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Abstract: A novel approximation method using integrated radial bagistion networks (IRBFN)
coupled with moving least square (MLS) approximants, ngmebving integrated radial basis
function networks (MIRBFN), is proposed in this work. Inghinethod, the computational do-
main Q is divided into finite sub-domain®, which satisfy point-wise overlap condition. The
local function interpolation is constructed by using IRBEDpported by all nodes in subdomain
Q,. The global function is then constructed by using Partitddrunity Method (PUM), where
MLS functions play the role of partition of unity. As a resulhe proposed method is locally
supported and yields sparse and banded interpolationa@sitrThe computational efficiency are
excellently improved in comparison with that of the oridigéobal IRBFN method. In addition,
the present method possesses the Kronegkmoperty, which makes it easy to impose the essen-
tial boundary conditions. The proposed method is apple&blandomly distributed datasets and
arbitrary domains. In this work, the MIRBFN method is impkmed in the collocation of a first-
order system formulation [Le, Mai-Duy, Tran-Cong, and Ba|@910)] to solve PDEs governing
various problems including heat transfer, elasticity ahboompressible and incompressible ma-
terials, and linear static crack problems. The numericallte show that the present method offers
high order of convergence and accuracy.

Keywords: RBF, Local IRBF, Moving IRBF, meshless, collocation metheldsticity, first order
system, locking, crack.

1 Introduction

Meshless methods have been increasingly used since thagg@solutions more continuous than
the piece-wise continuous ones obtained by the finite elemethods (FEM). Several meshless
methods have been developed, for example, meshless dmlocaethods [Atluri, Liu, and Han
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(2006); Libre, Emdadi, Kansa, Rahimian, and Shekarchi J0@lobal weak form meshless
methods [Belytschko, Lu, and Gu (1994)], and local weak foneshless method [Atluri and
Shen (2002); Han and Atluri (2003); Li, Shen, Han, and At{@003)]. In recent years, RBF-
based meshless methods have received increasing intenesthfe research community since the
associated discretisation of the governing PDEs is verplgirfor random point distribution and
arbitrary domain. Furthermore, global RBFN/IRBFN enjopecral accuracy and exponential
convergence [Madych (1992); Cheng, Golberg, Kansa, andt#a(2003)]. However, the main
drawback of the globally supported RBFN/IRBFN is that treulant interpolation matrix is dense
and highly ill-conditioned due to the nature of global apjimmation. For example, the condition
number of such a matrix is about610 with only 20x 20 collocation points [Fasshauer (1997)].
Therefore, globally supported RBFN/IRBFN methods are édfextive in large-scale computation
and in problems concerning with small-scale features saaacks/strain localization. Attempts
to deal with this deficiency include domain decompositiorthd [Ling and Kansa (2004)], block
partitioning and multizone methods [Kansa and Hon (20@0){l preconditioned methods [Baxter
(2002); Brown, Ling, Kansa, and Levesley (2005)].

Recently, local RBFN methods have been developed as anatiter approach. Compactly sup-
ported RBF truncated from polynomials can improve the dimdinumber, yet a large support
is required to obtain a reasonable accuracy [Wendland {1.9R5s thus considered not a robust
method against non-uniform datasets [Tobor, Reuter, ahlicR¢2004)]. Moreover, some new lo-
cal methods that exchange spectral accuracy for a spardetindconditioned system, have been
proposed, including explicit local RBF [Saler and Vertn#006)], finite difference based local
RBF [Wright and Fornberg (2006); Liu, Zhang, Li, Lam, and K2606)], differential quadrature
based local RBF [Shu, Ding, and Yeo (2003); Shu and Wu (20@ny radial point interpolation
method [Liu, Liu, and Tai (2005); Liu, Zhang, and Gu (2005)].

Another approach to local RBF is one based on the partitiemity (PU) method. The PU concept
was first introduced by Sherpard and known as Sherpard’'sadetiowever, Sherpard’s method is
not widely applied since it is only of constant precisionnc& the works of BabuSka and Melenk
(1997), this method has received more attention and may hsidered an underlying concept
for many other methods such as, PUFEM [Melenk and BabuSIig6§1,.9<FEM [Moés, Dolbow,
and Belytschko (1999); Bordas, Duflot, and Le (2008)], GFEBtd¢uboulis, Babuska, and Copps
(2000); Strouboulis, Copps, and Babuska (2000)] and cemaishfree methods [Rabczuk and Be-
lytschko (2004); Rabczuk, Areias, and Belytschko (200Fr RBF methods, locally supported



RBF based on the PU concept was first introduced in data fitlingvendland (2002) and has
been further expanded by several researchers [Tobor, IRaute Schlick (2004, 2006); Ohtake,
Belyaev, and Seidel (2006)]. In recent times, the idea dII®&BF based on the PU concept was
extended by Chen, Hu, and Hu (2008) for solving PDEs. In timgithod, the reproducing kernel
function is employed as PU function to achieve a higher pregithan that of Sherpard method.

Motivated by the former works, this paper proposes a newlliosapported MIRBFN method,
in which the standard globally supported IRBFN is couplethwhe moving least square (MLS)
approximants via the PU concept to formulate a locally sujgoioMIRBFN interpolation method.
Moreover, the present interpolation method is implemeirtgte collocation of a first-order sys-
tem formulation, resulting in an integration-free mestle®thod for solving PDEs. The proposed
method is verified by various numerical examples, includiegt transfer, elasticity of compress-
ible and incompressible materials, and linear static cproklems. The remaining of this paper is
organized as follows. The construction of the present MIRBs-presented in section 2 followed
by the first-order system formulation in section 3. Sectiomgdorts the numerical experiments
and section 5 draws some conclusions.

2 Construction of Moving IRBFN

2.1 Theglobal IRBFN approximation

In the IRBFN method [Mai-Duy and Tran-Cong (2001, 2005); Nbaiy, Khennane, and Tran-
Cong (2007); Le, Mai-Duy, Tran-Cong, and Baker (2007, 20B8)i-Duy and Tran-Cong (2009)],
the formulation of the problem starts with the decompositbthe highest order derivatives under
consideration into RBFs. The derivative expressions nbthare then integrated to yield expres-
sions for lower order derivatives and finally for the oridifinction itself. The present work is
illustrated with the approximation of a function and itsidetives of order up to 2, the formulation
can be thus described as follows.

ujj(x) = 'le(”g(”(X)v Q)

U300 = [ 5 wgh () + Culxg) = 3 WO (), )

u(x) = /m+plw(i)H(i)(x)dxj +Ca(Xzj) = wiHY (), ©)



or in compact form

ujj (X) = GO)wy), (4)
U (x) = Hig] (0)Wp, ©)
u(x) = Hpx) (X)W1, (6)

where, the comma denotes partial differentiatioris the number of RBFgg" (x)}", is the set
of RBFs, {w)}™ " is the set of corresponding network weights to be foufid()(x)}, and
{HD(x)}m, are new basis functions obtained by integrating the radiaisbfunctiong) (x), ps
and p; are the number of centers used to represent integratioazdssn the first and second
derivatives, (2) and (3), respectivelgx(= 2p;). For the multiquadric function

= /llx=e0 [+ (@02 @)

wherec() is the RBF center and!) is the RBF width, the width of thB" RBF can be determined
according to the following simple relation

= Bd(i), (8)

wheref is a factor,8 > 0, andd() is the distance from thé&" center to its nearest neighbour.

Now, the “constants” of integratioB;(x;«j) andCx(x;1j) on the right hand side of (2) and (3)
can also be interpolated using the IRBFN method as follows.

M .
Cr(x;l # ) = zlvﬁ' gV (%1 # ), (9)
M
Ci(x;1 # ) = ,zleH(”(xl;l #1)+Cy, (10)
ACHEN)) ZW' V(51 # )+ Coxksj +Co, (11)

where{w()}M, are the corresponding weights; M is the number of distinotars. The unknowns
to be found are the sets of weights in (1) and (9), which candberchined by the SVD (singular
value decomposition) procedure, for example.



Following Mai-Duy and Tran-Cong (2005), we perform a prioneersion of the unknowns from
network weights, i.e{w}™ " to nodal function values in order to form a square system of
equations of smaller size as follows.

The set of network weights are expressed in terms of nodatitmvalue as

wyg = ] ", (12)
= -1
wy = [Hy] u, (13)

Un(X) = G(X) ] v, (14)
Ux(x) = Hyg () [Fig] "u, (15)
u(x) = Hyg(x) [H] ", (16)
Uyy(X) = G(x) [Hy] “tu, 17)
uy(x) = Hy () [Fy] 'y, (18)
u(x) = Hiy (x) [Hy] ", (19)

wherel is the identity matrix. It can be seen from (14)-(19) that fimection and its derivatives
are all expressed in terms of the function values rather tignwvork weights. Consequently, the
system of equations obtained is normally square and theawrkito be solved for are the nodal
function values instead of the network weights.

2.2 Moving least-square approximants

The moving least-square (MLS) procedure presented in 8&iib, Lu, and Gu (1994) is briefly
reproduced in this section as follows. The interpolat) of the functionu(x) is defined in the
domainQ by

M
u'(x) = > aj(x)pj(x) =pT (x)a(x), (20)

wherex” = [x,y], p" = [1,x,y] is a linear basis# = 3 in R2.



a(x) is obtained at any point by minimizing the following weighted, discrete; norm
n
J= ZW(X —x)[pT (x)ax) —u?, (21)
1=

wheren is the number of points in the neighbourhoodxdbr which the weight functiorw(x —
X1) # 0, andy, is the nodal value ofi atx = x;.

The minimization of] in (21) with respect t@(x) leads to the following linear relation between
a(x) and the vector of local nodal values

A(x)a(x) = B(x)u, (22)
or
a(x) = A"1(x)B(x)u, (23)

whereA(x) andB(x) are defined by

A(x) = ZW(X —x)p(X)p" (X1) (24)
|=
1 1 1
B(x)= |w(x—x1) | Xt |, Wx=x2)| % |,---;w(X—Xn) | Xn (25)
Y1 Y2 Yn
u' = [ug,Up,...,Un). (26)

Substitution of (23) into (20) yields

n n
u'(x) = I; J; Pj () (A~ (X)B(X)) jur = I;‘PI (X)ur, (27)

where the shape functiah (x) is defined by

X

$i1(x) =Y Pi()(AHX)BX))j (28)

=1



or in compact form

¢ (x) =T (X)w(x—x)p(x1), (29)

whereA (x)c(x) = p(x) defines vectoc(x).
c(x) can efficiently be computed by the LU factorization Atx) with backward substitution

[Belytschko, Krongauz, Fleming, Organ, and Liu (1996); Men, Rabczuk, Bordas, and Duflot
(2008)] as follows.

LUc(x) =p(x),  Ucx)=L px),  cx)=U"L"tpx). (30)

The partial derivatives af, (x) can be obtained by

1, (X) = ] ()OW(X — X )p(x1) + " (X)W (X —x)p(X), (31)
where(.); = ‘;L)'q) and

ci() =ATH)P(X) +A T (X)p,(X), (32)
with

A(x) = Iiwi(x— X )p(x)pT (). 33)

It is noted that the following circular kernel function [Siling, Caroll, and Al-Ajlouni (2001)] is
used to compute the present MLS shape function

w(r):{ Lrcosmp)l/ar®, g<1 a even (34)

0, RLS>1,

whereR; is the radius of the support domain of the weight functiem), r = ||[x — x;|| and||.||
denotes the Euclidean norm.



2.3 Moving IRBFN interpolation

We propose a locally supported IRBFN, constructed by ugiegortition of unity concept [Me-
lenk and Babuska (1996); BabuSka and Melenk (1997)] aswWsllo

Let the open and bounded domain of intef@st RY be discretised by a set bf points .2
%:{Xl,XZ,...,XN}, X € Q, l=212,...,N, (35)

2 is used to define an open cover®f i.e. {Q} such thatQ € UN; Q; and{Q,} satisfies a
point-wise overlap condition

vxeQ Jke N : card{l[x € Q;} <k. (36)

We choose a family of compactly supported, hon-negativetimoous functionsl;y supported on
the closure of);, such that at every pointwe have the following property

Ii ¢ (x) =1, VX e Q, (37)

where{y, } is called a partition of unity subordinate to the coy&; }.

For every subdomaif,, a local approximationy, is constructed by using IRBFN supported by
all nodes inQ, as presented in section 2.1, i.e.

W) evi, Vi =spafHY ), 77 x),.... A )}, (38)

where{V, } are referred to as the local approximation spaces.

The global approximation aif(x), u"(x) is obtained via
N

wx) =5 yu'x), W) eV, (39)
=1

wherey (x) andul'(x) are associated with the subdom&n, andV is called PU method space
and defined by

N
V= V. 40
I;‘M | (40)
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In the present work, the partition of unity functiai is chosen to be identical to the MLS shape
function ¢, in (27), the subdomaif, is centered ax, as shown in Figure 1.

Replacingy; with MLS shape functiorp,, (39) can be rewritten as follows.

u'(x) =
|

¢ )ul'(x), (41)

M=

and the associated derivativesufx) are given by

z

W(x)

(B0 + 91 ()3 (42)

uly(x) =

(61,00 () + 91 (9 ()] (43)

IMz |

whereuf', (x) andul', (x), are derived in (15) and (18).

u"(x) and its derivatives can be rewritten in a compact form as

W(x) = 3 $i(u(x) = @ (x)u, (44)
<

U (x) = ®F (x)u, (45)

u(x) = ®J (x)u, (46)

whereu = {ug,up,...,uxn}, P(X) is the vector of shape functions.

It is noted that®, (x;) = &3 as shown in Figures 3. Consequently, this MIRBFN method pos-
sesses the Kroneckérproperty which makes it easy to impose the essential boyrderditions.
Owing to the locally supported property, MIRBFN vyields syetnic, sparse and banded interpo-
lation matrices as shown in Figure 2. This feature makes #thad very efficient in storage and
computation.

2.4 Sdlection of RBF centersand support radius

In the present MIRBFN method, the selection of local RBF eexc; }, is very flexible. Gener-
ally, they can be different from the set of local data poifits;, associated with subdomai® .
For example, if a two-dimensional IRBFN is used, the sizénefratrices to be inverteﬁ[x] and
Hy in (12) and (13), respectively, will be x (m + pz ), wheren; is the number of data points,
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m; the number of RBF center; }, and py the number of centers used to represent integration
constants in the second derivatives. Therefore, the nuoflEdumns of the matrices will bpy
larger than the number of rows wh¢n; }, is the same a$x;},. To obtain square matrices, we
choose the number of centers to be less than the number opdatis fn < n) and py to be
appropriately small.

On the other hand, the selection of support radius for edntiduainQ, also affects the numerical
results significantly. The larger support radius is, théhbigaccuracy and convergence rate are.
However, the higher cost of storage and computation, andetegioration of the condition number
of the matrices are consequential trade-offs. Hence, teerttakmethod more local and efficient,
smaller values of support radius are preferred in this work.

3 First-order system formulation

For the sake of completeness, the first-order system fotionjavhich was proposed in a previous

work of the authors [Le, Mai-Duy, Tran-Cong, and Baker (20,18 reproduced briefly as follows.

It is noticed that in general higher-order differential aions can be transformed into a system of
first-order differential equations by introducing some rdaval variables, which is the procedure

followed here. Both primary and dual variables are thenpedéently interpolated and have the

shape functions of the same order. The resultant first-aylem of governing equations can be
written as follows.

ZLu=f, in Q (47)
Bu=g, on I (48)

whereQ is a bounded domain iRY, d = 1,2,3, I the boundary of2, .Z is a first-order linear
differential operator

au

d

Lu=%u+ S 4
%

in which u™ = [ug,uy,...,un] is a vector ofm unknown functions (including primary and dual

variables) ofx” = [xq,%p, ..., Xd], -Z, the coefficient matrices which characterize the diffeadnti

operator.#, f a given function in the domairB a boundary algebraic operator, agd given

function on the boundary.
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Substituting a discrete approximationwand its first-order derivatives as given, respectively, in
(41) and (42)-(43) into (47) and (48), and using the collimcamethod at all the nodes 6f and
I", one obtains a linear algebraic system as presented below.

Let No denote the number of interior noddsy the number of nodes on the Dirichlet bound-
ary, Ny the number of nodes on the Neumann boundarythe number of primary unknowns
and my the number of dual unknowns associated with a node, the nuofb@®odal unknowns
is generally(Ng + Np + Nn)(mp + my). The governing equation (47) is collocated at all the in-
terior and boundary nodes, yieldiri§lo + Np 4+ Nn)(mp 4+ my) equations. The boundary con-
ditions are imposed by collocating (48) at all the boundavges, i.e. the obtained system has
(Ng +Np + Ny ) (mp+my) + Npkp + Nnkn equations, wherky andky are the number of equations
from the boundary conditions per node on the Dirichlet andiriNe@nn boundaries, respectively.
The final system is obtained by removitgkp + Nyky appropriate equations corresponding to
the governing equations collocated at the boundary nodasseégjuently, the number of equations
of the resultant system is equal to the number of nodal unksoand it can be rewritten in a
compact form as

Au =f. (50)

3.1 Two-dimensional Poisson eguation

Consider the following two-dimensional Poisson equation

9%p(x,y) N 9%p(x,y)

E 0\ = f(x,y) in Q, (51a)
p(xy) =9d(xy) on TIp, (51b)
d(pé)r(],y) =h(x,y) on Iy, (51c¢)

whereQ is a bounded domain iR?, I'p andly the boundary of2 on which the Dirichlet and
Neumann boundary conditions are imposed, respectime—lg,/,(nX,ny)T the outward unit normal
to Ny, andf, gandh given functions orQ, I'p andrl y, respectively.
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A first-order formulation is obtained by introducing the tvariables in (51) as follows.

d (X, .
%—E(x,y) =0 in Q andon Ip| Jry, (52a)
29(xy) :
3y -n(xy)=0 in Q andon Ip| Iy, (52b)
9&(xy) , dn(xy) _ -
FVanRy ay f(xy) in Q andon Ip|Jn, (52c)
(p(X, y) - g(X, y) on [p, (52d)
k& +nyn = h(x,y) on Iy. (52¢)

3.2 Linear eadticity problems

Consider the following two-dimensional problem on a don@ibhounded by =T, (Ul

O-0=b in Q, (53a)
u=u on Iy, (53b)
o-n=t on [ (53c)

in which o is the stress tensor, which corresponds to the displacefieéthti andb is the body
force,n the outward unit normal tb;. The superposed bar denotes prescribed value on the bound-
ary.

The governing equations (53) are closed when a constittgietion is specified foo. Here the
linear Hooke’s law is used to describe tie- u relation. By choosing displacememtas primary
variable and stress as dual variable, the governing equations remain firstrpveldich are written
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for plane stress case as follows.

ou 1 uo
w EFTEW=0 (54a)
ov u 1
W+E0X—an—0, (54b)
ou v 20+p)
o E WO (54)
ao-x d‘[xy
—= = 4
ax oy bx, (54d)
OTxy 00y
X + dy =by, (54e)
u=u on Ty, (54f)
o-n=t on I (549)

wherep is the Poisson ratio arid the Young’s modulus. By introducing the dimensionlesssstre
tensors = 0/E, the above first-order system can be rewritten as follows.

Ju
% ST HS =0, (553)
ov
a—y+usK—sy— 0, (55b)
Ju odv
d_y+5<_2(1+ H)Sy =0, (55c¢)
s  OSy
X + a—y = by, (55d)
Osy , 05y _
ax oy by. (55€)
u=u on [y, (55f)
ssn=t on I (559)
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4 Numerical examples

For an error estimation and convergence study, the disektive L, norm of errors of primary
and dual variables are defined as

o \/ZiNl (fPe(zi) - fp(i))z

— (56)
st (@)
\/Z.l [(Eé” —g0) 4 (nl) - n<'>)2]
Lg” _ (57)
ENCIRCON
for Poisson equation and
" V5 (008~ 00) () )0’ o5
\/ st | () + ()]
\/ I [((soé” ) ()8 9) (s - s&?)z}
LS = ; (59)

\/ I [((&)Q))2+ ()" + ((sxy)g))z]

for elasticity problems, wherdl is the number of unknown nodal values and the subscript “e"
denotes the exact solution. The convergence order of thi@olwith respect to the refinement
of spatial discretization is assumed to be in the form of

Lo(h) = ZW = O(h), (60)

whereh is the maximum nodal spacing, andA are the parameters of the exponential model,
which are found by general linear least square formula mvark.

Itis noted that the CPU time in the following sections is assted with a computer which has 8.0
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GB of RAM and two Intel(R) Xeon(R) CPUs of 3.0 GHz each. Theewritten in MATLAB®
language.

4.1 Poisson equation

4.1.1 Poisson equation in a regular domain

Consider the following Poisson equation

%2p(xy)  0%Q(x.y)

52 37 —217 cog T1X) cog T1y), (61)

defined inQ = [0, 1] x [0, 1], subjected to the Dirichlet boundary condition

¢(0,y) = coqmy), on x=0, (62)

and the following Neumann boundary conditions

de(Ly) _
Vi 0, on x=1, (63a)

99(x,0) _ _
oy 0, on y=0, (63b)

dp(x,1) _
oy 0, on y=1 (63c)
(63d)

The corresponding exact solution is given by
P(x,y) = cog(1x) cog(Ty). (64)

Two discretisations are considered for this problem: unif@and nonuniform distributions of
nodes/collocation points (CPs) as shown in Figures 4 anéshectively. For both cases, the
radius of support domains is set%t: 2.1, whereh is the maximum spacing between two nearest
nodes inx or y direction. The maximum number of uniformly distributed RB&nteram, in each
subdomain is 5 as shown in Figure 4. The numbers of centeeptegent the integration constants
py andpy are 3 and 6, respectively. The valuesfoin (8) for both cases are listed in Tables 1
and 3.



Table 1: Poisson equation in a regular domain: uniform ditgations with MIRBFN

No. points LY LT condp) p K CcPutime
3x3 0.4415 1.1413 51.7250 12 2.1 0.15
<7 0.0252 0.0219 512.8116 12 2.1 0.30

11x11 0.0036 0.0041 813.8110 12 2.1 0.59
21x21 4.4864e-4 5.5402e-4 2.2514e3 12 2.1 2.07
25x25 2.5203e-4 3.1671e-4 2.9034e3 12 2.1 3.07
31x31 1.2419e-4 1.5922e-4 4.1964e3 12 2.1 5.13
41x41 5.0132e-5 6.5620e-5 6.1935e3 12 2.1 10.59
61x61 1.4217e-5 1.9006e-5 1.5362e4 12 2.1 35.84
81x81 5.9951e-6 8.0377e-6 3.5862e4 12 2.1 90.0
91x91 4.2892e-6 5.6966e-6 5.2312e4 12 2.1 136.40

101x101 3.2363e-6 4.2199e-6 7.4923e4 12 2.1 197.11

121x121 2.1324e-6 2.6352e-6 9.037e4 12 2.1 374.7

O(h3‘32) O(h3‘38)
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Table 2: Poisson equation in a regular domain: uniform disgations with global IRBFN

No. points LY LT condp) p SEuflime
<7 0.0245 0.0273 1.6043e4 1 0.161
11x 11 0.0038 0.0048 2.5617e4 1 0.179
21 x 21 7.4562e-5 1.5070e-4 5.8907e4 2.462
31x 31 1.2924e-5 2.3775e-5 1.2225e5 30.064

1
1
41x 41  4.3906e-6 7.9095e-6 2.0292e5 1 149.319
1
1

51x 51 2.1210e-6 3.7691e-6 3.0404e5 535.049
61x 61 1.385le-6 2.1592e-6 7.0649e4 1674.980
O(h4‘71) O(h4‘52)

Table 3: Poisson equation in a regular domain: unstructooeigs with MIRBFN

No. points Ly L3" condp) B P h CCetong
88 0.2833 0.1438 1.6887e5 10 2.1 0.1250 0.73
108 0.0402 0.0613 4.5345¢5 10 2.1 0.1200 0.80
327 0.0077 0.0057 6.2091e7 10 2.1 0.0685 2.23
691 0.0018 0.0019 45704e8 10 2.1 0.0507 5.65

1723 7.2107e-4 5.7631e-4 1.3461e8 10 2.1 0.0308 22.12
2248 3.3681e-4 2.5718e-4 1.2765e8 12 2.1 0.0272 35.58
O(h3'78) O(h3'82)
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The influences of local support radit% and 8 on the accuracy of the solution are numerically
studied in this example. Figure 5 shows the relative erremsoly and Lg") obtained by the
present MIRBFN method with different values % while (8 is fixed. On the other hand, the
results with different values @8 and fixed local support radius are displayed in Figure 6. it ca
be seen that the values around Z%Mare not only able to capture well the solution but also keep
the matrix small, as long g3 is large enough.

To study the convergence of the method, a number of disatitiz refinements and the relative
L, error norms for function valuesy and its derivativeié” are reported in Tables 1 and 3 for
uniform and unstructured cases, respectively. As showheset tables and Figures 7 and 9, very
good accuracy and stability are obtained. The convergeates forg(x,y) and € (x,y),n(x,y))
are O(h332) and O(h>38), respectively, for uniform distribution, an@(h%’8) and O(h3%2), re-
spectively, for unstructured nodes. It can be seen thatahéitton numbers in the case of uniform
distribution are relatively smaller than those in the cdsarmdom distribution (Table 3) since there
is a relatively larger number of nodes in each subdomaindrcise of random distribution.

The results in Tables 1-2 and Figure 7 indicate that the ¢ItRBFN gives higher orders of
convergence. Nonetheless, the condition numbers by théBMNRmethod are slightly better in
comparison with those by the global IRBFN method, as liste@aibles 1 and 2, althoughis set
quite large for the MIRBFN method. Furthermore, the MIRBFMthod is much more efficient
than the global IRBFN method as can be seen in Figure 10.

4.1.2 Poisson equation in an irregular domain

The Poisson equation in example 4.1.1 is examined in a coaipll irregular domain as shown
in Figure 11. The Dirichlet boundary conditions on the uppdge and the left edge are given as
below

©(0,y) = cogny), on x=0, (65a)
®(x,0) = cog 1), on y=0. (65b)
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Table 4: Poisson equation in an irregular domain: strudtdieerizations with MIRBFN

No. points LY L3N condd) B % h CPU time
51 3.4762e-1 5.4441e-1 3.1001e5 9 4.1 0.25 0.83
87 2.8487e-2 5.2716e-2 1.9944e6 9 4.1 0.181 1.31
266 1.4620e-3 3.8399e-3 2.0634e7 9 4.1 0.0095 3.86
595 5.0421e-4 8.7207e-4 6.4519e8 9 4.1 0.0065 11.55
1029 1.7279e-4 4.0659e-4 6.2724e8 9 4.1 0.0048 23.05
1574 8.5957e-5 2.4792e-4 4.1291e8 9 4.1 0.039 43.17
2266 3.6035e-5 8.0371e-5 6.5102¢9 9 4.1 0.039 84.48
3413 3.0210e-5 5.0281e-5 1.9016e8 9 4.1 0.033 172.53
O(h4'06) O(h3.96)

Table 5: Poisson equation in an irregular domain: unstradtdiscretisation with MIRBFN

No. points LY L3" condd) p % h CPU time
51 1.9465e-1 1.9142e-1 7.5387e4 14 3.1 2.7337e-1  4.775
338 2.4059e-3 6.7564e-3 4.4212e6 14 3.1 1.1182e-1 22.017
1046 7.1240e-4 1.7302e-3 9.0038e6 12 3.1 5.9731le-2 89.633
1486 4.2708e-4 8.4299%e-4 7.5913e7 12 3.1 5.3098e-2 203.883
1711 1.4251e-4 2.1264e-4 1.4224e8 8 3.1 4.8722e-2
O(h3'80) O(h3'50)

The Neumann boundary conditions on the inner arc and the atdere, respectively

”Xd(pg:y) d(p(gx’y) =d(xy), on X+y' =1, (66a)
”Xd(pg:y) d(p(gx’y) =qxy), on X¥+y' =4, (66D)

whereq|(X,y) = —nyTsin(71x) cog 1ty) — Ny 71O 71X) Sin( Tty).
The complexity is increased with the Neumann boundary ¢mmdi on two curved boundaries.
The structured domain discretisation is described asvislloA uniformed grid covering the do-

main is generated, then the points outside the domain anldeocurves are removed. Finally, the
points on the inner and outer arcs are generated uniformly.

In the case of structured discretisation (Figure 11), teallsupport radiu% issetat4.18is 9,
the maximum number of centers in each subdomain is 13. Tatvel, error norms.y andLé”
associated with the structured node discretizations agepted in Table 4 and in Figure 13. It
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can be observed that high orders of convergence are obtaitied large support radius, namely
O(h*9) and O(h®9) for the function and its derivatives, respectively. Howevke condition
numbers are much larger than those in the previous exampteuriStructured node distributions
(Figure 12), the corresponding parameters and obtainetts@se presented in Table 5 and Figure
14. The results indicate that the solution by the proposetiodeapparently converges at the rates
of (038% and (03%9), usingL? andL", respectively.

4.2 Linear elagticity problems

4.2.1 Cantilever Beam

A cantilever beam subjected to a parabolic shear load atritti e 0 as shown in Figure 15 is
considered in this example.

Table 6: Cantilever beam: uniform discretizations with BIRN (u = 0.3).

No. points LY LS condd) B = h SHllme
20x5 1.9598e-1 3.3652e-1 4.1516e6 8 2.1 0.240 0.60
36x9 1.4986e-2 2.5489e-2 1.4193e8 10 2.1 0.133 1.84
68x 17 1.2182e-3 2.1326e-3 3.0383e6 14 2.1 0.070 6.98

124x 31 5.8434e-4 5.7764e-4 4.0336e6 14 2.1 0.039 43.78

164x 41 2.2892e-4 2.3983e-4 8.3453e6 14 2.1 0.029 109.42

204x 51 1.1069e-4 1.2366e-4 14 2.1 0.024 230.01

244x 61 5.9462e-5 7.2455e-5 14 2.1 0.020 438.98
O(h3‘04) O(h3‘26)

The following parameters are used for the probldm= 4.8 andD = 1.2. The beam has a unit
thickness. Young’'s modulus B = 3 x 10° , Poisson’s ratiou = 0.3 (also 4 = 0.5) and the

integrated parabolic shear forBe= 100. Plane stress condition is assumed and there is no body
force.

The exact solution to this problem was given by Timoshenkb@aodier (1970) as

—Px
Oxx(X,y) = | y, (67a)

Oyy(X,y) =0, (67b)

B 2
By(ky) = <% - ) . (67)
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Table 7: Cantilever beam: uniform discretizations with RN (u = 0.5).

No. points LY LS condd) B F h CEHmE
20x5 1.0069e-1 1.9291e-1 2.3672e7 8 2.1 0.240 0.60
36x9 2.0936e-2 5.3772e-2 4.2607e7 10 2.1 0.133 1.81

68x 17 7.8576e-4 1.6020e-3 2.1090e6 14 2.1 0.070 6.77
124x 31 4.3029e-4 4.1872e-4 2.8678e6 14 2.1 0.039 41.12
164x 41 1.6292e-4 1.6988e-4 5.7418e6 14 2.1 0.029 106.48
204x 51 7.7595e-5 8.7489e-5 14 2.1 0.024 2355
244x 61 4.1951e-5 5.2041e-5 14 2.1 0.020 475.7

O(h3'07) O(h3'39)

Table 8: Cantilever beam: uniform discretizations withbgiblRBFN (u = 0.3).
No. points L5 LS cond@d) g h CPU time

n
20x 5  4.5356e-2 2.5571e-1 1.7953e6 1 0.2400 . 8.408
36x9 5.2822e-3 4.0279e-2 5.2505e6 1 0.1333 2.068
68 x 17 1.5706e-3 2.6022e-3 6.5476e7 1 0.0706 68.088
124x 31 3.8901e-4 4.3698e-4 3.1351e8 1 0.0387 2351.78
164x 41 2.1295e-4 2.2075e-4 1 0.0293 51201.338

O(h3'06) O(h3'39)

Table 9: Cantilever beam: unstructured nodes with MIRBEN=0.3).

No. points LY L9 condd) B = h CEM time
43 6.5385e-1 6.9895e-1 2.6549e6 10 2.1 4.6860e-1 0.715
170 2.7461e-2 5.5154e-2 3.9549e7 10 2.1 2.4000e-1 2.079
616 7.2999e-3 3.1141e-2 7.4558e7 10 2.1 1.2507e-1  7.888
1112 4.9025e-4 3.0318e-3 1.0345e9 10 2.1 1.0454e-1 20.190
O(h4‘21) O(h3'07)

Table 10: Cantilever beam: structured FEM mesh with foudenquadrilateral element (Q4) &
0.3).

No. elements LY h ~ thitme
16 x4 1.3991e-1  0.40 0.1806
32x8 3.8516e-2 0.1714 0.4395
40 x 10 2.5191e-2 0.1333 1.7111
80x 20 6.9048e-3 0.0631 8.4087

160x 40 1.6994e-3 0.0307 21.5620

240x 60 9.1261e-4 0.0203 47.9957

320x 80 6.1308e-4 0.0152 307.579
O(h1'84)




22

The displacements are given by

Px2y uPy* Py PL> PD?
—— T — 68
X 2El  6El  6IG +y(2E| 8IG>’ (68)
_ pPxy  PX P  PL®
W= el TRl 2Bl T EED (69)

wherel = D3/12 is the moment of inertia of the cross section of the be@am,E/(2(1+ u)) the
modulus of elasticity in shear. The exact displacement &) (69) are imposed on= L while
the shear load is applied on= 0 and the upper and lower edges are traction free.

Both regular and irregular distributions of nodes usedH@ problem are displayed in Figures 16
and 18, respectively. The local support radiu%i& 2.1. The values of3 are listed in Tables 6,
7 and 9. The scheme for selection of RBF centers for both aeguld irregular node distributions
is similar to that in example 4.1.1. In addition, the effetincompressibility, i.e,u = 0.5, is also
studied here.

Figure 19 shows the shear stregsfor u = 0.3 atx = 2.4686 obtained by the present method with
36x 9 nodes. A very good agreement between the obtained resutharexact solution can be
observed in this figure.

To study the convergence of the method, a number of diffareiibrm node distributions is used
for computation as presented in the Tables 6 and 7.u~er0.3, the relativel, error norms for
displacement and stress are shown in Table 6 and Figure€0ptivergence rates of displacement
and stress ar®(h3%4) and O(h32%), respectively. In the case of incompressible materigls-(
0.5), the relative., error norms for displacement and stress are presented lie Talnd Figure 20.
Very good orders of convergence are achieved, na@éiy°’) andO(h339) for displacement and
stress, respectively. Furthermore, the results showngargi20 indicate that the present method
does not suffer from any volumetric locking.

The behaviour of the MIRBFN method in the case of irregulacuitisation is also examined with
four nodal configurations as shown in Figure 18. The obtaiesdlts with the MIRBFN method

andu = 0.3 are shown in Table 9 and Figure 21. The orders of convergafitbe present method

areO(h*?1) andO(h3%7) for displacement and stress, respectively.

In comparison with the global IRBFN method, the MIRBFN methachieves similar accuracy
and convergence rates as can be observed in Tables 6 andiB,Figdre 20 as well. The present
method is apparently much more efficient than the global IRBtethod (Figure 22).
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The obtained results are also compared with those by FENM dsimr-node quadrilateral element
(Table 10). Figure 20 shows that both accuracy and ordermfergence of the MIRBFN method
are superior to those of FEM, e.g. usibg the convergence rates a$h>%4) and O(h'#4) for
the MIRBFN method and the FEM, respectively. The computiagt ©f the MIRBFN method
is higher than that of the FEM for the same number of nodes. édew the MIRBFN method is
more efficient than the FEM for the same accuracy, for exanitgbkes the MIRBFN method 6.98
seconds foLYy = 1.2182x 10~3 while the FEM needs 21.56 seconds to achlejre 1.6994x 10-3
as exhibited in Figure 22, Table 6 and Table 10.

4.2.2 Infinite plate with a circular hole

In this example, an infinite plate with a circular hole sulgelcto unidirectional tensile load of 1.0
in the x direction is analyzed as shown in Figure 23. The radius af lotaken as 1 unit. Owing
to symmetry, only the upper right quadra@t3] x [0, 3] of the plate is modeled as shown in Figure
24.

In this problem, plane stress conditions are assumed waistielisotropic propertie§ = 10°,

¢ = 0.3 (alsou = 0.5). The exact solution to this problem was given by Timoshesrhd Goodier
(1970) as follows

ox(X,y) =0 [1— ?—2 E cog20) + 005(46)} + 2—?:: cos(46)] , (70a)
oy(X,y [ [ cog20) — cos(46)] :; :coq46)} , (70b)
Ty(X,y) = [ [ n(26) -+ sin 49)] 3";‘2 sin(49)] , (70¢)

where(r, 8) are the polar coordinateathe radius of the hole.

The corresponding displacements are given by

Ux(X,Y) :a(lzu) [li cos(6)+l+u cos(6)+}—coq36) 1a 4cos(36)] (71a)
Uy(X,Y) :a(lzu) [l;“ur |n(6)+1+—z73 (6)+%a723in(36)—%?—:sin(36)] (71b)

The boundary conditions of the problem are as follows. Thetiwn boundary conditions cor-
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Table 11: Infinite plate with a circular hole: structuredadétisation with MIRBFN (1 = 0.3).

No. points LY L9 condd) B = h chilme
50 3.0520e-1 2.6147e-1 6.7532e4 2.1 0.50 0.54
119 9.2110e-2 8.1240e-2 8.3533e6 2.1 0.30 1.03
409 1.0837e-2 1.2229e-2 6.1059e4 2.1 0.15 3.25
1129 8.7872e-4 2.6677e-3 2.0085e5

2.1 0.088 10.56
3085 1.8647e-4 4.2703e-4 4.4334e5 2.1 0.052 44.36
O(h3‘61) O(h3‘02)

AR DNDD

Table 12: Infinite plate with a circular hole: structuredodétisation with MIRBFN (1 = 0.5).

No. points LY Lg condd) B F h CEE
50 7.8208e-1 5.7769e-1 1.1433e5 2.1 0.50 0.54
119 1.0186e-1 8.2598e-2 5.0328e6 2.1 0.30 1.01
409 1.3343e-2 1.4314e-2 5.5146e4 2.1 0.15 3.20
1129 9.5928e-4 2.7873e-3 2.0372e5

2.1 0.088 10.48
3085 4.0203e-4 4.6366e-4 6.0161e5 2.1 0.052 43.06
O(h3‘68) O(h3‘27)

NG NN N

Table 13: Infinite plate with a circular hole: structuredatétisation with global IRBFNg = 0.3).

No. points LY LS condd) P h CEM time
119 1.3243e-1 1.1085e-1 7.0056e5 0.2727 0.413
409 2.3900e-2 1.5925e-2 1.4568e6 0.1429 2.222
886 4.8966e-3 3.3027e-3 3.3118e6

0.0968 21.323
3085 2.5075e-4 7.2314e-4 4.3415e6 0.0517 977.988
O(h3‘78) O(h3‘08)

N

responding to the exact solution for the infinite plate angliad on the top and right edges, the

symmetric conditions are applied on the left and bottom sdgad the curved edge is traction
free.

To solve the problem, the computational domain is discedtin the same manner as in example
4.1.2. The support radius % = 2.1, the value off varies between 3 and 4 as in Tables 11, 12
and 14, and the RBF centers are identical to the nodes in eadomain.

A comparison between the stregsalongx = 0 obtained by the MIRBFN with a structured dis-
cretisation of 409 nodes and the exact solution are press@ntégure 26. The result indicates that
the solution obtained by the proposed method agrees wdilthét exact one.
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Table 14: Infinite plate with a circular hole: unstructuremtia distribution with MIRBFN (g =
0.3).

No. points LY Lg condd) B h CEY Lime
68 7.5923e-1 8.0880e-1 4.9714e4 2.1 5.0000e-1 1.383
156 2.3616e-1 3.4100e-1 2.9975e5 2.1 3.0888e-1 2.911
479 1.0531e-2 4.0582e-2 2.7228e6 2.1 1.6343e-1 8.729
1024 5.0684e-3 2.2821e-2 6.2775e6

2.1 1.1346e-1 23.620
2439 9.9303e-4 8.2974e-3 1.2450e8 2.1 7.513%-2 81.186
O(h3'60) O(hZ.SO)

WwwhND

The convergence of the present method in the case of stedchode distribution (Figure 24)
is reported in Table 11 and Figure 27 far= 0.3, and in Table 12 and Figure 27 for the case
of incompressible materials. The present method appeamsricerge at the rates @f(h362) for
displacement an@(h®°?) for stress in the case pf= 0.3. In the case of incompressible materials,
the orders of convergence a¢h3%8) andO(h327) for displacement and stress, respectively.

The performance of the MIRBFN method is also tested wittgintar node distributions as shown
in Figure 25. The obtained results are presented in Tablend4-aure 28, which show that the
convergence rates a@h*%) andO(h?%) for displacement and stress, respectively.

Again, the MIRBFN method achieves similar accuracy and eagence rates in comparison with
those of the global IRBFN method as shown in Table 11 and 1@,rafrigure 27. Clearly, the
efficiency of the present method is superior to that of thégléRBFN (Figure 29).

4.2.3 Mode | crack problem

Consider an infinite plate containing a straight crack ofjtarta and loaded by a remote uniform
stress fieldo as shown in Figure 30. Along ABCD the closed form solutionantis of polar
coordinates in a reference frarre0) centered at the crack tip is given by

K 6 .6 .06

Ox = WCOSE (1—sm§ sm3§> , (72a)
K, 0 .6 . .0

Oy = WCOSE <1+ smz sm3§> , (72b)
K .6 6 0

Ty = W smi cosz cos 35, (72c)
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Table 15: Center crack problem: uniform discretisationsgiWIIRBFN (u = 0.3).

No. points LY L9 condd) B = h SHllme
10 x 10 0.2017 1.3794 2.7726e5 0.01 11 1.0 0.53
14 x 14 0.13882 0.6583 6.7641e5 0.01 1.1 0.714 0.94
16 x16 0.0909 0.5043 4.7002e5 0.01 1.1 0.625 1.22
20 x 20 0.0374 0.2327 5.1297¢5 0.01 1.1 0.50 1.85
24 x24 0.0269 0.1887 1.6910e6 0.01 1.1 0.416 2.68

O(h2'47) O(h2.38)

for stress and

_ 2+ ﬁ\ﬁcosg (2—2u—co§g> , (73a)

* V2m E
_ 21+ K
Y v2n E

for displacement, wher€, = g+/ma is the stress intensity factqu Poisson’s ratio ané& Young
modulus, ABCD a square of 2010 mn¥, a=100mm E = 10'N/mn¥, u = 0.3 (alsou = 0.5),
o = 10°N/mn?. Plane strain condition is assumed and the body force is zero

. 0 ?]
\ﬁsmi <2—2u —co¢ 5) , (73b)

The computational domain ABCD is shown in Figure 30. Owingytmmetry, only upper half of
ABCD, namely CDEFG as shown in Figure 31, is analyzed. Thenseg of crack denoted by EF
has a length ob =5 mm The boundary condition of the problem is as follows. Thettom free
boundary condition is applied on the crack while the disphaent field given in (73) is imposed
on the remaining boundaries.

It is known that stress tends to infinity whertends to 0. Thus, to alleviate the oscillation due
to the effect of singularity, the support radidgsand 3 are selected as small as possible. For this
example,® and 8 are set at 1.1 and 0.01, respectively, and the RBF centershagen to be
identical to the nodes in each subdomain.

The performance of the present method in this singular probls examined by employing a
number of uniform data point distributions as displayedhia Tables 15 and 16. The results
with 24 x 24 nodes i = 0.3) are plotted in Figures 32-34 as follows. Figures 32 andxBgoé
displacementi, anduy, respectively, in comparison with those of an analyticaltson. Figures 34
(a) and (b) depict stresg ands, by MIRBFN method, respectively, and the corresponding exac
solutions. Some oscillations can be observed in these fgiue to singularity of stress wity
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Table 16: Center crack problem: uniform discretizationsWWIRBFN (i = 0.5).

No. points LY L9 condd) B B h SHilme
10 x 10 0.1087 0.9622 148595 0.01 11 1.0 0.53
14 x 14 0.1064 0.6401 2.9922¢5 0.01 1.1 0.714 0.94
16 x16 0.0477 0.3233 2.8071e5 0.01 1.1 0.625 1.22
20 x 20 0.0366 0.2627 5.3818e5 0.01 1.1 0.50 1.85
24 x24 0.0379 0.2613 4.9657e5 0.01 1.1 0.416 2.73

O(h1'44) O(hl'64)

continuity of displacement an@. property of IRBFNs. This oscillation is known as the Gibbs
phenomenon in RBF-based methods [Jung (2007)] where ncaherscillations occur around
a jump discontinuity because of high order approximationRBF. Nevertheless, the obtained
results are in good agreement with the analytical ones andribssent MIRBFN method is able to
capture highly steep gradients.

The convergence of the method can be seen in Tables 15 anddL& Rigure 35. In the case of
u = 0.3, high convergence rates©fh?47) andO(h?38) for displacement and stress, respectively,
are obtained. It is apparent that accuracy of the stressii@ldnsiderably reduced in compari-
son with that of displacement due to the presence of singuldigure 35,). For incompressible
materials, the convergence rates reduc®(o“+) andO(h'64) for displacement and stress, re-
spectively.

5 Concluding remarks

In this work, we propose a locally supported RBF interpolatmethod, namely MIRBFN, with
the main features as follows.

» The proposed method is a locally supported approximatiethod. As a result, the resultant
interpolation matrices are sparse and banded, resultiingproved efficiency in comparison
with those of standard RBF methods.

» The shape functions of the MIRBFN method possesses thegékand property that facil-
itates the imposition of the essential boundary conditions

» The present method offers high orders of convergence aagdpkcable to scattered node
distribution, arbitrary domain and highly steep gradiemtyems.
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Moreover, the proposed interpolation method is implentimé¢he collocation of a first-order sys-
tem formulation resulting in an integration-free meshiesthod which enjoys high convergence
rate and very good accuracy.

Acknowledgement: This work is supported by the Australian Research Countils Support
is gratefully acknowledged.
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Figure 1. Schematic representation of a moving IRBENis the domain of interest which is
subdivided intaN overlapping subdomair@, centered ax;.
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Figure 2: Moving IRBFN yields symmetric, sparse and banaégrpolation matrices.
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Figure 3: Example of MIRBFN shape functions: @)(x) in one dimension and (Ip, (x,y) in
two dimensions.
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Figure 4: Poisson equation in a regular domain: discréisawith uniform distribution of (a)
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Figure 8: Poisson equation in a regular domain: discrétisatith unstructured distribution of (a)
327 nodes, (b) 691 nodes, (c) 1723 nodes and (d) 2248 nodes.
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Figure 9: Poisson equation in a regular domain: relativererormsL3 and Lé”, and associated
convergence rates obtained by MIRBFN method with unstradtmodes.
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Figure 13: Poisson equation in an irregular domain with lagdistribution of nodes: relative
error normeLy andLé”, and associated convergence rates.
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Figure 15: Cantilever beam: a mathematical model.

Figure 16: Cantilever beam: discretisation with>28 nodes.

Figure 17: Cantilever beam: a FEM mesh witk 82 Q4 elements.
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Figure 18: Cantilever beam: discretisation with unstrredudistribution of (a) 43 nodes, (b) 170

nodes, (¢) 616 nodes, and (d) 1112 nodes.
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Figure 19: Cantilever beans;y atx = 2.4686 with 36x 9 nodes f = 0.3).
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Figure 21: Cantilever beanti:, relative error norms for displacement and stress, and @$sdc
convergence rates far = 0.3 with different unstructured nodal configurations.
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Figure 22: Cantilever beam: CPU times of MIRBFN method verthat of FEM and global
IRBFN method.




Figure 23: Infinite plate with a circular hole.

Figure 24: Infinite plate with a circular hole: computatibdamain with 119 nodes.
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Figure 25: Infinite plate with a circular hole: discretisatiwith unstructured distribution of (a) 68
nodes, (b) 156 nodes, (¢) 1024 nodes, and (d) 2439 nodes.
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Figure 26: Infinite plate with a circular holg; alongx = 0 with 409 nodesi{ = 0.3).
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Figure 27: Infinite plate with a circular holé:, relative error norms for displacement and stress
for u = 0.3 andu = 0.5. Convergence rates are also shown.
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Figure 28: Infinite plate with a circular holé:, relative error norms for displacement and stress
for u = 0.3 with unstructured nodes. Convergence rates are also shown
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Figure 29: Infinite plate with a circular hole: CPU times of RBFN method versus that of global
IRBFN method.

Figure 30: Infinite cracked plate under remote tension.
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Figure 31: Infinite cracked plate: analyzed portion.
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Figure 32: Infinite cracked plater obtained by (a) exact solution and (b) MIRBFN method with
24 x 24 nodes t = 0.3).
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Figure 33: Infinite cracked plates, obtained by (a) exact solution and (b) MIRBFN method with
24 x 24 nodes g = 0.3).
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Figure 34: Infinite cracked plate - stress ahead of the ctigck® = O,r > 0): (a) s, and (b)s,
obtained by MIRBFN method and exact solutions withx224 nodes g = 0.3).
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Figure 35: Infinite cracked platd:; relative error norms for displacement and stress, and assoc
ated convergence rates for= 0.3 andu = 0.5.






