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Abstract: A novel approximation method using integrated radial basisfunction networks (IRBFN)

coupled with moving least square (MLS) approximants, namely moving integrated radial basis

function networks (MIRBFN), is proposed in this work. In this method, the computational do-

main Ω is divided into finite sub-domainsΩI which satisfy point-wise overlap condition. The

local function interpolation is constructed by using IRBFNsupported by all nodes in subdomain

ΩI . The global function is then constructed by using Partitionof Unity Method (PUM), where

MLS functions play the role of partition of unity. As a result, the proposed method is locally

supported and yields sparse and banded interpolation matrices. The computational efficiency are

excellently improved in comparison with that of the original global IRBFN method. In addition,

the present method possesses the Kronecker-δ property, which makes it easy to impose the essen-

tial boundary conditions. The proposed method is applicable to randomly distributed datasets and

arbitrary domains. In this work, the MIRBFN method is implemented in the collocation of a first-

order system formulation [Le, Mai-Duy, Tran-Cong, and Baker (2010)] to solve PDEs governing

various problems including heat transfer, elasticity of both compressible and incompressible ma-

terials, and linear static crack problems. The numerical results show that the present method offers

high order of convergence and accuracy.

Keywords: RBF, Local IRBF, Moving IRBF, meshless, collocation method, elasticity, first order

system, locking, crack.

1 Introduction

Meshless methods have been increasingly used since they provide solutions more continuous than

the piece-wise continuous ones obtained by the finite element methods (FEM). Several meshless

methods have been developed, for example, meshless collocation methods [Atluri, Liu, and Han
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(2006); Libre, Emdadi, Kansa, Rahimian, and Shekarchi (2008)], global weak form meshless

methods [Belytschko, Lu, and Gu (1994)], and local weak formmeshless method [Atluri and

Shen (2002); Han and Atluri (2003); Li, Shen, Han, and Atluri(2003)]. In recent years, RBF-

based meshless methods have received increasing interest from the research community since the

associated discretisation of the governing PDEs is very simple for random point distribution and

arbitrary domain. Furthermore, global RBFN/IRBFN enjoys spectral accuracy and exponential

convergence [Madych (1992); Cheng, Golberg, Kansa, and Zamitto (2003)]. However, the main

drawback of the globally supported RBFN/IRBFN is that the resultant interpolation matrix is dense

and highly ill-conditioned due to the nature of global approximation. For example, the condition

number of such a matrix is about 6×1019 with only 20×20 collocation points [Fasshauer (1997)].

Therefore, globally supported RBFN/IRBFN methods are lesseffective in large-scale computation

and in problems concerning with small-scale features such as cracks/strain localization. Attempts

to deal with this deficiency include domain decomposition method [Ling and Kansa (2004)], block

partitioning and multizone methods [Kansa and Hon (2000)],and preconditioned methods [Baxter

(2002); Brown, Ling, Kansa, and Levesley (2005)].

Recently, local RBFN methods have been developed as an alternative approach. Compactly sup-

ported RBF truncated from polynomials can improve the condition number, yet a large support

is required to obtain a reasonable accuracy [Wendland (1995)]. It is thus considered not a robust

method against non-uniform datasets [Tobor, Reuter, and Schlick (2004)]. Moreover, some new lo-

cal methods that exchange spectral accuracy for a sparse andbetter-conditioned system, have been

proposed, including explicit local RBF [Šaler and Vertnik (2006)], finite difference based local

RBF [Wright and Fornberg (2006); Liu, Zhang, Li, Lam, and Kee(2006)], differential quadrature

based local RBF [Shu, Ding, and Yeo (2003); Shu and Wu (2007)], and radial point interpolation

method [Liu, Liu, and Tai (2005); Liu, Zhang, and Gu (2005)].

Another approach to local RBF is one based on the partition ofunity (PU) method. The PU concept

was first introduced by Sherpard and known as Sherpard’s method. However, Sherpard’s method is

not widely applied since it is only of constant precision. Since the works of Babuška and Melenk

(1997), this method has received more attention and may be considered an underlying concept

for many other methods such as, PUFEM [Melenk and Babuška (1996)], XFEM [Moës, Dolbow,

and Belytschko (1999); Bordas, Duflot, and Le (2008)], GFEM [Strouboulis, Babuška, and Copps

(2000); Strouboulis, Copps, and Babuška (2000)] and certain meshfree methods [Rabczuk and Be-

lytschko (2004); Rabczuk, Areias, and Belytschko (2007)].For RBF methods, locally supported
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RBF based on the PU concept was first introduced in data fittingby Wendland (2002) and has

been further expanded by several researchers [Tobor, Reuter, and Schlick (2004, 2006); Ohtake,

Belyaev, and Seidel (2006)]. In recent times, the idea of local RBF based on the PU concept was

extended by Chen, Hu, and Hu (2008) for solving PDEs. In theirmethod, the reproducing kernel

function is employed as PU function to achieve a higher precision than that of Sherpard method.

Motivated by the former works, this paper proposes a new locally supported MIRBFN method,

in which the standard globally supported IRBFN is coupled with the moving least square (MLS)

approximants via the PU concept to formulate a locally supported MIRBFN interpolation method.

Moreover, the present interpolation method is implementedin the collocation of a first-order sys-

tem formulation, resulting in an integration-free meshless method for solving PDEs. The proposed

method is verified by various numerical examples, includingheat transfer, elasticity of compress-

ible and incompressible materials, and linear static crackproblems. The remaining of this paper is

organized as follows. The construction of the present MIRBFN is presented in section 2 followed

by the first-order system formulation in section 3. Section 4reports the numerical experiments

and section 5 draws some conclusions.

2 Construction of Moving IRBFN

2.1 The global IRBFN approximation

In the IRBFN method [Mai-Duy and Tran-Cong (2001, 2005); Mai-Duy, Khennane, and Tran-

Cong (2007); Le, Mai-Duy, Tran-Cong, and Baker (2007, 2008); Mai-Duy and Tran-Cong (2009)],

the formulation of the problem starts with the decomposition of the highest order derivatives under

consideration into RBFs. The derivative expressions obtained are then integrated to yield expres-

sions for lower order derivatives and finally for the original function itself. The present work is

illustrated with the approximation of a function and its derivatives of order up to 2, the formulation

can be thus described as follows.

u, j j (x) =
m

∑
i=1

w(i)g(i)(x), (1)

u, j(x) =

∫ m

∑
i=1

w(i)g(i)(x)dxj +C1(xl ;l 6= j ) =
m+p1

∑
i=1

w(i)H(i)
[xj ]

(x), (2)

u(x) =

∫ m+p1

∑
i=1

w(i)H(i)(x)dxj +C2(xl ;l 6= j ) =
m+p2

∑
i=1

w(i)H
(i)
[xj ]

(x), (3)



5

or in compact form

u, j j (x) = G(x)w[xj ], (4)

u, j(x) = H[xj ](x)w[xj ], (5)

u(x) = H[xj ](x)w[xj ], (6)

where, the comma denotes partial differentiation,m is the number of RBFs,{g(i)(x)}m
i=1 is the set

of RBFs,{w(i)}m+p2
i=1 is the set of corresponding network weights to be found,{H(i)(x)}m

i=1 and

{H̄(i)(x)}m
i=1 are new basis functions obtained by integrating the radial basis functiong(i)(x), p1

and p2 are the number of centers used to represent integration constants in the first and second

derivatives, (2) and (3), respectively (p2 = 2p1). For the multiquadric function

g(i)(x) =

√∥∥x−c(i)
∥∥2

+
(
a(i)

)2
, (7)

wherec(i) is the RBF center anda(i) is the RBF width, the width of theith RBF can be determined

according to the following simple relation

a(i) = βd(i), (8)

whereβ is a factor,β > 0, andd(i) is the distance from theith center to its nearest neighbour.

Now, the “constants” of integrationC1(xl ;l 6= j ) andC2(xl ;l 6= j ) on the right hand side of (2) and (3)

can also be interpolated using the IRBFN method as follows.

C
′′
1(xl ; l 6= j) =

M

∑
i=1

w̄(i)g(i)(xl ; l 6= j), (9)

C
′
1(xl ; l 6= j) =

M

∑
i=1

w̄(i)H(i)(xl ; l 6= j)+Ĉ1, (10)

C1(xl ; l 6= j) =
M

∑
i=1

w̄(i)H̄(i)(xl ; l 6= j)+Ĉ1xk;k6= j +Ĉ2, (11)

where{w̄(i)}M
i=1 are the corresponding weights; M is the number of distinct centers. The unknowns

to be found are the sets of weights in (1) and (9), which can be determined by the SVD (singular

value decomposition) procedure, for example.
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Following Mai-Duy and Tran-Cong (2005), we perform a prior conversion of the unknowns from

network weights, i.e.{w(i)}m+p2
i=1 , to nodal function valueu in order to form a square system of

equations of smaller size as follows.

The set of network weights are expressed in terms of nodal function value as

w[x] =
[
H[x]

]−1
u, (12)

w[y] =
[
H[y]

]−1
u, (13)

and the substitution of (12) and (13) into the system (4)-(6)yields

u,xx(x) = G(x)
[
H[x]

]−1
u, (14)

u,x(x) = H[x](x)
[
H[x]

]−1
u, (15)

u(x) = H[x](x)
[
H[x]

]−1
u, (16)

u,yy(x) = G(x)
[
H[y]

]−1
u, (17)

u,y(x) = H[y](x)
[
H[y]

]−1
u, (18)

u(x) = H[y](x)
[
H[y]

]−1
u, (19)

whereI is the identity matrix. It can be seen from (14)-(19) that thefunction and its derivatives

are all expressed in terms of the function values rather thannetwork weights. Consequently, the

system of equations obtained is normally square and the unknowns to be solved for are the nodal

function values instead of the network weights.

2.2 Moving least-square approximants

The moving least-square (MLS) procedure presented in Belytschko, Lu, and Gu (1994) is briefly

reproduced in this section as follows. The interpolantuh(x) of the functionu(x) is defined in the

domainΩ by

uh(x) =
M

∑
j=1

a j(x)p j(x) ≡ pT(x)a(x), (20)

wherexT = [x,y], pT = [1,x,y] is a linear basis,M = 3 in R
2.
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a(x) is obtained at any pointx by minimizing the following weighted, discreteL2 norm

J =
n

∑
I=1

w(x−xI)[pT(xI )a(x)−uI ]
2, (21)

wheren is the number of points in the neighbourhood ofx for which the weight functionw(x−
xI ) 6= 0, anduI is the nodal value ofu atx = xI .

The minimization ofJ in (21) with respect toa(x) leads to the following linear relation between

a(x) and the vector of local nodal valuesu

A(x)a(x) = B(x)u, (22)

or

a(x) = A−1(x)B(x)u, (23)

whereA(x) andB(x) are defined by

A(x) =
n

∑
I=1

w(x−xI)p(xI )pT(xI ) (24)

B(x) =



w(x−x1)




1

x1

y1



 ,w(x−x2)




1

x2

y2



 , . . . ,w(x−xn)




1

xn

yn







 (25)

uT = [u1,u2, . . . ,un]. (26)

Substitution of (23) into (20) yields

uh(x) =
n

∑
I=1

M

∑
j=1

p j(x)(A−1(x)B(x)) jI uI ≡
n

∑
I=1

ϕI(x)uI , (27)

where the shape functionϕI (x) is defined by

ϕI(x) =
M

∑
j=1

p j(x)(A−1(x)B(x)) jI , (28)
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or in compact form

ϕI(x) = cT(x)w(x−xI )p(xI ), (29)

whereA(x)c(x) = p(x) defines vectorc(x).

c(x) can efficiently be computed by the LU factorization ofA(x) with backward substitution

[Belytschko, Krongauz, Fleming, Organ, and Liu (1996); Nguyen, Rabczuk, Bordas, and Duflot

(2008)] as follows.

LUc(x) = p(x), Uc(x) = L−1p(x), c(x) = U−1L−1p(x). (30)

The partial derivatives ofϕI(x) can be obtained by

ϕI ,i(x) = cT
,i (x)w(x−xI )p(xI )+cT(x)w,i(x−xI )p(xI ), (31)

where(.),i = ∂ (.)
∂xi

and

c,i(x) = A−1
,i (x)p(x)+A−1(x)p,i(x), (32)

with

A,i(x) =
n

∑
I=1

w,i(x−xI)p(xI )pT(xI ). (33)

It is noted that the following circular kernel function [Schilling, Caroll, and Al-Ajlouni (2001)] is

used to compute the present MLS shape function

w(r) =

{
[1+cos(π r

Rs
)]/2rα , r

Rs
≤ 1, α even,

0, r
Rs

> 1,
(34)

whereRs is the radius of the support domain of the weight functionw(r), r = ‖x− xI‖ and‖.‖
denotes the Euclidean norm.
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2.3 Moving IRBFN interpolation

We propose a locally supported IRBFN, constructed by using the partition of unity concept [Me-

lenk and Babuška (1996); Babuška and Melenk (1997)] as follows.

Let the open and bounded domain of interestΩ ⊆ R
d be discretised by a set ofN pointsX

X = {x1,x2, . . . ,xN}, xI ∈ Ω, I = 1,2, . . . ,N, (35)

X is used to define an open cover ofΩ, i.e. {ΩI} such thatΩ ⊆ ⋃N
I=1ΩI and{ΩI} satisfies a

point-wise overlap condition

∀x ∈ Ω ∃k∈ N : card{I |x ∈ ΩI} ≤ k. (36)

We choose a family of compactly supported, non-negative, continuous functionsψI supported on

the closure ofΩI , such that at every pointx we have the following property

N

∑
I=1

ψI (x) = 1, ∀x ∈ Ω, (37)

where{ψI} is called a partition of unity subordinate to the cover{ΩI}.

For every subdomainΩI , a local approximationuI is constructed by using IRBFN supported by

all nodes inΩI as presented in section 2.1, i.e.

uh
I (x) ∈VI , VI = span{H

(1)
I (x),H

(2)
I (x), . . . ,H

(M)
I (x)}, (38)

where{VI} are referred to as the local approximation spaces.

The global approximation ofu(x), uh(x) is obtained via

uh(x) =
N

∑
I=1

ψI (x)uh
I (x), uh(x) ∈V, (39)

whereψI (x) anduh
I (x) are associated with the subdomainΩI , andV is called PU method space

and defined by

V :=
N

∑
I=1

ψIVI . (40)
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In the present work, the partition of unity functionψI is chosen to be identical to the MLS shape

functionϕI in (27), the subdomainΩI is centered atxI as shown in Figure 1.

ReplacingψI with MLS shape functionϕI , (39) can be rewritten as follows.

uh(x) =
N

∑
I=1

ϕI (x)uh
I (x), (41)

and the associated derivatives ofuh(x) are given by

uh
,x(x) =

N

∑
I=1

[
ϕI ,x(x)uh

I (x)+ ϕI (x)uh
I ,x(x)

]
, (42)

uh
,y(x) =

N

∑
I=1

[
ϕI ,y(x)uh

I (x)+ ϕI (x)uh
I ,y(x)

]
, (43)

whereuh
I ,x(x) anduh

I ,y(x), are derived in (15) and (18).

uh(x) and its derivatives can be rewritten in a compact form as

uh(x) =
N

∑
I=1

ϕI (x)uh
I (x) = ΦT(x)u, (44)

uh
,x(x) = ΦT

x (x)u, (45)

uh
,y(x) = ΦT

y (x)u, (46)

whereu = {u1,u2, . . . ,uN}, Φ(x) is the vector of shape functions.

It is noted thatΦI (xJ) = δIJ as shown in Figures 3. Consequently, this MIRBFN method pos-

sesses the Kronecker-δ property which makes it easy to impose the essential boundary conditions.

Owing to the locally supported property, MIRBFN yields symmetric, sparse and banded interpo-

lation matrices as shown in Figure 2. This feature makes the method very efficient in storage and

computation.

2.4 Selection of RBF centers and support radius

In the present MIRBFN method, the selection of local RBF centers{ci}I is very flexible. Gener-

ally, they can be different from the set of local data points{xi}I associated with subdomainΩI .

For example, if a two-dimensional IRBFN is used, the size of the matrices to be invertedH[x] and

H[y] in (12) and (13), respectively, will benI × (mI + p2I ), wherenI is the number of data points,
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mI the number of RBF centers{ci}I and p2I the number of centers used to represent integration

constants in the second derivatives. Therefore, the numberof columns of the matrices will bep2I

larger than the number of rows when{ci}I is the same as{xi}I . To obtain square matrices, we

choose the number of centers to be less than the number of datapoints (mI < nI ) and p2I to be

appropriately small.

On the other hand, the selection of support radius for each subdomainΩI also affects the numerical

results significantly. The larger support radius is, the higher accuracy and convergence rate are.

However, the higher cost of storage and computation, and thedeterioration of the condition number

of the matrices are consequential trade-offs. Hence, to make the method more local and efficient,

smaller values of support radius are preferred in this work.

3 First-order system formulation

For the sake of completeness, the first-order system formulation, which was proposed in a previous

work of the authors [Le, Mai-Duy, Tran-Cong, and Baker (2010)], is reproduced briefly as follows.

It is noticed that in general higher-order differential equations can be transformed into a system of

first-order differential equations by introducing some newdual variables, which is the procedure

followed here. Both primary and dual variables are then independently interpolated and have the

shape functions of the same order. The resultant first-ordersystem of governing equations can be

written as follows.

L u = f, in Ω (47)

Bu = g, on Γ (48)

whereΩ is a bounded domain inRd, d = 1,2,3, Γ the boundary ofΩ, L is a first-order linear

differential operator

L u = L0u+
d

∑
i=1

Li
∂u
∂xi

, (49)

in which uT = [u1,u2, ...,um] is a vector ofm unknown functions (including primary and dual

variables) ofxT = [x1,x2, ...,xd], Li the coefficient matrices which characterize the differential

operatorL , f a given function in the domain,B a boundary algebraic operator, andg a given

function on the boundary.
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Substituting a discrete approximation ofu and its first-order derivatives as given, respectively, in

(41) and (42)-(43) into (47) and (48), and using the collocation method at all the nodes ofΩ and

Γ, one obtains a linear algebraic system as presented below.

Let NΩ denote the number of interior nodes,ND the number of nodes on the Dirichlet bound-

ary, NN the number of nodes on the Neumann boundary,mp the number of primary unknowns

and md the number of dual unknowns associated with a node, the number of nodal unknowns

is generally(NΩ + ND + NN)(mp + md). The governing equation (47) is collocated at all the in-

terior and boundary nodes, yielding(NΩ + ND + NN)(mp + md) equations. The boundary con-

ditions are imposed by collocating (48) at all the boundary nodes, i.e. the obtained system has

(NΩ +ND+NN)(mp+md)+NDkD+NNkN equations, wherekD andkN are the number of equations

from the boundary conditions per node on the Dirichlet and Neumann boundaries, respectively.

The final system is obtained by removingNDkD + NNkN appropriate equations corresponding to

the governing equations collocated at the boundary nodes. Consequently, the number of equations

of the resultant system is equal to the number of nodal unknowns and it can be rewritten in a

compact form as

Au = f̄. (50)

3.1 Two-dimensional Poisson equation

Consider the following two-dimensional Poisson equation

∂ 2φ(x,y)
∂x2 +

∂ 2φ(x,y)
∂y2 = f (x,y) in Ω, (51a)

φ(x,y) = g(x,y) on ΓD, (51b)

∂φ(x,y)
∂n

= h(x,y) on ΓN, (51c)

whereΩ is a bounded domain inR2, ΓD andΓN the boundary ofΩ on which the Dirichlet and

Neumann boundary conditions are imposed, respectively,n = (nx,ny)
T the outward unit normal

to ΓN, and f , g andh given functions onΩ, ΓD andΓN, respectively.
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A first-order formulation is obtained by introducing the dual variables in (51) as follows.

∂φ(x,y)
∂x

−ξ (x,y) = 0 in Ω and on ΓD

⋃
ΓN, (52a)

∂φ(x,y)
∂y

−η(x,y) = 0 in Ω and on ΓD

⋃
ΓN, (52b)

∂ξ (x,y)
∂x

+
∂η(x,y)

∂y
= f (x,y) in Ω and on ΓD

⋃
ΓN, (52c)

φ(x,y) = g(x,y) on ΓD, (52d)

nxξ +nyη = h(x,y) on ΓN. (52e)

3.2 Linear elasticity problems

Consider the following two-dimensional problem on a domainΩ bounded byΓ = Γu
⋃

Γt

∇ ·σ = b in Ω, (53a)

u = ū on Γu, (53b)

σ ·n = t̄ on Γt , (53c)

in which σ is the stress tensor, which corresponds to the displacementfield u andb is the body

force,n the outward unit normal toΓt . The superposed bar denotes prescribed value on the bound-

ary.

The governing equations (53) are closed when a constitutiverelation is specified forσ . Here the

linear Hooke’s law is used to describe theσ −u relation. By choosing displacementu as primary

variable and stressσ as dual variable, the governing equations remain first-order, which are written
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for plane stress case as follows.

∂u
∂x

− 1
E

σx +
µ
E

σy = 0, (54a)

∂v
∂y

+
µ
E

σx−
1
E

σy = 0, (54b)

∂u
∂y

+
∂v
∂x

− 2(1+ µ)

E
τxy = 0, (54c)

∂σx

∂x
+

∂τxy

∂y
= bx, (54d)

∂τxy

∂x
+

∂σy

∂y
= by, (54e)

u = ū on Γu, (54f)

σ ·n = t̄ on Γt , (54g)

whereµ is the Poisson ratio andE the Young’s modulus. By introducing the dimensionless stress

tensors= σ/E, the above first-order system can be rewritten as follows.

∂u
∂x

−sx + µsy = 0, (55a)

∂v
∂y

+ µsx−sy = 0, (55b)

∂u
∂y

+
∂v
∂x

−2(1+ µ)sxy = 0, (55c)

∂sx

∂x
+

∂sxy

∂y
= bx, (55d)

∂sxy

∂x
+

∂sy

∂y
= by, (55e)

u = ū on Γu, (55f)

s·n = t̄ on Γt . (55g)
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4 Numerical examples

For an error estimation and convergence study, the discreterelativeL2 norm of errors of primary

and dual variables are defined as

Lφ
2 =

√
∑N

i=1

(
φ (i)

e −φ (i)
)2

√
∑N

i=1

(
φ (i)

e

)2
, (56)

Lξη
2 =

√

∑N
i=1

[(
ξ (i)

e −ξ (i)
)2

+
(

η (i)
e −η (i)

)2
]

√

∑N
i=1

[(
ξ (i)

e

)2
+

(
η (i)

e

)2
] , (57)

for Poisson equation and

Lu
2 =

√
∑N

i=1

(
(ux)

(i)
e − (ux)(i)

)2(
(uy)

(i)
e − (uy)(i)

)2

√

∑N
i=1

[(
(ux)

(i)
e

)2
+

(
(uy)

(i)
e

)2
] , (58)

Lσ
2 =

√

∑N
i=1

[(
(sx)

(i)
e −s(i)

x

)2
+

(
(sy)

(i)
e −s(i)

y

)2
+

(
(sxy)

(i)
e −s(i)

xy

)2
]

√

∑N
i=1

[(
(sx)

(i)
e

)2
+

(
(sy)

(i)
e

)2
+

(
(sxy)

(i)
e

)2
] , (59)

for elasticity problems, whereN is the number of unknown nodal values and the subscript “e"

denotes the exact solution. The convergence order of the solution with respect to the refinement

of spatial discretization is assumed to be in the form of

L2(h) ≈ ζhλ = O(hλ ), (60)

whereh is the maximum nodal spacing,ζ andλ are the parameters of the exponential model,

which are found by general linear least square formula in this work.

It is noted that the CPU time in the following sections is associated with a computer which has 8.0
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GB of RAM and two Intel(R) Xeon(R) CPUs of 3.0 GHz each. The code is written in MATLABr

language.

4.1 Poisson equation

4.1.1 Poisson equation in a regular domain

Consider the following Poisson equation

∂ 2φ(x,y)
∂x2 +

∂ 2φ(x,y)
∂y2 = −2π2cos(πx)cos(πy), (61)

defined inΩ = [0,1]× [0,1], subjected to the Dirichlet boundary condition

φ(0,y) = cos(πy), on x = 0, (62)

and the following Neumann boundary conditions

∂φ(1,y)
∂x

= 0, on x = 1, (63a)

∂φ(x,0)

∂y
= 0, on y = 0, (63b)

∂φ(x,1)

∂y
= 0, on y = 1. (63c)

(63d)

The corresponding exact solution is given by

φ(x,y) = cos(πx)cos(πy). (64)

Two discretisations are considered for this problem: uniform and nonuniform distributions of

nodes/collocation points (CPs) as shown in Figures 4 and 8, respectively. For both cases, the

radius of support domains is set atRs
h = 2.1, whereh is the maximum spacing between two nearest

nodes inx or y direction. The maximum number of uniformly distributed RBFcentersmI in each

subdomain is 5 as shown in Figure 4. The numbers of centers to represent the integration constants

p1I and p2I are 3 and 6, respectively. The values ofβ in (8) for both cases are listed in Tables 1

and 3.
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Table 1: Poisson equation in a regular domain: uniform discretisations with MIRBFN

No. points Lφ
2 Lξη

2 cond(A) β Rs
h

CPU time
second

3×3 0.4415 1.1413 51.7250 12 2.1 0.15
7×7 0.0252 0.0219 512.8116 12 2.1 0.30

11×11 0.0036 0.0041 813.8110 12 2.1 0.59
21×21 4.4864e-4 5.5402e-4 2.2514e3 12 2.1 2.07
25×25 2.5203e-4 3.1671e-4 2.9034e3 12 2.1 3.07
31×31 1.2419e-4 1.5922e-4 4.1964e3 12 2.1 5.13
41×41 5.0132e-5 6.5620e-5 6.1935e3 12 2.1 10.59
61×61 1.4217e-5 1.9006e-5 1.5362e4 12 2.1 35.84
81×81 5.9951e-6 8.0377e-6 3.5862e4 12 2.1 90.0
91×91 4.2892e-6 5.6966e-6 5.2312e4 12 2.1 136.40

101×101 3.2363e-6 4.2199e-6 7.4923e4 12 2.1 197.11
121×121 2.1324e-6 2.6352e-6 9.037e4 12 2.1 374.7

O(h3.32) O(h3.38)

Table 2: Poisson equation in a regular domain: uniform discretisations with global IRBFN

No. points Lφ
2 Lξη

2 cond(A) β CPU time
second

7×7 0.0245 0.0273 1.6043e4 1 0.161
11× 11 0.0038 0.0048 2.5617e4 1 0.179
21× 21 7.4562e-5 1.5070e-4 5.8907e4 1 2.462
31× 31 1.2924e-5 2.3775e-5 1.2225e5 1 30.064
41× 41 4.3906e-6 7.9095e-6 2.0292e5 1 149.319
51× 51 2.1210e-6 3.7691e-6 3.0404e5 1 535.049
61× 61 1.3851e-6 2.1592e-6 7.0649e4 1 1674.980

O(h4.71) O(h4.52)

Table 3: Poisson equation in a regular domain: unstructurednodes with MIRBFN

No. points Lφ
2 Lξη

2 cond(A) β Rs
h h CPU time

second
88 0.2833 0.1438 1.6887e5 10 2.1 0.1250 0.73
108 0.0402 0.0613 4.5345e5 10 2.1 0.1200 0.80
327 0.0077 0.0057 6.2091e7 10 2.1 0.0685 2.23
691 0.0018 0.0019 4.5704e8 10 2.1 0.0507 5.65
1723 7.2107e-4 5.7631e-4 1.3461e8 10 2.1 0.0308 22.12
2248 3.3681e-4 2.5718e-4 1.2765e8 12 2.1 0.0272 35.58

O(h3.78) O(h3.82)
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The influences of local support radiusRs
h andβ on the accuracy of the solution are numerically

studied in this example. Figure 5 shows the relative error norms (Lφ
2 andLξη

2 ) obtained by the

present MIRBFN method with different values ofRs
h while β is fixed. On the other hand, the

results with different values ofβ and fixed local support radius are displayed in Figure 6. It can

be seen that the values around 2 forRs
h are not only able to capture well the solution but also keep

the matrix small, as long asβ is large enough.

To study the convergence of the method, a number of discretization refinements and the relative

L2 error norms for function valuesLφ
2 and its derivativesLξη

2 are reported in Tables 1 and 3 for

uniform and unstructured cases, respectively. As shown in these tables and Figures 7 and 9, very

good accuracy and stability are obtained. The convergence rates forφ(x,y) and (ξ (x,y),η(x,y))

areO(h3.32) andO(h3.38), respectively, for uniform distribution, and,O(h3.78) andO(h3.82), re-

spectively, for unstructured nodes. It can be seen that the condition numbers in the case of uniform

distribution are relatively smaller than those in the case of random distribution (Table 3) since there

is a relatively larger number of nodes in each subdomain in the case of random distribution.

The results in Tables 1-2 and Figure 7 indicate that the global IRBFN gives higher orders of

convergence. Nonetheless, the condition numbers by the MIRBFN method are slightly better in

comparison with those by the global IRBFN method, as listed in Tables 1 and 2, althoughβ is set

quite large for the MIRBFN method. Furthermore, the MIRBFN method is much more efficient

than the global IRBFN method as can be seen in Figure 10.

4.1.2 Poisson equation in an irregular domain

The Poisson equation in example 4.1.1 is examined in a complicated irregular domain as shown

in Figure 11. The Dirichlet boundary conditions on the upperedge and the left edge are given as

below

φ(0,y) = cos(πy), on x = 0, (65a)

φ(x,0) = cos(πx), on y = 0. (65b)
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Table 4: Poisson equation in an irregular domain: structured dicerizations with MIRBFN

No. points Lφ
2 Lξη

2 cond(A) β Rs
h h CPU time

second
51 3.4762e-1 5.4441e-1 3.1001e5 9 4.1 0.25 0.83
87 2.8487e-2 5.2716e-2 1.9944e6 9 4.1 0.181 1.31
266 1.4620e-3 3.8399e-3 2.0634e7 9 4.1 0.0095 3.86
595 5.0421e-4 8.7207e-4 6.4519e8 9 4.1 0.0065 11.55
1029 1.7279e-4 4.0659e-4 6.2724e8 9 4.1 0.0048 23.05
1574 8.5957e-5 2.4792e-4 4.1291e8 9 4.1 0.039 43.17
2266 3.6035e-5 8.0371e-5 6.5102e9 9 4.1 0.039 84.48
3413 3.0210e-5 5.0281e-5 1.9016e8 9 4.1 0.033 172.53

O(h4.06) O(h3.96)

Table 5: Poisson equation in an irregular domain: unstructured discretisation with MIRBFN

No. points Lφ
2 Lξη

2 cond(A) β Rs
h h CPU time

second
51 1.9465e-1 1.9142e-1 7.5387e4 14 3.1 2.7337e-1 4.775
338 2.4059e-3 6.7564e-3 4.4212e6 14 3.1 1.1182e-1 22.017
1046 7.1240e-4 1.7302e-3 9.0038e6 12 3.1 5.9731e-2 89.633
1486 4.2708e-4 8.4299e-4 7.5913e7 12 3.1 5.3098e-2 203.883
1711 1.4251e-4 2.1264e-4 1.4224e8 8 3.1 4.8722e-2

O(h3.80) O(h3.50)

The Neumann boundary conditions on the inner arc and the outer arc are, respectively

nx
∂φ(x,y)

∂x
+ny

∂φ(x,y)
∂y

= q(x,y), on x2 +y2 = 1, (66a)

nx
∂φ(x,y)

∂x
+ny

∂φ(x,y)
∂y

= q(x,y), on x2 +y2 = 4, (66b)

whereq(x,y) = −nxπ sin(πx)cos(πy)−nyπ cos(πx)sin(πy).

The complexity is increased with the Neumann boundary conditions on two curved boundaries.

The structured domain discretisation is described as follows. A uniformed grid covering the do-

main is generated, then the points outside the domain and on the curves are removed. Finally, the

points on the inner and outer arcs are generated uniformly.

In the case of structured discretisation (Figure 11), the local support radiusRs
h is set at 4.1,β is 9,

the maximum number of centers in each subdomain is 13. The relativeL2 error normsLφ
2 andLξη

2

associated with the structured node discretizations are presented in Table 4 and in Figure 13. It
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can be observed that high orders of convergence are obtainedwith a large support radius, namely

O(h4.06) andO(h3.96) for the function and its derivatives, respectively. However, the condition

numbers are much larger than those in the previous example. For unstructured node distributions

(Figure 12), the corresponding parameters and obtained results are presented in Table 5 and Figure

14. The results indicate that the solution by the proposed method apparently converges at the rates

of (O3.80) and (O3.50), usingLφ
2 andLξη

2 , respectively.

4.2 Linear elasticity problems

4.2.1 Cantilever Beam

A cantilever beam subjected to a parabolic shear load at the end x = 0 as shown in Figure 15 is

considered in this example.

Table 6: Cantilever beam: uniform discretizations with MIRBFN (µ = 0.3).

No. points Lu
2 Lσ

2 cond(A) β Rs
h h CPU time

second
20×5 1.9598e-1 3.3652e-1 4.1516e6 8 2.1 0.240 0.60
36×9 1.4986e-2 2.5489e-2 1.4193e8 10 2.1 0.133 1.84
68×17 1.2182e-3 2.1326e-3 3.0383e6 14 2.1 0.070 6.98
124×31 5.8434e-4 5.7764e-4 4.0336e6 14 2.1 0.039 43.78
164×41 2.2892e-4 2.3983e-4 8.3453e6 14 2.1 0.029 109.42
204×51 1.1069e-4 1.2366e-4 14 2.1 0.024 230.01
244×61 5.9462e-5 7.2455e-5 14 2.1 0.020 438.98

O(h3.04) O(h3.26)

The following parameters are used for the problem:L = 4.8 andD = 1.2. The beam has a unit

thickness. Young’s modulus isE = 3× 106 , Poisson’s ratioµ = 0.3 (also µ = 0.5) and the

integrated parabolic shear forceP = 100. Plane stress condition is assumed and there is no body

force.

The exact solution to this problem was given by Timoshenko and Goodier (1970) as

σxx(x,y) =
−Pxy

I
, (67a)

σyy(x,y) = 0, (67b)

τxy(x,y) =
−P
2I

(
D2

4
−y2

)
. (67c)
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Table 7: Cantilever beam: uniform discretizations with MIRBFN (µ = 0.5).

No. points Lu
2 Lσ

2 cond(A) β Rs
h h CPU time

second
20×5 1.0069e-1 1.9291e-1 2.3672e7 8 2.1 0.240 0.60
36×9 2.0936e-2 5.3772e-2 4.2607e7 10 2.1 0.133 1.81
68×17 7.8576e-4 1.6020e-3 2.1090e6 14 2.1 0.070 6.77
124×31 4.3029e-4 4.1872e-4 2.8678e6 14 2.1 0.039 41.12
164×41 1.6292e-4 1.6988e-4 5.7418e6 14 2.1 0.029 106.48
204×51 7.7595e-5 8.7489e-5 14 2.1 0.024 235.5
244×61 4.1951e-5 5.2041e-5 14 2.1 0.020 475.7

O(h3.07) O(h3.39)

Table 8: Cantilever beam: uniform discretizations with global IRBFN (µ = 0.3).

No. points Lu
2 Lσ

2 cond(A) β h CPU time
second

20× 5 4.5356e-2 2.5571e-1 1.7953e6 1 0.2400 0.408
36× 9 5.2822e-3 4.0279e-2 5.2505e6 1 0.1333 2.068
68× 17 1.5706e-3 2.6022e-3 6.5476e7 1 0.0706 68.088
124× 31 3.8901e-4 4.3698e-4 3.1351e8 1 0.0387 2351.78
164× 41 2.1295e-4 2.2075e-4 1 0.0293 51201.338

O(h3.06) O(h3.39)

Table 9: Cantilever beam: unstructured nodes with MIRBFN (µ = 0.3).

No. points Lu
2 Lσ

2 cond(A) β Rs
h h CPU time

second
43 6.5385e-1 6.9895e-1 2.6549e6 10 2.1 4.6860e-1 0.715
170 2.7461e-2 5.5154e-2 3.9549e7 10 2.1 2.4000e-1 2.079
616 7.2999e-3 3.1141e-2 7.4558e7 10 2.1 1.2507e-1 7.888
1112 4.9025e-4 3.0318e-3 1.0345e9 10 2.1 1.0454e-1 20.190

O(h4.21) O(h3.07)

Table 10: Cantilever beam: structured FEM mesh with four-node quadrilateral element (Q4) (µ =
0.3).

No. elements Lu
2 h CPU time

second
16× 4 1.3991e-1 0.40 0.1806
32× 8 3.8516e-2 0.1714 0.4395
40× 10 2.5191e-2 0.1333 1.7111
80× 20 6.9048e-3 0.0631 8.4087
160× 40 1.6994e-3 0.0307 21.5620
240× 60 9.1261e-4 0.0203 47.9957
320× 80 6.1308e-4 0.0152 307.579

O(h1.84)
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The displacements are given by

ux = −Px2y
2EI

− µPy3

6EI
+

Py3

6IG
+y

(
PL2

2EI
− PD2

8IG

)
, (68)

uy =
µPxy2

2EI
+

Px3

6EI
− PL2x

2EI
+

PL3

3EI
, (69)

whereI = D3/12 is the moment of inertia of the cross section of the beam,G = E/(2(1+ µ)) the

modulus of elasticity in shear. The exact displacement (68)and (69) are imposed onx = L while

the shear load is applied onx = 0 and the upper and lower edges are traction free.

Both regular and irregular distributions of nodes used for this problem are displayed in Figures 16

and 18, respectively. The local support radius isRs
h = 2.1. The values ofβ are listed in Tables 6,

7 and 9. The scheme for selection of RBF centers for both regular and irregular node distributions

is similar to that in example 4.1.1. In addition, the effect of incompressibility, i.e.µ = 0.5, is also

studied here.

Figure 19 shows the shear stresssxy for µ = 0.3 atx= 2.4686 obtained by the present method with

36×9 nodes. A very good agreement between the obtained result and the exact solution can be

observed in this figure.

To study the convergence of the method, a number of differentuniform node distributions is used

for computation as presented in the Tables 6 and 7. Forµ = 0.3, the relativeL2 error norms for

displacement and stress are shown in Table 6 and Figure 20, the convergence rates of displacement

and stress areO(h3.04) andO(h3.26), respectively. In the case of incompressible materials (µ =

0.5), the relativeL2 error norms for displacement and stress are presented in Table 7 and Figure 20.

Very good orders of convergence are achieved, namelyO(h3.07) andO(h3.39) for displacement and

stress, respectively. Furthermore, the results shown in Figure 20 indicate that the present method

does not suffer from any volumetric locking.

The behaviour of the MIRBFN method in the case of irregular discretisation is also examined with

four nodal configurations as shown in Figure 18. The obtainedresults with the MIRBFN method

andµ = 0.3 are shown in Table 9 and Figure 21. The orders of convergenceof the present method

areO(h4.21) andO(h3.07) for displacement and stress, respectively.

In comparison with the global IRBFN method, the MIRBFN method achieves similar accuracy

and convergence rates as can be observed in Tables 6 and 8, andin Figure 20 as well. The present

method is apparently much more efficient than the global IRBFN method (Figure 22).
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The obtained results are also compared with those by FEM using four-node quadrilateral element

(Table 10). Figure 20 shows that both accuracy and order of convergence of the MIRBFN method

are superior to those of FEM, e.g. usingLu
2, the convergence rates areO(h3.04) andO(h1.84) for

the MIRBFN method and the FEM, respectively. The computing cost of the MIRBFN method

is higher than that of the FEM for the same number of nodes. However, the MIRBFN method is

more efficient than the FEM for the same accuracy, for example, it takes the MIRBFN method 6.98

seconds forLu
2 = 1.2182×10−3 while the FEM needs 21.56 seconds to achieveLu

2 = 1.6994×10−3

as exhibited in Figure 22, Table 6 and Table 10.

4.2.2 Infinite plate with a circular hole

In this example, an infinite plate with a circular hole subjected to unidirectional tensile load of 1.0

in thex direction is analyzed as shown in Figure 23. The radius of hole is taken as 1 unit. Owing

to symmetry, only the upper right quadrant[0,3]× [0,3] of the plate is modeled as shown in Figure

24.

In this problem, plane stress conditions are assumed with elastic isotropic propertiesE = 103,

µ = 0.3 (alsoµ = 0.5). The exact solution to this problem was given by Timoshenko and Goodier

(1970) as follows

σx(x,y) = σ
[
1− a2

r2

[
3
2

cos(2θ)+cos(4θ)

]
+

3a4

2r4 cos(4θ)

]
, (70a)

σy(x,y) = −σ
[

a2

r2

[
1
2

cos(2θ)−cos(4θ)

]
+

3a4

2r4 cos(4θ)

]
, (70b)

τxy(x,y) = −σ
[

a2

r2

[
1
2

sin(2θ)+sin(4θ)

]
− 3a4

2r4 sin(4θ)

]
, (70c)

where(r,θ) are the polar coordinates,a the radius of the hole.

The corresponding displacements are given by

ux(x,y) = σ
(1+ µ)

E

[
1

1+ µ
r cos(θ)+

2
1+ µ

a2

r
cos(θ)+

1
2

a2

r
cos(3θ)− 1

2
a4

r3 cos(3θ)

]
(71a)

uy(x,y) = σ
(1+ µ)

E

[ −µ
1+ µ

r sin(θ)+
1−µ
1+ µ

a2

r
sin(θ)+

1
2

a2

r
sin(3θ)− 1

2
a4

r3 sin(3θ)

]
(71b)

The boundary conditions of the problem are as follows. The traction boundary conditions cor-
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Table 11: Infinite plate with a circular hole: structured discretisation with MIRBFN (µ = 0.3).

No. points Lu
2 Lσ

2 cond(A) β Rs
h h CPU time

second
50 3.0520e-1 2.6147e-1 6.7532e4 4 2.1 0.50 0.54
119 9.2110e-2 8.1240e-2 8.3533e6 4 2.1 0.30 1.03
409 1.0837e-2 1.2229e-2 6.1059e4 4 2.1 0.15 3.25
1129 8.7872e-4 2.6677e-3 2.0085e5 4 2.1 0.088 10.56
3085 1.8647e-4 4.2703e-4 4.4334e5 4 2.1 0.052 44.36

O(h3.61) O(h3.02)

Table 12: Infinite plate with a circular hole: structured discretisation with MIRBFN (µ = 0.5).

No. points Lu
2 Lσ

2 cond(A) β Rs
h h CPU time

second
50 7.8208e-1 5.7769e-1 1.1433e5 4 2.1 0.50 0.54
119 1.0186e-1 8.2598e-2 5.0328e6 4 2.1 0.30 1.01
409 1.3343e-2 1.4314e-2 5.5146e4 4 2.1 0.15 3.20
1129 9.5928e-4 2.7873e-3 2.0372e5 4 2.1 0.088 10.48
3085 4.0203e-4 4.6366e-4 6.0161e5 4 2.1 0.052 43.06

O(h3.68) O(h3.27)

Table 13: Infinite plate with a circular hole: structured discretisation with global IRBFN (µ = 0.3).

No. points Lu
2 Lσ

2 cond(A) β h CPU time
second

119 1.3243e-1 1.1085e-1 7.0056e5 1 0.2727 0.413
409 2.3900e-2 1.5925e-2 1.4568e6 1 0.1429 2.222
886 4.8966e-3 3.3027e-3 3.3118e6 1 0.0968 21.323
3085 2.5075e-4 7.2314e-4 4.3415e6 1 0.0517 977.988

O(h3.78) O(h3.08)

responding to the exact solution for the infinite plate are applied on the top and right edges, the

symmetric conditions are applied on the left and bottom edges, and the curved edge is traction

free.

To solve the problem, the computational domain is discretized in the same manner as in example

4.1.2. The support radius isRs
h = 2.1, the value ofβ varies between 3 and 4 as in Tables 11, 12

and 14, and the RBF centers are identical to the nodes in each subdomain.

A comparison between the stresssx alongx = 0 obtained by the MIRBFN with a structured dis-

cretisation of 409 nodes and the exact solution are presented in Figure 26. The result indicates that

the solution obtained by the proposed method agrees well with the exact one.
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Table 14: Infinite plate with a circular hole: unstructured node distribution with MIRBFN (µ =
0.3).

No. points Lu
2 Lσ

2 cond(A) β Rs
h h CPU time

second
68 7.5923e-1 8.0880e-1 4.9714e4 4 2.1 5.0000e-1 1.383
156 2.3616e-1 3.4100e-1 2.9975e5 4 2.1 3.0888e-1 2.911
479 1.0531e-2 4.0582e-2 2.7228e6 4 2.1 1.6343e-1 8.729
1024 5.0684e-3 2.2821e-2 6.2775e6 3 2.1 1.1346e-1 23.620
2439 9.9303e-4 8.2974e-3 1.2450e8 3 2.1 7.5139e-2 81.186

O(h3.60) O(h2.50)

The convergence of the present method in the case of structured node distribution (Figure 24)

is reported in Table 11 and Figure 27 forµ = 0.3, and in Table 12 and Figure 27 for the case

of incompressible materials. The present method appears toconverge at the rates ofO(h3.61) for

displacement andO(h3.02) for stress in the case ofµ = 0.3. In the case of incompressible materials,

the orders of convergence areO(h3.68) andO(h3.27) for displacement and stress, respectively.

The performance of the MIRBFN method is also tested with irregular node distributions as shown

in Figure 25. The obtained results are presented in Table 14 and Figure 28, which show that the

convergence rates areO(h3.60) andO(h2.50) for displacement and stress, respectively.

Again, the MIRBFN method achieves similar accuracy and convergence rates in comparison with

those of the global IRBFN method as shown in Table 11 and 13, and in Figure 27. Clearly, the

efficiency of the present method is superior to that of the global IRBFN (Figure 29).

4.2.3 Mode I crack problem

Consider an infinite plate containing a straight crack of length 2a and loaded by a remote uniform

stress fieldσ as shown in Figure 30. Along ABCD the closed form solution in terms of polar

coordinates in a reference frame(r,θ) centered at the crack tip is given by

σx =
KI√

r
cos

θ
2

(
1−sin

θ
2

sin3
θ
2

)
, (72a)

σy =
KI√

r
cos

θ
2

(
1+sin

θ
2

sin3
θ
2

)
, (72b)

τy =
KI√

r
sin

θ
2

cos
θ
2

cos3
θ
2

, (72c)



26

Table 15: Center crack problem: uniform discretisations with MIRBFN (µ = 0.3).

No. points Lu
2 Lσ

2 cond(A) β Rs
h h CPU time

second
10× 10 0.2017 1.3794 2.7726e5 0.01 1.1 1.0 0.53
14× 14 0.13882 0.6583 6.7641e5 0.01 1.1 0.714 0.94
16×16 0.0909 0.5043 4.7002e5 0.01 1.1 0.625 1.22
20× 20 0.0374 0.2327 5.1297e5 0.01 1.1 0.50 1.85
24×24 0.0269 0.1887 1.6910e6 0.01 1.1 0.416 2.68

O(h2.47) O(h2.38)

for stress and

ux =
2(1+ µ)√

2π
KI

E

√
r cos

θ
2

(
2−2µ −cos2

θ
2

)
, (73a)

uy =
2(1+ µ)√

2π
KI

E

√
r sin

θ
2

(
2−2µ −cos2

θ
2

)
, (73b)

for displacement, whereKI = σ
√

πa is the stress intensity factor,µ Poisson’s ratio andE Young

modulus, ABCD a square of 10×10 mm2, a = 100mm, E = 107N/mm2, µ = 0.3 (alsoµ = 0.5),

σ = 104N/mm2. Plane strain condition is assumed and the body force is zero.

The computational domain ABCD is shown in Figure 30. Owing tosymmetry, only upper half of

ABCD, namely CDEFG as shown in Figure 31, is analyzed. The segment of crack denoted by EF

has a length ofb = 5 mm. The boundary condition of the problem is as follows. The traction free

boundary condition is applied on the crack while the displacement field given in (73) is imposed

on the remaining boundaries.

It is known that stress tends to infinity whenr tends to 0. Thus, to alleviate the oscillation due

to the effect of singularity, the support radiusRs andβ are selected as small as possible. For this

example,Rs
h and β are set at 1.1 and 0.01, respectively, and the RBF centers arechosen to be

identical to the nodes in each subdomain.

The performance of the present method in this singular problem is examined by employing a

number of uniform data point distributions as displayed in the Tables 15 and 16. The results

with 24×24 nodes (µ = 0.3) are plotted in Figures 32-34 as follows. Figures 32 and 33 exhibit

displacementux anduy, respectively, in comparison with those of an analytical solution. Figures 34

(a) and (b) depict stresssx andsy by MIRBFN method, respectively, and the corresponding exact

solutions. Some oscillations can be observed in these figures due to singularity of stress withC0
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Table 16: Center crack problem: uniform discretizations with MIRBFN (µ = 0.5).

No. points Lu
2 Lσ

2 cond(A) β Rs
h h CPU time

second
10× 10 0.1087 0.9622 1.4859e5 0.01 1.1 1.0 0.53
14× 14 0.1064 0.6401 2.9922e5 0.01 1.1 0.714 0.94
16×16 0.0477 0.3233 2.8071e5 0.01 1.1 0.625 1.22
20× 20 0.0366 0.2627 5.3818e5 0.01 1.1 0.50 1.85
24×24 0.0379 0.2613 4.9657e5 0.01 1.1 0.416 2.73

O(h1.44) O(h1.64)

continuity of displacement andC∞ property of IRBFNs. This oscillation is known as the Gibbs

phenomenon in RBF-based methods [Jung (2007)] where numerical oscillations occur around

a jump discontinuity because of high order approximation byRBF. Nevertheless, the obtained

results are in good agreement with the analytical ones and the present MIRBFN method is able to

capture highly steep gradients.

The convergence of the method can be seen in Tables 15 and 16, and in Figure 35. In the case of

µ = 0.3, high convergence rates ofO(h2.47) andO(h2.38) for displacement and stress, respectively,

are obtained. It is apparent that accuracy of the stress fieldis considerably reduced in compari-

son with that of displacement due to the presence of singularity (Figure 35,). For incompressible

materials, the convergence rates reduce toO(h1.44) andO(h1.64) for displacement and stress, re-

spectively.

5 Concluding remarks

In this work, we propose a locally supported RBF interpolation method, namely MIRBFN, with

the main features as follows.

• The proposed method is a locally supported approximation method. As a result, the resultant

interpolation matrices are sparse and banded, resulting inimproved efficiency in comparison

with those of standard RBF methods.

• The shape functions of the MIRBFN method possesses the Kronecker-δ property that facil-

itates the imposition of the essential boundary conditions.

• The present method offers high orders of convergence and isapplicable to scattered node

distribution, arbitrary domain and highly steep gradient problems.
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Moreover, the proposed interpolation method is implemented in the collocation of a first-order sys-

tem formulation resulting in an integration-free meshlessmethod which enjoys high convergence

rate and very good accuracy.
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Figure 1: Schematic representation of a moving IRBFN:Ω is the domain of interest which is
subdivided intoN overlapping subdomainsΩI centered atxI .
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Figure 2: Moving IRBFN yields symmetric, sparse and banded interpolation matrices.
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Figure 3: Example of MIRBFN shape functions: (a)ΦI (x) in one dimension and (b)ΦI (x,y) in
two dimensions.
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Figure 4: Poisson equation in a regular domain: discretisation with uniform distribution of (a)
11×11 nodes, (b) 21×21 nodes. The small circles are RBF centers and the big one is subdomain
ΩI .
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Figure 8: Poisson equation in a regular domain: discretisation with unstructured distribution of (a)
327 nodes, (b) 691 nodes, (c) 1723 nodes and (d) 2248 nodes.
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Figure 10: Poisson equation in a regular domain with uniformdistribution of nodes: CPU times
of MIRBFN method versus that of global IRBFN method.
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Figure 11: Poisson equation in an irregular domain: structured discretisation with 266 nodes.



39

51 points 338 points

(a) (b)
1046 points 1711 points

(c) (d)
Figure 12: Poisson equation in an irregular domain: discretisation with unstructured distribution
of (a) 51 nodes, (b) 338 nodes, (c) 1046 nodes and (d) 1711 nodes.
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Figure 15: Cantilever beam: a mathematical model.

Figure 16: Cantilever beam: discretisation with 20×5 nodes.

Figure 17: Cantilever beam: a FEM mesh with 8×32 Q4 elements.
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Figure 18: Cantilever beam: discretisation with unstructured distribution of (a) 43 nodes, (b) 170
nodes, (c) 616 nodes, and (d) 1112 nodes.
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Figure 20: Cantilever beam:L2 relative error norms for displacement and stress forµ = 0.3 and
µ = 0.5, with associated convergence rates.
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IRBFN method.
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Figure 23: Infinite plate with a circular hole.

Figure 24: Infinite plate with a circular hole: computational domain with 119 nodes.
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Figure 25: Infinite plate with a circular hole: discretisation with unstructured distribution of (a) 68
nodes, (b) 156 nodes, (c) 1024 nodes, and (d) 2439 nodes.
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Figure 26: Infinite plate with a circular hole:sx alongx = 0 with 409 nodes (µ = 0.3).
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Figure 27: Infinite plate with a circular hole:L2 relative error norms for displacement and stress
for µ = 0.3 andµ = 0.5. Convergence rates are also shown.
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Figure 28: Infinite plate with a circular hole:L2 relative error norms for displacement and stress
for µ = 0.3 with unstructured nodes. Convergence rates are also shown.
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IRBFN method.

Figure 30: Infinite cracked plate under remote tension.
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Figure 31: Infinite cracked plate: analyzed portion.
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Figure 32: Infinite cracked plate:ux obtained by (a) exact solution and (b) MIRBFN method with
24×24 nodes (µ = 0.3).
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Figure 33: Infinite cracked plate:uy obtained by (a) exact solution and (b) MIRBFN method with
24×24 nodes (µ = 0.3).
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Figure 34: Infinite cracked plate - stress ahead of the crack-tip (θ = 0, r > 0): (a) sx and (b)sy

obtained by MIRBFN method and exact solutions with 24×24 nodes (µ = 0.3).
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Figure 35: Infinite cracked plate:L2 relative error norms for displacement and stress, and associ-
ated convergence rates forµ = 0.3 andµ = 0.5.




