), the Advanced Configuration

and Power Interface (ACPI) was developed to provide industry standard interfaces.

Furthermore, these interfaces allow: Operating Systems (OS) directed device

configuration; and power management of both single devices and entire systems.

The ACPI was built on the legacy power management systems and processes

including: power management Basic Input Output System (BIOS) code, Advanced

Power Management (APM) Application Programming Interfaces (APIs) and

Multiprocessor Specification (MPS) tables in order to provide a structured and well

defined configuration and power management interface configuration (Hewlett-

Packard et al 2010).

One of the key points justifying the creation of the ACPI according to Hewlett-

Packard et al (2010) is that through the transfer of the power management into the

OS through the use of an abstract interface, the OS can evolve independently of the

hardware, and similarly the hardware can evolve independently of the OS.

 13

The ACPI has a number of state definitions which include expected or designated

performance criteria. The categories of the ACPI state definitions are:

• ACPI Global states,

• ACPI Device states,

• ACPI Sleeping states,

• ACPI Processor power states, and

• ACPI Device and processor performance states.

The states relevant to this dissertation and subsequently described in the following

paragraphs are:

• Global states,

• Sleeping states, and

• Processor power states

3.2.1 ACPI Global States

The ACPI has a number of global state definitions which are visible to the user.

These global states are described together with some relevant criteria in table 3.1

below

Global State Software Runs Power Consumption OS Restart Required

G0 Working Yes Large No

G1 Sleeping No Smaller No

G2/G5 Soft Off No Very Near 0 Yes

G3 Mechanical Off No
Real Time Clock

(RTC) Battery
Yes

Table 3.1 – ACPI Global States

(Source: Hewlett-Packard et al 2010)

 14

3.2.2 ACPI Sleeping States

The ACPI has a number of sleeping states which reside within the global ‘G1’ state.

The ACPI sleeping states are described in table 3.2 below

Sleeping State Description

S1 – sleeping state
In this state, no system context is lost (CPU or chip set) and hardware

maintains all system contexts.

S2 – sleeping state
This state is similar to the S1 sleeping state except that the CPU and system

cache context is lost

S3 – sleeping state

The S3 sleeping state is a low wake latency sleeping state where all system

context is lost except system memory. CPU, cache, and chip set context are

lost in this state.

S4 – sleeping state

The S4 sleeping state is the lowest power, longest wake latency sleeping

state supported by ACPI. In order to reduce power to a minimum, it is

assumed that the hardware platform has powered off all devices.

S5 – soft off

The S5 state is similar to the S4 state except that the OS does not save any

context. The system is in the “soft” off state and requires a complete boot

when it wakes.

Table 3.2 – ACPI Sleeping States

(Source: Hewlett-Packard et al 2010)

A more simplistic and perhaps pragmatic view of the above ACPI sleeping states is

provided in table 3.3 below. From this it be easily seen that state S0 represents a fully

operational PC power state, with states S1-S4 providing various states of reduced

power and functionality when compared with state S0. Noteworthy are the use of the

terms ‘standby’ and ‘hibernate’ which respectively relate to states S3 and S4. These

states will be discussed in more detail in a later chapter.

 15

Sleeping State Description

S0 On and fully operational.

S1
System is in low power mode (a.k.a. sleep mode). The CPU clock is

stopped, but RAM is powered on and being refreshed.

S2 Similar to S1, but power is removed from the CPU.

S3
Suspend to RAM (a.k.a. standby mode). Basically, most components are

shutdown except RAM.

S4

Suspend to disk (a.k.a. hibernate mode). The memory contents are swapped

to the disk drive, and then reloaded into RAM when the system is

awakened.

S5 Power off.

Table 3.3 – Practical View of ACPI Sleeping States

(Source: Intel 2010)

Figure 3.1 below provides an illustration of the transitions between the

aforementioned ACPI sleeping states. From this illustration, the following can be

noted:

• Wake event – This will raise the system to a working of S0 ‘full-on’ state

from the ‘S1-S4’ sleeping states.

• Idle related event – An event generated from measured idle time could

transition the system from the S0 ‘full-on’ state to the ‘S1-S4’ sleeping

states.

• Power switch – A OS generated, or user initiated, switch can transition a

PC as follows:

o Between the S5 or ‘soft-off’ states and the S0 ‘full-on’ state, and

o Between the ‘S1-S4’ sleeping states and the S0 ‘full-on’ state

 16

Figure 3.1 – System states and transitions

(Source: MSDN 2010)

3.2.3 ACPI Processor Power States

The ACPI also has a number of processor power states which reside within the

global ‘G0’ state. The ACPI sleeping states are described in table 3.4 below

Processor State Description

C0 While the processor is in this state, it executes instructions.

C1
Aside from putting the processor in a non-executing power state, this state

has no other software-visible effects.

C2

The C2 state offers improved power savings over the C1 state. The worst-

case hardware latency for this state is provided via the ACPI system

firmware and the operating software can use this information to determine

when the C1 state should be used instead of the C2 state.

C3

The C3 state offers improved power savings over the C1 and C2 states. The

worst-case hardware latency for this state is provided via the ACPI system

firmware and the operating software can use this information to determine

when the C2 state should be used instead of the C3 state.

Table 3.4 – ACPI Global States

(Source: Hewlett-Packard et al 2010)

 17

3.3 Operating System Considerations

The following paragraphs cover some of the noteworthy points relating to the

Windows Management Instrumentation (WMI) and the Windows Application

Programming Interface (API)

3.3.1 Windows Management Instrumentation

Windows Management Instrumentation (WMI) is provided on Windows based

operating systems and is the infrastructure for management data and operations on

such systems. Importantly, WMI scripts or applications can be created to automate

administrative tasks on remote computers (MSDN 2010). Furthermore, WMI has

been designed for programmers who use the C, C++, C# languages within

Microsoft’s Visual Studio.

In simple terms, the WMI is an OS interface that provides information and

notifications. This then allows for the local and remote management of Windows

computers and servers.

3.3.2 Application Programming Interface

According to Silberschatz, Galvin and Gagne (2005), the Application Programming

Interface (API) details a list of functions that are made available to a programmer.

Included in this list are the parameters that are passed to each function and also the

value types that are expected to be returned. The three most common APIs are:

• Win32 API for Windows Systems,

• POSIX API for POSIX-based systems, and

• Java API for programs that run on the Java virtual machine.

Given that Windows is the OS that will be used as a basis for the development of the

project software tool, only the Windows API is relevant to this dissertation.

According to MSDN (2010), the Windows API allows for applications to exploit the

 18

full power of Windows. Furthermore, the Windows API (formerly referred to as the

Win32 API) consists of the following functional categories:

• Administration and Management,

• Diagnostics,

• Graphics and Multimedia,

• Networking,

• Security,

• System Services, and

• Windows User Interface.

 19

3.4 Wake on LAN

The Wake on (Local Area Network) (WoL) functionality is an important

consideration in this project. According to Intel (2010), the remote management of

PCs has evolved over the last few years from a simple power-on function to a

complex system that considers a variety of device and OS power states.

3.4.1 Wake on LAN Details

WoL is a functionality of some network interface devices that causes a PC to ‘wake’

from an ACPI sleep state. WoL is very much hardware dependant and in most cases

will allow the PC to wake from the S1 to S5 states. However, some devices will not

respond or ‘wake’ when in an S5 state. The WoL process requires the transmission of

a ‘magic packet’, which is a packet that begins with a six byte sequence of ‘FF’

bytes. This sequence is then followed by the Media Access Control (MAC) address

of the network device that is being prompted to ‘wake’, repeated 16 times (Neumann

2008). The ‘magic packet’ composition is illustrated in figure 3.1 below.

Figure 3.1 – ‘Magic packet’ composition

The MAC address, which is stored in the flash memory of network devices, is

utilised as the device identifier as no other identifiers such as the Internet Protocol

(IP) address are consistently available across the ACPI S1 to S5 sleeping states. The

MAC address is repeated 16 times to ensure that the network device does not

 20

generate a ‘wake’ event for normal network traffic, but rather will only respond to a

specific ‘wake’ directive.

Figure 3.2 – ‘Magic packet’ transmission

(Source: Newman, 2008)

As illustrated in figure 3.2 above, the ‘magic packet’ is broadcast over the LAN

causing it to reach all devices within the LAN. To do this, the ‘magic packet’ is

captured in a User Datagram Protocol (UDP) broadcast packet, set for a network

address of 255.255.255. The advantage of using UDP is that, as a connectionless

protocol it does not require any handshaking in order to open a connection (Neumann

2008).

 21

3.4.2 Wake on LAN Setting Considerations

As WoL performance is largely dependant on the network device, in order for it to

operate, it requires that correct settings be established from within BIOS and also the

OS. This is largely due to the fact that while WoL can be initially selected within

BIOS, modern operating systems making use of ACPI features allow for the

configuration of individual components (Intel 2010).

Experimentation with the WoL functionality has demonstrated that the following

components must be checked and/or selected in order for WoL to function correctly:

• The device network card must support WoL.

• The networked device power supply must support WoL.

• WoL must be enabled in BIOS.

• The operating system must be configured to enable WoL.

Furthermore, trial and error throughout this project has shown that in order for WoL

to have a consistent capability, then the BIOS settings must ensure that after a mains

power loss, the system returns to the ‘last state’. Expanding on this, a given BIOS

will generally allow for three settings with respect to power management, after an

AC mains power outage including:

• Power off,

• Last state, and

• Power on.

If the BIOS setting is configured for power off, the device will be in a ‘hard off’ state

and therefore unlikely to respond to a WoL request. However, while the selection of

the ‘last state’ increases the reliability of a WoL post a power outage, different PCs

have demonstrated that operation post a power outage, or more specifically a return

to an ACPI sleeping state of S1-S5 after a power outage, is largely unpredictable. In

this case, the only way to guarantee WoL will operate correctly is to ensure that no

power outages or ‘hard offs’ have taken place post a user or system initiated

shutdown.

 22

Chapter 4. Project objectives and scope analysis

4.1 Introduction

Typical software design generally progresses from a user requirements phase through

to a formal specification phase and then onto a design phase (Somerville 2007).

However, this project in effectively commencing from a formal specification phase,

makes user requirements somewhat redundant. When considering that user

requirements form a significant consideration in software estimation and planning,

and hence overall user satisfaction (Galorath and Evans 2006), detailed user

requirements are an extremely valuable component for any software project.

In analysing the project objectives or specification which is included at Appendix A,

we are able to broadly capture the intent and breadth of both user functional and non-

functional requirements, and from this detail some of the envisaged benefits or

outcomes from the project. Furthermore, as Wysocki, Beck & Crane (2000) suggest

that project scope is significantly more than just requirements, the use of additional

information within the project scope will lead to a more robust scope and hence

maximise the chances of project success. Accordingly, the following paragraphs

examine the objectives for the project in detail, and subsequently provide some

discussion on the rationale behind the objectives.

4.2 Project objectives and scoping

Specification Item 1 - Research and evaluate the average power use, idle time and

other statistics of a PC that relate to power consumption in a standard office

environment.

Through the examination of the PC idle time statistic, an insight into how PCs are

managed can be gained, that is, how the PC start-up and shutdown functions are

utilised in relation to both the duration and frequency of user driven or automated

 23

tasks performed on the PC. Consequently, this then allows the examination of

whether an automated approach to start-up and shutdown will provide any

advantages in relation to the ratio between the idle and active times of the PC. Using

these idle time figures, in addition to the statistics on average PC power use, the

generation of a number of statistics detailing actual amounts of power used and

wasted by an average PC in a standard office environment can be calculated.

 Specification Item 2 - Research the potential for, and severity of power spikes,

network traffic floods and other issues in a standard office environment due to

simultaneous PC start-up.

Where PCs in an office environment are started at the same time, for example, at the

commencement of a working day, a significant load may be placed on the local

power grid, potentially causing power spikes. Through more controlled management

of the start-up sequence computers on the same power circuit, the potential for and

severity of power spikes may be reduced. Additionally, within a networked PC

environment, issues may be caused where PCs attempt to start communicating on the

network at the same time, possibly resulting in a network traffic flood. Through the

use of a phased start-up, possibly together with some sort of primitive flagging

system, the number of PCs attempting to establish communication with the network

simultaneously may be able to be better managed, and thus reduce network traffic

flood problems.

Specification Item 3 - Develop a software tool that controls start-up and shutdown

of a PC either via scheduling or manual control.

Given the issues raised in sections items 1 and 2, it can be understood that the

random manual switching of a networked PC potentially raises a number of power

efficiency issues, in addition to possibly creating network traffic issues. Through the

provision of a software tool that controls PC shutdown in accordance with user or

network defined conditions, then a more balanced network traffic load is possible

together with more efficient power management within a network.

 24

Specification Item 4 - In conjunction with the local software tool described in

component 3, develop a software tool that remotely controls the start-up and

shutdown of either singular or grouped PCs (within a designated domain) over

a Local Area Network (LAN).

Through building upon the functionality of the local start-up and shutdown tool

described above via the inclusion of a networked control capability, the management

of PC start-up and shutdown can be removed from the user, and therefore reside with

a nominated administrator. In addition to freeing the user from managing this task,

the use of a centralised start-up capability could potentially provide some benefits

due to the ability of the administrator to recognise usage patterns over the entire

network, and thus implement a start-up and shutdown schedule that is the most

beneficial for the entire network.

Specification Item 5 - In addition to specifications outlined in components 3 and 4

above, the software tool shall:

a. Implement a phased start-up (to prevent power spikes) where multiple

PCs on a single LAN may be scheduled to start-up.

b. Presentation of software tool options, controls, and critical usage

statistics within a user friendly Graphical User Interface (GUI).

A centralised phased start-up will reduce peak demand on shared power sources, and

also aid in distributing network traffic to prevent traffic floods. The inclusion of a

GUI in addition to an intuitive based format will provide ease of use for the PC user

or network administrator. Additionally, the publication of usage trends and statistics

may provide the user with some incentive or motivation towards managing their PC

usage more efficiently.

 25

Specification Item 6 - Evaluate and test the tool in a small office/network

environment

This testing phase will be incorporated within the development phases under an agile

development methodology, which according to Somerville (2004) relies on an

iterative approach to software development. This will effectively allow the trial of

features etc. as they are implemented and added rather than at the end of

development. However, it is most likely that the small office testing will be

conducted in two major stages: Firstly, the testing at the completion of local

application; and Secondly, the second stage of testing occurring at the end of the

development of the network component of the tool.

Specification Item 7 - Evaluate and test the tool in a large office/network

environment.

This will provide a test environment that replicates the intended usage environment,

and thus effectively indicate how well the tool performs in its intended role. As this

is on an ‘as time permits’ basis, and not a critical component of this project, planning

for and testing within this environment will only occur (if at all) during the final

stages of the small office testing for the network component of the tool.

Specification Item 8 - Translate ‘wasted power measurements’, and also saved

power with the use of the tool into figures relating to a ‘carbon footprint’ and

greenhouse gas measurement.

By translating the project technical findings and certain features of the projects

functionality into terminology that is presently highly topical and also more

common, the benefits of the tool and dissertation are likely to reach a wider

audience. That is, it is hoped that the benefits of a tool of this type will disseminate

well beyond the technical environment, and therefore hopefully reach PC users in all

environments.

 26

Chapter 5. Project statistics and outcomes

5.1 Introduction

According to Bigelow (2003), PC power as a topic, is not simply an issue about the

connection of a small silver box. With global concerns about limited resources and

greenhouse gasses, there is a growing focus on the power that millions of PCs world

wide consume, and perhaps more significantly waste, while not being actively used.

Before looking at general PC power use statistics it is worthwhile understanding the

different types of power supplies that power modern PCs and also the improvement

in these systems over recent years. There are two primary categories of PC power

supplies:

• Linear power supplies, and

• Switched regulator supplies.

Linear power supplies can often waste half of the input power through heat

dissipation, thus making them tremendously inefficient. While switched power

supplies through the use of feedback loop effectively switch the input voltage off and

on to maintain a steady output, and thus minimise power wasted as heat. (Bigelow

2003).

In any case, whether utilising efficient or inefficient power supplies, the global focus

on greenhouse gas emissions is placing pressure on the corporate environment to

ensure that power wastage is significantly reduced through the ‘switching off’ of

devices when not in use.

 27

5.2 Computer usage statistics

5.2.1 Computer power status

Figure 5.1 below illustrates the observed power status for a number of common

office machines including PCs during a survey conducted on an average office

environment, during working hours. Importantly, it can be seen that approximately

55% of computers were in an ‘on’ status during the survey.

0%

20%

40%

60%

80%

100%

Compute
rs

Mon
ito

rs

Prin
ter

s

Copie
rs

MFDs

Sca
nne

rs

Fax
 m

ac
hin

es

Device type

%
 in

 s
ta

te On
On - Unknown status
Low
Off

Figure 5.1 – Power status by equipment type

(Source: Webber et al. 2001)

Building on above, table 5.1 details the results from a number of surveys looking at

PC power status for an out-of-hours period. In light of these results together with

previously detailed PC power usage statistics, the ability to automate a switch to a

PC power state that has a reduced power draw, has significant merit.

 28

Study Sample Size On Low Power Off

Syzdlowski & Chvala (1994) 182 18% -- 82%

Tille & Newsham (1993) 94 20% -- 80%

IHEM (1994) 30 47% 53%

Nordman et al. (1996) 70 26% 6% 69%

LBNL-Forrestal ~200 10% 90%

CADDET (1999) 307 >99% <1% 0%

Arney & Frey 20 25% -- 75%

Nielson (1998) 373 11% 89%

Picklum et al. (1999) 904 17% 9% 73%

Nordman (2000) 154 9% 0% 91%

Table 5.1 – PC Night Status

(Source: Adapted from Webber et al. 2001)

 29

5.2.2 Energy financial cost estimates

Table 5.2 below details the charges for a number of Ergon Energy advertised energy

tariffs. Although the tariffs are quite detailed, they are included to illustrate the

approximate financial cost of energy, in addition to the variety of pricing schemes

available. Based on this, an arbitrary cost of 17 cents per kilo-Watt-hour (kWh) is

used for the financial cost calculations within the project.

Tariff Condition Cost (cents per kWh)

20 – General supply All consumption 23.925

First 100 kWh per month 29.722

Next 9,900 kWh per month 27.918

21 – General supply

Remaining usage 21.252

Low rate 10.241 22 – General supply (time

of use) All other consumption High Rate 29.073

31 – Night rate (super

economy)

All consumption 8.712

33 – Controlled supply

(economy)

All consumption 12.826

From 10.30pm to 4.30pm (18 hours) 12.727 37 - Non-Domestic Heating

Time of Use (Obsolescent) From 4.30pm to 10.30pm (6 hours) 31.823

41 - Low Voltage General

Supply Demand

All consumption 7.414

From 7.00am - 11.00pm Mon - Fri 15.08 43 - General Supply

Demand Time of Use Other Times 6.028

Table 5.2 – Common energy tariffs and costs

(Source: Ergon Energy, 2010)

 30

5.2.3 Energy environmental cost estimates

Table 5.3 below details the estimated carbon dioxide ‘costs’ for coal produced

energy. As with the above energy financial costs, they are included to illustrate the

estimated environmental cost of energy, in addition to the variety of estimates

available for carbon dioxide ‘costs’. Based on this, an arbitrary cost of carbon at

0.956 kg per kWh is used for the energy production environment cost calculations

within the project.

Source Cost (carbon (kg) per kWh)

My Clean Sky (2010) 1

Wiki (2010) 0.963

Department of Energy (2000) 0.960

Parliamentary Office of Science and Technology

(2006)
>1

Carbon Dioxide (2010) 0.966

Table 5.3 – Estimates for ‘carbon cost’ of coal fired energy

5.2.4 Idle time statistics

Idle time is the time that a PC spends with no direct user interaction. According to a

study by Kawamoto et al. (2004), the average computer idle time in any given day is

3.9 hours. By specifying a variable delay, after which computers enter a low power

state, the idle time in a high power state can be reduced.

Table 5.4 below details study related findings that show the time that PCs spend in

various power states without user interaction. Additionally, the table illustrates the

effects when an idle time delay is utilised in order to switch the PC to a power state

with a reduced power draw. Furthermore figure 5.2 below illustrates that, the greater

the time selected for ‘idle time delay’, then the greater the time the PC will sit idle in

an ‘active’ or high power mode.

 31

Idle Time Delay

(minutes)

Idle Time in Active

Mode (minutes)

Idle Time in Low

Power Mode

(minutes)

Time is Low power

Mode (minutes)

5 0.9 3 76

15 1.9 2 51

30 2.6 1.3 34

60 3.1 0.8 20

Table 5.4 – Idle time delay and effect on PC power state

(Source: Kawamoto et al, 2004)

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

5 minutes 15 minutes 30 minutes 60 minutes

Delay period

Ti
m

e
sp

en
t i

n
po

w
er

 s
ta

te

Idle time in active mode
Idle tme in low power mode

Figure 5.2 – Idle time delay effect on PC power state

(Source: Kawamoto et al, 2004)

 32

5.2.5 Network traffic floods

A network traffic flood is the saturation of the network with too much traffic, which

has the effect of slowing down transmission speeds over the network. Traffic shaping

is typically utilised to control the volume of traffic on the network through the

imposition of delays on selected packets (Wikipedia 2010). Accordingly, the

controlled phased switching of network devices could be considered a primitive form

of traffic shaping.

It is important to note that network shaping is significantly different to traffic

policing. Traffic policing is the dropping or remarking of selected packets during

peak traffic load times (Cisco 2010). One of the significant advantages of traffic

shaping, or in fact any sort of network traffic load control, is the even distribution of

network traffic over time, rather than a series of extreme peaks and troughs.

Figure 5.3 – Effects of network traffic shaping

(Source: Cisco, 2010)

 33

5.2.6 Power spikes

As explained previously, power spikes are generally caused by environmental

conditions such as lightning, or are due to the switching of large electrical loads.

According to Interstate Assessment Technologies (2010) most semi-conductor

devices are intolerant of voltage transients in excess of their voltage rating.

Large scale power spikes can cause instantaneous damage such as short circuits,

breakdown or melting of insulation, and possibly fire. Looking past immediate

physical effects, both large and small scall transients can have the following effects:

• Causing semi-conductor devices to fail, and

• Degradation of semi-conductor devices leading to a shorter life.

Furthermore, transient impulses can impact upon memory. This can then lead to

Random Access Memory (RAM) alteration and failure, in addition to pitting and

metal transfer between switch contacts on disc-drives (Interstate Assessment

Technologies). While the predominate measure to guard against power transients is

the use of power filtering or surge protection, this is very much a reactive measure.

Similar to the rationale behind the controlled phased switching of network devices

mentioned above, controlled and automated PC switching could be considered more

of a proactive or initial measure against voltage transients.

 34

5.3 Environmental and financial impacts

As Rowsell-Jones (2007) suggests the value of an ICT investment is measured in

purely in terms of business performance only, it can be concluded that a congested or

unavailable network will not provide an optimal return for the business. Therefore

the following measures may have significant impact on overall ICT availability, and

hence provide a greater financial return for the business:

• The efficient management of network traffic to minimise congestion and

hence ensure that network traffic throughput is efficient as possible.

• The reduction of transient voltages applied to a network to ensure a

greater availability of network devices, and also a greater Return On

Investment (ROI), through an increased lifespan of network hardware.

It is also hoped that by translating the project energy consumption and production

findings into terminology that is presently highly topical and also more common, the

benefits of the tool and dissertation are likely to reach a wider audience. Given that

engineers are often perceived to reside between pure science and wider society, then

a translation of data into a more practical context seems worthwhile.

As discussed above, given the topical nature of energy production, projects that can

potentially reduce energy wastage, and thus effectively contribute to reducing carbon

emissions are likely to incur significant attention and hopefully further development.

It is important to note however, that while this project improves PC power efficiency,

it does not alter or improve a PCs power efficiency while operating, and thus the

overall energy efficiency is still dependent on the actual energy consumption rate of

the device being used.

I have included the above, not so much to highlight a limitation of the project, but

rather highlight the pragmatic nature of the project, in that its main function is

actually to reduce PC power wastage, not make an operating device more efficient.

 35

Chapter 6. Project management

6.1 Introduction

While this dissertation is primarily intended to identify and detail a solution for a

proposed problem or issue within an ‘academic’ environment, the methodology

utilised to manage the solution development in this environment is just as critical in

ensuring project success, as it is in the commercial world.

According to Kerzner (2003) a project can be likened to a series of activities that are

subject to some or all of the following criteria:

• Defined objectives to be completed in accordance with specifications.

• Defined commencement and cessation dates.

• Have financial constraints.

• Consumption of resources.

With the above in mind, this project aligns with the contemporary definition of a

formal project. Building on this, the appropriate management of the project ‘triple

constraint’ of scope, time, and cost (Schwalbe 2006) is pivotal in ensuring project

success. The relationship between the ‘triple constraint’ components is illustrated in

Figure 6.1 below.

 36

Figure 6.1 – Project ‘triple constraint’

6.2 Project methodology and lifecycle

As there are a number of project lifecycle methodologies, it is important to choose a

lifecycle approach that aligns with the project’s scope, time and cost requirements,

and in the case of software development, aligns with the intended development

methodology. For this project, a relatively simple lifecycle approach, which is

illustrated in Figure 6.2, was selected. Importantly, this project lifecycle contains

clear and discrete phases. Furthermore, the project is deemed to be completed at the

delivery point for the concept, which differs with some other long term lifecycle

methodologies.

Figure 6.2 – Project lifecycle phases

 37

The following paragraphs are, according to Dobie (2007), some of the essential

components that are required to be included in a Project Management Plan (PMP):

• Project background.

• Project objective(s).

• Project scope.

• Project risks.

• Project exclusions, constraints, and assumptions.

Furthermore, the PMI Standards Committee (2000) suggests that project plans should

also include a robust risk management component, detailed activity listing, and a

corresponding schedule. While we have previously discussed the project background,

scope and objectives, the following paragraphs cover the project risk, activities and

schedule.

6.3 Project Scope

As discussed previously, the project scope is much more than the requirements or

specification, and if not managed correctly can lead to an unsuccessful project.

Broadly, project scope is managed under the following categories (PMI Standards

Committee 2000):

• Scope planning,

• Scope definition,

• Scope verification, and

• Scope control.

While the essence of the first three components has effectively been detailed

previously, scope control has not been addressed. Scope control looks at influencing

and controlling the factors that may impact upon the agreed project scope.

Appropriate scope control is therefore critical in ensuring that only approved changes

 38

are adopted, and are done so in a controlled manner. Changes which are outside this

control are often referred to as scope creep and present a major risk to the success of

this project.

6.4 Project risk

According to Gardiner (2005), risk management consists of risk assessment and risk

control, both of which are effectively governed under the higher level category of

risk planning. Given that that the task at hand is in fact a project by definition, the

following project management risk types may also be applicable (MGT8022 2009):

• Technical risk – the possibility that the original requirements may be not

achievable within the given schedule.

• Schedule risk – the possibility that the schedule will not conform to the

management plan.

• Operational risk – the possibility that the equipment will not meet all of

the user requirements.

From the above risk categories, technical risk and operational risk are the main risk

types that may impact upon this or like projects. It is also important to highlight that

while ENG4111/4112 (2009) details that risk implies a threat to personal or public

safety, as can be seen from the project risk factors considered above, a holistic

perspective to project risk considers much more than purely physical safety issues.

Lanza (2002) suggests that risk management essentially follows a process of: risk

identification, risk assessment, response to risk, and documentation, with a resolution

process structured around prevention, mitigation, or acceptance. Accordingly, Table

6.1 below is a brief risk management plan for this project and considers the relevant

risks for this project.

 39

Issue Effect Likelihood Mitigation

Project scope creep cause

by desire to increase

application functionality

or user interface

Project may differ

from original

requirements or

specification

Possible • Maintain strict adherence

to specification.

• Consider the need to

balance changes against

overall intent of project.

• If changes are made to one

area then consider how

this impacts other areas

given the fixed time

constraint.

Project related

detrimental effects on

home network (Data loss)

Corruption or loss of

data due to project

related task

Possible • Backup data regularly

• Ensure development

environment remains stable

Project related

detrimental effects on

home network (hardware

damage)

Damage to computer

hardware

Unlikely • Use approved methods for

hardware removal

Project related

detrimental effects on

small office network

(Data loss)

Corruption or loss of

data due to project

related task

Possible • Backup data regularly

• Test in non peak times

• Use guidance of system

technical staff

Project related

detrimental effects on

home network (hardware

damage)

Damage to computer

hardware

Unlikely • Use technical staff to

change hardware if

required.

Table 6.1 – Project risk management plan

 40

6.5 Project activities and schedule

In looking at the project activities and schedule, one of the most obvious differences

when compared with industry project management and scheduling, is the fact that the

project specification has largely been defined to match the available timeframe. This

approach differs with the common approach of using a project specification or

requirements to drive a Work Breakdown Structure (WBS), and hence project

schedule. This is not a problem, but more an observation of how time constraints can

effectively curtail a project from inception.

According to the PMI (2006), planning is pivotal in successful project management,

whereby the Work Breakdown Structure (WBS) is used to provide a foundation for

defining the project work, and also the framework for managing the work. The

planned schedule for the entire project is included in Appendix B, and is derived

from the activity table which forms the basis of a WBS, in table 6.2 below.

Various Level Activity Listing

1.1.1 Topic Investigation/Negotiation

1.1.2 Project Specification Negotiation

1.1.3 Implementation Investigation

1.1.4 Environmental Factors Research

1.1.5 Requirements Preliminary Research

1.1.6 Project Coding (Local app)

1.1 Project Phase 1 (ENG4111)

1.1.7 Project Appreciation

1.2.1 Write Draft Dissertation

1.2.2 Project Coding (Networked app)

1.2.3 Small office testing

1.2.4 Partial Draft Dissertation

1 Project

1.2 Project Phase 2 (ENG4112)

1.2.5 Write Final Dissertation

Table 6.2 – Project Activity Table

 41

6.6 Software Project Management

While the above paragraphs detail the level of generic project planning that has been

applied to this project, it is important to note that software development, which is

often perceived as intangible, differs from some project management approaches.

Phillips (1998) is brutally honest with his depiction of ‘typical software project

management’ illustrated in Figure 6.3 below. Additionally, Phillips (1998) takes a

differing and perhaps more pragmatic approach to the project triple constraint

proposed above, when he suggests that software project management could be done

much better through a focus on the following areas:

• People perspective,

• Business perspective, and

• Process perspective.

Figure 6.3 – Typical software project management

(Source: Phillips, 1998)

In defining how to maintain a focus on the above areas, Phillips (1998) has some

very sound advice in building only the software that people want, and the business

needs, in addition to using processes that are proven to work. In contrasting this

approach with my project, it is worth highlighting that this application is very much

an application that I wanted to build, hence it’s functionality may or may not have a

useful purpose in the ‘outside world’.

 42

Chapter 7. Software development

7.1 Introduction

The following paragraphs detail the software development environment,

development methodology, design methodology and security considerations that

combined to provide the overall development framework for the application.

7.2 Development and implementation environment

According to Eeles and Cripps (2010) the software development environment will

include the infrastructure to support the method and tools of the developer(s). In

looking at the methods and tools for this project, the primary components are:

• Implementation language, and

• Software development environment.

The identification and use of suitable Integrated Development Environment (IDE)

which is an all one tool for writing, editing, compiling and running a computer

program is a critical consideration in software projects. According to Qin, Xing and

Zheng (2008) an IDE presents the following advantages from the perspective of a

developer:

• Reduced requirement for programmers to remember grammar and syntax.

• Integrated management of development file systems.

• Holds an aggregation of tools which can cover design through to testing.

• Allows for the inclusion of developer defined tools.

 43

While the above advantages were considered during the early stages of the definition

phase of the project lifecycle, the primary consideration for the development

environment was programmer skills and experience. Given the developers

experience with the C and C++ languages, the initial environment was going to be

built around a C++ implementation together a HTML derived user interface.

However, through trial and error, a number of limitations with this approach were

discovered and a decision was made to consider an alternative development

environment.

The chosen development environment for the project was the Microsoft Visual

Studio development environment. Microsoft Visual Studio development environment

is one of the latest steps in software development environments and is a large and

comprehensive compilation of development tools that can be accessed through a

windowed interface (Sebasta 2005).

Highly related to the IDE outlined above was the selection of a suitable programming

language. While the Microsoft Visual Studio development environment offers

support for a number of different languages, the C# programming language was

selected. Advantages of both the C# language and the chosen development

environment are the relative ease of incorporating such things as Graphical User

Interfaces (GUIs), and network capable applications. Additionally, the use of Visual

Studio offers a number of advantages in terms of its compatibility with the Windows

operating environment, which is the predominate networked environment that the

application will be tested on.

 44

Finally, according to Troelson (2003), C# provides almost as much flexibility and

power as C++, and offers the following features in comparison:

• No pointers required, as C# programs do not generally have a need for

direct pointers.

• Automatic memory management, which precludes the need for ‘delete’

keyword.

• Formal constructs for enumerations, structures and class properties.

 45

7.3 Development methodology

The trial and error approach to the identification and selection of an appropriate

development environment and language is largely similar to the prototyping software

development methodology. Given this prototyping development methodology has the

advantage of allowing the early detection of errors (Vliet 2001), it is perhaps

unsurprising that a similar approach for the actual software development was

undertaken.

The intended development methodology for this project was the waterfall software

methodology. The decision to use the waterfall methodology which cascades from

one phase to the next (Somerville 2007) and is illustrated in Figure 7.1 below, was

based upon the following rationale:

• The project was defined by a robust and detailed specification, and

• The project included the project specification in addition to a

comprehensive project scoping analysis.

Figure 7.1 – ‘Waterfall’ software development lifecycle.

 46

However, as can be seen in the above illustration the waterfall methodology requires

a robust system and software design phase in order to produce a detailed system

design. As a decision was made early in the development phase to move further into

implementation at the expense of detailed design, the waterfall methodology in many

ways became redundant.

The driver behind the decision to adopt a more agile development approach was

based around the desire to complete the majority of the ‘client’ application before

commencing on the ‘server’ application, which provided the network functionality of

the application. The development of the application in this way is highly similar to

the iterative/incremental software development life cycle, where progression towards

the user requirements is achieved via delivery in a number of small steps (Schach

1990). The incremental development methodology is illustrated in Figure 7.2 below.

Figure 7.2 – ‘Incremental’ software development lifecycle

(Source: Schach, 1990)

In the case of this project, the incremental development methodology offered the

advantages of a rapid and early development, without the need for a rigid initial

design. However, without a detailed design the risk of re-work was increased, that is,

if either the development environment or implementation could not provide desired

 47

level of functionality, then significant re-work and possibly redesign, may have been

required.

In looking at the advantages of the above approach it is worthwhile looking at the

wider benefits of such an approach. From a practical perspective, Schwalbe (2006)

suggests this type of adaptive approach seems to be more suitable for smaller scale

Information Technology (IT) or software projects as it allows requirements to be

managed within an iterative framework, when compared to a phased life cycle

approach such as the waterfall methodology. Furthermore, an approach similar to

above would present the following advantages:

• More flexible responding to changes associated with technology or user

requirements.

• Achievement of milestones early in the project lifecycle and thus

demonstrate earned value and other commercial benefits.

In combining the best of both of the above methodologies, a hybrid approach which

is illustrated in Figure 7.3 was used as the development methodology for this project.

Figure 7.3 – Hybrid software development lifecycle

 48

7.4 Design methodology

7.4.1 Object-oriented approach

The chosen software design methodology for the project was an object-oriented

approach. While the C# language implies an object-orientated approach, there still

must be a desire by the programmer to maintain the principles of the object-oriented

methodology irrespective of the chosen language.

Object-oriented programming presents a significant advantage in terms of dealing

with one of the major problems associated with procedural programming. This

problem in procedural programming occurs when changes made to parts of a

program cause a cascading ripple effect throughout other parts of a program

(Johnsonbaugh and Kalin 2000). Given that an incremental software development

methodology was utilised for this project and therefore that major changes in

software are likely to consistently occur throughout the software development

process, the elimination of this issue through the adoption of an object-oriented

approach is a significant advantage.

The chosen language, C#, supports all the concepts expected within a modern object-

oriented language such as inheritance, encapsulation, polymorphism and interface-

based programming (Dreyton, Albahari and Neward 2002).

 49

7.4.2 Human-computer interaction

In looking at the user interface or human design requirements of the project, Dix,

Finally, Abowd and Beale (1998) provide some valuable guidance in suggesting that

software and systems should be designed in such a way that people with specific

tasks will want to use systems in a way that is seamless with respect to their

everyday role. Undoubtedly, one of the major challenges in this project was around

the need to include significant user driven functionality, without creating an

environment that was too complex or daunting for either new or experienced users.

Related to above, Mandel (1997) in suggesting that there will never be one perfect

tool, and that visually sophisticated programs can get in the way, and hence distract

users, further highlights the difficulty in creating a user interface that is suitable for a

broad audience. Figure 7.4 below provides an illustration of the major categories that

should be considered when designing a user interface.

Figure 7.4 – User interface design approaches

(Source: Mandel, 1997)

 50

While a number of the above attributes were considered, the primary considerations

for the application developed were as follows:

• The available timeframe,

• The greater importance of functionality over user interface requirements,

• The assumption that the user of the ‘client’ application would be

relatively inexperienced.

• The assumption that the primary application administrator or network

controller would be moderately experienced in a technical sense.

 51

7.5 Security

While the primary aim of this project is meet academic requirements, the

consideration given to real world issues such as security and protection is still

worthwhile. Additionally, when considering that variants of this application could

potentially be deployed over Wide Area Networks (WANs), the need to consider

security requirements early in the design phase is essential.

From a business and/or commercial perspective, Vachon and Graziani (2008) suggest

that within any system there are three categories of security related vulnerabilities

that will exist, namely: technological, configuration, and security policy weaknesses.

In developing and deploying an application of this sort, the technological and

configuration are the primary security considerations. Vachon and Graziani (2008)

also suggest that the following items should be considered when looking at network

security across an enterprise:

• Device hardening,

• Antivirus software,

• Personal firewalls,

• Software patches,

• Public/Private key encryption,

• Authentication,

• Virtual Private Networks (VPN).

Critical to the above is the implicit assumption is that either developed or off the

shelf applications that are rolled out across an enterprise will effectively be self

sufficient withy respect to security. That is, these applications will neither impact the

security of the network, nor the data carried or accessed from within it. Furthermore,

when considering that security is the property of a system to protect resources against

accidental or malicious unauthorised use (Bruege & Dutoit 2004), then the need to

consider security in any software design is further highlighted.

Security as an additional requirement for the developed application was not

considered within this project. However, when considering Pressman’s (2010) view

 52

that software security relates directly to software quality, then it can be assumed that

utilising software that has been developed within a robust and appropriate

methodology, will provide a degree of security. Furthermore, Pressman (2010)

suggests that in order to build a secure system, a focus must be on quality, and

therefore that a focus on eliminating architectural flaws rather than simply

eliminating bugs must be pursued in development.

Building on the above, the security of the designed system is built on the following

assumptions and considerations:

• The network on which the application resides will currently meet

enterprise security requirements.

• The application has been developed within a robust development

methodology.

• The incremental development methodology allowed for the early

detection and correction of flaws, rather than a ‘debug’ at the end of the

development.

• Significant effort has gone into ensuring that user menus are intuitive, and

can therefore only provide an approved range of choices to a user.

• Where a PC enters hibernation, the OS will require user authentication a

‘wake’ time.

• Where a PC restarts, the OS will require user authentication at ‘boot’

time.

 53

7.6 Implementation considerations and resources

As mentioned previously, the chosen development environment for is Microsoft’s

Visual Studio. Although, typically an executable file developed from within this

environment is fully portable and thus able to operate on any Windows based

System, in the case of this project there are a number of other considerations.

The .NET framework contains the Common Language Runtime (CLR) and Base

Class Libraries (BCL) that provide the majority of functionality and is required to be

deployed to PCs that will operate the developed application. Furthermore, this

framework should be a version that is compatible with the development environment.

The following paragraphs detail the other considerations and resources required to

deploy and run the developed application:

• Microsoft .NET Framework 3.5 – The development environment is

Visual Studio 2008, which is aligned with the .NET 3.5 framework.

• Dynamic Link Library (DLL) file(s) – These are the specific library files

developed for the shared classes in the developed application.

• AUTOEXEC.BAT file – This is the plain text batch file that contains the

run instructions for the developed application.

• Executable file(s) – The actual client or server application file(s).

• Printed files – The binary or text files that provide the permanent storage

for the application.

 54

Chapter 8. Program outline

8.1 Introduction

The following sections within this chapter describe the key features, functions and

operation of the PowerMan client and server applications. As outlined previously, the

core function of the applications is to manage the transitions between the S0 to S5

states to reduce the power wastage of a PC. Figure 8.1 provides a high level

illustration of the relationship between these states.

Figure 8.1 – Transitions between sleeping and waking states

A critical consideration in the design of this application was the selection of an

appropriate sleeping state. As discussed above, the ACPI provides numerous

‘sleeping’ states, each with their own advantages and disadvantages in terms of

responsiveness, power usage characteristics, and storage persistence. In selecting the

 55

appropriate standard ‘sleeping’ state for the application the following issues and

features were given consideration:

• Responsiveness – The time taken to return to normal operation from a

sleeping state.

• Power Usage – The relative power usage between the sleeping states.

• Data Assurance – The ability of the state to protect system data should an

unexpected event like a power failure occur.

• Sleep Functionality – The ability to be able to utilise wake timers or like

in the sleep state.

• Wake-on-LAN Compatibility – The ability to be able to respond to a

WoL magic packet in the sleep state.

Table 8.1 details the results of a comparative assessment used to determine the

appropriate sleeping state for the application. The results were drawn from testing on

a number of ACPI capable x86 Intel PCs.

Sleep State

Feature
S3 (Standby) S4 (Hibernate) S5 (Full off)

Responsiveness fast medium Slow

Power Usage medium low Low

Data Assurance no full full

Sleep Functionality yes yes Some PCs

WoL Compatibility Yes yes Some PCs

Table 8.1 – Performance of sleep state against desired criteria

 56

Based on the results of the above assessment, the selected sleep state for the

application was the ‘hibernate’ or S4 state which provided medium level

responsiveness, low power usage, data assurance of ‘open’ data, the ability to be able

to respond to wake timers, and finally the ability to be able to respond to a WoL

command.

8.2 PowerMan general outline

The PowerMan applications are essentially two separate applications operating

independently but utilising a client-server communications link to provide both a

localised and remotely controlled PC power management capability. This primitive

client server relationship is illustrated in Figure 8.2 below.

Figure 8.2 – Basic client server diagram

The design of the application in this way allows the local application to maintain

control of the PCs scheduling and efficiency settings, that is, operate autonomously

under the direction of the user. However, the local application also has with the

ability to be able to provide information to the server application, or alternatively

respond to server wake or sleep commands.

 57

Figure 8.3 below provides a high level illustration of the overall application model.

From this it can be seen that the server hosts client(s) in a one to many relationship,

while both applications share a number of purpose built classes held within the class

library.

Figure 8.3 – High level application model

The general operation of the overall application sees the server application

initialising first and from here ‘listening’ for clients. From here client applications

are initialised and attempt to form a connection with the pre designated server IP

address. Once running the client application will display a suite of system operating

and efficiency data. The user is then able to schedule a future sleep event together

with a follow up wake event, or alternatively adjust the efficiency setting that will

result in the PC hibernating after the set amount of system idle time.

The server application will then display the identification of ‘connected’ clients, with

the option of being able to view individual PC energy measures. The server can then

shutdown or hibernate a client PC if desired, or close the application on an individual

PC. Finally the server can set a wake schedule to mange a phased PC start-up at a

regular time each day, and thus minimise traffic flooding and power spikes.

 58

8.3 PowerMan client operation

As discussed above, the PowerMan client application can operate in conjunction

with, or independently of, the PowerMan server application. A screenshot of the

PowerMan client application is included in figure 8.4 below. The core functional

areas of the PowerMan client application are as follows:

• System details.

• Server connection.

• Efficiency.

• Waking.

• Sleeping.

• Storage.

Figure 8.4 – ‘PowerMan’ client side screenshot

 59

8.3.1 System details

The system details provided for viewing are the operating data which includes the

last boot time and elapsed time since last boot, and also the current date and time.

The last boot time data is gathered through the use of Windows API functions, while

the current date and time make use of the system ‘DateTime’ class.

Figure 8.5 – Client system details

8.3.2 Server connection

The client IP and MAC address details are also gathered through the use of Windows

API functions, while the server port and IP details are set as defaults within the

implementation code. The server port and IP address can be modified within a small

time window prior to the client attempting connection to the server.

The connection between the client and server is built around a Transmission Control

Protocol (TCP) socket between the applications. TCP has the advantage of being able

to guarantee delivery, and thus ensure that critical system messages are passed

between the applications.

 60

Figure 8.6 – Client network details

8.3.3 Efficiency

The ‘efficiency’ of the client PC is set through the use of a selectable track-bar. This

track-bar details a range of time settings which relate to the time before a sleep event

will be initiated if the system idle time exceeds the set value. As in the case for a

scheduled sleep event, if the idle initiates a sleep event and a wake time has been

selected, the waitable timer will be invoked prior to sleeping.

Figure 8.7 – Client efficiency settings

 61

8.3.4 Sleeping

A transition to a sleep state can be scheduled by a user for a set date and time. These

transitions at the set times can either be to the hibernate or ‘full off’ states, or

alternatively to schedule a complete system restart.

Importantly, a corresponding scheduled wake event can only occur if the PC is

scheduled to sleep in the hibernate state. In this case, prior to sleeping, the internal

waitable timer is initiated to ensure a wake event at the user selected time.

Figure 8.8 – Client session end settings

Figure 8.9 – Client session end and start details

 62

8.3.5 Waking

As outlined above, scheduled waking occurs from the use of the internal waitable

timer. The SetWaitableTimer function continues to operate in the low power S4

state, and when the timer is signalled, the system thread that initiated the timer calls

the desired completion routine, that is, a system wake event.

The alternate method of waking, that is, using a server generated WoL command is

detailed in the PowerMan server application outline.

Figure 8.10 – Client session wake settings

8.3.6 Storage

Storage for the client application is provided by the use of a binary data file. During

initialisation of the client application or upon resumption from a sleep state, the

client details file (if created) is read in, with the stored data being contained within an

object of the purpose built Client class. The data stored is the client energy usage

measures in addition to the server port and IP details.

Prior to closing the client application or transitioning the system to a sleep state, the

Client object is written to the binary data file to provide persistent storage.

 63

8.3.7 PowerMan client functions

The following paragraphs provide a brief description of the functions contained

within the PowerMan client application.

• SetHibernate – Calls the system hibernate function for an enduring

hibernation or alternatively calls the waitable timer function if a wake

time has been set.

• SetShutdown – Initiates the formal shutdown process together with

generating an appropriate system message.

• SetRestart - Initiates the formal shutdown (restart) process together with

generating an appropriate system message.

• CloseApplication – Formal method to gracefully close the PowerMan

application.

• IsValidIP – This method uses regular expression testing and returns a

true value if the entered IP address is in the correct format, else returns

false.

• IsValidPort – This method returns a true value if the entered port is in

the correct range, else returns false.

• FormatMAC – This method takes MAC addresses with either the ‘:’, ‘-‘,

or ‘ ‘ separator and returns a standard MAC address format using the ‘:’

separator, if a valid address.

• CloseSocket – This method closes open sockets and ensures socket

references contain a null value.

• SocketTest – Tests client socket and Returns a true value if connected or

false if not connected.

 64

• SaveToFile - Specifies file to save client object to.

• SetWaitForWakeUpTime – Creates the waitable timer handle and

suspends the computer before canceling the handle after waking. Will

also force the PC into ‘display’ mode after waking.

• ConnectToServer – Creates the client socket, that is, connection to the

server and gets the details of the connection from the socket reference.

• WaitForData - This method is called after the socket is established and

waits for data to be received from server.

• OnDataReceived – Captures the data when it is read in from the socket

to the server. Features a switch statement to take appropriate action based

upon data received from server.

• SendClientDetails – Sends the client details object to the server.

• ByteArrayToObject – This method converts the client byte array to an

object after it has been received over the socket.

• UpdateControls – This method provides a statement (and colour)

indicating the current status of the client socket.

• ObjectToFile – This method converts the client object to a byte array so

that it can be written to a binary file.

• FileToObject - This method converts a read in binary file to a client

object.

• ObjectToByteArray - This method converts a client object to a byte

array so that it can be transmitted over the socket.

 65

8.4 PowerMan server operation

The PowerMan server application operates as a central hub for the PowerMan client

application(s). A screenshot of the PowerMan server application is included in

Figure 8.5 below. The core functional areas of the PowerMan server application are

as follows:

• System details.

• Network details.

• Client management.

• Wake list management.

• Wake scheduling.

• Storage.

Figure 8.11 – ‘PowerMan’ server side screenshot

 66

8.4.1 System details

As with the client application, the server system details provided for viewing are the

operating data which are the current date and time, and also the server IP and MAC

address details. The current date and time make use of the system ‘DateTime’ class,

while the server IP and MAC address details are accessed through the use of

Windows API functions.

Figure 8.12 – Server system details

8.4.2 Network details

The server port details are set as defaults within the implementation code, which can

be modified within a small time window prior to the server beginning to establishing

the TCP listener. When the server commences ‘listening’, a status update indicating

that the server is ready to host is displayed on the application.

Up to the second details of client connection status changes are provided through a

poll of the listed open sockets. The details displayed are the most recent connection

change, which includes the client details, and also the current number of connected

clients.

 67

Figure 8.13 – Server network details

8.4.3 Client management

The client management section lists the MAC and IP address details for all currently

connected clients. As with the network details section, updates to this list are made

every second through a status poll on the currently connected sockets. Importantly,

this area also provides the ‘controls’ for which the server can direct the client

application. These controls are only enabled when a client is selected within the list

and provide the following functionality:

• Refresh data – This function allows the client energy data to be

displayed which includes: Energy used, Energy saved, Carbon saved, and

Money saved.

• Close App. – This function sends a string object containing a direction to

close to the client application through the socket. The client then closes

the application.

• Hibernate – This function sends a string object containing a direction to

hibernate through the socket. The client application then immediately

forces the client PC to enter hibernation.

 68

• Restart – This function sends a string object containing a direction to

restart through the socket. The client application then immediately

initiates a restart system warning message and time delayed restart on the

client PC.

• Shutdown – This function sends a string object containing a direction to

shutdown through the socket. The client application then immediately

initiates a shutdown system warning message and time delayed restart on

the client PC.

Figure 8.14 – Server client management details

 69

Figure 8.15 – Selected client energy details

8.4.4 Wake list management

The wake list management area is an updateable list of built on the clients that

connect to the server. The listing is initially read in from a file during

commencement of the server application, and then written to file when closing the

application.

In addition to the automated updating of clients, the user can manually enter a client

PCs MAC address for storing on the wake list. After selecting one or more client

MAC addresses, the user can then activate the ‘wake’ button which will send a magic

packet to the selected PCs, and hence wake them. The delay between wake magic

packet transmissions to individual client PCs can be varied between zero and five

seconds, and thus force a phased wake of PCs across a network.

 70

Figure 8.16 – Server wake list details

8.4.5 Wake scheduling

The wake scheduling area allows for the setting of a periodical networked PC wake

event. The scheduled wake list is updateable from the client wake listing and will

indicate the client PCs that will be selected for the scheduled wake event. The

scheduled wake event is then set for a daily occurrence, and as with the manual wake

event, can operate with a delay ranging between zero and five seconds.

 71

Figure 8.17 – Server scheduled wake list details

8.4.6 Storage

The storage for the server application is provided by the use of a text file. During

initialisation of the server application, the text file (if created) is read in, with the

stored data being contained within a string object. The data stored is the client MAC

address details for use in wake management areas of the server application. Prior to

closing the server application, the client wake list details are written to the text file.

 72

8.4.7 PowerMan server functions

• IsValidPort – This method returns a true value if the entered port is in

the correct range, else returns false.

• IsValidMAC - This method uses regular expression testing and returns a

an upper case MAC address string if the entered MAC address is in the

correct format, else returns “ “.

• IpToMacAddress - This method uses an Address Resolution Protocol

request to get a MAC address from a given IP address.

• FormatMAC – This method takes MAC addresses with either the ‘:’, ‘-‘,

or ‘ ‘ separator and returns a standard format using a ‘:’ separator if a

valid address.

• ListenForClients – This method creates a beginning primary socket and

then after listening for clients begins to accept new client connections.

• OnClientConnect - This is the call back method which is invoked when

each new client is connected.

• SendServerRequest - Sends the server request object to the server.

• ObjectToByteArray - This method converts a server object to a byte

array so that it can be transmitted over the socket.

• CloseSockets - This method closes open sockets and ensures socket

references contain a null value.

• UpdateClientSockets - This method tests all sockets and then updates

the lists that containreferences the sockets to ensure that only client

details for connected sockest are displayed.

 73

• SocketTest – This method polls an individual socket and returns true if

socket still open, else returns false.

• WaitForData - This method is called after socket is established and

waits for data to be received from the client.

• OnDataReceived - Captures the data when it is read in from the socket

to the client.

• ByteArrayToObject - This method converts the server byte array to an

object after it has been received over the socket.

• WakeUp – Creates a list of clients to be woken using a magic packet.

This wake event is flagged so that the wake is activated during the

periodic timer operation.

• WakeUpClient - This method sends a Wake On Lan packet to the

specified MAC address using UDP.

• MACStringToBytes - Converts a valid MAC address string to a byte

array for use in the WakeUpClient function.

• CountClients – This method is called periodically to provide an up to

date count of the actual number of connected clients.

• WriteWakeList – This method writes the wake list to a text file.

• ReadWakeList – This method reads in the wake list from the specified

file.

• UpdateClientControls – This method will activate certain controls after

a pre designated user prompt or input.

 74

Chapter 9. Testing and evaluation

9.1 Introduction

Software development presents some unique challenges from an engineering

perspective. Firstly, it is extremely difficult to test given the large number of

variables that are associated with its operation. Secondly, the accurate measurement

of software reliability, when compared to hardware is difficult to measure

(Faulconbridge & Ryan 2003)

9.2 Testing methodology

In line with the previously described development methodology, the testing has been

incorporated within the development phases using a form of development

methodology which according to Somerville (2004) relies on an incremental

approach to software development. This has effectively allowed the trial of features

etc. as they are implemented and added rather than at the end of development. Figure

9.1 below provides a simple illustration showing the chosen testing approach.

Figure 9.1 – Testing phases

 75

A more detailed view of the process behind the testing at each of the above phases of

the software development lifecycle is illustrated in Figure 9.2 below.

Figure 9.2 – Example of software testing process model

(Source: Somerville, 2004)

Although the test model used for this project was not as rigid or methodical as the

process detailed above, a conscious effort was made to ensure that testing aligned

with the specification and objectives of the project, rather than simply using testing

as an advanced form of debugging.

 76

9.3 Test environment

Given the specifications, the actual application, and finally the testing regime have

been developed and implemented by the same person, a typical testing regime which

separates functional, user, and possibly compliance testing has not been selected.

As explained previously, the majority of the application testing has occurred during

the incremental development of both the client and the server application(s).

However, as there is a need to understand the performance of the applications in

relation to the original requirements, detailed functional testing has taken place.

Figure 9.3 – Application development and testing network environment

The development and testing environment for the PowerMan application(s) is

illustrated in Figure 9.3 above. While this environment does not contain an overly

large number of networked PCs, it does provide an adequate network for the purpose

of establishing multiple client communication with a server, and thus evaluating the

performance of the application(s).

 77

9.4 Test plan and results

The aim of this test plan and subsequent test cases is to detail the functional

performance of the applications.

9.4.1 Client specific testing

a) Successful start-up (without storage file)

Comments: Client application commences with no initial file.

b) Successful start-up (with storage file)

Comments: Client application commences reading in storage file.

c) Loaded data integrity

Comments: Program displays the same data as the last time the application was

run.

d) System data display

Comments: Program display correct date and time.

e) Operating data display

Comments: Program display correct last boot time and provides correct time

since last boot event.

f) Client network details display

Comments: Program displays correct client MAC and IP address

 78

g) Server connection details display

Comments: Program displays server IP address and port details and can be

modified in the initial open time only.

h) Connection status display

Comments: Connection status is displayed and counts down until connection

initiation, and then displays appropriate connection status.

i) Energy data display

Comments: Current energy data is correctly displayed for client.

j) Efficiency setting idle time display

Comments: Idle time is displayed and is correctly reset by user interaction.

k) Efficiency setting operation

Comment: User efficiency track-bar operates and correct value is displayed in

text box. Client PC hibernates according to selected efficiency time.

l) Client control operation

Comments: All client controls (close, hibernate, shutdown and restart)

gracefully close the application and provide the desired PC/system response.

m) Session end operation

Comments: Valid session end details can be entered, and are displayed.

Application ends at desired time and by desired method, and hence forces

corresponding action upon PC.

 79

n) Session start operation

Comments: Valid session start details can be entered, and are displayed. PC and

application commences at desired time if last end method was by hibernation.

 80

9.4.2 Server specific testing

a) Successful start-up (without storage file)

Comments: Server application commences with no initial file.

b) Successful start-up (with storage file)

Comments: Server application commences reading in storage file.

c) Loaded data integrity

Comments: Program displays the same data as the last time the application was

run.

d) System data display

Comments: Program display correct date and time.

e) Client network details display

Comments: Program displays correct server MAC and IP address

f) Network connection details display

Comments: Program displays correct port details and can be modified in the

initial open time only.

g) Network connection status display

Comments: Server hosting status is displayed and counts down until connection

initiation, and then displays appropriate listening status. Connection updates

and number of connected clients are displayed and automatically updated.

 81

h) Server control operation

Comments: Server controls (close) gracefully close the application.

i) Energy data display

Comments: Current energy data is correctly displayed for selected client.

j) Efficiency setting display

Comments: Efficiency setting for selected client is displayed.

k) Client management display

Comment: Connected client details are correctly displayed.

l) Wake list operation (Manual)

Comments: Correct wake list (from file) is displayed. Only valid MAC

addresses can be written to the list. Wake delay track-bar operates with the

chosen wake delay value stored in the text box.

m) Wake list operation (Automated)

Comments: Scheduled wake list can be updated from ‘client wake listing’.

Daily wake time can be modified and displays correctly.

n) Session start operation

Comments: Valid session start details can be entered, and are displayed. PC and

application commences at desired time if last end method was by hibernation.

 82

9.4.3 Joint server and client testing

a) New connection status display

Comments: Client application displays correct status when client connects to

server. Server application displays correct status when client connects to server.

b) Closed connection status display

Comments: Client application displays correct status when client is

disconnected from server. Server application updates connection information

when client application closes or hibernates.

c) Server initiates client ‘Refresh Data.’

Comments: Server forces client application refresh energy data.

d) Server initiates client ‘Close App.’

Comments: Server forces client application to close gracefully.

e) Server initiates client ‘Hibernate’.

Comments: Server forces client application to hibernate.

f) Server initiates client ‘Restart’.

Comments: Server forces client application to restart.

g) Server initiates client ‘Shutdown’.

Comments: Server forces client application to shutdown.

 83

h) Server initiates manual wake event.

Comments: Selected client PCs are successfully woken with the selected time

delay between PC wake events.

i) Server sets automated wake event.

Comments: Selected client PCs are successfully woken at the entered time with

the selected time delay between PC wake events. Additionally, selected client

PCs are successfully woken at the entered time over numerous days (post the

initial wake event), with the selected time delay between PC wake events.

9.5 Testing summary

Overall, the testing satisfied all the requirements of the test plan, and hence indicates

that the PowerMan applications meet and exceed the items detailed in the PowerMan

specification.

 84

Chapter 10. Conclusions and Future developments

While the core purpose of this project was to develop a solution that met the

requirements of the specification, there are other significant other success factors

which should be considered when assessing the benefits of the project. The overall

successes of the project are:

• The development of the ‘PowerMan’ application(s) which meet the

requirements of the specification.

• The adoption of a hybrid development lifecycle tailored to meet the

requirements of this project.

• The ability to develop the project successfully while adhering to project

management methodologies, and thus satisfy the scope, time and cost

estimates for the project.

10.1 Achievement of project objectives

As stated above, the project research combined with the developed applications have

met all of the project objectives. While neither the time nor the resources were

available to allow for the testing of the applications in a larger office environment,

the testing regime and testing environment provided a solid functional representation

of an office LAN environment. Therefore, it is fair to suggest that this testing can be

deemed to satisfy the project specification desirable item of ‘large office testing’.

 85

10.2 Further work

Ideally, the ‘PowerMan’ applications could be used in conjunction with more energy

efficient PCs and peripherals and therefore provide an overall package that is power

efficient whatever its state of operation, with little control or interaction from the

user.

Other suggestions for further development to either provide a better tool in terms of

function or power saving would be:

• Intuitive scheduling – Further development of the ‘PowerMan’

applications could provide greater program functionality such as

functionality that can examine current and planned system processes and

look at scheduling shutdown and wakeup operations around these to

minimize power use without relying on user driven scheduling.

• Aggregation of client statistics – This would allow for the server

application to present an aggregated network energy usage and savings

figures.

• Business hours related energy statistics – This would allow energy used

and saved to reflect the standard hours of operation for a business, and

therefore account for business hours, public holidays, and weekends in

energy savings calculations.

Overall, the opportunity to research, develop and test this application has provided a

valuable and enjoyable learning experience. Furthermore, the ability to be able to

work on a project where the environment may be a long term benefactor has also

been extremely satisfying.

 86

List of References

Addie, R 2007, CSC3413 Network design and analysis: study book, University of
Southern Queensland, Toowoomba.

Bigelow, S 2003, Bigelow’s PC Hardware Desk Reference, McGraw-Hill, New
York.

Bruege, B & Dutoit, A 2004, Object-Oriented Software Engineering Using UML,
Patterns and Java, 2nd edn, Pearson Education Inc., Upper Saddle River, NJ.

Carbon Dioxide 2010, Renewable Energy and Carbon Dioxide, web article, viewed
10 June 2010, <http://www.esru.strath.ac.uk/EandE/Web_sites/01-
02/RE_info/C02.htm>

Cisco 2010, Comparing Traffic Policing and Traffic Shaping for Bandwidth
Limiting, Web article, viewed 10 June 2010,
<http://www.cisco.com/en/US/tech/tk543/tk545/technologies_tech_note09186a0080
0a3a25.shtml>

Department of Energy 2000, Carbon Dioxide Emissions from the Generation of
Electric Power in the United States, Web Report, viewed 10 June 2010,
http://www.eia.doe.gov/electricity/page/co2_report/co2report.html#electric

Dix, A, Finlay, J, Abowd, G & Beale, R 1998, Human Computer Interaction, 2nd
edn, Prentice Hall, Harlow, Essex.

Dobie, C 2007, A Handbook of Project Management: A Complete Guide For
Beginners to Professionals, Allen & Unwin, Crows Nest, NSW.

Dreyton, P, Albahari, B & Neward, T 2002, C# in a Nutshell, 2nd edn, O’Reilly and
Associates, Sebastopol, CA.

Eeles, P & Cripps, P 2010, The Process of Software Architecture, Pearson Education
Inc., Boston, MA.

ENG4111/4112 NIA Research Project: study book 2010, University of Southern
Queensland, Toowoomba.

Ergon Energy, 2010, Electricity Prices, Energy Cost Schedule, viewed 10 June 2010,
<http://www.ergon.com.au/your-business/accounts--and--billing/electricity-prices>

Faulconbridge, R & Ryan, M 2003, Managing Complex Technical Projects: A
Systems Engineering Approach, Artech House Inc., Norwood, MA.

Galorath, D and Evans, M 2006, Software Sizing, Estimation, and Risk Management,
Aurbach Publications, Boca Raton, FL.

 87

Gardiner, P 2005, Project Management: A Strategic Planning Approach, Palgrave
Macmillan, Hampshire.

Hancock, B 1990, Issues and Problems in Computer Networking, Amacom, United
States.

Held, G 1996, Understanding Data Communications, 5th edn, Sams Publishing,
Indianapolis, IN.

Hewlett-Packard, Intel, Microsoft, Phoenix & Toshiba 2010, Advanced
Configuration and Power Interface Specification, Revision 4.0, specification, 5 April
2010, viewed 10 June 2010, <http://www.acpi.info/spec.htm>

Intel 2010, Network Connectivity, web article, viewed 10 September 2010,
<http://www.intel.com/support/network/sb/cs-008459.htm>

Interstate Assessment Technologies (IAT) 2010, Transient Voltage, Web article,
viewed 10 June 2010, <http://iat-eztyme.com/transients.pdf>

Johnsonbaugh. R & Kalin, M 2000, Object-Oriented Programming in C++, 2nd edn,
Prentice Hall Inc., Upper Saddle River, New Jersey.

Kawamoto, K., Shimoda, Y. and Mizuno, M. (2004), Energy Saving Potential of
Office Equipment Power Management, Energy and Buildings, Volume 36, Issue 9,
pp915-923.

Kerzner, H 2003, Project Management: A Systems Approach to Planning,
Scheduling and Controlling, 8th edn, John Wiley & Sons Inc., Hoboken, New Jersey.

Kist, A 2009, 09-070 Development and Testing of a Networked PC Power
Management Tool, Project Topic Description, Faculty of Engineering and Surveying,
University of Southern Queensland, viewed 16 May 2009,
<http://www.usq.edu.au/engsurv/students/enrolment/project/b-
topicoffer/topicoffer09/topics61-121/09070.htm>

Lanza, R 2002 ‘Does Your Project Risk Management System Do the Job?’,
Auerbach Publications, New York

Leonhard, W & Murray, K 2009, Green Home Computing for Dummies, Wiley
Publishing, Inc., Indianapolis, Indiana.

Lewis, W 2005, LAN Switching and Wireless: CCNA Exploration Companion Guide,
Cisco Press, Indianapolis, Indiana.

Mandel, T 1997, The Elements of Unser Interface Design, John Wiley & Sons Inc.,
United States.

MGT8022 NIA Project management framework: study book 2009, University of
Southern Queensland, Toowoomba.

 88

MSDN 2010, Overview of the Windows API, web article, viewed 10 June 2010,
<http://msdn.microsoft.com/en-us/library/aa383723.aspx>

MSDN 2010, System Power States, web article, viewed 10 June 2010,
<http://msdn.microsoft.com/en-us/library/aa373229%28VS.85%29.aspx>

MSDN 2010, Windows Management Instrumentation, web article, viewed 10 June
2010, http://msdn.microsoft.com/en-us/library/aa394582%28VS.85%29.aspx

My Clean Sky, 2010, A ton of greenhouse emissions produced can be balanced by a
ton of emissions reduced, web article, viewed 10 June 2010,
<http://www.mycleansky.com/?a=efficiency>

Neumann, L 2008, Wake-On-LAN in C#, Memos Team Blog, Blog entry, viewed 10
June 2010, <http://blog.memos.cz/index.php/team/2008/06/12/wake-on-lan-in-
csharp>

Phillipson, G 2008, The 2008 Digital Atlas of Australia, Web article, Connected
Home, viewed 16 May 2010,
<http://www.connectedhome.com.au/article/digital-atlas-australia>

Phillips, D 1998, The Software Project Manager’s Handbook – Principles That Work
At Work, IEEE Computer Society Press, Los Alamitos, CA

Parliamentary Office of Science and Technology 2006, Postnote, web article, viewed
10 June 2010, http://www.parliament.uk/documents/post/postpn268.pdf

Pressman, R 2010, Software Engineering – A Practitioners Approach, McGraw-Hill,
New York, NY.

Project Management Institute (PMI) Standards Committee 2000, A guide to the
project management book of knowledge, 3rd edn, PMI, Newtown Square,
Pennsylvania.

Project Management Institute (PMI) 2006, Practice Standard for Work Breakdown
Structures, 2nd edn, PMI, Newtown Square, Pennsylvania.

Qin, Z, Xing, J & Zheng, X 2008, Software Architecture, Zhejiang University press,
Hangzhou.

Rowsell-Jones, A 2007, ‘Performance Artist’, CIO, December 2007/January 2008, p.
8.

Scach, S 1990, Software Engineering, Asken Associates Inc., United States.

Schwalbe, K 2006, Information Technology Project Management, 4th edn,
Thompson Course Technology, Boston.

Sebasta, R 2005, Concepts of Programming Languages, 7th edn, Pearson Education
Inc., Boston, MA.

 89

Silberschatz, A, Galvin, P & Gagne, G 2005, Operating System Concepts, 7th edn,
John Wiley & Sons, Inc., Danvers, MA,

Silver, J 2008, Global warming & climate change: Demystified, McGraw-Hill, New
York.

Slone, J 2000, Local Area Network Handbook, 6th edn, Aurbach Publications, Boca
Raton, FL.

Smith, J 2010, Computer Basics – 10 What You See: Power Protection, Web Article,
Jans Computer Basics, viewed 10 June 2010,
<http://www.jegsworks.com/lessons/lesson10/lesson10-5.htm>

Somerville, I 2004, Software Engineering, 7th edn, Pearson Education Limited,
Harlow, Essex.

Somerville, I 2007, Software Engineering, 8th edn, Pearson Education Limited,
Harlow, Essex.

ThomasNet, 2010, Type of Electrical Power Supply Interference, Web Article,
viewed 10 June 2010, <http://www.thomasnet.com/articles/electrical-power-
generation/power-supply-interference>

Troelsen, A 2003, C# and the .NET Platform, Springer-Verlag New York Inc., New
York, NY.

Vachon, B & Graziani, R 2008, Accessing the WAN, CCNA Exploration Companion
Guide, Cisco Press, Indianapolis,

Vliet, H 2001, Software Engineering – Principles and Practice, 2nd edn, John Wiley
& Sons Inc., New York, NY.

Williams, M. A. J. and Balling, R. C. (1996) Interactions of Desertification and
Climate, WMO/UNEP, Arnold, London.

Webber, C, Roberson, J, Brown, R, Payne, C, Nordman, B & Koomey, J 2001, Field
Surveys of Office Equipment Operation Patterns, Berkeley, CA: Lawrence Berkeley
National Laboratory. Report No. LBNL- 46930, viewed 10 June 2010,
<http://enduse.lbl.gov/Projects/OffEqpt.html>

Wikipedia 2010, Coal, Web article, viewed 10 June 2010,
<http://en.wikipedia.org/wiki/Coal>

Wikipedia 2010, Traffic Shaping, Web article, viewed 10 June 2010,
<http://en.wikipedia.org/wiki/Traffic_shaping>

Wysocki, R, Beck Jr., R & Crane, D 2000, Effective Project Management, 2nd edn,
John Wiley & Sons Inc., New York

Appendix A - Research Project Specification

Student Name: S. Brooks (Student Number: 0011120394)

Enrolment: ENG4111

Supervisor: Dr. Alexander Kist (FOES)

Project Aim: The development and testing of a distributed PC power management software

tool. This tool, through the use of efficient scheduling and the control of a
PCs start-up and shutdown, is likely to reduce the amount of power wasted
by an idle PC.

Revision: Issue A – 22 March 2010

1. Research and evaluate the average power use, idle time and other statistics of a PC that relate

to power consumption in a standard office environment.

2. Research the potential for, and severity of power spikes, network traffic floods and other

issues in a standard office environment due to simultaneous PC start-up.

3. Develop a software tool that controls start-up and shutdown of a PC either via scheduling or

manual control.

4. In conjunction with the local software tool described in component 3, develop a software tool

that remotely controls the start-up and shutdown of either singular or grouped PCs (within a
designated domain) over a Local Area Network (LAN).

5. In addition to specifications outlined in components 3 and 4 above, the software tool shall:

c. Implement a phased start-up (to prevent power spikes) where multiple PCs on a single
LAN may be scheduled to start-up.

d. Presentation of software tool options, controls, and critical usage statistics within a user
friendly Graphical User Interface (GUI).

6. Evaluate and test the tool in a small office/network environment

Desirable components (as time permits)

7. Evaluate and test the tool in a large office/network environment.

8. Translate ‘wasted power measurements’, and also saved power with the use of the tool into

figures relating to a ‘carbon footprint’ and greenhouse gas measurement.

--APPROVED---
AGREED ____________________ ____________________ ____________________
 Student Supervisor Examiner/Co-examiner
 Date: / /2010 Date: / /2010 Date: / /2010

Appendix B - Research Project Schedule

Appendix C – PowerMan Client Code

The PowerMan Client code is included in the following appendices:

• Appendix C1 – Form1.cs

• Appendix C2 – Form1.Designer.cs

• Appendix C3 – Program.cs

• Appendix C4 – DateTimeState.cs

• Appendix C5 – ServerPacket.cs

Appendix C1 – Form1.cs

using Microsoft.Win32;
using System;
using System.Collections.Generic;
using System.ComponentModel;
using System.Diagnostics;
using System.Data;
using System.Drawing;
using System.Linq;
using System.Management;
using System.Text;
using System.Windows.Forms;
using System.Runtime.InteropServices;
using System.Threading;
using System.Net;
using System.Net.Sockets;
using System.Text.RegularExpressions;
using ClassLibrary1;

namespace PowerMan_Client1
{
 public partial class Form1 : Form
 {
 public Form1()
 {
 InitializeComponent();
 timer1.Enabled = true;
 formDTState = new DateTimeState();
 lastBootTime = new DateTime();
 }

 public enum EXECUTION_STATE : uint
 {
 ES_SYSTEM_REQUIRED = 0x00000001,
 ES_DISPLAY_REQUIRED = 0x00000002,
 ES_CONTINUOUS = 0x80000000
 }

 // declare windows API functions
 [DllImport("kernel32.dll")]
 extern static IntPtr CreateWaitableTimer(IntPtr lpTimerAttributes, bool
bManualReset, string lpTimerName);
 [DllImport("kernel32.dll")]
 extern static bool SetWaitableTimer(IntPtr hTimer, [In] ref long
pDueTime, int lPeriod, IntPtr pfnCompletionRoutine, IntPtr
lpArgToCompletionRoutine, bool fResume);
 [DllImport("kernel32", SetLastError = true, ExactSpelling = true)]
 extern static Int32 WaitForSingleObject(IntPtr handle, uint
milliseconds);
 [DllImport("kernel32.dll")]
 extern static bool CancelWaitableTimer(IntPtr hTimer);
 [DllImport("Kernel32.dll", CharSet = CharSet.Auto, SetLastError = true)]
 extern static EXECUTION_STATE SetThreadExecutionState(EXECUTION_STATE
state);
 [DllImport("user32.dll")]
 extern static bool GetLastInputInfo(ref LastInputStructure plii);

 // Form event methods
 private void Form1_Load(object sender, EventArgs e)
 {
 // create a SELECT query using 'LastBootUpTime' param

 SelectQuery query1 = new SelectQuery("SELECT LastBootUpTime FROM
Win32_OperatingSystem WHERE Primary='true'");
 // create a new object searcher and pass to the select query
 ManagementObjectSearcher searcher1 = new
ManagementObjectSearcher(query1);
 // get the datetime value and set the local boot time variable to
contain that value

 foreach (ManagementObject mgtObject1 in searcher1.Get())
 {
 // convert from universal time to normal format
 lastBootTime =
ManagementDateTimeConverter.ToDateTime(mgtObject1.Properties["LastBootUpTime"].V
alue.ToString());
 txtBootDate.Text = lastBootTime.ToLongDateString();
 txtBootTime.Text = lastBootTime.ToLongTimeString();
 }

 SystemEvents.PowerModeChanged += new
PowerModeChangedEventHandler(SystemEvents_PowerModeChanged);

 // create a select query using 'MacAddress.IPAddress' param
 ObjectQuery query2 = new ObjectQuery("Select MacAddress,IPAddress
from Win32_NetworkAdapterConfiguration where IPEnabled=TRUE");
 // create a new object searcher and pass to the select query
 ManagementObjectSearcher searcher2 = new
ManagementObjectSearcher(query2);

 foreach (ManagementObject mgtObject2 in searcher2.Get())
 {
 clientMACString = mgtObject2["MacAddress"].ToString();
 clientIPString =
((System.Array)(mgtObject2["IPAddress"])).GetValue(0).ToString();
 }

 // convert MAC to standard format for storage
 string formattedMAC = FormatMAC(clientMACString);

 // change formatted mac for file load
 string temp = formattedMAC.Replace(":", "");
 // attempt to load file
 myClient = (Client)FileToObject("c:\\client" + temp + ".dat");
 // if file not read or found then create new instance of client
 if (myClient == null)
 {
 myClient = new Client(formattedMAC);
 }

 //set initial time if not set
 if (!myClient.GetInitialTimeSet())
 {
 myClient.SetInitialTime(DateTime.Now);
 myClient.SetInitialTimeSet(true);
 }

 // set session progressive time
 myClient.SetSessionProgressiveTime(DateTime.Now);
 myClient.SetSessionTimeReset(true);

 // set session start time;
 startTime = DateTime.Now;

 // ensure trackbar is restored to last position
 trkBarEfficiency.Value = myClient.GetTrackBarIndex();

 trackBar1_Scroll(this, e);

 // update text boxes
 clientTextBoxMAC.Text = myClient.GetClientID();
 clientTextBoxIP.Text = clientIPString;
 serverTextBoxIP.Text = myClient.GetServerIP();
 serverTextBoxPort.Text = myClient.GetServerPort().ToString();

 // set server IP and port buttons to false
 buttonUpdateIP.Enabled = false;
 buttonUpdatePort.Enabled = false;
 }

 private void timer1_Tick(object sender, EventArgs e)
 {
 txtDate.Text = DateTime.Now.ToLongDateString();
 txtTime.Text = DateTime.Now.ToLongTimeString();
 TimeSpan elapsedTime = DateTime.Now - lastBootTime;
 txtElapsedTime.Text = elapsedTime.Hours.ToString() + "hrs, " +
elapsedTime.Minutes.ToString() + "mins, " +
 elapsedTime.Seconds.ToString() + "secs";

 if (formDTState.GetPostWakeReboot())
 {
 formDTState.SetPostWakeReboot(false);
 // this will be instaneous restart
 SetRestart("instant");
 }

 // update power usage figures
 // get high power time
 if (myClient.GetSessionTimeReset())
 {
 TimeSpan current = DateTime.Now -
myClient.GetSessionProgressiveTime();
 myClient.SetSessionProgressiveTime(DateTime.Now);
 TimeSpan old = myClient.GetHighPowerTime();
 myClient.SetHighPowerTime(current + old);
 }

 // low power will be total minus high power
 TimeSpan total = DateTime.Now - myClient.GetInitialTime();
 myClient.SetLowPowerTime(total - myClient.GetHighPowerTime());

 // get average daily hours turned on
 double averageDailyHoursOn = myClient.GetHighPowerTime().TotalHours
/ total.TotalDays;
 // get average daily hours turned off
 double averageDailyHoursOff = myClient.GetLowPowerTime().TotalHours
/ total.TotalDays;

 // using 0.250 kWh for PC on and 30 kWh for hibernate/sleep
 // set energy used
 myClient.SetEnergyUsed(averageDailyHoursOn * 0.25);
 //set energy saved
 myClient.SetEnergySaved(averageDailyHoursOff * 0.03);

 // calculate carbon saved use 0.956 kg per kWh
 double energySaved = myClient.GetEnergySaved();
 myClient.SetCarbonSaved(energySaved * 0.956);

 // calculate money saved use $0.17 per kWh
 myClient.SetMoneySaved(energySaved * 0.17);

 // publish saving figures
 string temp1 = string.Format("{0:0.00}", myClient.GetEnergyUsed());
 string temp2 = string.Format("{0:0.00}", myClient.GetEnergySaved());
 string temp3 = string.Format("{0:0.00}", myClient.GetCarbonSaved());
 string temp4 = string.Format("{0:0.00}", myClient.GetMoneySaved());
 lblEnergyUsed.Text = temp1 + " kWh";
 lblEnergySaved.Text = temp2 + " kWh";
 lblCarbonSaved.Text = temp3 + " kg";
 lblMoneySaved.Text = "$" + temp4;

 if (hibernationFlag)
 {
 startResumeSpan = DateTime.Now - postHibernateWakeTime;
 }
 else
 {
 startResumeSpan = DateTime.Now - startTime;
 }

 //establish connection after 15 seconds into commencement
 if (startResumeSpan.TotalSeconds > 15 && !connectionFlag)
 {
 // set flag to ensure connection is only tried once
 connectionFlag = true;
 //call connect function
 ConnectToServer();
 // set port and ip box so that it can not be changed
 serverTextBoxPort.Text = myClient.GetServerPort().ToString();
 serverTextBoxPort.BackColor =
System.Drawing.Color.LightSteelBlue;
 serverTextBoxPort.ReadOnly = true;
 buttonUpdatePort.Enabled = false;
 serverTextBoxIP.Text = myClient.GetServerIP();
 serverTextBoxIP.BackColor = System.Drawing.Color.LightSteelBlue;
 serverTextBoxIP.ReadOnly = true;
 buttonUpdateIP.Enabled = false;
 }
 else if (!connectionFlag)
 {
 textBoxConnectStatus.Text = String.Format("Connecting in {0}
secs", (15 - startResumeSpan.Seconds));
 // check every 2 seconds
 if (startResumeSpan.Seconds % 2 == 0)
 {
 textBoxConnectStatus.BackColor = System.Drawing.Color.Red;
 }
 else
 {
 textBoxConnectStatus.BackColor =
System.Drawing.Color.Orange;
 }
 }

 //wait 20 seconds before sending first packet
 if ((startResumeSpan.TotalSeconds > 20) && !sendFlag)
 {
 // set flag to ensure only 1 send
 sendFlag = true;
 SendClientDetails();
 }

 // check socket status every 2 seconds
 if ((startResumeSpan.TotalSeconds > 15) && (startResumeSpan.Seconds
% 2 == 0))

 {
 if (SocketTest())
 {
 UpdateControls(true);
 }
 else
 {
 UpdateControls(false);
 }
 }

 if ((DateTime.Now >= formDTState.GetEndDateTime()) &&
formDTState.GetEndTimeSet() && !formDTState.GetWakeOccurred())
 {
 if (formDTState.GetShutdownMethod() == "Hibernation")
 {
 SetHibernate();
 }
 else if (formDTState.GetShutdownMethod() == "Shutdown")
 {
 SetShutdown();
 }
 else // must be restart
 {
 SetRestart("notinstant");
 }
 }

 // Measure system idle time
 // time in milliseconds since the last time computer was started
 int systemUptime = Environment.TickCount;
 // The tick at which the last input was recorded
 int lastInputTicks = 0;
 // The number of ticks that passed since last input
 int realIdleTicks = 0;
 // Set the structure
 LastInputStructure aLastInput = new LastInputStructure();
 aLastInput.structureSize = (uint)Marshal.SizeOf(aLastInput);
 aLastInput.idleCountTime = 0;
 // If we have a value from the function
 if (GetLastInputInfo(ref aLastInput))
 {
 // Get the number of ticks at the point when the last activity
was seen
 lastInputTicks = (int)aLastInput.idleCountTime;
 // Number of idle ticks = system uptime ticks - number of ticks
at last input
 realIdleTicks = systemUptime - lastInputTicks;
 }

 // convert idle time to seconds and minutes
 int realIdleSeconds = realIdleTicks / 1000;
 // get actual time of last input
 lastInputTime = DateTime.Now.AddSeconds(-realIdleSeconds);

 // ensure PC will hibernate after periods of set idle time even if
woken without activity
 if (hibernationFlag)
 {
 if (lastInputTime < postHibernateWakeTime)
 {
 idleSpan = DateTime.Now - postHibernateWakeTime;
 }
 else

 {
 idleSpan = TimeSpan.FromSeconds(realIdleSeconds);
 }
 }
 else
 {
 idleSpan = TimeSpan.FromSeconds(realIdleSeconds);
 }

 txtIdleTime.Text = idleSpan.Hours.ToString() + "hrs, " +
idleSpan.Minutes.ToString() + "mins, " +
 idleSpan.Seconds.ToString() + "secs";

 if ((myClient.GetEfficiencyValue() != 0) && (idleSpan.TotalMinutes
>= myClient.GetEfficiencyValue()))
 {
 //****
 //testString1 = testString1 + " tp1 " +
DateTime.Now.ToLongTimeString();
 //textBox1.Text = testString1;
 //****
 SetHibernate();
 }
 }

//**
**
//**************************** Event Driven methods

//**
**

 private void SystemEvents_PowerModeChanged(object sender,
PowerModeChangedEventArgs e)
 {
 // Suspend
 if (e.Mode == PowerModes.Suspend)
 {
 // check for hibernate done outside of application
 myClient.SetSessionTimeReset(false);
 hibernationFlag = false;
 SetHibernate();
 //*****
 //testString1 = testString1 + " tp2 " +
DateTime.Now.ToLongTimeString();
 //textBox1.Text = testString1;
 //****
 }
 //Resume
 if (e.Mode == PowerModes.Resume)
 {

 myClient.SetSessionProgressiveTime(DateTime.Now);
 myClient.SetSessionTimeReset(true);

 if (!SocketTest())
 {
 // reset time and connection flags
 hibernationFlag = true;
 postHibernateWakeTime = DateTime.Now;
 connectionFlag = false;
 sendFlag = false;
 }

 //****
 //testString1 = testString1 + " tp3 " +
DateTime.Now.ToLongTimeString();
 //textBox1.Text = testString1;
 //****

 // when waking clear advertised waking time (if past)
 if (DateTime.Now >= formDTState.GetStartDateTime())
 {
 formDTState.SetStartTimeSet(false);
 txtWakeTime.Text = "-- Not set --";
 txtWakeTime.BackColor =
System.Drawing.SystemColors.ScrollBar;
 // resuming here after hibernation set state to indicate a
shutdown action has occured
 formDTState.SetWakeOccurred(true);
 }
 }
 }

 private void btnSetEnd_Click(object sender, EventArgs e)
 {
 // check that end time is less than start time if set
 if ((formDTState.GetStartTimeSet()) &&
((dTPickStop.Value.AddMinutes(1) > formDTState.GetStartDateTime())))
 {
 MessageBox.Show("If start time SET, end time must be less than
set start time!\n"
 + "Please select a new end time, or CLEAR start time!\n");
 formDTState.SetShutdownMethod("-- Not set --");
 formDTState.SetEndTimeSet(false);
 formDTState.SetWakeOccurred(false); //reset if set previously
 cmbBoxSessionEnd.SelectedIndex = -1;
 txtStopTime.Text = "-- Not set --";
 txtStopMethod.Text = formDTState.GetShutdownMethod();
 txtStopTime.BackColor = System.Drawing.SystemColors.ScrollBar;
 txtStopMethod.BackColor = System.Drawing.SystemColors.ScrollBar;
 return;
 }
 // check end time is at least a minute greater than current time
 if (dTPickStop.Value < DateTime.Now.AddMinutes(1))
 {
 MessageBox.Show("End time must be at least a minute greater than
current time!\n");
 formDTState.SetShutdownMethod("-- Not set --");
 formDTState.SetEndTimeSet(false);
 formDTState.SetWakeOccurred(false); //reset if set previously
 cmbBoxSessionEnd.SelectedIndex = -1;
 txtStopTime.Text = "-- Not set --";
 txtStopMethod.Text = formDTState.GetShutdownMethod();
 txtStopTime.BackColor = System.Drawing.SystemColors.ScrollBar;
 txtStopMethod.BackColor = System.Drawing.SystemColors.ScrollBar;
 return;
 }

 if (cmbBoxSessionEnd.SelectedIndex != -1)
 {
 formDTState.SetEndDateTime(dTPickStop.Value);

formDTState.SetShutdownMethod(cmbBoxSessionEnd.SelectedItem.ToString());
 formDTState.SetEndTimeSet(true);
 formDTState.SetWakeOccurred(false); //reset if set previously

 txtStopTime.Text =
formDTState.GetEndDateTime().ToLongTimeString();
 txtStopMethod.Text = formDTState.GetShutdownMethod();
 txtStopTime.BackColor = System.Drawing.Color.Red;
 txtStopMethod.BackColor = System.Drawing.Color.Red;
 }
 else
 {
 MessageBox.Show("You must select a Session End Method!");
 }
 }

 private void btnClearEnd_Click(object sender, EventArgs e)
 {
 formDTState.SetShutdownMethod("-- Not set --");
 formDTState.SetEndTimeSet(false);
 formDTState.SetWakeOccurred(false); //reset if set previously
 cmbBoxSessionEnd.SelectedIndex = -1;
 txtStopTime.Text = "-- Not set --";
 txtStopMethod.Text = formDTState.GetShutdownMethod();
 txtStopTime.BackColor = System.Drawing.SystemColors.ScrollBar;
 txtStopMethod.BackColor = System.Drawing.SystemColors.ScrollBar;
 }

 private void btnSetStart_Click(object sender, EventArgs e)
 {
 // check that start time is greater than end time if set
 if ((formDTState.GetEndTimeSet()) && (dTPickStart.Value <
formDTState.GetEndDateTime().AddMinutes(1)))
 {
 MessageBox.Show("If end time SET, start time must be greater
than set end time!\n"
 + "Please select a new start time, or CLEAR start time!\n");
 formDTState.SetStartTimeSet(false);
 txtWakeTime.Text = "-- Not set --";
 txtWakeTime.BackColor = System.Drawing.SystemColors.ScrollBar;
 return;
 }

 if (dTPickStart.Value < DateTime.Now.AddMinutes(1))
 {
 MessageBox.Show("Start time must be at least a minute greater
than current time!\n");
 formDTState.SetStartTimeSet(false);
 txtWakeTime.Text = "-- Not set --";
 txtWakeTime.BackColor = System.Drawing.SystemColors.ScrollBar;
 return;
 }

 formDTState.SetStartDateTime(dTPickStart.Value);
 formDTState.SetStartTimeSet(true);

 txtWakeTime.Text =
formDTState.GetStartDateTime().ToLongTimeString();
 txtWakeTime.BackColor = System.Drawing.Color.Lime;
 }

 private void btnClearStart_Click(object sender, EventArgs e)
 {
 formDTState.SetStartTimeSet(false);
 txtWakeTime.Text = "-- Not set --";
 txtWakeTime.BackColor = System.Drawing.SystemColors.ScrollBar;
 }

 private void btnHibernate_Click(object sender, EventArgs e)
 {
 SetHibernate();
 }

 private void btnShutdown_Click(object sender, EventArgs e)
 {
 SetShutdown();
 }

 private void btnRestart_Click(object sender, EventArgs e)
 {
 SetRestart("notinstant");
 }

 private void buttonClose_Click(object sender, EventArgs e)
 {
 CloseApplication();
 }

 private void buttonUpdateIP_Click(object sender, EventArgs e)
 {
 // See if we have a valid IP address
 bool temp = IsValidIP(serverTextBoxIP.Text.ToString());

 if (!temp)
 {
 MessageBox.Show("Must enter valid IP Address in ***.***.***.***
format!");
 serverTextBoxIP.Text = myClient.GetServerIP();
 buttonUpdateIP.Enabled = false;
 return;
 }
 else
 {
 myClient.SetServerIP(serverTextBoxIP.Text.ToString());
 buttonUpdateIP.Enabled = false;
 return;
 }
 }

 private void buttonUpdatePort_Click(object sender, EventArgs e)
 {
 bool temp = IsValidPort(int.Parse(serverTextBoxPort.Text));

 if (!temp)
 {
 MessageBox.Show("Must enter port in range 50000-65000!");
 serverTextBoxPort.Text = myClient.GetServerPort().ToString();
 buttonUpdatePort.Enabled = false;
 return;
 }
 else
 {
 myClient.SetServerPort(int.Parse(serverTextBoxPort.Text));
 buttonUpdatePort.Enabled = false;
 return;
 }
 }

 private void serverTextBoxIP_TextChanged(object sender, EventArgs e)
 {
 buttonUpdateIP.Enabled = true;
 }

 private void serverTextBoxPort_TextChanged(object sender, EventArgs e)
 {
 buttonUpdatePort.Enabled = true;
 }

 private void trackBar1_Scroll(object sender, EventArgs e)
 {
 myClient.SetTrackBarIndex(trkBarEfficiency.Value);

myClient.SetEfficiencyValue(efficiencyScale[trkBarEfficiency.Value]);
 if (trkBarEfficiency.Value == 0)
 {
 txtEfficiency.Font = new Font(txtEfficiency.Font,
FontStyle.Bold);
 txtEfficiency.ForeColor =
System.Drawing.SystemColors.WindowText;
 txtEfficiency.Text = "-- Never --";
 txtEfficiency.BackColor = System.Drawing.SystemColors.ScrollBar;
 }
 else
 {
 txtEfficiency.Font = new Font(txtEfficiency.Font,
FontStyle.Regular);
 txtEfficiency.ForeColor = System.Drawing.Color.Green;
 txtEfficiency.BackColor = System.Drawing.SystemColors.Window;
 txtEfficiency.Text = "after " +
myClient.GetEfficiencyValue().ToString() + " minute(s)";
 }
 }

//**
*
//**************************** Other methods

//**
*
 // Calls the system hibernate function or calls the waitable timer
 // function if a wake time has been set.
 private void SetHibernate()
 {
 myClient.SetSessionTimeReset(false);
 CloseSocket();
 SaveToFile();
 if (formDTState.GetStartTimeSet())
 {
 // reset state to indicate wake action has taken place
 formDTState.SetStartTimeSet(false);

 //****
 //testString1 = testString1 + " tp4 " +
DateTime.Now.ToLongTimeString();
 //textBox1.Text = testString1;
 //****
 // will be here if prior to wakeable timer
 SetWaitForWakeUpTime(formDTState.GetStartDateTime());
 // will be here if woke by wakeable timer
 //****
 //testString1 = testString1 + " tp5 " +
DateTime.Now.ToLongTimeString();
 //textBox1.Text = testString1;
 //****

 // reset time and connection flags

 hibernationFlag = true;
 postHibernateWakeTime = DateTime.Now;
 connectionFlag = false;
 sendFlag = false;

 if (chkBoxReboot.Checked)
 {
 formDTState.SetPostWakeReboot(true);
 }

 // when waking clear advertised waking time (if past)
 if (DateTime.Now >= formDTState.GetStartDateTime())
 {
 formDTState.SetStartTimeSet(false);
 txtWakeTime.Text = "-- Not set --";
 txtWakeTime.BackColor =
System.Drawing.SystemColors.ScrollBar;
 // resuming here after hibernation set state to indicate a
shutdown action has occured
 formDTState.SetWakeOccurred(true);
 }

 // when waking clear advertised end time (if past)
 if (DateTime.Now >= formDTState.GetEndDateTime())
 {
 formDTState.SetShutdownMethod("-- Not set --");
 formDTState.SetEndTimeSet(false);
 formDTState.SetWakeOccurred(false); //reset if set
previously
 cmbBoxSessionEnd.SelectedIndex = -1;
 txtStopTime.Text = "-- Not set --";
 txtStopMethod.Text = formDTState.GetShutdownMethod();
 txtStopTime.BackColor =
System.Drawing.SystemColors.ScrollBar;
 txtStopMethod.BackColor =
System.Drawing.SystemColors.ScrollBar;
 }

 }
 else // hibernate indefinately
 {
 //****
 //testString1 = testString1 + " tp6 " +
DateTime.Now.ToLongTimeString();
 //textBox1.Text = testString1;
 //****
 Application.SetSuspendState(PowerState.Hibernate, true, false);
 }
 }

 // Initiates the formal shutdown process together with generating an
 // appropriate system message.
 private void SetShutdown()
 {
 myClient.SetSessionTimeReset(false);
 CloseSocket();
 SaveToFile();
 Process.Start("Shutdown", "/s /f /c \"Shutdown initiated by PowerMan
power management application!\"");
 Close();
 }

 // Initiates the formal shutdown (restart) process together with
generating an

 // appropriate system message.
 private void SetRestart(string when)
 {
 myClient.SetSessionTimeReset(false);
 CloseSocket();
 SaveToFile();
 if (when == "instant")
 {
 // will be instant directly after wake from hibernation if
selected
 Process.Start("Shutdown", "/r /f /t 00");
 Close();
 }
 else
 {
 Process.Start("Shutdown", "/r /f /c \"Restart initiated by
PowerMan power management application!\"");
 Close();
 }
 }

 // method to gracefully close the PowerMan application.
 private void CloseApplication()
 {
 myClient.SetSessionTimeReset(false);
 CloseSocket();
 SaveToFile();
 Close();
 }

 // method returns a Boolean true value if the entered IP address is in
"***.***.***.***" correct format,
 // else returns false.
 public bool IsValidIP(string IPAddress)
 {
 // create IP pattern for test
 string IPPattern = @"^(([0-9]|[1-9][0-9]|1[0-9]{2}|2[0-4][0-
9]|25[0-5])\.){3}([0-9]|[1-9][0-9]|1[0-9]{2}|2[0-4][0-9]|25[0-5])$";
 Regex expr1 = new Regex(IPPattern);
 //check to make sure an ip address was provided
 if (IPAddress == "")
 {
 return false;
 }
 else
 {
 return(expr1.IsMatch(IPAddress, 0));
 }
 }

 // This method returns a true value if the entered port is in the
correct range (50000-65000),
 // else returns false.
 public bool IsValidPort(int portNumber)
 {
 if ((portNumber >= 50000) && (portNumber <= 65000))
 {
 return true;
 }
 else
 {
 return false;
 }
 }

 //method recognies 3 formats of MAC address and returns a consistent
format
 // ':' seperated, '-' seperated, and no seperation between bytes
 private string FormatMAC(string aMACString)
 {
 //get string to common format before
 string temp1 = aMACString.Replace(":", "");
 string temp2 = temp1.Replace("-", "");
 string temp3 = temp2.ToUpper();
 // temp2 should now be length 12 chars
 StringBuilder final = new StringBuilder(temp3.Length + 5);
 for (int i = 1; i < (temp3.Length + 1); i++)
 {
 final.Append(temp3[i - 1]);
 if ((i % 2 == 0) && (i != temp3.Length))
 {
 final.Append(':');
 }
 }
 return final.ToString();
 }

 // Method to close sockets and place a null refernce on socket variables
 private void CloseSocket()
 {
 // test for valid socket
 if (clientSocket != null)
 {
 if (clientSocket.Connected)
 {
 clientSocket.Shutdown(SocketShutdown.Both);
 clientSocket = null;
 }
 }
 }

 // Method to test for a valid and connected socket
 private bool SocketTest()
 {
 if (clientSocket != null)
 {
 return clientSocket.Connected;
 }
 else
 {
 return false;
 }
 }

 // method to save client data to file
 private void SaveToFile()
 {
 string temp = myClient.GetClientID().Replace(":", "");
 ObjectToFile(myClient, "c:\\client" + temp + ".dat");
 }

 // create structure for idle time function
 internal struct LastInputStructure
 {
 public uint structureSize;
 public uint idleCountTime;
 }

 // Creates and cancels the waitable timer handle and suspends the
computer.
 public void SetWaitForWakeUpTime(DateTime dt)
 {
 // create the Timer handle
 waitTimeHandle = CreateWaitableTimer(IntPtr.Zero, true,
"ThisWaitableTimer");
 // generate ticks until wake time
 long wakeTicks = dt.ToUniversalTime().Ticks;
 // allow wake up events in hibernate mode
 SetWaitableTimer(waitTimeHandle, ref wakeTicks, 0, IntPtr.Zero,
IntPtr.Zero, true);
 // set hibernate state during timer counting
 Application.SetSuspendState(PowerState.Hibernate, true, false);
 // delete timer and handle
 CancelWaitableTimer(waitTimeHandle);
 // enable display at wakeup without user prompt
 SetThreadExecutionState(EXECUTION_STATE.ES_DISPLAY_REQUIRED);
 }

 // method to connect to server after called within timer function
 public void ConnectToServer()
 {
 try
 {
 UpdateControls(false);
 // Create the socket instance
 clientSocket = new Socket(AddressFamily.InterNetwork,
SocketType.Stream, ProtocolType.Tcp);
 // Get the remote IP address
 IPAddress ip = IPAddress.Parse(myClient.GetServerIP());
 int iPortNo = myClient.GetServerPort();
 // Create the end point
 IPEndPoint ipEnd = new IPEndPoint(ip, iPortNo);
 // Connect to the specific remote ip address and port number
 clientSocket.Connect(ipEnd);
 // test if connected
 if (SocketTest())
 {
 //Wait for data asynchronously
 WaitForData();
 }
 }
 catch (SocketException se)
 {
 UpdateControls(false);
 //****
 //testString1 = testString1 + " tp7 " +
DateTime.Now.ToLongTimeString();
 //textBox1.Text = testString1.ToString();
 //****
 }
 }

 // Start waiting for data from the server
 public void WaitForData()
 {
 try
 {
 if (clientpfnCallBack == null)
 {
 clientpfnCallBack = new AsyncCallback(OnDataReceived);
 }
 ServerPacket aServerPkt = new ServerPacket();

 aServerPkt.SetSocket(clientSocket);
 // Start listening to the data asynchronously
 clientAsyncResult = clientSocket.BeginReceive(aServerPkt.buffer,
0, aServerPkt.buffer.Length, SocketFlags.None, clientpfnCallBack, aServerPkt);
 }
 catch (SocketException se)
 {
 //****
 //testString1 = testString1 + " tp8 " +
DateTime.Now.ToLongTimeString();
 //textBox1.Text = testString1.ToString();
 //****
 }
 }

 // Call back function which is invoked when the socket detects any
writing on the stream
 public void OnDataReceived(IAsyncResult asyn)
 {
 try
 {
 ServerPacket socketData = (ServerPacket)asyn.AsyncState;
 // set bool to determine if wait will occur post receive
 bool wait = false;
 // get length of received stream
 int read = socketData.GetSocket().EndReceive(asyn);
 if (read > 0)
 {
 for (int i = 0; i < read; i++)
 {
 socketData.TransmissionBuffer.Add(socketData.buffer[i]);
 }
 byte[] newBuffer = socketData.TransmissionBuffer.ToArray();
 String serverMessage = (String)ByteArrayToObject(newBuffer);
 switch (serverMessage)
 {
 case "Restart":
 SetRestart("notinstant");
 break;

 case "Hibernate":
 SetHibernate();
 break;

 case "Shutdown":
 SetShutdown();
 break;

 case "Refresh":
 SendClientDetails();
 wait = true;
 break;

 case "CloseApplication":
 CloseApplication();
 break;
 }
 }
 if (wait)
 {
 //Wait for data asynchronously
 WaitForData();
 }
 }

 catch (SocketException se)
 {
 //****
 //testString1 = testString1 + " tp9 " +
DateTime.Now.ToLongTimeString();
 //textBox1.Text = testString1.ToString();
 //****
 }
 }

 // method to send client object details
 private void SendClientDetails()
 {
 byte[] byData = ObjectToByteArray(myClient);
 if (SocketTest())
 {
 clientSocket.Send(byData);
 }
 }

 // This method converts the client object to a byte array so that it can
be sent over the socket.
 public object ByteArrayToObject(byte[] serverByteArray)
 {
 try
 {
 // convert byte array to memory stream
 System.IO.MemoryStream myMemoryStream = new
System.IO.MemoryStream(serverByteArray);
 // create new BinaryFormatter
 System.Runtime.Serialization.Formatters.Binary.BinaryFormatter
myBinaryFormatter
 = new
System.Runtime.Serialization.Formatters.Binary.BinaryFormatter();
 // set memory stream position to starting point
 myMemoryStream.Position = 0;
 // Deserializes a stream into an object graph and return as a
object.
 return myBinaryFormatter.Deserialize(myMemoryStream);
 }
 catch (Exception ex)
 {
 // Error
 Console.WriteLine("Exception caught in process: {0}",
ex.ToString());
 }
 // Error occured, return null
 return null;
 }

 // Will provide an appropriate indication of socket status to the
PowerMan GUI.
 private void UpdateControls(bool connected)
 {
 if (connected)
 {
 textBoxConnectStatus.Text = "Connected to remote host";
 textBoxConnectStatus.BackColor = System.Drawing.Color.Lime;
 }
 else
 {
 textBoxConnectStatus.Text = "Not connected to remote host";
 textBoxConnectStatus.BackColor = System.Drawing.Color.Red;
 }

 }

 // Method to convert object to byte array then save to file
 public bool ObjectToFile(object clientObject, string clientFileName)
 {
 try
 {
 // create new memory stream
 System.IO.MemoryStream fileMemoryStream = new
System.IO.MemoryStream();
 // create new BinaryFormatter
 System.Runtime.Serialization.Formatters.Binary.BinaryFormatter
fileBinaryFormatter
 = new
System.Runtime.Serialization.Formatters.Binary.BinaryFormatter();
 // Serializes an object, or graph of connected objects, to the
given stream.
 fileBinaryFormatter.Serialize(fileMemoryStream, clientObject);
 // convert stream to byte array
 byte[] fileByteArray = fileMemoryStream.ToArray();
 // Open file for writing
 System.IO.FileStream clientFileStream = new
System.IO.FileStream(clientFileName, System.IO.FileMode.Create,
System.IO.FileAccess.Write);
 // Writes a block of bytes to this stream using data from a
byte array.
 clientFileStream.Write(fileByteArray.ToArray(), 0,
fileByteArray.Length);
 // close file stream
 clientFileStream.Close();
 // cleanup
 fileMemoryStream.Close();
 fileMemoryStream.Dispose();
 fileMemoryStream = null;
 fileByteArray = null;
 return true;
 }
 catch (Exception ex)
 {
 // Error
 Console.WriteLine("Exception caught in process: {0}",
ex.ToString());
 }
 // Error occured, return null
 return false;
 }

 // method open saved file and then convert to obejct
 public object FileToObject(string clientFileName)
 {
 try
 {
 // Open file for reading
 System.IO.FileStream clientFileStream = new
System.IO.FileStream(clientFileName, System.IO.FileMode.Open,
System.IO.FileAccess.Read);
 // attach filestream to binary reader
 System.IO.BinaryReader fileBinaryReader = new
System.IO.BinaryReader(clientFileStream);
 // get total byte length of the file
 long _TotalBytes = new
System.IO.FileInfo(clientFileName).Length;
 // read entire file into buffer

 byte[] fileByteArray =
fileBinaryReader.ReadBytes((Int32)_TotalBytes);
 // close file reader and do some cleanup
 clientFileStream.Close();
 clientFileStream.Dispose();
 clientFileStream = null;
 fileBinaryReader.Close();
 // convert byte array to memory stream
 System.IO.MemoryStream fileMemoryStream = new
System.IO.MemoryStream(fileByteArray);
 // create new BinaryFormatter
 System.Runtime.Serialization.Formatters.Binary.BinaryFormatter
fileBinaryFormatter
 = new
System.Runtime.Serialization.Formatters.Binary.BinaryFormatter();
 // set memory stream position to starting point
 fileMemoryStream.Position = 0;
 // Deserializes a stream into an object graph and return as a
object.
 return fileBinaryFormatter.Deserialize(fileMemoryStream);
 }
 catch (Exception ex)
 {
 // Error
 Console.WriteLine("Exception caught in process: {0}",
ex.ToString());
 }
 // Error occured, return null
 return null;
 }

 // method to convert object to byte array
 public byte[] ObjectToByteArray(object clientObject)
 {
 try
 {
 // create new memory stream
 System.IO.MemoryStream byteMemoryStream = new
System.IO.MemoryStream();
 // create new BinaryFormatter
 System.Runtime.Serialization.Formatters.Binary.BinaryFormatter
byteBinaryFormatter
 = new
System.Runtime.Serialization.Formatters.Binary.BinaryFormatter();
 // Serializes an object, or graph of connected objects, to the
given stream.
 byteBinaryFormatter.Serialize(byteMemoryStream, clientObject);
 // convert stream to byte array and return
 return byteMemoryStream.ToArray();
 }
 catch (Exception ex)
 {
 // Error
 Console.WriteLine("Exception caught in process: {0}",
ex.ToString());
 }
 // Error occured, return null
 return null;
 }

 // variables/fields
 private DateTimeState formDTState;
 private DateTime lastBootTime;
 private string clientMACString;

 private string clientIPString;
 private Client myClient;
 static IntPtr waitTimeHandle;
 IAsyncResult clientAsyncResult;
 public AsyncCallback clientpfnCallBack;
 public Socket clientSocket;
 private DateTime startTime = new DateTime();
 private TimeSpan startResumeSpan;
 private bool connectionFlag = false;
 private bool sendFlag = false;
 private int[] efficiencyScale = new int[7] {0, 60, 50, 40, 30, 20, 10};
 private bool hibernationFlag = false;
 private DateTime postHibernateWakeTime = new DateTime();
 private DateTime lastInputTime = new DateTime();
 private TimeSpan idleSpan;
 //private string testString1;
 }
}

Appendix C2 – Form1.Designer.cs

namespace PowerMan_Client1
{
 partial class Form1
 {
 /// <summary>
 /// Required designer variable.
 /// </summary>
 private System.ComponentModel.IContainer components = null;

 /// <summary>
 /// Clean up any resources being used.
 /// </summary>
 /// <param name="disposing">true if managed resources should be
disposed; otherwise, false.</param>
 protected override void Dispose(bool disposing)
 {
 if (disposing && (components != null))
 {
 components.Dispose();
 }
 base.Dispose(disposing);
 }
 private System.Windows.Forms.Label lblWelcome;
 private System.Windows.Forms.Timer timer1;
 private System.Windows.Forms.Label lblDate;
 private System.Windows.Forms.Label lblTime;
 private System.Windows.Forms.Button btnShutdown;
 private System.Windows.Forms.Button btnRestart;
 private System.Windows.Forms.TextBox txtBootDate;
 private System.Windows.Forms.TextBox txtBootTime;
 private System.Windows.Forms.TextBox txtElapsedTime;
 private System.Windows.Forms.GroupBox boxControls;
 private System.Windows.Forms.GroupBox boxDateTime;
 private System.Windows.Forms.GroupBox boxOpData;
 private System.Windows.Forms.TextBox txtTime;
 private System.Windows.Forms.TextBox txtDate;
 private System.Windows.Forms.Label lblBootDate;
 private System.Windows.Forms.Label lblElapsedTime;
 private System.Windows.Forms.Label lblBootTime;
 private System.Windows.Forms.Button btnHibernate;
 private System.Windows.Forms.DateTimePicker dTPickStop;
 private System.Windows.Forms.GroupBox boxSchedule;
 private System.Windows.Forms.GroupBox boxEndSession;
 private System.Windows.Forms.GroupBox boxStartSession;
 private System.Windows.Forms.DateTimePicker dTPickStart;
 private System.Windows.Forms.Label lblSessionEnd;
 private System.Windows.Forms.Label lblSessionStart;
 private System.Windows.Forms.Label lblSessionEndMethod;
 private System.Windows.Forms.Label lblSchedEndMethod;
 private System.Windows.Forms.Label lblSchedEndTime;
 private System.Windows.Forms.TextBox txtWakeTime;
 private System.Windows.Forms.Label lblSchedStartTime;
 private System.Windows.Forms.TextBox txtStopMethod;
 private System.Windows.Forms.TextBox txtStopTime;
 private System.Windows.Forms.Button btnClearEnd;
 private System.Windows.Forms.Button btnSetEnd;
 private System.Windows.Forms.Button btnClearStart;
 private System.Windows.Forms.Button btnSetStart;
 private System.Windows.Forms.ComboBox cmbBoxSessionEnd;
 private System.Windows.Forms.CheckBox chkBoxReboot;

 private System.Windows.Forms.GroupBox boxNetwork;
 private System.Windows.Forms.TextBox clientTextBoxMAC;
 private System.Windows.Forms.TextBox clientTextBoxIP;
 private System.Windows.Forms.Label lblIP;
 private System.Windows.Forms.Label lblMAC;
 private System.Windows.Forms.PictureBox pictureBox1;
 private System.Windows.Forms.PictureBox pictureBox2;
 private System.Windows.Forms.PictureBox pictureBox3;
 private System.Windows.Forms.TrackBar trkBarEfficiency;
 private System.Windows.Forms.GroupBox boxFinalDetails;
 private System.Windows.Forms.Label label3;
 private System.Windows.Forms.Label label5;
 private System.Windows.Forms.Button buttonClose;
 private System.Windows.Forms.TextBox textBoxConnectStatus;
 private System.Windows.Forms.TextBox serverTextBoxPort;
 private System.Windows.Forms.Label label7;
 private System.Windows.Forms.Label label8;
 private System.Windows.Forms.TextBox serverTextBoxIP;
 private System.Windows.Forms.Button buttonUpdateIP;
 private System.Windows.Forms.Button buttonUpdatePort;
 private System.Windows.Forms.Label lblTrackBar1;
 private System.Windows.Forms.GroupBox boxTimeOut;
 private System.Windows.Forms.TextBox txtEfficiency;
 private System.Windows.Forms.Label lblTrackBar2;
 private System.Windows.Forms.Label lblHibernateTime;
 private System.Windows.Forms.TextBox txtIdleTime;
 private System.Windows.Forms.GroupBox boxSavings;
 private System.Windows.Forms.Label lblIdeTime;
 private System.Windows.Forms.Button btnCarbonSaved;
 private System.Windows.Forms.Button btnEnergySaved;
 private System.Windows.Forms.Button btnMoneySaved;
 private System.Windows.Forms.Label lblStaticEnergySaved;
 private System.Windows.Forms.Label lblStaticCarbonSaved;
 private System.Windows.Forms.Label lblStaticMoneySaved;
 private System.Windows.Forms.Label lblMoneySaved;
 private System.Windows.Forms.Label lblCarbonSaved;
 private System.Windows.Forms.Label lblEnergySaved;
 private System.Windows.Forms.Button btnEnergyUsed;
 private System.Windows.Forms.PictureBox pictureBox4;
 private System.Windows.Forms.Label lblEnergyUsed;
 private System.Windows.Forms.Label lblStaticEnergyUsed;
 }
}

Appendix C3 – Program.cs

using System;
using System.Collections.Generic;
using System.Linq;
using System.Windows.Forms;

namespace PowerMan_Client1
{
 static class Program
 {
 /// <summary>
 /// The main entry point for the application.
 /// </summary>
 [STAThread]
 static void Main()
 {
 Application.EnableVisualStyles();
 Application.SetCompatibleTextRenderingDefault(false);
 Application.Run(new Form1());
 }
 }
}

Appendix C4 – DateTimeState.cs

using System;

namespace PowerMan_Client1
{
 public class DateTimeState
 {
 public DateTimeState()
 {
 endDateTime = new DateTime();
 startDateTime = new DateTime();
 SetWakeOccurred(false);
 SetEndTimeSet(false);
 SetStartTimeSet(false);
 SetPostWakeReboot(false);
 SetShutdownMethod("-- Not set --");
 }

 //Other methods
 public void SetEndDateTime(DateTime dt)
 {
 endDateTime = dt;
 }
 public void SetStartDateTime(DateTime dt)
 {
 startDateTime = dt;
 }
 public void SetWakeOccurred(bool wakeOccurred)
 {
 this.wakeOccurred = wakeOccurred;
 }
 public void SetEndTimeSet(bool endTimeSet)
 {
 this.endTimeSet = endTimeSet;
 }
 public void SetStartTimeSet(bool startTimeSet)
 {
 this.startTimeSet = startTimeSet;
 }
 public void SetPostWakeReboot(bool postWakeReboot)
 {
 this.postWakeReboot = postWakeReboot;
 }
 public void SetShutdownMethod(string shutdownType)
 {
 this.shutdownType = shutdownType;
 }
 public DateTime GetEndDateTime()
 {
 return endDateTime;
 }
 public DateTime GetStartDateTime()
 {
 return startDateTime;
 }
 public bool GetWakeOccurred()
 {
 return wakeOccurred;
 }
 public bool GetEndTimeSet()
 {
 return endTimeSet;

 }
 public bool GetStartTimeSet()
 {
 return startTimeSet;
 }
 public string GetShutdownMethod()
 {
 return shutdownType;
 }
 public bool GetPostWakeReboot()
 {
 return postWakeReboot;
 }

 // variables/fields
 private bool wakeOccurred;
 private bool endTimeSet;
 private bool startTimeSet;
 private bool postWakeReboot;
 private DateTime endDateTime;
 private DateTime startDateTime;
 private string shutdownType;
 }
}

Appendix C5 – ServerPacket.cs

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.Net.Sockets;

namespace PowerMan_Client1
{
 class ServerPacket
 {
 //constructors
 public ServerPacket()
 {
 }

 //Other methods
 public Socket GetSocket()
 {
 return aCurrentSocket;
 }

 public void SetSocket(Socket aNewSocket)
 {
 aCurrentSocket = aNewSocket;
 }

 // variables/fields
 private Socket aCurrentSocket;
 public List<byte> TransmissionBuffer = new List<byte>();
 public byte[] buffer = new byte[128];
 }
}

Appendix D – PowerMan Server Code

The PowerMan Server code is included in the following appendices:

• Appendix D1 – Form1.cs

• Appendix D2 – Form1.Designer.cs

• Appendix D3 – Program.cs

• Appendix D4 – ClientPacket.cs

• Appendix D5 – ServerClient.cs

Appendix D1 – Form1.cs

using Microsoft.Win32;
using System;
using System.Collections;
using System.Collections.Generic;
using System.ComponentModel;
using System.Data;
using System.Drawing;
using System.Linq;
using System.Management;
using System.Net;
using System.Net.Sockets;
using System.Runtime.InteropServices;
using System.Threading;
using System.Text;
using System.Windows.Forms;
using System.IO;
using System.Web.UI.WebControls;
using System.Text.RegularExpressions;
using ClassLibrary1;

namespace PowerMan_Server1
{
 public partial class Form1 : Form
 {
 public Form1()
 {
 InitializeComponent();
 timer1.Enabled = true;
 }

 // declare windows API functions
 [DllImport("iphlpapi.dll", ExactSpelling = true)]
 private static extern int SendARP(int DestIP, int SrcIP, [Out] byte[]
pMacAddr, ref int PhyAddrLen);

 private void Form1_Load(object sender, EventArgs e)
 {
 // create a select query using 'MacAddress.IPAddress' param
 ObjectQuery query2 = new ObjectQuery("Select MacAddress,IPAddress
from Win32_NetworkAdapterConfiguration where IPEnabled=TRUE");
 // create a new object searcher and pass to the select query
 ManagementObjectSearcher searcher2 = new
ManagementObjectSearcher(query2);

 foreach (ManagementObject mgtObject2 in searcher2.Get())
 {
 serverMACString = mgtObject2["MacAddress"].ToString();
 serverIPString =
((System.Array)(mgtObject2["IPAddress"])).GetValue(0).ToString();
 }

 // convert MAC to standard format
 formattedServerMACString = FormatMAC(serverMACString);

 // update text boxes
 serverTextBoxMAC.Text = formattedServerMACString;
 serverTextBoxIP.Text = serverIPString;
 serverTextBoxPort.Text = serverPort.ToString();
 textBoxServerStatus.Text = "--Server not ready to host!--";
 textBoxServerStatus.BackColor = System.Drawing.Color.Red;

 // change formatted mac for file load
 string temp = formattedServerMACString.Replace(":", "");
 // attempt to load file

 ReadWakeList("c:\\server" + temp + ".txt");

 // set server port buttons to false
 buttonUpdatePort.Enabled = false;

 // set session start time;
 startTime = DateTime.Now;
 }

 private void timer1_Tick(object sender, EventArgs e)
 {
 txtDate.Text = DateTime.Now.ToLongDateString();
 txtTime.Text = DateTime.Now.ToLongTimeString();

 TimeSpan ts1 = DateTime.Now - startTime;
 //establish listenning after 10 seconds into commencement
 if (ts1.TotalSeconds > 10 && !listenTryFlag)
 {
 // set flag to ensure connection is only tried once
 listenTryFlag = true;
 //call connect function
 ListenForClients();
 textBoxServerStatus.Text = "--Hosting clients!--";
 //textBoxServerStatus.Font =
 textBoxServerStatus.BackColor = System.Drawing.Color.Lime;
 // set port so that it can not be changed
 serverTextBoxPort.Text = serverPort.ToString();
 serverTextBoxPort.BackColor =
System.Drawing.Color.LightSteelBlue;
 serverTextBoxPort.ReadOnly = true;
 buttonUpdatePort.Enabled = false;
 }
 else if (!listenTryFlag)
 {
 textBoxServerStatus.Text = String.Format("Hosting clients in {0}
secs", (10 - ts1.Seconds));
 // swap every second
 if (ts1.Seconds % 2 == 0)
 {
 textBoxServerStatus.BackColor = System.Drawing.Color.Red;
 }
 else
 {
 textBoxServerStatus.BackColor = System.Drawing.Color.Orange;
 }
 }

 //update number of connected sockets
 UpdateClientSockets();

 //update number of connect clients
 textBoxConnectedClients.Text = CountClients().ToString();

 // Generate a manual wake event
 if (manualWakeInProgress)
 {
 if (StoredManualWakeDelay == 0)
 {
 for (int i = 0; i < demandWakeList.Count; i++)
 {

 WakeUpClient(demandWakeList[i].ToString());
 }
 // indicate wake has finished
 manualWakeInProgress = false;
 // clear list
 demandWakeList.Clear();
 }
 else
 {
 if (DateTime.Now >=
manualWakeProgressiveTime.AddSeconds(StoredManualWakeDelay))
 {
 // update base to time to reflect delay interval
exceeded
 manualWakeProgressiveTime =
manualWakeProgressiveTime.AddSeconds(StoredManualWakeDelay);
 if (demandWakeList.Count != 0)
 {
 WakeUpClient(demandWakeList[0].ToString());
 demandWakeList.RemoveAt(0);
 }
 else
 {
 // indicate wake has finished
 manualWakeInProgress = false;
 // reset delay value
 StoredManualWakeDelay = 0;
 }
 }
 }
 }

 // Evaluate for a scheduled wake event has been set
 if (scheduledWakeSet)
 {
 TimeSpan tsp1 = new TimeSpan();
 tsp1 = DateTime.Now - scheduledWakeLastTime;
 // ensure scheduled wake only occurs once a day
 if ((tsp1.Days >= 1) && (DateTime.Now.TimeOfDay >=
scheduledWakeNextTime.TimeOfDay))
 {
 WakeUp();
 scheduledWakeSet = false;
 }
 }

 // Generate a scheduled wake event
 if (scheduledWakeInProgress)
 {
 if (StoredScheduledWakeDelay == 0)
 {
 for (int i = 0; i < scheduledWakeList.Count; i++)
 {
 WakeUpClient(scheduledWakeList[i].ToString());
 }
 // indicate wake has finished
 scheduledWakeInProgress = false;
 // allow schedule to be re used
 scheduledWakeSet = true;
 // clear list
 scheduledWakeList.Clear();
 // update last and next dates
 scheduledWakeLastTime = scheduledWakeNextTime;
 scheduledWakeNextTime = scheduledWakeNextTime.AddDays(1);

 }
 else
 {
 if (DateTime.Now >=
scheduledWakeProgressiveTime.AddSeconds(StoredScheduledWakeDelay))
 {
 // update base to time to reflect delay interval
exceeded
 scheduledWakeProgressiveTime =
scheduledWakeProgressiveTime.AddSeconds(StoredScheduledWakeDelay);
 if (scheduledWakeList.Count != 0)
 {
 WakeUpClient(scheduledWakeList[0].ToString());
 scheduledWakeList.RemoveAt(0);
 }
 else
 {
 // indicate wake has finished
 scheduledWakeInProgress = false;
 // allow schedule to be re used
 scheduledWakeSet = true;
 // update last and next dates
 scheduledWakeLastTime = scheduledWakeNextTime;
 scheduledWakeNextTime =
scheduledWakeNextTime.AddDays(1);
 }
 }
 }
 }
 }

//**
**
//**************************** Event Driven methods

//**
**

 private void buttonClose_Click(object sender, EventArgs e)
 {
 CloseSockets();
 // change formatted mac for file load
 string temp = formattedServerMACString.Replace(":", "");
 // attempt to load file
 WriteWakeList("c:\\server" + temp + ".txt");
 Close();
 }

 private void buttonRestart_Click(object sender, EventArgs e)
 {
 if (clientListBoxConnected.SelectedIndex != -1)
 {
 SendServerRequest("Restart");
 }
 else
 {
 MessageBox.Show("You must select a Connected Client!");
 }
 }

 private void buttonHibernate_Click(object sender, EventArgs e)
 {
 if (clientListBoxConnected.SelectedIndex != -1)
 {

 SendServerRequest("Hibernate");
 }
 else
 {
 MessageBox.Show("You must select a Connected Client!");
 }
 }

 private void buttonShutdown_Click(object sender, EventArgs e)
 {
 if (clientListBoxConnected.SelectedIndex != -1)
 {
 SendServerRequest("Shutdown");
 }
 else
 {
 MessageBox.Show("You must select a Connected Client!");
 }
 }

 private void buttonRefresh_Click(object sender, EventArgs e)
 {
 if (clientListBoxConnected.SelectedIndex != -1)
 {
 SendServerRequest("Refresh");
 }
 else
 {
 MessageBox.Show("You must select a Connected Client!");
 }
 }

 private void buttonAppClose_Click(object sender, EventArgs e)
 {
 if (clientListBoxConnected.SelectedIndex != -1)
 {
 SendServerRequest("CloseApplication");
 }
 else
 {
 MessageBox.Show("You must select a Connected Client!");
 }
 }

 private void clientListBoxMAC_SelectedIndexChanged(object sender,
EventArgs e)
 {
 if ((clientListBoxMAC.SelectedIndex != -1) &&
(!chkBoxWakeList.Checked))
 {
 buttonWakeClient.Enabled = true;
 buttonRemoveClients.Enabled = true;
 btnUpdateScheduleList.Enabled = true;
 chkBoxWakeList.Enabled = false;
 }
 else
 {
 buttonWakeClient.Enabled = false;
 buttonRemoveClients.Enabled = false;
 btnUpdateScheduleList.Enabled = false;
 chkBoxWakeList.Enabled = true;
 }
 }

 private void clientListBoxConnected_SelectedIndexChanged(object sender,
EventArgs e)
 {
 if (clientListBoxConnected.SelectedIndex != -1)
 {
 ServerClient aServerClient =
(ServerClient)clientListBoxConnected.SelectedItem;
 if (aServerClient.GetClient() != null)
 {
 if (aServerClient.GetClient().GetEfficiencyValue() == 0)
 {
 txtEfficiency.Font = new Font(txtEfficiency.Font,
FontStyle.Bold);
 txtEfficiency.ForeColor =
System.Drawing.SystemColors.WindowText;
 txtEfficiency.Text = "-- Never --";
 txtEfficiency.BackColor =
System.Drawing.SystemColors.ScrollBar;
 }
 else
 {
 txtEfficiency.Font = new Font(txtEfficiency.Font,
FontStyle.Regular);
 txtEfficiency.ForeColor = System.Drawing.Color.Green;
 txtEfficiency.BackColor =
System.Drawing.SystemColors.Window;
 string temp =
aServerClient.GetClient().GetEfficiencyValue().ToString();
 txtEfficiency.Text = "after " + temp + " minute(s)";
 }

 // publish saving figures
 string temp1 = string.Format("{0:0.00}",
aServerClient.GetClient().GetEnergyUsed());
 string temp2 = string.Format("{0:0.00}",
aServerClient.GetClient().GetEnergySaved());
 string temp3 = string.Format("{0:0.00}",
aServerClient.GetClient().GetCarbonSaved());
 string temp4 = string.Format("{0:0.00}",
aServerClient.GetClient().GetMoneySaved());
 lblEnergyUsed.Text = temp1 + " kWh";
 lblEnergySaved.Text = temp2 + " kWh";
 lblCarbonSaved.Text = temp3 + " kg";
 lblMoneySaved.Text = "$" + temp4;

 }
 UpdateClientControls(true);
 }
 else
 {
 txtEfficiency.Font = new Font(txtWakeDelay.Font,
FontStyle.Bold);
 txtEfficiency.ForeColor =
System.Drawing.SystemColors.WindowText;
 txtEfficiency.Text = "No Client Selected!";
 txtEfficiency.BackColor = System.Drawing.SystemColors.ScrollBar;
 lblEnergySaved.Text = "No Client";
 lblCarbonSaved.Text = "No Client";
 lblMoneySaved.Text = "No Client";
 lblEnergyUsed.Text = "No Client";
 UpdateClientControls(false);
 }
 }

 private void buttonWakeClient_Click(object sender, EventArgs e)
 {
 if (manualWakeInProgress)
 {
 MessageBox.Show("Wake procedure already underway!");
 // deselect all items
 for (int i = 0; i < clientListBoxMAC.Items.Count; i++)
 {
 clientListBoxMAC.SetSelected(i, false);
 }
 buttonWakeClient.Enabled = false;
 buttonRemoveClients.Enabled = false;
 btnUpdateScheduleList.Enabled = false;
 chkBoxWakeList.Checked = false;
 return;
 }

 if (clientListBoxMAC.SelectedIndex != -1)
 {
 for (int i = 0; i < clientListBoxMAC.SelectedItems.Count; i++)
 {

demandWakeList.Add(clientListBoxMAC.SelectedItems[i].ToString());
 }
 // deselect all items
 for (int i = 0; i < clientListBoxMAC.Items.Count; i++)
 {
 clientListBoxMAC.SetSelected(i, false);
 }
 // set this wake events delay value
 StoredManualWakeDelay = wakeDelayValue;
 // set wake in progress to true
 manualWakeInProgress = true;
 // set start time
 manualWakeProgressiveTime = DateTime.Now;
 // update buttons
 buttonWakeClient.Enabled = false;
 buttonRemoveClients.Enabled = false;
 btnUpdateScheduleList.Enabled = false;
 chkBoxWakeList.Checked = false;
 }
 else
 {
 MessageBox.Show("You must select a PC ID!");
 }
 buttonWakeClient.Enabled = false;
 buttonRemoveClients.Enabled = false;
 btnUpdateScheduleList.Enabled = false;
 chkBoxWakeList.Checked = false;
 }

 private void btnUpdateScheduleList_Click(object sender, EventArgs e)
 {
 if (clientListBoxMAC.SelectedIndex != -1)
 {
 for (int i = 0; i < clientListBoxMAC.SelectedItems.Count; i++)
 {
 // check that entrys are not duplicated
 int myIndex =
listBoxSchedule.FindStringExact(clientListBoxMAC.SelectedItems[i].ToString());
 if (myIndex == -1)
 {

listBoxSchedule.Items.Add(clientListBoxMAC.SelectedItems[i].ToString());

 }
 }
 // deselect all items
 for (int i = 0; i < clientListBoxMAC.Items.Count; i++)
 {
 clientListBoxMAC.SetSelected(i, false);
 }
 buttonWakeClient.Enabled = false;
 buttonRemoveClients.Enabled = false;
 btnUpdateScheduleList.Enabled = false;
 chkBoxWakeList.Checked = false;
 }
 else
 {
 MessageBox.Show("You must select a PC ID!");
 }
 buttonWakeClient.Enabled = false;
 buttonRemoveClients.Enabled = false;
 btnUpdateScheduleList.Enabled = false;
 chkBoxWakeList.Checked = false;
 }

 private void btnScheduleSet_Click(object sender, EventArgs e)
 {
 if (listBoxSchedule.Items.Count == 0)
 {
 MessageBox.Show("You must create a schedule list!");
 }
 else
 {
 scheduledWakeNextTime = dTPickerWake.Value;
 scheduledWakeLastTime = scheduledWakeNextTime.AddDays(-1);

 txtWakeTime.Text = scheduledWakeNextTime.ToLongTimeString();
 txtWakeTime.BackColor = System.Drawing.Color.Lime;
 scheduledWakeSet = true;

 StoredScheduledWakeDelay = wakeDelayValue;

 if (StoredScheduledWakeDelay == 0)
 {
 txtDailyWakeDelay.Font = new Font(txtWakeDelay.Font,
FontStyle.Bold);
 txtDailyWakeDelay.ForeColor =
System.Drawing.SystemColors.WindowText;
 txtDailyWakeDelay.Text = "-- No Delay --";
 txtDailyWakeDelay.BackColor =
System.Drawing.SystemColors.ScrollBar;
 }
 else
 {
 txtDailyWakeDelay.Font = new Font(txtWakeDelay.Font,
FontStyle.Regular);
 txtDailyWakeDelay.BackColor =
System.Drawing.SystemColors.Window;
 txtDailyWakeDelay.Text = wakeDelayValue.ToString() + "
second(s)";
 }
 }
 }

 private void btnScheduleClear_Click(object sender, EventArgs e)
 {
 scheduledWakeNextTime = DateTime.Now;

 scheduledWakeLastTime = DateTime.Now;

 txtWakeTime.Text = "-- Not set --";
 txtWakeTime.BackColor = System.Drawing.SystemColors.ScrollBar;

 txtDailyWakeDelay.Font = new Font(txtWakeDelay.Font,
FontStyle.Bold);
 txtDailyWakeDelay.ForeColor =
System.Drawing.SystemColors.WindowText;
 txtDailyWakeDelay.Text = "-- No Delay --";
 txtDailyWakeDelay.BackColor = System.Drawing.SystemColors.ScrollBar;

 listBoxSchedule.Items.Clear();
 scheduledWakeSet = false;
 scheduledWakeInProgress = false;
 }

 private void newclientTextBox_TextChanged(object sender, EventArgs e)
 {
 buttonUpdateList.Enabled = true;
 }

 private void buttonUpdateList_Click(object sender, EventArgs e)
 {
 // See if we have a valid MAC address
 string temp = IsValidMAC(newclientTextBox.Text.ToString());
 if (temp == "")
 {
 MessageBox.Show("Must enter valid MAC Address in
::**:**:**:** format!");
 newclientTextBox.Text = "Enter Client MAC Address";
 buttonUpdateList.Enabled = false;
 return;
 }
 else
 {
 int myIndex = clientListBoxMAC.FindStringExact(temp);
 if (myIndex != -1)
 {
 MessageBox.Show("Client ID already added!");
 newclientTextBox.Text = "Enter Client MAC Address";
 buttonUpdateList.Enabled = false;
 return;
 }
 else
 {
 clientListBoxMAC.Items.Add(temp);
 newclientTextBox.Text = "Enter Client MAC Address";
 buttonUpdateList.Enabled = false;
 return;
 }
 }
 }

 private void buttonRemoveClients_Click(object sender, EventArgs e)
 {
 DialogResult clientRemove = MessageBox.Show("Are you sure you want
to delete client IDs?", "Delete Clients",
 MessageBoxButtons.YesNo, MessageBoxIcon.Question);

 if (clientListBoxMAC.SelectedIndex != -1 && clientRemove ==
DialogResult.Yes)
 {
 clientListBoxMAC.Items.Remove(clientListBoxMAC.SelectedItem);

 }
 buttonRemoveClients.Enabled = false;
 buttonWakeClient.Enabled = false;
 btnUpdateScheduleList.Enabled = false;
 clientListBoxMAC.SelectedIndex = -1;
 }

 private void checkBox1_CheckedChanged(object sender, EventArgs e)
 {
 if (chkBoxWakeList.Checked)
 {
 for (int i = 0; i < clientListBoxMAC.Items.Count; i++)
 {
 clientListBoxMAC.SetSelected(i, true);
 }
 clientListBoxMAC.Enabled = false;
 buttonRemoveClients.Enabled = true;
 buttonWakeClient.Enabled = true;
 btnUpdateScheduleList.Enabled = true;
 }
 if (!chkBoxWakeList.Checked)
 {
 for (int i = 0; i < clientListBoxMAC.Items.Count; i++)
 {
 clientListBoxMAC.SetSelected(i, false);
 }
 clientListBoxMAC.Enabled = true;
 buttonRemoveClients.Enabled = false;
 buttonWakeClient.Enabled = false;
 btnUpdateScheduleList.Enabled = false;
 }
 }

 private void serverTextBoxPort_TextChanged(object sender, EventArgs e)
 {
 buttonUpdatePort.Enabled = true;
 }

 private void buttonUpdatePort_Click(object sender, EventArgs e)
 {
 bool temp = IsValidPort(int.Parse(serverTextBoxPort.Text));

 if (!temp)
 {
 MessageBox.Show("Must enter port in range 50000-65000!");
 serverTextBoxPort.Text = serverPort.ToString();
 buttonUpdatePort.Enabled = false;
 return;
 }
 else
 {
 serverPort = int.Parse(serverTextBoxPort.Text);
 buttonUpdatePort.Enabled = false;
 return;
 }
 }

 private void trkBarDelay_Scroll(object sender, EventArgs e)
 {
 wakeDelayValue = wakeDelayScale[trkBarDelay.Value];
 if (trkBarDelay.Value == 0)
 {
 txtWakeDelay.Font = new Font(txtWakeDelay.Font, FontStyle.Bold);
 txtWakeDelay.ForeColor = System.Drawing.SystemColors.WindowText;

 txtWakeDelay.Text = "-- No Delay --";
 txtWakeDelay.BackColor = System.Drawing.SystemColors.ScrollBar;
 }
 else
 {
 txtWakeDelay.Font = new Font(txtWakeDelay.Font,
FontStyle.Regular);
 txtWakeDelay.BackColor = System.Drawing.SystemColors.Window;
 txtWakeDelay.Text = wakeDelayValue.ToString() + " second(s)";
 }
 }

//**
*
//**************************** Other methods

//**
*

 // method to test valid tcp port between 50000-65000
 public bool IsValidPort(int portNumber)
 {
 if ((portNumber >= 50000) && (portNumber <= 65000))
 {
 return true;
 }
 else
 {
 return false;
 }
 }

 // method to test enterred MAC is in "**:**:**:**:**:**" format
 public string IsValidMAC(string macAddress)
 {
 // test for 6 bytes seperated by ':'
 Regex expr1 = new Regex("([0-9a-fA-F][0-9a-fA-F]:){5}([0-9a-fA-F][0-
9a-fA-F])", RegexOptions.IgnoreCase);
 Match match1 = expr1.Match(macAddress);
 string result = match1.Groups[0].Value;
 // if length is 17 then valid MAC
 if (result.Length == 17)
 {
 return result.ToUpper();
 }
 else
 {
 return "";
 }
 }

 // Method uses an Address Resolution Protocol request to get a MAC
address
 // from a given IP address.
 public string IpToMacAddress(IPAddress ipAddress)
 {
 byte[] mac = new byte[6];
 int len = mac.Length;
 int res = SendARP((int)ipAddress.Address, 0, mac, ref len);
 if (res != 0)
 {
 MessageBox.Show("Error " + res + " looking up " +
ipAddress.ToString());
 return "none found";

 }
 else
 {
 string temp;
 StringBuilder hex = new StringBuilder(mac.Length * 2);
 foreach (byte b in mac)
 {
 if (hex.Length <= 12)
 {
 hex.AppendFormat("{0:x2}:", b);
 }
 else
 {
 hex.AppendFormat("{0:x2}", b);
 }
 }
 temp = hex.ToString();
 return temp;
 }
 }

 //method recognies 3 formats of MAC address and returns a consistent
format
 // ':' seperated, '-' seperated, and no seperation between bytes
 private string FormatMAC(string aMACString)
 {
 //get string to common format before
 string temp1 = aMACString.Replace(":", "");
 string temp2 = temp1.Replace("-", "");
 string temp3 = temp2.ToUpper();

 // temp2 should now be length 12 chars
 StringBuilder final = new StringBuilder(temp3.Length + 5);
 for (int i = 1; i < (temp3.Length + 1); i++)
 {
 final.Append(temp3[i - 1]);
 if ((i % 2 == 0) && (i != temp3.Length))
 {
 final.Append(':');
 }
 }
 return final.ToString();
 }

 // Method creates a beginning primary socket and then after listening
 // for clients begins to accept new client connections.
 public void ListenForClients()
 {
 try
 {
 // Create the listening socket...
 serverMainSocket = new Socket(AddressFamily.InterNetwork,
SocketType.Stream, ProtocolType.Tcp);
 IPEndPoint ipLocal = new IPEndPoint(IPAddress.Any, serverPort);
 // Bind to local IP Address...
 serverMainSocket.Bind(ipLocal);
 // Start listening...
 serverMainSocket.Listen(4);
 // Create the call back for any client connections...
 serverMainSocket.BeginAccept(new AsyncCallback(OnClientConnect),
null);
 }
 catch (SocketException se)
 {

 MessageBox.Show(se.Message);
 }
 }

 // This is the call back function, which will be invoked when a client
is connected
 public void OnClientConnect(IAsyncResult asyn)
 {
 try
 {
 // create new client object
 ServerClient aClient = new ServerClient();
 // Call EndAccept() to return reference to new Socket object
 aClient.SetSocket(serverMainSocket.EndAccept(asyn));
 // get IP address of newly connected client
 IPEndPoint newClientEndPoint =
(IPEndPoint)aClient.GetSocket().RemoteEndPoint;
 // get MAC address for given client IP address and format
 string newClientID =
FormatMAC(IpToMacAddress(newClientEndPoint.Address));
 // add client ID to wake list if not already on there
 int myIndex = clientListBoxMAC.FindStringExact(newClientID);
 if (myIndex == -1)
 {
 clientListBoxMAC.Items.Add(newClientID);
 }
 // update clients IP field
 aClient.SetClientIP(newClientEndPoint.Address.ToString());
 // update clients ID field
 aClient.SetClientID(newClientID);
 // add object with ID to connected list
 clientListBoxConnected.Items.Add(aClient);
 // Let worker Socket do further processing for the just
connected client
 WaitForData(aClient.GetSocket());
 // display a connection message for new client
 String str = String.Format("{0} online", newClientID);
 textBoxStatusMsg.Text = str;
 // main Socket now free, it can return go back and wait for
other clients connecting
 serverMainSocket.BeginAccept(new AsyncCallback(OnClientConnect),
null);
 }
 catch (SocketException se)
 {
 MessageBox.Show(se.Message);
 }
 }

 // method to send server object details
 private void SendServerRequest(string serverRequest)
 {
 if (clientListBoxConnected.SelectedIndex != -1)
 {
 try
 {
 // convert string to byte array
 byte[] serverData = ObjectToByteArray(serverRequest);
 ServerClient aClient =
(ServerClient)clientListBoxConnected.SelectedItem;
 if (aClient.GetSocket() != null)
 {
 if (aClient.GetSocket().Connected)
 {

 aClient.GetSocket().Send(serverData);
 }
 }
 }
 catch (SocketException se)
 {
 MessageBox.Show(se.Message);
 }
 }
 }

 // This method converts a server object to a byte array so that it
 // can be transmitted over the socket.
 public byte[] ObjectToByteArray(object clientObject)
 {
 try
 {
 // create new memory stream
 System.IO.MemoryStream byteMemoryStream = new
System.IO.MemoryStream();
 // create new BinaryFormatter
 System.Runtime.Serialization.Formatters.Binary.BinaryFormatter
byteBinaryFormatter
 = new
System.Runtime.Serialization.Formatters.Binary.BinaryFormatter();
 // Serializes an object, or graph of connected objects, to the
given stream.
 byteBinaryFormatter.Serialize(byteMemoryStream, clientObject);
 // convert stream to byte array and return
 return byteMemoryStream.ToArray();
 }
 catch (Exception ex)
 {
 // Error
 Console.WriteLine("Exception caught in process: {0}",
ex.ToString());
 }
 // Error occured, return null
 return null;
 }

 // method to terminate all open sockets
 public void CloseSockets()
 {
 if (serverMainSocket != null)
 {
 serverMainSocket.Close();
 }

 for (int i = 0; i < clientListBoxConnected.Items.Count; i++)
 {
 ServerClient aClient =
(ServerClient)clientListBoxConnected.Items[i];
 if (aClient.GetSocket() != null)
 {
 aClient.GetSocket().Close();
 aClient.SetSocket(null);
 }
 }
 }

 // This method tests all sockets and then upodates the lists that
containreferences
 // the sockets

 public void UpdateClientSockets()
 {
 //create list to store clients for removal
 List<int> clientList = new List<int>();
 for (int i = 0; i < clientListBoxConnected.Items.Count; i++)
 {
 ServerClient aClient =
(ServerClient)clientListBoxConnected.Items[i];
 if (aClient.GetSocket() != null)
 {
 if (!SocketTest(aClient.GetSocket()))
 {
 clientList.Add(i);
 }
 }
 }
 // remove clients with no connection
 foreach (int myIndex in clientList)
 {
 ServerClient aClient =
(ServerClient)clientListBoxConnected.Items[myIndex];
 String str = String.Format("{0} offline",
aClient.GetClientID());
 textBoxStatusMsg.Text = str;
 clientListBoxConnected.Items.RemoveAt(myIndex);
 }
 }

 // method to poll socket to determine if connected NOW!
 public bool SocketTest(Socket aSocket)
 {
 try
 {
 return !(aSocket.Poll(1, SelectMode.SelectRead) &&
aSocket.Available == 0);
 }
 catch (SocketException)
 {
 return false;
 }
 }

 // Start waiting for data from the client
 public void WaitForData(Socket soc)
 {
 try
 {
 if (serverpfnCallBack == null)
 {
 // Call back function to be invoked when write activity by
the connected client
 serverpfnCallBack = new AsyncCallback(OnDataReceived);
 }
 ClientPacket theServerClient = new ClientPacket();
 theServerClient.SetSocket(soc);
 // Start receiving any data written by the connected client
asynchronously
 soc.BeginReceive(theServerClient.buffer, 0,
theServerClient.buffer.Length, SocketFlags.None, serverpfnCallBack,
theServerClient);
 }
 catch (SocketException se)
 {
 MessageBox.Show(se.Message);

 }

 }

 // Call back function which is invoked when the socket detects any
writing on the stream
 public void OnDataReceived(IAsyncResult asyn)
 {
 try
 {
 ClientPacket socketData = (ClientPacket)asyn.AsyncState;
 // get length of received stream
 int read = socketData.GetSocket().EndReceive(asyn);
 if (read > 0)
 {
 for (int i = 0; i < read; i++)
 {
 socketData.TransmissionBuffer.Add(socketData.buffer[i]);
 }
 // add something here
 byte[] newBuffer = socketData.TransmissionBuffer.ToArray();
 Client myClient = (Client)ByteArrayToObject(newBuffer);
 if (myClient != null)
 {
 for (int i = 0; i < clientListBoxConnected.Items.Count;
i++)
 {
 ServerClient aServerClient =
(ServerClient)clientListBoxConnected.Items[i];
 if (myClient.GetClientID() ==
aServerClient.GetClientID())
 {
 aServerClient.SetClient(myClient);
 clientListBoxConnected.Items[i] = aServerClient;
 }
 }
 }
 }
 WaitForData(socketData.GetSocket());
 }
 catch (SocketException se)
 {
 MessageBox.Show(se.Message);
 }
 }

 // Method converts the server byte array to an object after it has been
 // received over the socket.
 public object ByteArrayToObject(byte[] serverByteArray)
 {
 try
 {
 // convert byte array to memory stream
 System.IO.MemoryStream myMemoryStream = new
System.IO.MemoryStream(serverByteArray);
 // create new BinaryFormatter
 System.Runtime.Serialization.Formatters.Binary.BinaryFormatter
myBinaryFormatter
 = new
System.Runtime.Serialization.Formatters.Binary.BinaryFormatter();
 // set memory stream position to starting point
 myMemoryStream.Position = 0;
 // Deserializes a stream into an object graph and return as a
object.

 return myBinaryFormatter.Deserialize(myMemoryStream);
 }
 catch (Exception ex)
 {
 // Error
 Console.WriteLine("Exception caught in process: {0}",
ex.ToString());
 }
 // Error occured, return null
 return null;
 }

 // Uses list of selected clients and delay to wake clients
 public void WakeUp()
 {
 for (int i = 0; i < listBoxSchedule.Items.Count; i++)
 {
 scheduledWakeList.Add(listBoxSchedule.Items[i].ToString());
 }
 // set wake in progress to true
 scheduledWakeInProgress = true;
 // set start time
 scheduledWakeProgressiveTime = DateTime.Now;
 }

 // Sends a Wake On Lan packet to the specified MAC address using UDP.
 public void WakeUpClient(string clientID)
 {
 // get hex byte array of MAC string
 byte[] tempBytes = MACStringToBytes(clientID);
 // WOL packet is sent over UDP 255.255.255.0 on designated 40000.
 UdpClient client = new UdpClient();
 client.Connect(IPAddress.Broadcast, 40000);
 // WOL packet contains a 6-bytes trailer and 16 times a 6-bytes
sequence containing the MAC address.
 byte[] packet = new byte[17 * 6];
 // Trailer of 6 times 0xFF.
 for (int i = 0; i < 6; i++)
 {
 packet[i] = 0xFF;
 }
 // Body of magic packet contains 16 times the MAC address.
 for (int i = 1; i <= 16; i++)
 {
 for (int j = 0; j < 6; j++)
 {
 packet[i * 6 + j] = tempBytes[j];
 }
 }
 // Send a Wake on LAN packed by UDP.
 client.Send(packet, packet.Length);
 }

 // Convert a MAC ID string to a byte array
 public byte[] MACStringToBytes(string clientID)
 {
 string temp = clientID.Replace(":", "");
 int NumberChars = temp.Length;
 byte[] macBytes = new byte[NumberChars / 2];
 for (int i = 0; i < NumberChars; i += 2)
 {
 macBytes[i / 2] = Convert.ToByte(temp.Substring(i, 2), 16);
 }
 return macBytes;

 }

 // method to count and return the actual number of connected clients
 public int CountClients()
 {
 return clientListBoxConnected.Items.Count;
 }

 // method to write wake list to file
 private void WriteWakeList(string fileName)
 {
 StreamWriter writer;
 try
 {
 writer = new StreamWriter(fileName);
 for (int i = 0; i < clientListBoxMAC.Items.Count; i++)
 {

writer.WriteLine(Convert.ToString(clientListBoxMAC.Items[i]));
 }
 writer.Close();
 }
 catch (Exception ex)
 {
 MessageBox.Show(Convert.ToString(ex.Message));
 return;
 }
 }

 // method to read wake list from file
 private void ReadWakeList(string fileName)
 {
 StreamReader reader;
 try
 {
 reader = new StreamReader(fileName);
 while (reader.Peek() >= 0)
 {
 clientListBoxMAC.Items.Add(reader.ReadLine());
 }
 reader.Close();
 }
 catch (Exception ex)
 {
 MessageBox.Show(Convert.ToString(ex.Message));
 return;
 }
 }

 // method to update client buttons/controls
 public void UpdateClientControls(bool result)
 {
 buttonAppClose.Enabled = result;
 buttonShutdown.Enabled = result;
 buttonRefresh.Enabled = result;
 buttonRestart.Enabled = result;
 buttonHibernate.Enabled = result;
 }

 // variables/fields
 public AsyncCallback serverpfnCallBack;
 private Socket serverMainSocket;
 private bool listenTryFlag = false; // Set default
 private string serverMACString;

 private string serverIPString;
 private string formattedServerMACString;
 private DateTime startTime = new DateTime();
 private int serverPort = 55000; // Set default
 private int[] wakeDelayScale = new int[6] { 0, 1, 2, 3, 4, 5 };
 private int wakeDelayValue = 0; // Set default
 private List<string> demandWakeList = new List<string>();
 private int StoredManualWakeDelay = 0; // Set default
 private bool manualWakeInProgress = false; // set default
 private DateTime manualWakeProgressiveTime = new DateTime();
 private DateTime scheduledWakeNextTime = new DateTime();
 private DateTime scheduledWakeLastTime = new DateTime();
 private DateTime scheduledWakeProgressiveTime = new DateTime();
 private List<string> scheduledWakeList = new List<string>();
 private int StoredScheduledWakeDelay = 0; // Set default
 private bool scheduledWakeSet = false; // Set default
 private bool scheduledWakeInProgress = false;// set default
 }
}

Appendix D2 – Form1.Designer.cs

namespace PowerMan_Server1
{
 partial class Form1
 {
 /// <summary>
 /// Required designer variable.
 /// </summary>
 private System.ComponentModel.IContainer components = null;

 /// <summary>
 /// Clean up any resources being used.
 /// </summary>
 /// <param name="disposing">true if managed resources should be
disposed; otherwise, false.</param>
 protected override void Dispose(bool disposing)
 {
 if (disposing && (components != null))
 {
 components.Dispose();
 }
 base.Dispose(disposing);
 }

 private System.Windows.Forms.Timer timer1;
 private System.Windows.Forms.GroupBox boxConnectionDetails;
 private System.Windows.Forms.TextBox serverTextBoxPort;
 private System.Windows.Forms.TextBox serverTextBoxIP;
 private System.Windows.Forms.TextBox serverTextBoxMAC;
 private System.Windows.Forms.Label lblMAC;
 private System.Windows.Forms.TextBox textBoxStatusMsg;
 private System.Windows.Forms.Button buttonClose;
 private System.Windows.Forms.Label label2;
 private System.Windows.Forms.Label label1;
 private System.Windows.Forms.Label label3;
 private System.Windows.Forms.Button buttonWakeClient;
 private System.Windows.Forms.GroupBox boxServerDetails;
 private System.Windows.Forms.Label lblWelcome;
 private System.Windows.Forms.TextBox textBoxServerStatus;
 private System.Windows.Forms.Label label7;
 private System.Windows.Forms.TextBox textBoxConnectedClients;
 private System.Windows.Forms.Label label8;
 private System.Windows.Forms.Button buttonRestart;
 private System.Windows.Forms.Button buttonHibernate;
 private System.Windows.Forms.Button buttonShutdown;
 private System.Windows.Forms.Button buttonRefresh;
 private System.Windows.Forms.Button buttonAppClose;
 private System.Windows.Forms.ListBox clientListBoxMAC;
 private System.Windows.Forms.TextBox newclientTextBox;
 private System.Windows.Forms.GroupBox boxDateTime;
 private System.Windows.Forms.TextBox txtTime;
 private System.Windows.Forms.TextBox txtDate;
 private System.Windows.Forms.Label lblTime;
 private System.Windows.Forms.Label lblDate;
 private System.Windows.Forms.GroupBox boxWakeClientDetails;
 private System.Windows.Forms.Button buttonUpdateList;
 private System.Windows.Forms.Button buttonRemoveClients;
 private System.Windows.Forms.CheckBox chkBoxWakeList;
 private System.Windows.Forms.Button buttonUpdatePort;
 private System.Windows.Forms.ListBox clientListBoxConnected;
 private System.Windows.Forms.Label lblConnectedClients;
 private System.Windows.Forms.GroupBox boxClientManagement;

 private System.Windows.Forms.GroupBox boxControls;
 private System.Windows.Forms.TrackBar trkBarDelay;
 private System.Windows.Forms.Label lblEnterID;
 private System.Windows.Forms.Label lblTrackBar2;
 private System.Windows.Forms.Label lblTrackBar1;
 private System.Windows.Forms.TextBox txtWakeDelay;
 private System.Windows.Forms.Label lblWakeDelay;
 private System.Windows.Forms.Label lblClientBox1;
 private System.Windows.Forms.Label lblClientBox2;
 private System.Windows.Forms.Label lblWakeBox1;
 private System.Windows.Forms.GroupBox boxSavingsSelected;
 private System.Windows.Forms.Label lblMoneySaved;
 private System.Windows.Forms.Label lblCarbonSaved;
 private System.Windows.Forms.Label lblEnergySaved;
 private System.Windows.Forms.Label lblStaticMoneySaved;
 private System.Windows.Forms.Label lblStaticCarbonSaved;
 private System.Windows.Forms.Label lblStaticEnergySaved;
 private System.Windows.Forms.PictureBox pictureBox2;
 private System.Windows.Forms.PictureBox pictureBox3;
 private System.Windows.Forms.Button btnCarbonSaved;
 private System.Windows.Forms.PictureBox pictureBox1;
 private System.Windows.Forms.Button btnEnergySaved;
 private System.Windows.Forms.Button btnMoneySaved;
 private System.Windows.Forms.GroupBox boxWakeSchedule;
 private System.Windows.Forms.Button btnUpdateScheduleList;
 private System.Windows.Forms.ListBox listBoxSchedule;
 private System.Windows.Forms.Label lblWakeSchedule;
 private System.Windows.Forms.Label lblWakeStart;
 private System.Windows.Forms.Button btnScheduleSet;
 private System.Windows.Forms.Button btnScheduleClear;
 private System.Windows.Forms.Label lblDailyWakeDealy;
 private System.Windows.Forms.Label lblSchedSetTime;
 private System.Windows.Forms.TextBox txtWakeTime;
 private System.Windows.Forms.TextBox txtDailyWakeDelay;
 private System.Windows.Forms.DateTimePicker dTPickerWake;
 private System.Windows.Forms.Label lblHibernateTime;
 private System.Windows.Forms.TextBox txtEfficiency;
 private System.Windows.Forms.Label lblEnergyUsed;
 private System.Windows.Forms.Label lblStaticEnergyUsed;
 private System.Windows.Forms.PictureBox pictureBox4;
 private System.Windows.Forms.Button btnEnergyUsed;
 }
}

Appendix D3 – Program.cs

using System;
using System.Collections.Generic;
using System.Linq;
using System.Windows.Forms;

namespace PowerMan_Server1
{
 static class Program
 {
 /// <summary>
 /// The main entry point for the application.
 /// </summary>
 [STAThread]
 static void Main()
 {
 Application.EnableVisualStyles();
 Application.SetCompatibleTextRenderingDefault(false);
 Application.Run(new Form1());
 }
 }
}

Appendix D4 – ClientPacket.cs

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.Net.Sockets;

namespace PowerMan_Server1
{

 class ClientPacket
 {
 //constructors
 public ClientPacket()
 {
 }

 //Other methods
 public Socket GetSocket()
 {
 return aCurrentSocket;
 }

 public void SetSocket(Socket aNewSocket)
 {
 aCurrentSocket = aNewSocket;
 }

 // variables/fields
 private Socket aCurrentSocket;
 public List<byte> TransmissionBuffer = new List<byte>();
 public byte[] buffer = new byte[2048];
 }
}

Appendix D5 – ServerClient.cs

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.Net.Sockets;
using ClassLibrary1;

namespace PowerMan_Server1
{
 class ServerClient
 {
 //constructors
 public ServerClient()
 {
 }

 //Other methods
 public void SetClientID(string newClientID)
 {
 clientID = newClientID;
 }
 public string GetClientID()
 {
 return clientID;
 }
 public void SetClientIP(string newClientIP)
 {
 clientIP = newClientIP;
 }
 public string GetClientIP()
 {
 return clientIP;
 }
 public void SetSocket(Socket aNewSocket)
 {
 aCurrentSocket = aNewSocket;
 }
 public Socket GetSocket()
 {
 return aCurrentSocket;
 }
 public void SetClient(Client aNewClient)
 {
 aClient = aNewClient;
 }
 public Client GetClient()
 {
 return aClient;
 }
 // set standard format for tostring
 public override string ToString()
 {
 return "ID: " + GetClientID() + " IP Address: " + GetClientIP();
 }
 // variables/fields
 private string clientID;
 private string clientIP;
 private Socket aCurrentSocket;
 private Client aClient;
 }
}

Appendix E – PowerMan Batch File Contents

PowerMan Client

ECHO OFF

START C:\......\PowerMan_Client1.exe

PowerMan Server

ECHO OFF

START C:\......\PowerMan_Server1.exe

Appendix F – PowerMan Class Library Code

The PowerMan Class Library code is included in the following appendices:

• Appendix F1 – Client.cs

Appendix F1 – Client.cs

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.Net.Sockets;
using System.Runtime.Serialization.Formatters.Binary;
using System.IO;

namespace ClassLibrary1
{
 [Serializable]
 public class Client
 {
 //constructors
 public Client(string newClientID)
 {
 SetClientID(newClientID);
 }
 public Client()
 {
 }

 //Other methods
 public void SetClientID(string clientID)
 {
 this.clientID = clientID;
 }
 public string GetClientID()
 {
 return clientID;
 }
 public void SetServerIP(string serverIP)
 {
 this.serverIP = serverIP;
 }
 public string GetServerIP()
 {
 return serverIP;
 }
 public void SetServerPort(int serverPort)
 {
 this.serverPort = serverPort;
 }
 public int GetServerPort()
 {
 return serverPort;
 }
 public void SetEfficiencyValue(int efficiencyValue)
 {
 this.efficiencyValue = efficiencyValue;
 }
 public int GetEfficiencyValue()
 {
 return efficiencyValue;
 }
 public void SetEnergyUsed(double energyUsed)
 {
 this.energyUsed = energyUsed;
 }
 public double GetEnergyUsed()
 {

 return energyUsed;
 }
 public void SetEnergySaved(double energySaved)
 {
 this.energySaved = energySaved;
 }
 public double GetEnergySaved()
 {
 return energySaved;
 }
 public void SetMoneySaved(double moneySaved)
 {
 this.moneySaved = moneySaved;
 }
 public double GetMoneySaved()
 {
 return moneySaved;
 }
 public void SetCarbonSaved(double carbonSaved)
 {
 this.carbonSaved = carbonSaved;
 }
 public double GetCarbonSaved()
 {
 return carbonSaved;
 }
 public void SetTrackBarIndex(int trackBarIndex)
 {
 this.trackBarIndex = trackBarIndex;
 }
 public int GetTrackBarIndex()
 {
 return trackBarIndex;
 }
 public void SetInitialTime(DateTime initialTime)
 {
 this.initialTime = initialTime;
 }
 public DateTime GetInitialTime()
 {
 return initialTime;
 }
 public void SetInitialTimeSet(bool initialTimeSet)
 {
 this.initialTimeSet = initialTimeSet;
 }
 public bool GetInitialTimeSet()
 {
 return initialTimeSet;
 }
 public void SetSessionProgressiveTime(DateTime sessionProgressiveTime)
 {
 this.sessionProgressiveTime = sessionProgressiveTime;
 }
 public DateTime GetSessionProgressiveTime()
 {
 return sessionProgressiveTime;
 }
 public void SetSessionTimeReset(bool sessionTimeReset)
 {
 this.sessionTimeReset = sessionTimeReset;
 }
 public bool GetSessionTimeReset()
 {

 return sessionTimeReset;
 }
 public void SetHighPowerTime(TimeSpan highPowerTime)
 {
 this.highPowerTime = highPowerTime;
 }
 public TimeSpan GetHighPowerTime()
 {
 return highPowerTime;
 }
 public void SetLowPowerTime(TimeSpan lowPowerTime)
 {
 this.lowPowerTime = lowPowerTime;
 }
 public TimeSpan GetLowPowerTime()
 {
 return lowPowerTime;
 }

 // variables/fields
 private string clientID;
 private string serverIP = "192.168.15.102"; // set default
 private int serverPort = 55000; // set default
 private int efficiencyValue = 0; // set default
 private int trackBarIndex = 0;
 private double energyUsed = 0;
 private double energySaved = 0;
 private double carbonSaved = 0;
 private double moneySaved = 0;
 private DateTime initialTime = new DateTime();
 private bool initialTimeSet = false;
 private DateTime sessionProgressiveTime = new DateTime();
 private bool sessionTimeReset = false;
 private TimeSpan highPowerTime = new TimeSpan();
 private TimeSpan lowPowerTime = new TimeSpan();
 }
}

