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Abstract: A technique for numerical analysis of the dynamics of the ring-spinning balloon based on 
the Radial Basis Function Networks (RBFNs) is presented in this paper. This method uses a 
“universal approximator” based on neural network methodology to solve the differential governing 
equations which are derived from the conditions of the dynamic equilibrium of the yarn to 
determine the shape of balloon yarn. The method needs only a coarse finite collocation points 
without any finite element-type discretisation of the domain and its boundary for numerical 
solution of the governing differential equations. This paper will report a first assessment of the 
validity and efficiency of the present mesh-less method in predicting the balloon shape across a 
wide range of spinning conditions. 
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1. Introduction 

The theory of ring spinning has undergone development and refinement for several decades 
(Hannah, 1952, 1955; Mack, 1953; De Barr, 1958; Padfield, 1958; Kothari and Leaf, 1979; Batra et 
al., 1989a,b; Fraser, 1993; Fraser and Stump, 1998) with the modelling and analysis of the yarn 
balloon of special interest. The yarn balloon is generated by the rotation of the yarn loop from the 
guide eye and the traveller around a fixed axis of bobbin (Figure 1 and 5) and the dynamics of the 
whirling yarn has been studied extensively: Mack (1953) and Fraser (1993) studied theoretically the 
spinning balloon curve; Turteltaub and Bejar (1976) focussed on the stability of the yarn balloon; 
Batra et al. (1989a,b) gave the stationary numerical solutions of yarn balloon with and without air 
drag forces using a non-dimensional formulation. Fraser and his co-workers (Clark et al., 1998; 
Stump and Fraser, 1996) considered the dynamic response and the transient solutions of the 
spinning yarn balloon.  

The theoretical solutions describing the mechanical behaviour of the ring-spinning balloon are 
based on the nonlinear differential governing equations integrated with relevant boundary 
conditions and many techniques have been applied in dealing with this problem. In addition to the 
analytical method that introduces many simplifying hypotheses, Batra et al. (1989a,b) have 
proposed using the Runge-Kutta method; Lisini et al., (1981, 1994) have employed the finite 
element method (they called it the Finite Segment technique) to approximate the balloon shape and 
He (2004) has applied the homotopy perturbation method to solve the ring spinning equation.  

Recently, neural network (NN) based methods have been employed to solve various problems in 
different disciplines such as physics, computer science, especially engineering (Kansa, 1990a,b; 
Zerroukat et al., 1998 and Tran-Canh and Tran-Cong, 2002a,b, 2004). In textile engineering, neural 
networks have been employed to predict the properties of textile products: (Pynckels et al., 1997; 
Fan and Hunter, 1998; Ramesh et al., 1995; Cheng and Adams, 1995; Sette and Bouliart, 1996; 
Behera and Muttigi, 2004 and Tran and Phillips, 2006). Among the NN methods, the radial basis 
function network (RBFN) based technique has proved to be promising because it is not only able to 
interpolate a function but also to approximate the solution of differential equations. In this work, 
we will extend the application of the Integral RBFN based mesh-less method for predicting the 
mechanical properties of yarns (Tran and Phillips, 2006) to identify behaviour of the ring-spinning 
balloon. In contrast to the finite element type approximation (Lisini et al., 1994), the present 
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method does not require any fixed connectivity to satisfy a predetermined topology (i.e. a mesh in 
which the elements are constrained by some geometrical regularity conditions) but only a set of 
unstructured discrete collocation nodes in the analysis domain and on its boundary.  

This paper describes the use of the Integral RBFN based mesh-free method to study the dynamics 
of ring-spinning balloon and organized as follows. In sections 2, the governing equation of the yarn 
balloon profile is represented based on the dynamics of yarn in ring-spinning balloon. The non-
dimensional form is introduced to express the differential governing equation together with the 
boundary conditions of the problem. In section 3, the RBFN based numerical method for 
approximation of a function and the derivatives, is outlined. Especially the Integral RBFN based 
integration of the equation of motion of the balloon is represented. The algorithm of the method in 
solving the nonlinear governing equation of balloon is described. The results and evaluation are 
then discussed in section 5 with a brief conclusion in section 6.  

2. Mathematical formulation of ring spinning 
The dynamics of yarn spinning have been detailed in many studies (Hannah, 1952, 1955, Mack, 
1953; Turteltaub and Bejar, 1976; Fraser, 1993; Batra et al. 1989a, b). The details of the 
engineering approach used in this work are given as follows.   

2.1. Governing Equation of the Yarn Balloon   

.  

 

 

Considering the flexible and inextensible ring-spinning balloon in a fixed coordinated frame 
(0,X,Y,Z), let (0,x,y,z) be the moving coordinate frame where z coincides with the bobbin axis. 
Alternatively, a cylindrical polar coordinate system is also defined via unit vector er (radial 
outward), eθ (circumferential), and ez (parallel to the bobbin axis), Figure 1(a). Also, using the 
principal triad, each point of the yarn balloon can be expressed by a three component unit vector: 
the tangent to the yarn path (et), principal normal (en, normal to the yarn path) and bi-normal (eb), 
Figure 1(b).  

Figure.1 Schematic configuration of yarn balloon and reference frames  
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Consider a small yarn segment of length ds (at the point P) in the moving frame with position Q(s) 
where s is the arc-length OP, see Figure 1(a). Neglecting the air drag and gravitational forces, the 
general equation of motion of this segment is given in the triad system by (Batra et al., 1989a)  

 ( )2
n rds v r ds dρ = ω −ω ρ =γ e e T     (1) 

where dT (T = Tet) is the tension of yarn balloon; ρ is the mass per unit length of the yarn; ω is the 
constant angular velocity of the yarn balloon; r is the balloon radius at P, γ is the acceleration of the 
segment consisting of the centripetal acceleration ( )2

rr−ω e  and the Coriolis acceleration ( )nveω  in 
which v  is the input velocity of the yarn in the fixed coordinates. This Coriolis component is 
neglected because the rotational velocity of traveller is much higher than the input velocity v. By 
projecting equation (1) on et gives the equation describing the tension of balloon: 

 2dT rdr= −ω ρ    (2) 

The development of the equation of motion (1) in the cylindrical coordinates yields the governing 
equation of balloon shape as follows (Batra et al. 1989a, De Barr and Catling, 1965)  

 
22 2

2
z

d r r dr1 0
dz T dz

ρω  + + = 
 

       (3) 

where Tz is the component of T along the direction ez in the cylindrical coordinates. Furthermore, 
with zero air drag, Tz is constant along the yarn in the balloon and the balloon in the zero air drag 
case is a planar curve contained in an rz-plane. Let To be the tension of yarn balloon at the guide 
eye (z = 0; r = 0) (see Figure 1). Integrating equation (2) yields  

   2 2
oT 0.5 r T= − ω ρ +     (4) 

Thus, from (4) the yarn tension is dependent on the position of yarn balloon and the tension of yarn 
balloon is a maximum at the guide-eye (To).  

2.2 Non-dimensionalisation  

In this section, the variables are scaled and the above equations are rewritten in non-dimensional 
form. As well as the advantages mentioned in Fraser (1993), the dimensionless presentation also 
advantages the training process of the RBF based networks by reducing the round-off error as 
shown in Tran and Phillips, 2006). Here, the variables z, r and T are scaled by h, ro and 2 2

orρω , 
respectively and the dimensionless variables are given by (Batra et al., 1989a; Padfield, 1958 and 
Fraser, 1993)  

 zZ
h

= ; 
o

rR
r

= ; *
2 2

o

TT
r

=
ρω

 (5) 

Where h, ro are the balloon height and the ring radius, respectively; ρ is the mass per unit length of 
the yarn; ω is angular velocity of the traveller.  

In order to consider the effect of the ratio of the ring radius (ro) to the balloon height (h) on the yarn 
balloon shape, the length variables r and z are scaled by two different values (Batra et al., 1989a). 
Three dimensionless parameter groups L = ro/h, 2 2

o oP r / T= ρω  and k = Tz/To are introduced and 
hence the equations (3) and (4) are rewritten in the non-dimensional form, respectively as follows    
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2
2

d R P R dR1 L 0
dZ L k dZ

   + + =   
   

 (6) 

 ( )2 2

o

T 1 0.5P R
T

= −  (7) 

2.3. Boundary Conditions in Stationary Ring-spinning  

Since the balloon under consideration is uncontrolled (i.e., a free balloon), as a result of the 
stationary condition,  the solution of the differential governing equation of balloon is obtained 
subject to the following boundary conditions in non-dimensional form     

At the guide eye:   R = 0 at Z = 0                     (8) 

At the traveller: R = 1 at Z = 1 (9) 

Furthermore, if the balloon reaches a radius larger than that of the ring (R > 1) then there exists a 
maximum value RM between the guide eye and bottom position of balloon and an additional 
condition is also imposed that 

 M
dR 0 at Z Z
dZ

= =  (10) 

where M
M

0

rR
r

= , and rM is the maximum value of balloon radius and considered as the radius of 

balloon at the first critical point (Batra et al., 1989a), Figure1(a). The tension Tz at the unknown 
location (ZM, RM) is the tension of the balloon. Equation (7) yields the ratio (k)  

 ( )2 2z
M

o

Tk 1 0.5P R
T

= = −  (11)  

In the analysis, the tension To is assumed to be known. Tz depends on the tension To , related to the 
traveller mass, yarn linear density and operating conditions, and determines the shape of the 
balloon. From Equation (11), Equation (6) is rewritten by   

 
( )

2 22
2

2 2 2
M

d R P R dR1 L 0
dZ L dZ1 0.5P R

   + + =   −   
 (12) 

3. RBFN based mesh-free method for solving the governing equation of balloon.    

The application of RBFN’s in numerical solution of PDE's has brought interesting results (Kansa, 
1990; Zerroukat et al., 1998; Tran-Canh and Tran-Cong, 2002b, 2004). After comparing many 
available interpolation methods for the analysis of scattered data, Franke (1982) ranked the Multi-
quadric RBF (MQ-RBF) as superior in accuracy and this RBF is employed in the present work.   

3.1 Review of the RBFN method  

The present work uses the linear RBF based networks with one hidden layer where an arbitrary 
function f(x) can be decomposed into m fixed Radial Basis Functions as follows 

 ( ) ( )
m

j j

j 1

f x w h x
=

= ∑  (13) 
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where wj is the synaptic weight and hj is the chosen radial basis function corresponding to the jth 
neuron. Usually m ≤ n (Haykin, 1999) where n is the number of input data points (xi, y) i); xi is the 
coordinate of the ith collocation point and y) i is the desired value of function f(x) at the collocation 
point xi. In this work the multi quadric RBF is employed and given by 

 ( ) ( ) ( )j 2j j j 2h r h r ax c= − = −  (14) 
 
where r =(x -cj) and  ( )jr cx −=  is the Euclidean norm of r; {cj}is a set of centres that can be 
chosen from among the data points;  aj > 0  is the width of the jth RBF. The accuracy of the MQ-
RBF approximation is dependent on the width of the RBF (Kansa, 1990a; Carlson and Foley, 
1991), whose choice is still an open question. In the present work, the set of centres is chosen as 
same as the set of training collocation points. The width aj is computed as follows  

 jj da ς=    (15) 
 
where dj is the distance from the jth centre to the nearest centre; ς is a chosen coefficient. In the 
conventional RBFN method (Hardy, 1971), after obtaining the RBFN based approximated function, 
its derivatives are determined by differentiating directly as follows  

                        

( )

( )

m
j j

m
j 1 j j

j 1i i

m
j j

2 m
j 1 j j

j 1i j j

w h ( )
f

w g ( )
x x

w g ( )
f

w k ( )
x x x

=

=

=

=

∂
∂

= =
∂ ∂

∂
∂

= =
∂ ∂ ∂

∑
∑

∑
∑

x
x

x

x
x

x

���

 (16) 

where gj(x) and kj(x) are the first and second derivatives of the RBF hj(x). 

3.2 The Integral RBFN method   

In this method, the highest order derivative is expressed in terms of the RBFNs, and then the lower 
order derivatives and finally the function are determined by the successive integrations (Mai-Duy 

and Tran-Cong, 2001). In this work, the second derivative 
2

2

d R
dZ

 of the balloon function R = f(Z) in 

Equation (12) is approximated by the RBFNs and then the first derivatives f / Z∂ ∂ and root function 
R = f(Z) can be calculated, respectively as follows   

 

( ) ( )

( ) ( ) ( )

( ) ( )

2 m
j j

2
j 1

m m
j j j j

o
j 1 j 1

m
j j

o 1
j 1

d f Z
w h Z ,

dZ
df Z

w h Z dZ w g Z C ,
dZ

R(Z) f Z w g Z dZ C Z C .

=

= =

=

=

= = +

≈ = + +

∑

∑ ∑∫

∑ ∫

 (17a,b,c) 

Where oC and 1C are integral constants and gj and lj are the basis functions and integrated directly 
from the RBFs. For the Multi-quadric RBFNs, Equations (17a,b,c) are given by   
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( ) ( ) ( )

( ) ( ) ( )
1
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j 1 i 1
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dZ

df Z
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= =

+

= =

= = − +

 
= = + 

 
 

= = + = + + 
 

∑ ∑

∑ ∑∫
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 (18a,b,c) 

where gj and lj are integrated directly from the MQ_RBF as follows successively     

  

( ) ( )
( ) ( ) ( ) ( )

( ) ( )
( )( )

( ) ( )

( )

j j ( j) ( j)
j j j j ( j)

.
j ( j)

( j)
j j j j ( j)

( j)
j ( j)

Z c Z c a ag Z h Z dZ ln Z c Z c a

Z c a al Z g Z dZ Zln Z c Z c a

a Z c a

− − +  = = + − + − + 
 

− +  = = + − + − + 
 

− − +

∫

∫
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6 2

2

  

3.3 Integrating the Governing Equation using the Integral RBFN method 

This section describes the Integral RBFN-based numerical technique employed to solve the 
governing equations of the balloon shape (12) subject to the boundary conditions (8) and (9) which 
are repeated here 

 
( )

2 22
2

2 2 2
M

d R P R dR1 L 0
dZ L dZ1 0.5P R

   + + =   −   
 (12) 

 R = 0 at Z = 0                     (8) 

 R = 1 at Z = 1 (9) 

With a chosen set of collocation points (including the points in the analysis volume from the guide 
eye O to the ring centre O’, see Figure1(a), and on the boundaries), the substitution of the closed 
forms of Equations (18a,b,c) into the Equations (12), (8)-(9) gives the sum of the square error in the 
sense of the linear least square principle as follows  

 ( ) ( ) ( ) ( ) ( )
max

2
22

2 221
i i i2 2

i

d R dRSSE Z R(Z ) 1 L Z R(0) 0 R(1) 1
dZ dZ1 P R∈Ω

 ρ   = + + + − + −   − 
∑  (22) 

Where i denotes the ith collocation points Zi; 
2

1
P
L

 ρ =  
 

 and Ω is set of collocation points included 

the boundary in this work. Note that there exists the nonlinear term ( )
2

2 dR1 L Z
dZ

 +  
 

 and the 

maximum value (Rmax) of the unknown function R which need to be processed using a special 
numerical treatment.  

In this work, the nonlinear term and Rmax are estimated based on the current approximated values of 
the variable Z and function R using the Picard type iterative procedure. The computation algorithm 
is carried out as follows        
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(a) The initial derivative values ( )i
dR Z
dZ

are guessed at the set of collocation points (zero values in 

this work) and the maximum value of the function is attained at the traveller point (the boundary 
condition R(1) = 1).  

(b) The nonlinear term in the second term of Equation (12) is linearised by using the current 
estimation of derivative function and maximum functional value but keeping the function R as 

unknown, i.e. at the tth iteration ( )
1/ 22

2
i

dR1 L Z
dZ

  +     
 is represented by ( )

1/ 22,t 1

i
dR1 Z
dZ

−  +     
and the 

maximum value Rmax by t 1
maxR − .  

(c) Equation (22) is solved using the general linear least square principle to obtain a new estimation 
the function of the balloon profile and its derivative.     

(d) The convergence measure (CM1) for the shape function at the tth iteration is calculated as 
defined as follows  

 
( )

( )

2n t t 1
i i1

2n t
ii 1

R R
CM1 ,

R

−

=

−
= ≤
∑
∑

1tol  (23) 

where n is the number of collocation points; tol1 is a preset tolerance of CM; Ri is the value of the 
shape function at a node i, and t means the t th iteration of the procedure;  

(e)  If not yet converged (CM1 > tol1) , return to step (b);  

(f)  Check the reliability of value Rmax obtained from step (c), defined as follows  

     
t t 1
max max

t
max

R R
CM2 ,

R

−−
= ≤ 2tol  (24) 

where t
maxR  and t 1

maxR −  are the values Rmax of the shape function at two adjacent iterations t-1 and t; 
tol2 is a preset tolerance of CM2;  

(h)  If not yet converged (CM2 > tol2), return to step (b); 

(i)  Stop. 

4. Computational results and discussion 

This section reports the verification of the present method with two approaches: (i) By identifying 
various balloon shapes using the present method for a range of spinning parameters and then 
comparing the obtained profiles with those from other numerical methods (ii) Investigating the 
reliability of balloon profiles obtained from the present method by comparison with the real balloon 
shapes obtained using a high speed camera.   

(i) For the first approach, the present method was employed to identify the profiles of yarn balloon 
using a range of different balloon tensions and the different ratios of the balloon height to the ring 
radius as mentioned in Batra et al. (1989a) as detailed in Table I for three typical cases. These 
parameters consist of yarn linear density ρ, the tension at the eye guide To, the ring radius and the 
angular velocity of the traveller. From these data, the values of non-dimensional parameter P (see 
section 2.2) for the three cases are calculated and given at the bottom of the Table I. The non-
dimensional method allows the influence of the ratio of the balloon height to the ring radius on the 
balloon shape to be considered.   
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Parameters Case 1 Case 2 Case 3 

Yarn linear density ρ (10-4g/cm) 2 4 1 

Operating Tension To (cN) 24 48 12 

Ring radius ro (cm)  2.5 2.5 2.5 

Angular velocity ω (rad/s)  1257 838 1676 

Non-dimensional term 2 2
o oP r / T= ρω  0.287 0.191 0.383 

CM1 2.2x10-7 4.6x10-8 2.6x10-8 

Table I. Typical data for yarn and machine parameters (from Batra et al,1989a) 

A set of 21 collocation points distributed regularly on the balloon height was employed for the 
present method. Figure 2 shows the profiles in the non-dimensional values of the balloon for a 
value of P = 0.287 and ratio L = 0.179 for the Integral RBFN method and the Runge-Kutta-
Fehlberg method (Batra et al., 1989a). The difference of the two methods is quite small for these 
examples when the CM1 (Equation (23)) of the present method reaches 10-7.   

 
 

 

 

The profiles of the balloon are obtained from the Integral RBFN method for a value of P = 0.287 
with a range of different ratios of the ring radius to the balloon height (L) 0.5, 0.179, 0.071, 0.05 as 
used by Batra et al. (1989a) are plotted in Figure 3. The results are in good agreement with those 
from the Runge-Kutta Fehlberg method (see Figure 5, Batra et al., 1989a) and show examples of 
the unstable collapsed balloon, i.e., when the yarn intersects the bobbin axis before reaching the 
traveller, for the smaller ratios L = 0.050 and, 0.071 while the balloon shape is stable for L = 0.5 
and 0.179.    

Figure 2. The profile of the yarn balloon: comparison between the integral RBFN method and 
the Runge-Kutta-Fehlberg method (from Batra et al.1989a), with P = 0. 287 and L = 0.179 
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The convergence measurement, CM1 from Equation (23), can reach at 10-7, specifically 2.2x10-7, 
4.6x10-8 and 2.6x10-8 for the three cases in Figure 3.  In practice the computer time of the method 
was insignificant and the implementation straightforward. 

  
 

 

 

    

 

The influence of yarn tension on the balloon profile using a range of values for P of 0.191, 0.287, 
0.383, 0.40, 0.44, 0.455, at the constant ratio of ring radius to balloon height L of 0.179 is shown in 
Figure 4 in their real dimensions. In general, the balloon radius increases as the balloon tension 
decreases, i.e., increasing P. The results show that the balloon tends to collapse for the cases P = 
0.44 and 0.455.  

 

 

 

 

 

Figure 3. The profile of the yarn balloon for different ratios of the ring radius to balloon height of 
0.5, 0.179, 0.071 and 0.05, ( 2 2

o oP r / T 0.287= ρω = ). The profile is plotted in non-dimensional 
values.  
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(ii) Investigating the reliability of the RBFN based predicted balloon using experimental results    

The analysis of the balloon shape using integral RBFN based predictions in the absence of the air 
drag force have been compared with experimental results obtained at CSIRO. The experiments 
were made using the SERMATES 82KA spin-tester machine with a 50mm inner ring diameter 
(Figure 5b). In order to limit the effect of the air drag force on the tension, a low angular velocity 
(8300 rpm or 870 radian/sec) was applied to spin 28 Tex single yarns. The balloon profiles were 
obtained using a high speed camera ‘Motion-Scope’ triggered by a sensor positioned close to the 
ring that monitored the traveller position.  The traveller sensor was synchronised to a flash light to 
illuminate the profile of the fine yarn and this allowed individual balloon profiles to be recorded for 
analysis using the graphical software ImageJ.   

In the analysis, the tension To was measured directly on the spin-tester during spinning by a 
tension-meter (Figure 5a&b). A tension sensor located between the front rollers and guide eye and 
the signals of balloon tension are processed at unit 7, Figure 5b. Then the tension was analysed by 
EDAS software and averaged over 15 seconds.  

The range of the non-dimensional parameter P in which the difference of the balloon profiles 
between with and without air drag cases is insignificant as mentioned in Batra et al. (1989a&b) are 
considered in this sections. As for Figure 4, the experimental balloon profiles in this subsection (ii) 
are shown with their real dimensions in mm.   

The pictures reproduced in Figures 6, 7, 8 and 9 of balloon profiles were obtained for different 
balloon heights and with various tensions obtained using travellers of different mass. The 
parameters are detailed in Table II.          

Figure 4.  The influence of balloon tension on the profile of yarn balloon with 
the ratio L = 0.179. 
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In order to evaluate the accuracy of the method, a measure of the norm error of the predicted 
solution, Ne, is defined as  

( ) ( )( )
( )

2n
mea i pre ii 1

e n 2
mea ii 1

r z r z
N

r z
=

=

−
=
∑

∑
 

 where rmea(zi) and  rpre(zi) are the radius of the measured and predicted balloon shapes respectively 
at the position zi from the root 0 (guide eye) of balloon and n is the number of check points.  

Figure 6(a) shows a balloon profile for ‘Case 1’ in Table II when the yarn is located near to the 
base of the bobbin. The measured tension and the balloon height are shown in Table II together 
with the other operating parameters for the spinning process. Figure 6(b) compares the 
experimental profile (* line) with the predicted shape (solid line) and Table III shows the measured 
and predicted values of the balloon shape which gives the associated norm error Ne of 0.082. 
Figures 7(a,b) and 8(a,b) show the measured shape and the predicted shape when the yarn was 
positioned near to the top (Case 2) and the middle (Case 3) of the bobbin, respectively.  

Generally, the predicted shapes show reasonable agreement with the experimental data for balloons 
with a stable shape and the differences are probably linked to the influence of the air drag force in 
the measured data which curves and distorts the plane of the balloon. The differences between the 
predicted and the measured shapes increase (as shown by Ne) when the ratio of the ring radius to 
the balloon height decreases (c.f. Figures 6, 8(b) with Figure 7(b)) or the tension To decreases (c.f. 
Figure 9(b) with Figure 6(b)). In both instances the effect of the air drag force would increase.  

 

Figure 5. a) Schema of ring spinning process. b) Spin tester Sermates 82KA and tension-
meter for measuring the balloon tension. The tension sensor is located at the balloon 
segment between the front roller and the guide eye to determine To.   
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Parameters Case 1 Case 2 Case 3 Case 4 

Yarn linear density ρ (10-4g/cm)  (28 Tex) 2.8 2.8 2.8 2.8 

Operating Tension To (cN) 23.4 23.0 22.4   17.0 

Ring radius ro (cm)  2.5 2.5 2.5 2.5 

Balloon height (cm) 25.7 16.3 20.0 28.7 

Angular velocity ω (rad/s)   870 870 870 870 

L = ro  / h   0.097   0.153   0.125   0.087 

Non-dimensional term 2 2
o oP r / T= ρω  0.237 0.240 0.243 0.280 

Balloon profiles are shown in Figures  6 7 8 9 

Table II: Typical data for yarn and machine parameters 

 

 

 

 

 

 

 

 
i zi(mm) rmea(mm) rpre(mm) i zi(mm) rmea(mm) rpre(mm) i zi(mm) rmea(mm) rpre(mm) 

1 0 0 0 8 96.25 34.72 31.60 15 192.50 41.23 38.10
2 27.50 5.79 5.24 9 110.00 37.62 34.50 16 206.25 38.34 36.38
3 13.75 9.40 10.35 10 123.75 41.23 36.65 17 220.00 33.28 34.06
4 41.25 17.36 15.31 11 137.50 42.68 38.30 18 233.75 29.66 31.15
5 55.00 21.70 20.00 12 151.25 43.40 39.23 19 247.50 26.04 27.68
6 68.75 25.32 24.31 13 165.00 43.55 39.52 20 257.00 25.00 25.00
7 82.50 30.38 28.20 14 178.75 42.68 39.13   

Table III. Typical data for measured (rmea) and predicted (rpre) balloon profile positions (i = 1-20) for Case 1 
corresponding to Figure 6. 
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(a) (b) 
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Figure 7.  Case 2. (a) Balloon shape from the high speed camera; (b) 
Comparison of the balloon shape (solid line) from (a) and the predicted balloon 
shape (*). The parameters are given in Table II and the norm error Ne is 0.03.  

Figure 6.  Case 1. (a) Balloon shape from the high speed camera; (b) Comparison of 
the balloon shape (solid line) from (a) and the predicted balloon shape (*). The 
parameters are given in Table II and the norm error Ne is 0.082.  
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(a)                                                     (b) 

 

                                                                 
(a)                            (b) 

Figure 8.  Case 3. (a) Balloon shape from the high speed camera; (b) Comparison of the 
balloon shape (solid line) from (a) and the predicted balloon shape (*). The parameters are 
given in Table II and the norm error Ne is  0.08. 

Figure 9.  Case  4. (a) Balloon shape from the high speed camera; (b) Comparison of the 
balloon shape (solid line) from (a) and the predicted balloon shape (∆). The parameters are 
given in Table II and the norm error Ne is 0.2. 
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When the tension To was reduced by using travellers of lighter mass the profile of a collapsed 
balloon was obtained at the tension To = 17.0cN as shown in Figure 9 (a) with the other parameters 
as shown for Case 4 (Table II). The difference between the predicted shape (solid line) and the 
measured shape is significant (Ne = 0.2) but in this case the real shape is no longer planar and is 
affected where the yarn balloon touches the bobbin compared with the predicted shape which is 
assumed to be planar. Nevertheless the broad features of the experimental profile are shown by the 
theoretical curve. 

5. Concluding remarks  

The Integral RBFN method was used to solve the uncontrolled yarn balloon shape as described by a 
non-linear differential governing equation. A key feature of the method has been the solution of the 
non-linear equation without any of the simplifying assumptions used by previous researchers. The 
results show the method is reliable in determining the profile of the balloon with a simple analysis 
using a coarse number of collocation points, i.e., the accuracy is high with an insignificant 
computation time, when the balloon shape is stable. The dimensionless technique benefits the 
training process of the RBFN method and increases significantly the accuracy of results. This 
theoretical analysis compared very well with other studies by identifying the key features of ring-
spinning. Comparison of the theoretical balloon profiles was consistent with the experimental 
balloon shapes across a wide range of spinning conditions. The differences between the theoretical 
and experimental data may be due to the presence of air drag and the Integral RBFN method 
provides a basis for further analysis allowing for the effect of air drag and time dependent effects. 
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