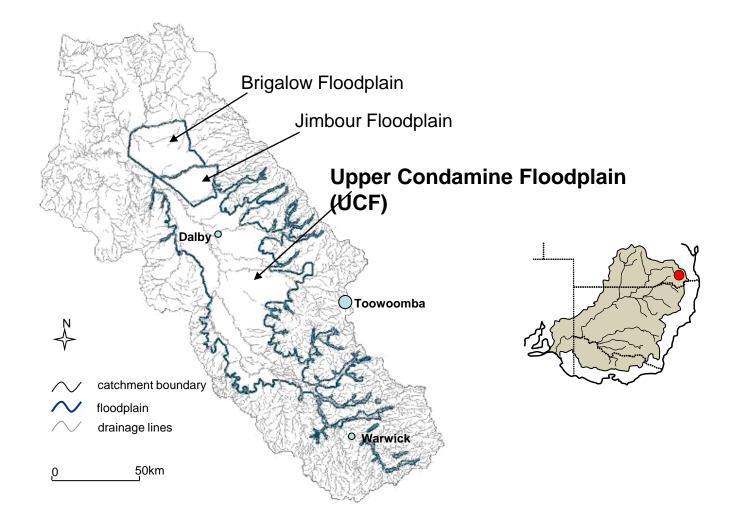
Riparian woodland dysfunction is driven by groundwater decline in a northern Murray-Darling intensive production landscape

Kate Reardon-Smith¹ Andy Le Brocque¹, Alan House²

^{1.} Faculty of Sciences /Australian Centre for Sustainable Catchments, University of Southern Queensland

^{2.} CSIRO Ecosystem Sciences

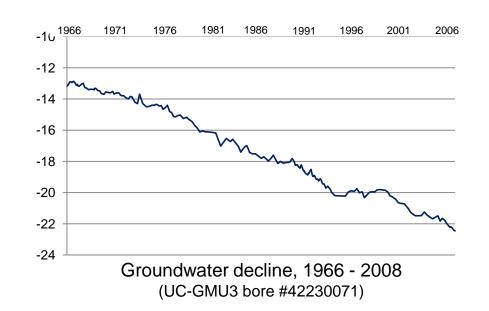

Background & Questions

- Murray-Darling under stress dieback, loss of diversity and function ...
- most understanding of floodplain ecosystem responses to altered hydrological regimes is based on southern MDB
- northern MDB characterised by:
 - highly variable summer-dominant rainfall regime
 - ephemeral streamflow
 - different cropping/production systems
 - different disturbance regimes & resource availability
- Question:
 - what are the key drivers of dieback & function in floodplain ecosystems in northern MDB?

CSIRO

Darling Downs, southern inland Queensland

- significant landcover change and land use intensification
- dieback and exotic species (e.g., lippia: *Phyla canescens*) in riparian woodlands

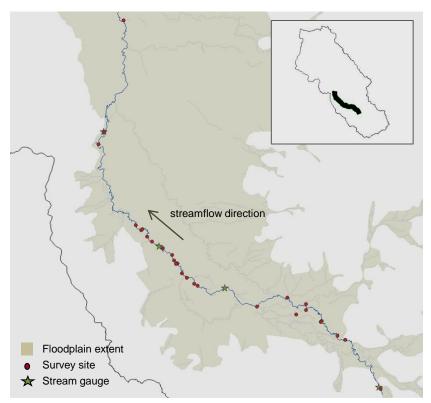

CSIRO

Riparian woodland dysfunction driven by groundwater decline

Floodplain hydrology

Loss of connectivity with floodplain development:

- streamflow harvesting (increased duration of noflow periods, reduced flood magnitude)
- overland flow harvesting (reduced runoff volumes, disconnected floodplain)
- groundwater extraction (disconnected alluvial aquifer, chronic groundwater decline)

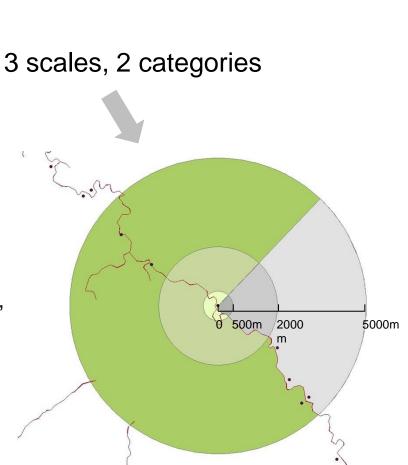


Methodology

27 sites

Response variables

- floristic composition
- lippia abundance
- stand structure & recruitment
- canopy condition
 - Eucalyptus camaldulensis/tereticornis species complex
 - tree condition indices (foliage index, structural integrity index, health class)
 - site-level dieback severity index (Wylie et al. 1992)


Methodology

Explanatory variables (88):

- Hydrological
- land use & land cover

Variables include:

- hydrological (GW depth, GW trend, overland flow diversions ...)
- land use (cropping, irrigated cropping, grazing ...)
- land cover (remnant extent, riparian width ...)
- biotic (lippia abundance, dieback severity)

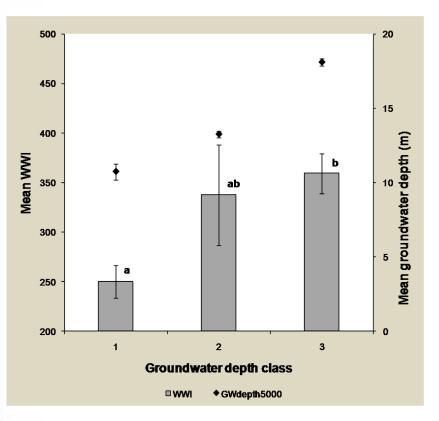
E. camaldulensis/tereticornis dieback severity model

Bayesian Model Averaging (R)

Response variable	Key explanatory variables (posterior effect probability > 0.75)	Min BIC	n _{models}	Max r² (best 5 models)
Dieback severity (WWI)	GW depth₅₀₀₀ (1.00*), grazing ₅₀₀ (0.99), GW bores ₅₀₀₀ (0.80)	-8.177	63	0.627

* values in parentheses are posterior effect probabilities

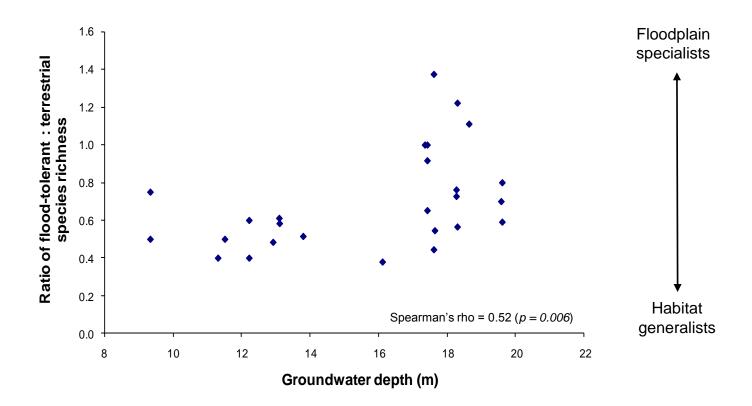
Floristic composition model


Multivariate pattern analysis (PRIMER-BIOENV)

Response variable	Key Explanatory variables (best single & best set of 6)	Spearman's r (best single)	Spearman's r (best set of 6)
Floristic composition	GW depth₅₀₀₀, lippia cover, GW trend ₅₀₀₀ , remnant ₂₀₀₀ , GW bores ₅₀₀₀	0.307	0.449

Groundwater depth ... associated with tree condition & floristic composition

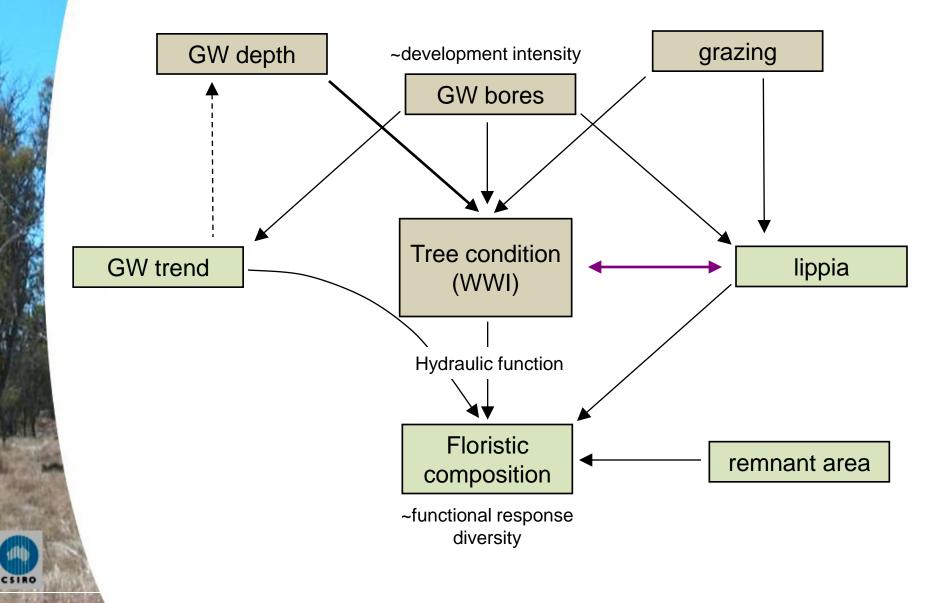
Dieback severity & groundwater depth


Groundwater depth classes

- **1:** 9.1 12.6 m;
- **2:** 12.6 16.1 m;
- **3.** 16.1 19.6 m

Eucalyptus camaldulensis

- obligate groundwater use during drought (Thorburn & Walker 1993)
- groundwater depth threshold for condition between 13 and 16 m (this study)
- support from literature:
 - 15 m max lateral root extension (Mensforth *et al.* 1994)
 - increased mortality with groundwater decline 12 to 15 m (Horner *et al.* 2009).


USO AUSTRALIA Riparian woodland dysfunction driven by groundwater decline in northern Murray-Darling

- greater relative richness of floodplain species (loss of generalist species)
- Other significant (p < 0.005) functional group correlations with:
 - groundwater trend (native:alien SR & N, perennial:short-lived SR)
 - WWI (floodplain:generalist N)
 - E. camaldulenis as intermediary (e.g., hydraulic lift; Burgess et al. 1998)

Conceptually ...

Significance?

- altered hydrological regimes & resource availability
 - poor condition & function of older eucalypts in riparian woodlands in a dryland river system in the northern MDB
 - altered riparian ecosystem composition (+/- resilience?)
 - alternative ecosystem states (e.g., floodplain grassland, acaciadominant low woodland, ...)
 - altered ecosystem function & service provision

Acknowledgements

This research was supported by the ACSC and USQ through an APA scholarship.

Thanks also to our field assistants who braved the heat, ticks and tiger pear & to the landholders of the Upper Condamine floodplain for access to their properties and their interest in the research.

Email: reardons@usq.edu.au

KRS 2006

Functional groups & environmental relationships

'Functional' group	Environmental gradient(s)	References
origin (<i>native, alien</i>)	nutrient availability, disturbance	Hobbs & Huenneke 1992 Prober <i>et al.</i> 2002, 2005 Dorrough <i>et al.</i> 2004
life history (<i>annual, perennial</i>)	nutrient availability, disturbance	Prober <i>et al.</i> 2002, 2005 McIntyre & Lavorel 2001, 2007 Dorrough <i>et al.</i> 2004
life form (forb, graminoid, woody species, etc.)	disturbance, water availability	Breshears & Barnes 1999 Lavorel <i>et al.</i> 1999 McIntyre & Lavorel 2001 Briggs <i>et al.</i> 2005
physiology (C ₃ , C ₄)	water availability	Epstein <i>et al.</i> 1997 Yu <i>et al.</i> 2005
clonality (<i>clonal, nonclonal</i>)	flood/grazing disturbance, resource availability	McIntyre & Lavorel 2007 Armioud <i>et al.</i> 2008 De Kroon & Hutchings 1995 Rosenthal & Lederbogen 2006
habitat specificity (<i>wetland, floodplain,</i> generalist)	flooding disturbance, water availability	Turner <i>et al.</i> 2004 Lite <i>et al.</i> 2005

Canopy species health assessment

- Eucalyptus camaldulensis/tereticornis species complex
- foliage index, structural integrity, evidence of dieback/epicormic regrowth
- 5 tree health classes(HC):
 - 1: very healthy
 - 2: healthy
 - 3: moderate⁺ dieback
 - 4: severe+ dieback
 - 5: dead

*Adapted from Wylie *et al.* (1992, 1993), Banks (2006)

Site dieback severity index:

Weighted Wylie Index (WWI) =

 Σ (% trees in HC_i x i)

WWI range*	Site Dieback category*	
0 - 100	No dieback	
101 - 200	Slight to moderate dieback	
201 - 300	Moderate to severe dieback	
301 - 400	Severe dieback	
401 - 500	Very severe dieback	

Tree condition & eucalypt recruitment models Bayesian Model Averaging

NB: Red type indicates a negative relationship and values in parentheses are posterior effect probabilities

Response variable	Key explanatory variables (posterior effect probability > 0.75)	n _{models}	Max r ² (best 5 models)
Mean Foliage Index	grazing ₅₀₀₀ (1.00), grazing ₅₀₀ (0.78)	25	0.433
Structural integrity (mean PTR)	GW depth ₅₀₀₀ (1.00), bare ground (1.00), north (1.00), weir distance (0.98), irrigated cropping _{UQ2000} (0.89), GW bores ₅₀₀₀ (0.88), tree density (0.83)	56	0.837
Dieback severity (WWI)	GW depth₅₀₀₀ (1.00), grazing ₅₀₀ (0.99), GW bores ₅₀₀₀ (0.80)	63	0.627
Dead tree density	$grazing_{500}$ (1.00), lippia cover (0.99), irrigated cropping ₅₀₀₀ (0.97), GW trend ₅₀₀₀ (0.86)	35	0.792
Euc. recruitment	-	-	-

- CSIRO
- GW depth strongly associated with dieback severity & poor structural integrity in *E. camaldulensis/tereticornis*

Floristic composition models

(Bayesian Model Averaging)

NB: Red type indicates a negative relationship; values in parentheses are posterior effect probabilities

Response variable	Key explanatory variables (posterior effect probability > 0.80)	Nmodels	Max r ² (best 5 models)	
Lippia cover	irrigated cropping ₂₀₀₀ (0.94), north (0.86), grazing ₅₀₀₀ (0.80)	38	0.585	
Functional group spec	Functional group species richness transitions			
C4:C3	lippia cover (0.84)	65	0.422	
floodplain:terrestrial	GW depth ₅₀₀₀ (1.00), remnant _{UQ500} (0.95), weir distance(0.90)	28	0.562	
wetland:terrestrial	GW depth ₅₀₀₀ (0.99), weir distance(0.94), remnant _{UQ500} (0.90)	28	0.465	
clonal:non-clonal	weir distance (0.87), tree density (0.87)	42	0.364	
Functional group abundance (frequency) transitions				
shortlived:perennial	bare ground (1.00), WWI (0.97), ringtanks _{UQ2000} (0.81)	102	0.810	
C4:C3	bare ground (1,00), lippia cover (0.99)	77	0.807	
floodplain:terrestrial	WWI (1.00), Cropping:remnant _{UQ500} (0.89)	42	0.608	
wetland:terrestrial	WWI (0.99)	53	0.412	

